必修五第三章不等式全章学案
2020版数学人教A版必修5学案:第三章 3.1 不等关系与不等式 Word版含解析
§3.1不等关系与不等式学习目标 1.能用不等式(组)表示实际问题的不等关系.2.初步学会作差法、作商法比较两实数的大小.3.掌握不等式的基本性质,并能运用这些性质解决有关问题.知识点一不等关系现实世界中存在大量的不等关系.试用不等式表示下列关系:(1)a大于b a>b(2)a小于b a<b(3)a不大于b a≤b(4)a不小于b a≥b知识点二作差法作差法的理论依据:a>b⇔a-b>0;a=b⇔a-b=0;a<b⇔a-b<0.思考x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小,而且具有说服力吗?答案作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.知识点三不等式的基本性质不等式性质:(1)a>b⇔b<a(对称性);(2)a>b,b>c⇒a>c(传递性);(3)a>b⇒a+c>b+c(可加性);(4)a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;(5)a>b,c>d⇒a+c>b+d;(6)a>b>0,c>d>0⇒ac>bd;(7)a>b>0,n∈N,n≥1⇒a n>b n;(8)a >b >0,n ∈N ,n ≥21.2≥1.( √ ) 2.ab >1⇒a >b .( × ) 3.a >b ⇔a +c >b +c .( √ )4.⎩⎪⎨⎪⎧a >b ,c >d ⇔a +c >b +d .( × )题型一 用不等式(组)表示不等关系例1 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝⎛⎭⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝⎛⎭⎫8-x -2.50.1×0.2x ≥20(x ≥2.5).反思感悟 数学中考查的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时 (1)要先读懂题,设出未知量; (2)抓关键词,找到不等关系;(3)用不等式表示不等关系.思维要严密、规范.跟踪训练1 某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系: .(不用化简) 答案 5x -2(19-x )≥80,x ∈N *解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2(19-x )≥80,x ∈N *.题型二 比较大小命题角度1 作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小.解 ∵a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2) =a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,(a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2. 引申探究1.若a >0,b >0,a 5+b 5与a 3b 2+a 2b 3的大小关系又如何? 解 (a 5+b 5)-(a 3b 2+a 2b 3)=a 5-a 3b 2+b 5-a 2b 3 =a 3(a 2-b 2)+b 3(b 2-a 2) =(a 2-b 2)(a 3-b 3)=(a -b )2(a +b )(a 2+ab +b 2). ∵a >0,b >0,∴(a -b )2≥0,a +b >0,a 2+ab +b 2>0. ∴a 5+b 5≥a 3b 2+a 2b 3.2.对于a n +b n ,你能有一个更具一般性的猜想吗?解 若a >0,b >0,n >r ,n ,r ∈N *,则a n +b n ≥a r b n -r +a n -r b r .反思感悟 比较两个实数的大小,可以求出它们的差的符号.作差法比较实数的大小的一般步骤是:差→恒等变形→判断差的符号→下结论.作差后变形是比较大小的关键一步,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式. 跟踪训练2 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x . 命题角度2 作商法比较大小例3 若0<x <1,a >0且a ≠1,试比较|log a (1-x )|与|log a (1+x )|的大小关系. 解|log a (1-x )||log a (1+x )|=⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=||log (1+x )(1-x ),∵0<x <1,∴||log (1+x )(1-x )=-log (1+x )(1-x )=log (1+x )11-x,∵1-x 2=(1+x )(1-x )<1,且1-x >0,∴1+x <11-x, ∴log (1+x )11-x >1,即|log a (1-x )||log a (1+x )|>1,∴|log a (1+x )|<|log a (1-x )|.反思感悟 作商法的依据:若b >0,则ab >1⇔a >b .跟踪训练3 若a >b >0,比较a a b b 与a b b a 的大小. 解 a a b b a b b a =a a -b b b -a =⎝⎛⎭⎫ab a -b , ∵a >b >0, ∴ab >1,a -b >0, ∴⎝⎛⎭⎫a b a -b >1,即a a b ba b b a >1, 又∵a >b >0,∴a a b b >a b b a . 题型三 不等式的基本性质 例4 已知a >b >0,c <0,求证:c a >c b .证明 因为a >b >0,所以ab >0,1ab >0.于是a ×1ab >b ×1ab ,即1b >1a .由c <0,得c a >cb.反思感悟 有关不等式的证明,最基本的依据是不等式的8条基本性质,在解不等式时,对不等式进行有关变形的依据也是8条基本性质. 跟踪训练4 如果a >b >0,c >d >0,证明:ac >bd . 证明⎭⎪⎬⎪⎫ ⎭⎬⎫a >b >0c >0⇒ac >bc >0⎭⎬⎫c >d >0b >0⇒bc >bd >0⇒ac >bd .用好不等式性质,确保推理严谨性典例 已知12<a <60,15<b <36,求ab 的取值范围.[错解] ∵12<a <60,15<b <36,∴1215<a b <6036,∴45<a b <53. [点拨] 在确保条件的前提下,同向不等式可以相乘,但同向不等式没有相除的性质,不能臆造.确需相除,可转化为相乘.[正解] ∵15<b <36,∴136<1b <115,又12<a <60,∴1236<a b <6015,∴13<ab <4, 即ab的取值范围是⎝⎛⎭⎫13,4. [素养评析] 逻辑推理讲究言必有据.在不等式这一章,我们要对不等式进行大量的运算、变形,而运算、变形的依据就是不等式的性质.通过考问每一步是否有依据,整个推理过程是否有条理,可以使我们的理性精神和交流能力得到提升.1.某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( ) A.⎩⎪⎨⎪⎧ x ≥95,y ≥380,z >45 B.⎩⎪⎨⎪⎧ x ≥95,y >380,z ≥45C.⎩⎪⎨⎪⎧x >95,y >380,z >45 D.⎩⎪⎨⎪⎧x ≥95,y >380,z >45答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”,∴x ≥95,y >380,z >45. 2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-a D .a >b >-a >-b答案 C解析 由a +b >0,知a >-b ,∴-a <b <0. 又b <0,∴-b >0,∴a >-b >b >-a .3.已知a ,b ,c ∈R ,则下列命题正确的是( ) A .a >b ⇒ac 2>bc 2 B.a c >bc ⇒a >b C.⎭⎬⎫a >b ab <0⇒1a >1b D.⎭⎬⎫ab >0a >b ⇒1a >1b答案 C解析 当c =0时,A 不成立;当c <0时,B 不成立;当ab <0时,a >b ⇒a ab <b ab ,即1a >1b ,C 成立.同理可证D 不成立.4.若a >b >0,c <d <0,则一定有( ) A.a d >bc B.ad <b c C.a c >b d D.a c <b d 答案 B解析 因为c <d <0,所以-c >-d >0, 即1-d >1-c>0. 又a >b >0,所以a -d >b-c ,从而有a d <b c.5.比较(a +3)(a -5)与(a +2)(a -4)的大小. 解 ∵(a +3)(a -5)-(a +2)(a -4) =(a 2-2a -15)-(a 2-2a -8)=-7<0, ∴(a +3)(a -5)<(a +2)(a -4).1.比较两个实数的大小,只要求出它们的差就可以了. a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.作差法比较大小的一般步骤 第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”; 第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论); 最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,并注意不等式推导所需条件是否具备.一、选择题1.设x <a <0,则下列不等式一定成立的是( ) A .x 2<ax <a 2 B .x 2>ax >a 2 C .x 2<a 2<ax D .x 2>a 2>ax答案 B解析 ∵x 2-ax =x (x -a )>0,∴x 2>ax . 又ax -a 2=a (x -a )>0,∴ax >a 2,∴x 2>ax >a 2. 2.已知a <0,b <-1,则下列不等式成立的是( ) A .a >a b >a b 2B.a b 2>a b >aC.a b >a >a b 2D.a b >a b2>a 答案 D解析 取a =-2,b =-2,则a b =1,a b 2=-12∴a b >a b 2>a .3.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( ) A.1a <1bB .a 2>b 2 C.a c 2+1>bc 2+1 D .a |c |>b |c |答案 C解析 对于A ,若a >0>b ,则1a >0,1b <0,此时1a >1b,∴A 不成立;对于B ,若a =1,b =-2,则a 2<b 2,∴B 不成立; 对于C ,∵c 2+1≥1,且a >b , ∴a c 2+1>bc 2+1恒成立,∴C 成立; 对于D ,当c =0时,a |c |=b |c |,∴D 不成立.4.若a >b >c 且a +b +c =0,则下列不等式中正确的是( ) A .ab >ac B .ac >bc C .a |b |>c |b | D .a 2>b 2>c 2答案 A解析 由a >b >c 及a +b +c =0,知a >0,c <0,⎩⎪⎨⎪⎧a >0,b >c ,则ab >ac .5.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) A .a 2<b 2 B .a 2b <ab 2 C.1ab 2<1a 2b D.b a <a b答案 C解析 对于A ,在a <b 中,当a <0,b <0时,a 2<b 2不成立; 对于B ,当a <0,b >0时,a 2b >0,ab 2<0,a 2b <ab 2不成立; 对于C ,∵a <b ,1a 2b 2>0,∴1ab 2<1a 2b ;对于D ,当a =-1,b =1时,b a =ab=-1.6.若a >0且a ≠1,M =log a (a 3+1),N =log a (a 2+1),则M ,N 的大小关系为( ) A .M <N B .M ≤N C .M >N D .M ≥N 答案 C解析 当a >1时,a 3+1>a 2+1, y =log a x 为(0,+∞)上的增函数, ∴log a (a 3+1)>log a (a 2+1); 当0<a <1时,a 3+1<a 2+1,y =log a x 为(0,+∞)上的减函数, ∴log a (a 3+1)>log a (a 2+1), ∴当a >0且a ≠1时,总有M >N . 二、填空题7.b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据此事实提炼一个不等式:当b >a >0且m >0时, . 答案a +mb +m >ab解析 变甜了,意味着含糖量大了,即浓度高了.8.已知函数f (x )=ax +b,0<f (1)<2,-1<f (-1)<1,则2a -b 的取值范围是 . 答案 ⎝⎛⎭⎫-32,52 解析 由函数的解析式可知0<a +b <2,-1<-a +b <1, 且2a -b =12(a +b )-32(-a +b ),结合不等式的性质可得, 2a -b ∈⎝⎛⎭⎫-32,52. 9.若x ∈R ,则x 1+x 2与12的大小关系为 . 答案x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 10.(x +5)(x +7)与(x +6)2的大小关系为 . 答案 (x +5)(x +7)<(x +6)2 解析 因为(x +5)(x +7)-(x +6)2 =x 2+12x +35-(x 2+12x +36)=-1<0. 所以(x +5)(x +7)<(x +6)2. 三、解答题11.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,试用不等式(组)将题中的不等关系表示出来.解 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N ).12.设x ,y ,z ∈R ,比较5x 2+y 2+z 2与2xy +4x +2z -2的大小. 解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2) =4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1 =(2x -1)2+(x -y )2+(z -1)2≥0, ∴5x 2+y 2+z 2≥2xy +4x +2z -2, 当且仅当x =y =12且z =1时取等号.13.已知a >b >0,c <d <0,e <0,求证:e a -c >eb -d .证明 ∵c <d <0,∴-c >-d >0, 又∵a >b >0,∴a +(-c )>b +(-d )>0, 即a -c >b -d >0,∴0<1a -c <1b -d,又∵e <0,∴e a -c >eb -d.14.若x >0,y >0,M =x +y 1+x +y ,N =x 1+x +y1+y ,则M ,N 的大小关系是( )A .M =NB .M <NC .M ≤ND .M >N答案 B解析 ∵x >0,y >0,∴x +y +1>1+x >0,1+x +y >1+y >0, ∴x 1+x +y <x 1+x ,y 1+x +y <y1+y,故M =x +y 1+x +y =x 1+x +y +y 1+x +y <x 1+x +y1+y=N ,即M <N .15.已知实数x ,y 满足-4≤x -y ≤-1,-1≤4x -y ≤5,则9x -3y 的取值范围是 . 答案 [-6,9]解析 设9x -3y =a (x -y )+b (4x -y )=(a +4b )x -(a +b )y ,∴⎩⎪⎨⎪⎧ a +4b =9,a +b =3⇒⎩⎪⎨⎪⎧a =1,b =2,∴9x -3y =(x -y )+2(4x -y ),∵-1≤4x -y ≤5,∴-2≤2(4x -y )≤10, 又-4≤x -y ≤-1, ∴-6≤9x -3y ≤9.。
北师大版高中数学必修5第三章《不等式》全部教案
北师大版高中数学必修5第三章《不等式》全部教案第一课时§3.1 不等关系(一)一、教学目标:(1)通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;(2)经历由实际问题建立数学模型的过程,体会其基本方法;(3)掌握作差比较法判断两实数或代数式大小;(4)通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯.二、教学重点,难点:(1)通过具体情景,建立不等式模型;(2) 掌握作差比较法判断两实数或代数式大小.三、教学方法:启发引导式 四、教学过程 (一).问题情境在日常生活、生产实际和科学研究中经常要进行大小、多少、高低、轻重、长短和远近的比较,反映在数量关系上就是相等与不等两种情况,例如:(1) 某博物馆的门票每位10元,20人以上(含20人)的团体票8折优惠.那么不足20人时,应该选择怎样的购票策略?(2)某杂志以每本2元的价格发行时,发行量为10万册.经过调查,若价格每提高0.2元,发行量就减少5000册.要使杂志社的销售收入大于22.4万元,每本杂志的价格应定在怎样的范围内? (3)下表给出了三种食物X ,Y ,Z 的维生素含量及成本:维生素A (单位/kg) 维生素B (单位/kg) 成本(元/kg)X 300 700 5 Y 500 100 4 Z3003003某人欲将这三种食物混合成100kg 的食品,要使混合食物中至少含35000单位的维生素A 及40000单位的维生素B ,设X ,Y 这两种食物各取x kg ,y kg ,那么x ,y 应满足怎样的关系? 2.问题:用怎样的数学模型刻画上述问题? (二).学生活动在问题(1)中,设x 人(20x <)买20人的团体票不比普通票贵,则有82010x ⨯≤. 在问题(2)中,设每本杂志价格提高x 元,则发行量减少50.50.22x x⨯=万册,杂志社的销售收入为5(2)(10)2x x +-万元.根据题意,得5(2)(10)22.42xx +->, 化简,得2510 4.80x x -+<.在问题(3)中,因为食物X ,Y 分别为x kg ,y kg ,故食物Z 为(10)x y --kg ,则有300500300(100)35000,700100300(100)40000,x y x y x y x y ++--≥⎧⎨++--≥⎩即25,250.y x y ≥⎧⎨-≥⎩ 上面的例子表明,我们可以用不等式(组)来刻画不等关系.表示不等关系的式子叫做不等式,常用(<>≤≥≠,,,,)表示不等关系. (三).建构数学1.建立不等式模型:通过具体情景,对问题中包含的数量关系进行认真、细致的分析,找出其中的不等关系,并由此建立不等式.问题(1)中的数学模型为一元一次不等式, 问题(1)中的数学模型为一元二次不等式, 问题(1)中的数学模型为线形规划问题.2.比较两实数大小的方法——作差比较法:比较两个实数a 与b 的大小,归结为判断它们的差a b -的符号;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差的符号. (四).数学运用 1.例题:例1.某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?解:假设截得的500mm 钢管x 根,截得的600mm 钢管y 根.根据题意,应有如下的不等关系:5006004000,3,,.x y x y x N y N +≤⎧⎪≥⎪⎨∈⎪⎪∈⎩说明:关键是找出题目中的限制条件,利用限制条件列出不等关系.例2.某校学生以面粉和大米为主食.已知面食每100克含蛋白质6个单位,含淀粉4个单位;米饭每100克含蛋白质3个单位,含淀粉7个单位.某快餐公司给学生配餐,现要求每盒至少含8个单位的蛋白质和10个单位的淀粉.设每盒快餐需面食x 百克、米饭y 百克,试写出,x y 满足的条件.解:,x y 满足的条件为638471000x y x y x y +≥⎧⎪+≥⎪⎨≥⎪⎪≥⎩.例3.比较大小:(1)(3)(5)a a +-与(2)(4)a a +-;(2)a mb m ++与ab(其中0b a >>,0m >). 分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负,并根据实数运算的符号法则来得出两个代数式的大小. 解:(1))4)(2()5)(3(-+--+a a a a 22(215)(28)70a a a a =-----=-<∴(3)(5)(2)(4)a a a a +-<+-.(2)()()()()()a m ab a m a b m m b a b m b b b m b b m ++-+--==+++, ∵0b a >>,0m >,∴()0()m b a b b m ->+,所以a m ab m b +>+. 说明:不等式a m ab m b+>+(0b a >>,0m >)在生活中可以找到原型:b 克糖水中有a 克糖(0b a >>),若再添加m 克糖(0m >),则糖水便甜了. 例4.已知2,x >比较311x x +与266x +的大小.解:3232211(66)33116x x x x x x x +-+=--+-2(3)(32)(3)x x x x =-+-+- =(3)(2)(1)x x x --------------------(*)(1) 当3x >时,(*)式0>,所以 311x x +>266x +; (2) 当3x =时,(*)式0=,所以 311x x +=266x +;(3) 当23x <<时,(*)式0<,所以 311x x +<266x +说明: 1.比较大小的步骤:作差-变形-定号-结论;2.实数比较大小的问题一般可用作差比较法,其中变形常用因式分解、配方、通分等方法才能定号.2.练习:(1)比较2)6()7)(5(+++x x x 与 的大小;(2)如果0x >,比较22)1()1(+-x x 与 的大小.(五).回顾小结:1.通过具体情景,建立不等式模型;2.比较两实数大小的方法——求差比较法.(六).课外作业:课本第68页 练习 第1,2,3题(“不求解”改为“并求解”).补充:1.比较222a b c ++与ab bc ca ++的大小;2.已知0,0,a b >>且a b ≠,比较22a b b a+与a b +的大小.第二课时§3.1 不等关系(二)一、教学目标1.知识与技能:掌握不等式的基本性质,会用不等式的性质证明简单的不等式;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法; 3.情态与价值:通过讲练结合,培养学生转化的数学思想和逻辑推理能力. 二、教学重点:掌握不等式的性质和利用不等式的性质证明简单的不等式;教学难点:利用不等式的性质证明简单的不等式。
必修五第三章不等式全章学案
必修五 第三章 不等式3.1不等关系与不等式3.1.1不等关系与不等式一、学习目标理解不等式概念、不等符号的意义;学会用作差法比较两数大小.二、阅读教材,完成下列问题1.不等式的概念______________________________________________.2.“≥”含义_____________,“≤”含义_____________.3.比较两数大小的方法_________________.4.p q ⇒,读作____________,意义是_______________________. p q ⇔,读作____________,意义是_______________________.例1.比较2x x -和2x -的大小.例2.当,p q 都为正数且1p q +=时,试比较代数式()2px qy +与22px qy +的大小.3.1.2不等式的性质一、学习目标熟练运用不等式性质解不等式.二、阅读教材并填空1.初中学习不等式三条基本性质①不等式的两边都加上(或都减去)同一个数,不等号的方向_________;②不等式的两边都乘以(或都除以)同一个____数,不等号的方向_________;③不等式的两边都乘以(或都除以)同一个____数,不等号的方向_________.2.高中学习不等式性质性质1___________________________________________,称为____________;性质2___________________________________________,称为____________;性质3______________________________________________________________;推论1___________________________________________,称为____________;推论2___________________________________________,称为____________;性质4______________________________________________________________;推论1___________________________________________,称为____________;推论2______________________________________________________________;推论3______________________________________________________________;求证性质3的推论2:不等式的同向可加性例1.应用不等式的性质,证明下列不等式,并说出所依据的性质是什么(1)已知,0a b ab >>,求证:11a b <;(2)已知,a b c d ><,求证:a c b d ->-;(3)已知0,0a b c d >><<,求证:a b c d >;例2.已知123a b <<<<,求,,2,,a ab a b a b ab b+--各自的取值范围.辨析:①若a b >,则22ac bc >;②若a b >且k N +∈,则k k a b >;③若,a b c d >>,,则a c b d ->-;④若ac bc >,则a b >且0c >;3.2均值不等式一、学习目标理解均值不等式及其证明,并能应用它解决有关问题.二、学习过程问题引入:看下面两个实际问题,用数学符号语言表达下列问题(1)一个矩形的面积为2100m .问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?(2)已知矩形的周长为36m .问这个矩形的长、宽各为多少时,它的面积最大?最大面积是多少?问题:均值不等式证明1.证明均值定理:如果,a b R +∈,那么2a b +≥....________时,等号成立.上述所证结论通常称为________________,也称为________________. 其中_______叫做,a b 的算术平均数,________叫做,a b 的几何平均数,均值定理可以表述为:_______________________________________________.2.均值不等式的几何意义:小结:例1.已知0ab >,求证:2b a a b+≥,并推导出式中等号成立的条件.例2.(1)一个矩形的面积为2100m .问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?(2)已知矩形的周长为36m .问这个矩形的长、宽各为多少时,它的面积最大?最大面积是多少?例3.研究函数性质:()2f x x x=+例4.求下列函数的最大(小)值,及取得最值时的x 值.(1)()()411f x x x x =+>-+的最小值;(2)()()201xf x x x x =>++的最大值;(3)()()20f x x x x =+<的最大值;(4)()()2230x x f x x x -+-=>的最大值;(5)()()11303f x x x x ⎛⎫=-<< ⎪⎝⎭的最大值.例5.已知,,a b c R +∈且1a b c ++=,求证:1119a b c ++≥.例6.已知,,220x y R x y +∈+-=,求:xy 的最大值及此时,x y 的值.例7.若,x y R +∈且3x y xy ++=,①求x y +的最小值;②求xy 的最大值.3.3一元二次不等式及其解法一、学习目标理解一元二次不等式与二次函数、一元二次方程之间的关系,掌握一元二次不等式的解法.二、学习过程(一)一元二次不等式的解法例1.解不等式:(1)2230x x -+>(2)2230x x -+<(3)2440x x ++>(4)2440x x ++≤(5)22430x x -+-≥(6)2140x x -->小结:1.完成下表2.解一元二次不等式的一般步骤:例2.求函数()()23log 32f x x x =+-的定义域.3.高次不等式、分式不等式(1)()()()22350x x x ---≥(2)21032x x x -≤++(二)二次不等式恒成立问题例 3.已知函数()()2lg 1f x ax a x a ⎡⎤=+-+⎣⎦定义域为R ,求a 的取值范围.小结:例4.已知不等式240x x a +-≥在[]1,1x ∈-上恒成立,求a 的取值范围.小结:例5.对任意[]1,1a ∈-,不等式()24420x a x a +-+->恒成立,求x 的取值范围.小结:(三)二次方程实根分布问题例 6.关于x 的一元二次方程28(1)70x m x m +++-=有两个负数根,求实数m 取值范围例7.已知二次函数()()()222433y m x m x m =+-+++与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围.小结:(四)二次函数在闭区间上的最值问题例8.(1)求函数()[]221,1,4f x x ax x =-+∈的最小值.①当2a =时 ②当a R ∈时(2)求函数()[]221,1,4f x x ax x =-+∈的最大值.例9.求函数243y x x =-+在区间[],1t t +上的最小值.小结:3.4不等式的实际应用一、学习目标学会用不等式解决简单的实际问题 二、学习过程例1.一般情况下,建筑民用住宅时,民用住宅窗户的总面积应小于该住宅的占地面积,而窗户的总面积与占地面积的比值越大,住宅的采光条件越好.同时增加相等的窗户面积和占地面积,住宅的采光条件是变好了还是变差了?例2.有纯农药药液一桶,倒出8升后用水加满,然后又倒出4升后再用水加满,此时桶中所含的纯农药药液不超过桶的容积的28%.问桶的容积最大为多少升?例3.根据某乡镇家庭抽样调查的统计,2003年每户家庭年平均消费支出总额为1万元,其中食品消费额为0.6万元.预测2003年后,每户家庭年平均消费支出总额每年增加3000元,如果到2005年该乡镇居民生活状况能达到小康水平(即恩格尔系数n 满足条件40%50%n <≤),试问这个乡镇每户食品消费额平均每年的增长率至多是多少(精确到0.1)恩格尔系数n 的计算公式是3.5二元一次不等式(组)与简单的线性规划问题 3.5.1二元一次不等式(组)所表示的平面区域一、学习目标1.能通过取点的方式寻求二元一次不等式(组)所表示的平面区域;2.会画二元一次不等式(组)所表示的平面区域。
高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2学案(含解析)新人教A版必修5-新人教A
3.4 基本不等式:ab≤a+b 2[目标] 1.了解基本不等式的代数式和几何背景;2.会用基本不等式进行代数式大小的比较及证明不等式;3.会用基本不等式求最值和解决简单的实际问题.[重点] 基本不等式的简单应用.[难点] 基本不等式的理解与应用.知识点一 两个不等式[填一填]1.重要不等式:对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式:如果a ,b ∈R +,那么ab ≤a +b2,当且仅当a =b 时,等号成立.其中a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数.所以两个正数的算术平均数不小于它们的几何平均数.[答一答]1.不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b2成立的条件有什么不同?提示:不等式a 2+b 2≥2ab对任意实数a ,b 都成立;ab ≤a +b2中要求a ,b 都是正实数.知识点二 基本不等式与最值[填一填]已知x ,y 都是正数,(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值.(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值.[答一答]2.利用基本不等式求最值时,我们应注意哪些问题?提示:(1)在利用基本不等式具体求最值时,必须满足三个条件:①各项均为正数;②含变数的各项的和(或积)必须是常数;③当含变数的各项均相等时取得最值.三个条件可简记为:一正、二定、三相等.这三个条件极易遗漏而导致解题失误,应引起足够的重视.(2)记忆口诀:和定积最大,积定和最小.3.在多次使用基本不等式求最值时,我们应注意什么问题?提示:在连续多次应用基本不等式时,我们要注意各次应用时不等式取等号的条件是否一致,若不能同时取等号,则需换用其他方法求出最值.4.两个正数的积为定值,它们的和一定有最小值吗?提示:不一定.应用基本不等式求最值时还要求等号能取到.如sin x 与4sin x ,x ∈(0,π2),两个都是正数,乘积为定值.但是由0<sin x <1,且sin x +4sin x 在(0,1)上为减函数,所以sin x +4sin x >1+41=5,等号不成立,取不到最小值.类型一 利用基本不等式证明不等式[例1] (1)已知a ,b ,c 为不全相等的正实数,求证:a +b +c >ab +bc +ca . (2)已知a ,b ,c 为正实数,且a +b +c =1, 求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.[分析] (1)左边是和式,右边是带根号的积式之和,所以用基本不等式,将和变积,并证得不等式.(2)不等式右边数字为8,使我们联想到左边因式分别使用基本不等式,可得三个“2”连乘,又1a -1=1-a a =b +c a ≥2bc a,可由此变形入手.[证明] (1)∵a >0,b >0,c >0,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0. ∴2(a +b +c )≥2(ab +bc +ca ),即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故等号不成立. ∴a +b +c >ab +bc +ca .(2)∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=1-a a =b +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c.由上述三个不等式两边均为正,分别相乘,得⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1 ≥2bc a ·2ac b ·2ab c=8.当且仅当a =b =c =13时,等号成立.1.利用基本不等式证明不等式,关键是所证不等式中必须有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而达到放缩的效果.2.注意多次运用基本不等式时等号能否取到.3.解题时要注意技巧,当不能直接利用不等式时,可将原不等式进行组合、构造,以满足能使用基本不等式的形式.[变式训练1] 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c≥9.证明:因为a >0,b >0,c >0,且a +b +c =1, 所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +b c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,取等号. 类型二 利用基本不等式求最值[例2] (1)若x >0,求f (x )=4x +9x 的最小值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值;(4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.[分析] 利用基本不等式求最值,当积或和不是定值时,通过变形使其和或积为定值,再利用基本不等式求解.[解] (1)∵x >0,∴由基本不等式得 f (x )=4x +9x≥24x ·9x=236=12, 当且仅当4x =9x,即x =32时,f (x )=4x +9x 取最小值12.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92. 当且仅当2x =3-2x ,即x =34时取“=”.∴y 的最大值为92.(3)∵x >2,∴x -2>0,∴x +4x -2=(x -2)+4x -2+2≥2(x -2)·4x -2+2=6.当且仅当x -2=4x -2,即x =4时,x +4x -2取最小值6.(4)∵x >0,y >0,1x +9y =1,∴x +y =(x +y )⎝⎛⎭⎫1x +9y =10+y x +9x y ≥10+29=16.当且仅当y x =9x y 且1x +9y =1时等号成立.即x =4,y =12时等号成立.∴当x =4,y =12时,x +y 有最小值16.求最值问题第一步就是“找”定值,观察、分析、构造定值是问题的突破口.找到定值后还要看“=”是否成立,不管题目是否要求写出符号成立的条件,都要验证“=”是否成立.[变式训练2] (1)已知lg a +lg b =2,求a +b 的最小值; (2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. 解:(1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100=20, 当且仅当a =b =10时,a +b 取到最小值20.(2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝⎛⎭⎫622=32, 当且仅当2x =3y ,且2x +3y =6时等号成立, 即x =32,y =1时,xy 取到最大值32.类型三 基本不等式的实际应用[例3] 特殊运货卡车以每小时x 千米的速度匀速行驶130千米,按规定限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升6元,而送货卡车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时140元.(1)求这次行车总费用y 关于x 的表达式.(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. [解] (1)设所用时间为t =130x(小时),y =130x ×6×⎝⎛⎭⎫2+x 2360+140×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×152x +13x 6,x ∈[50,100].(2)y =130×152x +13x 6≥525703,当且仅当130×152x =13x6,即x =4570∈[50,100]时,等号成立.故当x =4570千米/时,这次行车的总费用最低,最低费用的值为525703元.解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.用基本不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,求出函数的最大值或最小值. (4)正确写出答案.[变式训练3] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是160(单位:元).解析:设该长方体容器的长为x m ,则宽为4x m .又设该容器的总造价为y 元,则y =20×4+2⎝⎛⎭⎫x +4x ×10,即y =80+20⎝⎛⎭⎫x +4x (x >0).因为x +4x≥2x ·4x=4⎝⎛⎭⎫当且仅当x =4x ,即x =2时取“=”,所以y min =80+20×4=160(元).1.给出下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +ab ≥2成立的条件有( C )A .1个B .2个C .3个D .4个解析:当b a ,a b 均为正数时,b a +ab ≥2,故只须a 、b 同号即可.所以①、③、④均可以.2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( D ) A .a 2+b 2>2ab B .a +b ≥2ab C .1a +1b >2abD .b a +ab≥2解析:∵a ,b ∈R ,且ab >0, ∴b a >0,ab>0,∴b a +a b ≥2b a ×a b=2. 当且仅当b a =ab,即a =b 时取等号.3.设a ,b 为实数,且a +b =3,则2a +2b 的最小值为( B ) A .6 B .4 2 C .2 2 D .8解析:2a +2b ≥22a +b =223=4 2.4.已知0<x <1,则当x =12时,x (3-3x )取最大值为34.解析:3x (1-x )≤3(x +1-x 2)2=34,当且仅当x =1-x 即x =12时等号成立.5.已知a >0,b >0,c >0,求证: (1)b +c a +c +a b +a +b c ≥6;(2)b +c a ·c +a b ·a +b c≥8.证明:(1)b +c a +a +c b +a +b c =b a +c a +c b +a b +a c +b c =(b a +a b )+(c a +a c )+(c b +b c )≥2+2+2=6(当且仅当a =b =c 时取“=”).(2)b +c a ·c +a b ·a +b c ≥2bc a ·2ac b ·2abc=8abc abc=8(当且仅当a =b =c 时取“=”).——本课须掌握的两大问题1.基本不等式成立的条件:a >0且b >0;其中等号成立的条件:当且仅当a =b 时取等号,即若a ≠b 时,则ab ≠a +b 2,即只能有ab <a +b2. 2.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,即(1)一正:符合基本不等式a +b2≥ab 成立的前提条件,a >0,b >0;(2)二定:化不等式的一边为定值;(3)三相等:必须存在取“=”号的条件,即“=”号成立. 以上三点缺一不可.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分项或配凑因式.。
人教版高中必修5(B版)第三章不等式教学设计
人教版高中必修5(B版)第三章不等式教学设计一、教学目标本节课主要教授高中数学必修课5(B版)第三章——不等式。
通过本次课程的教学,学生应该能够:•理解不等式的基本概念,掌握不等式的基本性质和解不等式的方法;•能够运用已掌握的知识,解决简单的等式和不等式的应用问题;•能够培养学生的数学思维能力和解决问题的能力。
二、教学重点•不等式的基本概念和性质;•不等式解法;•一元一次不等式和二元一次不等式的解法。
三、教学难点•不等式解法的灵活运用;•二元一次不等式的解法。
四、教学过程4.1 导入1.通过白板或幻灯片展示一组简单的不等式,比如x+4<10,让学生回顾并思考之前学过的等式。
2.引导学生讲述等式和不等式的联系和区别,并引导学生从生活实际中思考不等式的应用。
4.2 讲授1.教师讲解不等式的基本概念和性质,以及不等式解法,引导学生深入理解学习内容。
2.引导学生先从一元一次不等式入手,讲解一元一次不等式的解法,并让学生进行多组练习。
3.引导学生学习二元一次不等式的解法,引导学生重点思考如何用图示法求解。
4.让学生通过练习,掌握不等式解法的具体技巧和应用方法。
4.3 拓展本节课结束后,学生可以自行探索如何用不等式来解决实际问题,例如分部门开支问题、生产效益提升问题等。
4.4 总结1.教师对本节课所学内容进行总结,并提醒学生留意其中易误解的点,引导学生归纳总结学习体会。
2.对于存在误解的同学,教师要及时纠正并逐一解决疑问。
五、课堂互动1.在讲解过程中穿插抛出简单问题,引导学生积极参与答题,加深对知识点的记忆和理解。
对于答对或答错的同学,教师进行不同程度的点评。
2.在教学中多与学生互动交流,让课堂变得更加生动有趣。
例如请学生发表自己的观点、听取学生分享自己的解题心得、讨论解题思路等。
六、板书设计1.不等式的基本概念和性质;2.不等式解法;3.一元一次不等式和二元一次不等式的解法。
七、教学评价本次课程的教学效果通过考试和家庭作业来进行评价,同时可以通过学生反馈、课堂测验和讨论等方式来了解教学效果。
高中数学 第三章 不等式本章整合学案 新人教B版必修5
第三章 不等式本章整合知识网络专题探究专题一 用函数的图象解不等式函数是中学数学中的重点内容之一,它贯穿于中学数学教学的始终,而利用函数的图象能直观、准确、迅速地分析研究函数的性质或解决与函数有关的问题,因此,函数图象是高考考查的重点内容,在历年高考中都有涉及.函数图象形象显示了函数的性质,为研究数量关系提供了形的直观性,它是探求解题路径、获得问题结果的重要工具,在解方程或不等式时,特别是非常规的方程或不等式,有时需要画出图象,利用数形结合能起到十分快捷的效果.【应用1】 已知函数f (x )=⎩⎪⎨⎪⎧lg x ,x ≥32,lg(3-x ),x <32,若方程f (x )=k 无实根,则实数k 的取值范围是( )A .(-∞,0)B .(-∞,1)C .⎝ ⎛⎭⎪⎫-∞,lg 32D .⎝ ⎛⎭⎪⎫lg 32,+∞提示:所给的函数f (x )是分段函数,而方程f (x )=k 无实数根,可利用数形结合法转化为函数图象无交点.解析:在同一坐标系内作出y =f (x )与y =k 的图象,如图,当x =32时,f (x )=lg 32.所以若两函数图象无交点,则k <lg 32.答案:C【应用2】已知a,b,c依次是方程2x+x=0,log2x=2-x和12log x=x的实数根,则a,b,c的大小关系是________.提示:构造常见的初等函数利用函数的图象可解决问题.解析:由2x+x=0,得2x=-x,设函数y1=2x,y2=-x,分别作出它们的图象,如图1,两图象交点的横坐标即为a,可得a<0,同理,对于方程log2x=2-x,可得图2,得1<b<2;对于方程12log x=x,可得图3,得0<c<1,所以a<c<b.答案:a<c<b专题二不等式的解法常见的不等式有一元一次不等式,一元二次不等式,简单的高次不等式,分式不等式,含有指数、对数的不等式,其解法为:(1)解一元二次不等式,画出其对应的二次函数图象,来确定解集.(2)解高次不等式常用穿根法.(3)分式不等式利用不等式的性质将其转化为整式不等式(组)求解.(4)解含有指数、对数的不等式利用指数与对数函数的单调性,将指数、对数不等式转化成与之等价的不等式(组)求解.【应用1】求解下列不等式:(1)-x2+2x+3<0;(2)x3+2x2-3x>0;(3)x2x-2≥-1;(4)log 12(2x 2+3x )≥-1.提示:(1)注意解一元二次不等式的几个步骤. (2)穿根法求解.(3)转化为整式不等式,注意分母不为0. (4)对数不等式,真数大于0.解:(1)∵-x 2+2x +3<0,∴x 2-2x -3>0. 又∵方程x 2-2x -3=0的两根为x 1=-1,x 2=3, ∴不等式的解集为{x |x >3或x <-1}.(2)由x 3+2x 2-3x =x (x 2+2x -3)=x (x +3)(x -1),可令f (x )=x (x -1)(x +3), ∵f (x )=0的根为-3,0,1,∴由穿根法(如图),得不等式x 3+2x 2-3x >0的解集为{x |x >1或-3<x <0}.(3)由x 2x -2≥-1可得x 2x -2+1=x 2+x -2x -2≥0,即(x 2+x -2)(x -2)≥0,且x -2≠0, 即(x -1)(x +2)(x -2)≥0且x ≠2,如图,由穿根法得原不等式的解集为{x |-2≤x ≤1或x >2}. (4)∵12log (2x 2+3x )≥-1=12log 2,又∵0<12<1,∴原不等式同解于不等式组⎩⎪⎨⎪⎧2x 2+3x >0,2x 2+3x ≤2.解得⎩⎪⎨⎪⎧x >0或x <-32,-2≤x ≤12.∴不等式的解集为⎩⎨⎧⎭⎬⎫x |-2≤x <-32或0<x ≤12.【应用2】 解关于x 的不等式(x -2)(ax -2)>0.提示:二次项系数为a ,需对a 的正负进行讨论;还要对根的大小进行讨论,两者要同时进行.解:(1)当a =0时,原不等式化为(x -2)·(-2)>0即x -2<0,∴x <2.(2)当a <0时,原不等式可化为(x -2)⎝⎛⎭⎪⎫x -2a <0,此时两根大小关系为2>2a,解得2a<x <2.(3)当a >0时,原不等式可化为(x -2)⎝⎛⎭⎪⎫x -2a >0,此时两根分别为2,2a.①当a =1时,2a=2,解得x ≠2.②当a >1时,2>2a ,解得x >2或x <2a.③当0<a <1时,2<2a ,解得x >2a或x <2.综上所述,不等式的解集为 ①当a =0时,{x |x <2}; ②当a =1时,{x |x ≠2};③当a <0时,⎩⎨⎧⎭⎬⎫x |2a<x <2;④当a >1时,⎩⎨⎧⎭⎬⎫x |x >2,或x <2a ;⑤当0<a <1时,⎩⎨⎧⎭⎬⎫x |x >2a ,或x <2. 专题三 利用均值不等式求最值的常用方法均值不等式是一个重要的不等式,利用它可以求解函数最值问题.对于有些题目,可以直接利用均值不等式求解.但是有些题目必须进行必要的变形才能利用均值不等式求解.常见的变形手段为配凑法、整体代换法等.下面介绍一些常用的变形方法.1.凑系数【应用1】 已知0<x <5,求y =x (10-2x )的最大值.提示:由0<x <5,知10-2x >0,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值.注意到2x +(10-2x )=10为定值,故只需将y =x (10-2x )凑上一个系数即可.解:y =x (10-2x )=12[2x ·(10-2x )]≤12⎝ ⎛⎭⎪⎫2x +10-2x 22=252,当且仅当2x =10-2x ,即x =52时,等号成立.所以当x =52时,y =x (10-2x )的最大值为252.2.凑项法【应用2】 已知x <54,求函数f (x )=4x -2+14x -5的最大值.提示:由题意知4x -5<0,首先要调整符号,又(4x -2)·14x -5不是定值,故需对4x -2进行凑项才能得到定值.解:∵x <54,∴5-4x >0.∴f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2(5-4x )·15-4x +3=-2+3=1,当且仅当5-4x =15-4x ,即x =1时等号成立,此时f (x )的最大值为1. 3.分离法【应用3】 求f (x )=x 2+7x +10x +1(x ≠-1)的值域.提示:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离.解:f (x )=x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5,当x +1>0,即x >-1时,f (x )≥2(x +1)·4x +1+5=9(当且仅当x =1时等号成立); 当x +1<0,即x <-1时,f (x )≤-2(x +1)·4x +1+5=1(当且仅当x =-3时等号成立). ∴f (x )=x 2+7x +10x +1(x ≠-1)的值域为(-∞,1]∪[9,+∞).4.整体代换法【应用4】 若x ,y 都是正数,且满足4x +16y=1,求x +y 的最小值.提示:由于x +y =1·(x +y ),故可以将4x +16y=1整体代入,展开之后,再用基本不等式求最小值.解:∵x +y =1·(x +y )=⎝ ⎛⎭⎪⎫4x+16y (x +y )=20+⎝⎛⎭⎪⎫4y x +16x y ≥20+24y x ·16xy=36,当且仅当x =12,y =24时,等号成立, ∴x +y 的最小值为36. 专题四 不等式恒成立问题恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,是很综合的一个题型,也是历年高考的一个热点.变量分离法和数形结合的方法比较常用,数形结合的方法较简单.当然还有其他的解决方法,如赋值法、根据对称性等.1.一次函数型【应用1】 对于满足|p |≤2的所有实数p ,求使不等式x 2+px +1>p +2x 恒成立的x 的取值范围.提示:在不等式中出现了两个字母:x 和p ,关键在于该把哪个字母看成是变量.本题可将p 视作变量,则上述问题即可转化为在[-2,2]内关于p 的一次函数大于0恒成立的问题.解:原不等式即(x -1)p +x 2-2x +1>0,设f (p )=(x -1)p +x 2-2x +1,则f (p )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0,即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0,解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1,∴x <-1或x >3. 2.二次函数型【应用2】 设f (x )=x 2-2ax +2,当x ∈[-1,+∞)时,都有f (x )≥a 恒成立,求a 的取值范围.提示:题目中要证明f (x )≥a 恒成立,若把a 移到等号的左边,则把原题转化成左边二次函数在区间[-1,+∞)上恒大于0的问题,就可以利用函数的图象解决了.解:设F (x )=f (x )-a =x 2-2ax +2-a .(1)当Δ=4a 2-4(2-a )=4(a -1)(a +2)<0,即-2<a <1时,对一切x ∈[-1,+∞),F (x )≥0恒成立;(2)当Δ=4(a -1)(a +2)≥0时,由图可得以下充要条件:⎩⎪⎨⎪⎧Δ≥0,F (-1)≥0,--2a 2≤-1,即⎩⎪⎨⎪⎧(a -1)(a +2)≥0,a +3≥0,a ≤-1,得-3≤a ≤-2.综上可得a 的取值范围为[-3,1). 3.变量分离型【应用3】 对一切实数x ,不等式x 4+ax 2+1≥0恒成立,求字母a 的取值范围. 提示:从所给不等式中解出a ,再利用基本不等式求解. 解:不等式x 4+ax 2+1≥0可以化为a ≥-1-x4x 2=-⎝⎛⎭⎪⎫1x2+x 2(x ≠0).函数f (x )=-⎝ ⎛⎭⎪⎫1x 2+x 2≤-2,则a ≥-2.若x =0,则a ∈R . 故a 的取值范围是[-2,+∞). 专题五 不等式与函数、方程的综合问题1.利用不等式的性质、不等式的证明方法、解不等式等知识可以解决函数中的有关问题,主要体现在:利用不等式求函数的定义域、值域、最值、证明单调性等.2.利用函数、方程、不等式之间的关系,可解决一元二次方程根的分布及相关的不等式问题.【应用1】 已知函数f (x )=log 3mx 2+8x +nx 2+1的定义域为R ,值域为[0,2],求m ,n 的值.提示:将定义域问题转化为不等式恒成立问题,即转化为mx 2+8x +n >0的解集为R .解:令y =mx 2+8x +nx 2+1,∵函数f (x )的定义域为R ,∴对任意实数x ∈R ,y >0恒成立,即mx 2+8x +n >0恒成立. 当m =0时,不等式化为8x >-n ,不可能恒成立;当m ≠0时,必须有⎩⎪⎨⎪⎧m >0,Δ=64-4mn <0,即⎩⎪⎨⎪⎧m >0,mn >16.由y =mx 2+8x +n x 2+1,得(m -y )x 2+8x +(n -y )=0. ∵x ∈R ,∴Δ=82-4(m -y )(n -y )≥0, 即y 2-(m +n )y +mn -16≤0.① 由题意知f (x )∈[0,2],则y ∈[1,9]. 即关于y 的不等式①的解集为[1,9].∴⎩⎪⎨⎪⎧m +n =10,mn -16=9,∴⎩⎪⎨⎪⎧m =5,n =5.此时满足⎩⎪⎨⎪⎧m >0,mn >16.故所求m =5,n =5.【应用2】 已知在△ABC 中,三边分别为a ,b ,c ,m 为正数. 求证:aa +m +b b +m >cc +m.提示:可利用通分作差的方法解决,也可以构造函数利用函数的单调性解决. 证明:构造函数f (x )=xx +m(x >0,m 为正数).由于xx +m=1-mx +m,易证f (x )是正实数集上的增函数.因为在△ABC 中,a +b >c ,所以f (a +b )>f (c ), 即a +b a +b +m >cc +m.又因为a a +m +bb +m >a a +b +m +b a +b +m =a +ba +b +m,所以原不等式成立.。
人教版高一数学必修5第三章《不等式》学案
)1第三章第一节:不等关系和不等式(班级:姓名:成绩:学习目标理解不感受在现实世界和日常生活中存在着大量的不等关系,过具体情景,、1:等式(组)的实际背景;、比较大小的方法(作差比较法)2 . 用不等式(组)表示实际问题中的不等关系;作差比较法学习重点:用不等式(组)正确表示出不等关系。
学习难点:学习过程:预习﹒交流﹒评价评价:,40km/h不超过v的路标,指示司机在前方路段行驶时,应使汽车的速度40km/h、限速1 写成不等式就是:应不p,蛋白质的含量2.5%应不少于f、某品牌酸奶的质量检查规定,酸奶中脂肪的含量2 ,写成不等式组就是——用不等式组来表示2.3%少于新知﹒巩固﹒展示评价:学点一:用不等式表示不等关系AB d上的任意一点,则为平面B,d的距离为与平面A、设点1 元的价格销售,可以售出2.5、某种杂志原以每本2万本。
根据市场调查,若单价每提高8用不等式表示销元,x若把提价后杂志的定价设为本。
2000销售量就可能相应减少元,0.1 万元:20售的总收入仍不低于的钢管截成4000mm、某钢铁厂要把长度为3600mm两种。
按照生产的要求,600mm和500mm . 倍。
怎样写出满足所有上述不等关系的不等式3钢管的500mm的数量不能超过 ) 作差比较法(学点二:比较两个数大小的方法那么是,a-b如果aa-b即反过来也对。
b .<a那么是,a-b如果;a=b 那么,a-b如果;b ><aa-b;a=b a-b;b> 1246+xxx;R∈x的大小,其中与+1)比较1(、42222 . -y)的大小x+y()x)与(x-y()(+yx,试比较(0<y<x)若222b、a已知.、52ab ≥+ba,求证:R∈拓展﹒提高评价::组A.用不等式表示下面的不等关系:1 5m ab 的和是非负数;与)1 5m 5m m”4某公路立交桥对通过车辆的高度“限高)2 5m 2m大L的矩形地基上建造一个仓库,四周是绿地,仓库的长350如图,在一个面积为)3倍。
湖南省边城高级中学高中数学第三章不等式学案新人教A版必修5
第三章 不等式3.1不等关系与不等式一、【学习目标】知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法; 情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。
二、【教学重点、难点】 教学重点:用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
教学难点:用不等式(组)正确表示出不等关系。
三、【教学过程】 1.课题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。
如两点之间线段最短,三角形两边之和大于第三边,等等。
人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。
在数学中,我们用不等式来表示不等关系。
下面我们首先来看如何利用不等式来表示不等关系。
自习课本p72-p74 2.讲授新课1)用不等式表示不等关系引例1:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是:40v ≤引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示2.5%2.3%f p ≤⎧⎨≥⎩问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。
问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式2.5(80.2)200.1x x --⨯≥ 问题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种。
高中数学人教版教案必修5第三章不等式全章教案
第 周第 课时 授课时间:20 年 月 日(星期 )课题: §3.1不等式与不等关系第1课时授课类型:新授课 【教学目标】1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法; 3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。
【教学重点】用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
【教学难点】用不等式(组)正确表示出不等关系。
【教学过程】1.课题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。
如两点之间线段最短,三角形两边之和大于第三边,等等。
人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。
在数学中,我们用不等式来表示不等关系。
下面我们首先来看如何利用不等式来表示不等关系。
2.讲授新课1)用不等式表示不等关系引例1:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是: 40v ≤引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示2.5%2.3%f p ≤⎧⎨≥⎩ 问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。
问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式2.5(80.2)200.1x x --⨯≥ 问题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种。
高中数学必修五第三章不等式导学案
以上结论反过来也成立,即 a>b⇔ ; a=b⇔ ;a<b⇔ . 探究 比较两个实数的大小,只要考察它们的差就可以了.作差比较实数的大小一般步骤是作差→恒等变形 →判断差的符号→下结论. + 例如,已知 a,b∈R .试利用作差法比较 a3+b3 与 a2b+ab2 的大小. 探究点二 不等式的基本性质 问题 1 在实数大小比较的基础上,可以给出不等式 8 条基本性质的严格证明.证明时,可以利用前面的性 质推证后续的性质. 请借助前面的性质证明性质 6: 如果 a>b>0,c>d>0,那么 ac>bd. 问题 2 初学者对不等式的 8 条基本性质往往重视不够,其实不等式的基本性质是不等式变形(证明不等式和 求解不等式)的重要依据.请解下面这个简单的一元一次不等式,体会并证明不等式基本性质的应用. 1 3 2 1 解不等式:- x+ < x- . 6 4 3 12
如果 a-b 等于零,那么
.
【知识要点】
1.不等式:用数学符号<,≤,>,≥或≠表示 式子叫做不等式. 2.不等式中文字语言与符号语言之间的转换 大于 > 小于 < 大于等于 ≥ 小于等于 ≤ 的
至多 ≤
至少 ≥
不少于 ≥
不多于 ≤ ,那么 a<b,
3.比较实数 a,b 大小的依据 (1)文字叙述:如果 a-b 是 ,那么 a>b;如果 a-b 等于 ,那么 a=b;如果 a-b 是 反过来也对. (2)符号表示:a-b>0⇔ ;a-b=0⇔ ;a-b<0⇔ . 4.常用的不等式的基本性质 (1)a>b⇔b a(对称性); (2)a>b,b>c⇒ a c(传递性); (3)a>b⇒ a+c b+c(可加性); (4)a>b,c>0⇒ ac bc;a>b,c<0⇒ ac bc; (5)a>b,c>d⇒ a+c b+d; (6)a>b>0,c>d>0⇒ ac bd; (7)a>b>0,n∈N,n≥2⇒ an bn; (8)a>b>0,n∈N,n≥2⇒ n a n b.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修五第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式一、学习目标理解不等式概念、不等符号的意义;学会用作差法比较两数大小.二、阅读教材,完成下列问题1.不等式的概念______________________________________________.2.“”含义_____________,“”含义_____________.3.比较两数大小的方法_________________.4.,读作____________,意义是_______________________.,读作____________,意义是_______________________.例1.比较和的大小.例2.当都为正数且时,试比较代数式与的大小.3.1.2不等式的性质一、学习目标熟练运用不等式性质解不等式.二、阅读教材并填空1.初中学习不等式三条基本性质①不等式的两边都加上(或都减去)同一个数,不等号的方向_________;②不等式的两边都乘以(或都除以)同一个____数,不等号的方向_________;③不等式的两边都乘以(或都除以)同一个____数,不等号的方向_________.2.高中学习不等式性质性质1___________________________________________,称为____________;性质2___________________________________________,称为____________;性质3______________________________________________________________;推论1___________________________________________,称为____________;推论2___________________________________________,称为____________;性质4______________________________________________________________;推论1___________________________________________,称为____________;推论2______________________________________________________________;推论3______________________________________________________________;求证性质3的推论2:不等式的同向可加性例1.应用不等式的性质,证明下列不等式,并说出所依据的性质是什么(1)已知,求证:;(2)已知,求证:;(3)已知,求证:;例2.已知,求各自的取值范围.辨析:①若,则;②若且,则;③若,,则;④若,则且;3.2均值不等式一、学习目标理解均值不等式及其证明,并能应用它解决有关问题.二、学习过程问题引入:看下面两个实际问题,用数学符号语言表达下列问题(1)一个矩形的面积为.问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?(2)已知矩形的周长为.问这个矩形的长、宽各为多少时,它的面积最大?最大面积是多少?问题:均值不等式证明1.证明均值定理:如果,那么,当且仅当________时,等号成立.上述所证结论通常称为________________,也称为________________.其中_______叫做的算术平均数,________叫做的几何平均数,均值定理可以表述为:_______________________________________________.2.均值不等式的几何意义:小结:例1.已知,求证:,并推导出式中等号成立的条件.例2.(1)一个矩形的面积为.问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?(2)已知矩形的周长为.问这个矩形的长、宽各为多少时,它的面积最大?最大面积是多少?例3.研究函数性质:例4.求下列函数的最大(小)值,及取得最值时的值.(1)的最小值;(2)的最大值;(3)的最大值;(4)的最大值;(5)的最大值.例5.已知且,求证:.例6.已知,求:的最大值及此时的值.例7.若且,①求的最小值;②求的最大值.3.3一元二次不等式及其解法一、学习目标理解一元二次不等式与二次函数、一元二次方程之间的关系,掌握一元二次不等式的解法.二、学习过程(一)一元二次不等式的解法例1.解不等式:(1)(2)(3)(4)(5)(6)小结:1.完成下表判别式二次函数的图像一元二次方程的根的解集的解集2.解一元二次不等式的一般步骤:例2.求函数的定义域.3.高次不等式、分式不等式(1)(2)(二)二次不等式恒成立问题例3.已知函数定义域为,求的取值范围.小结:例4.已知不等式在上恒成立,求的取值范围.小结:例5.对任意,不等式恒成立,求的取值范围.小结:(三)二次方程实根分布问题例6.关于的一元二次方程有两个负数根,求实数取值范围例7.已知二次函数与轴有两个交点,一个大于1,一个小于1,求实数的取值范围.小结:(四)二次函数在闭区间上的最值问题例8.(1)求函数的最小值.①当时②当时(2)求函数的最大值.例9.求函数在区间上的最小值.小结:3.4不等式的实际应用一、学习目标学会用不等式解决简单的实际问题二、学习过程例1.一般情况下,建筑民用住宅时,民用住宅窗户的总面积应小于该住宅的占地面积,而窗户的总面积与占地面积的比值越大,住宅的采光条件越好.同时增加相等的窗户面积和占地面积,住宅的采光条件是变好了还是变差了?例2.有纯农药药液一桶,倒出8升后用水加满,然后又倒出4升后再用水加满,此时桶中所含的纯农药药液不超过桶的容积的28%.问桶的容积最大为多少升?例3.根据某乡镇家庭抽样调查的统计,2003年每户家庭年平均消费支出总额为1万元,其中食品消费额为0.6万元.预测2003年后,每户家庭年平均消费支出总额每年增加3000元,如果到2005年该乡镇居民生活状况能达到小康水平(即恩格尔系数满足条件),试问这个乡镇每户食品消费额平均每年的增长率至多是多少(精确到0.1)恩格尔系数的计算公式是3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域一、学习目标1.能通过取点的方式寻求二元一次不等式(组)所表示的平面区域;2.会画二元一次不等式(组)所表示的平面区域。
二、重、难点重点:二元一次不等式(组)所表示的平面区域难点:寻求二元一次不等式(组)所表示的平面区域三、学习过程:【活动一】探究在平面直角坐标系内,作出直线,直线将平面分成了两部分,请通过取点的方式探究:将直线上,直线左下方,直线右上方这三个区域内的点的坐标代入式子后,观察式子的值,并说出你的猜想。
1.画出直线:2.取点探究:直线上的点:直线左下方的点:点的值点的值直线右上方的点:点的值结论:例1.画出下列不等式所表示的平面区域并总结画法步骤。
(1)(2)(3)总结:练习:(1)(2)(3)例2.画出下列不等式组所表示的平面区域:(1)(2)提升训练:(1)画出不等式所表示的平面区域。
(2)写出这个平面区域所对应的二元一次不等式,直线与坐标轴的两交点为(-2,0),(0,4)。
3.若二元一次不等式组所表示的平面区域是一个三角形,求的取值范围。
3.5.2简单线性规划一、学习目标1、理解线性规划、线性目标函数、线性约束条件、可行域、最优解等相关概念2、掌握解决线性规划问题的一般方法,会求目标函数的最优解二、学习重难点1、重点:会求目标函数的最优解2、难点:目标函数的几何意义三、学习过程1、情境引入【问题】某工厂计划生产甲、乙两种产品,这两种产品都需要两种原料.生产甲产品1工时需要A种原料3kg,B种原料1kg;生产乙产品1工时需要A种原料2kg,B种原料2kg.现有A种原料1200kg,B种原料800kg .如果生产甲产品每工时的平均利润是30元,生产乙产品每工时的平均利润是40元,问甲、乙两种产品各生产多少工时能使利润的总额最大?最大利润是多少?①将题中条件填入下表:②设计划生产甲产品x工时,乙产品y工时,获得利润总额为z,z =_________③其中x,y满足条件:④问题转化为,当x,y满足上述条件时,求z的最大值⑤在图1中画出③中不等式组表示的平面区域⑥平面区域内的任意一组(x,y)都满足题目约束条件,那么哪一组(x,y)可以使得利润总额z最大呢?2、揭示概念①请阅读书中P91,完成下列问题目标函数:________________________________________________________ 约束条件:________________________________________________________ 线性目标函数:____________________________________________________ 线性约束条件:____________________________________________________ 最优解:__________________________________________________________ 可行域:__________________________________________________________ 线性规划问题:____________________________________________________②总结:解决线性规划问题的一般步骤例1.(1)求的最大值,式中的x,y满足约束条件:(2)已知:,求的最大值与最小值例2.小表给出甲、乙、丙三种食物中的维生素A,B的含量及单价:甲乙丙维生素A(单位/千克)400 600 400维生素B(单位/千克)800 200 400单价(元/千克)7 6 5营养师想购买这三种食物共10千克,使它们所含的维生素A不少于4400单位,维生素B不少于4800单位,而且要使付出的金额最低,这三种食物应各购买多少千克?例3.某货运公司拟用集装箱托运甲、乙两种货物,一个大集装箱能够装所托运货物的总体积不能超过,总质量不能低于650千克.甲、乙两种货物每袋的体积、质量和可获得的利润,列表如下:每袋体积(单位:货物每袋质量(单位:百千克)每袋利润(单位:百元))问:在一个大集装箱内,这两种货物各装多少袋(不一定都是整袋)时,可获得最大利润?例4.A,B两个居民小区的居委会组织本小区的中学生,利用双休日去市郊的敬老院参加献爱心活动,两个小区都有同学参加.已知A区的每位同学往返车费是3元,每人可为5位老人服务;B区的每位同学往返车费是5元,每人可为3位老人服务.如果要求B区参与活动的同学比A区的同学多,且去敬老院的往返总车费不超过37元.怎样安排A,B两区参与活动同学的人数,才能使受到服务的老人最多?受到服务的老人最多是多少?。