数学勾股定理知识归纳总结含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学勾股定理知识归纳总结含答案

一、选择题

1.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )

A .47

B .62

C .79

D .98

2.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2016的值为( )

A .(2)2013

B .(2)2014

C .(12)2013

D .(12

)2014 3.如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→…,白甲壳虫爬行的路线是AB→BB 1→…,并且都遵循如下规则:所爬行的第n+2与第n 条棱所在的直线必须既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )

A .0

B .1

C 3

D 2

4.已知,等边三角形ΔABC 中,边长为2,则面积为( ) A .1 B .2 C 2

D 35.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( )

A .24

B .30

C .40

D .48

6.下列以线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( ) A .9,41,40a b c ===

B .5,5,52a b c ===

C .::3:4:5a b c =

D .11,12,13a b c === 7.在直角三角形ABC 中,90C ∠=︒,两直角边长及斜边上的高分别为,,a b h ,则下列

关系式成立的是( )

A .222221a b h +=

B .222111a b h +=

C .2h ab =

D .222h a b =+

8.由下列条件不能判定△ABC 为直角三角形的是( )

A .∠A+∠B=∠C

B .∠A :∠B :∠C=1:3:2

C .a=2,b=3,c=4

D .(b+c)(b-c)=a² 9.一个直角三角形的两条边的长度分别为3和4,则它的斜边长为( )

A .5

B .4

C .7

D .4或5 10.如图,在△ABC ,∠C =90°,AD 平分∠BAC 交CB 于点D ,过点D 作D

E ⊥AB ,垂足恰好是边AB 的中点E ,若AD =3cm ,则BE 的长为( )

A .33cm

B .4cm

C .32cm

D .6cm

二、填空题

11.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =,7AD =,则AC 的长为_________

12.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为_____.

13.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.

14.在△ABC 中,若2222

25,75a b a b c -+===,,则最长边上的高为_____.

15.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.

16.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___

17.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .

18.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2.

19.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则

2________BD =.

20.在Rt ABC 中,90A ∠=︒,其中一个锐角为60︒,23BC =P 在直线AC 上(不与A ,C 两点重合),当30ABP ∠=︒时,CP 的长为__________.

三、解答题

21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点

,E DF 与射线AC 相交于点F .

()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;

()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12

BE CF AB +=.

()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.

22.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;

(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;

(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.

相关文档
最新文档