函数之 初等函数之 对数函数之 比较大小

合集下载

高中数学函数对数大小教案

高中数学函数对数大小教案

高中数学函数对数大小教案
教学目标:
1. 了解函数和对数的基本概念;
2. 理解函数和对数的大小比较方法;
3. 掌握函数和对数大小比较的常见技巧。

教学重点:
1. 函数概念及大小比较方法;
2. 对数概念及大小比较方法;
3. 函数和对数大小比较综合应用。

教学难点:
1. 函数和对数的大小比较技巧的灵活运用;
2. 函数和对数大小比较问题的解决方法。

教学过程:
一、导入:
教师通过举例引导学生思考如何比较不同函数和对数的大小,激发学生的学习兴趣。

二、讲解函数大小比较方法:
1. 函数大小比较的基本原理;
2. 几种常见函数的大小比较规律;
3. 通过练习巩固函数大小比较技巧。

三、讲解对数大小比较方法:
1. 对数大小比较的基本原理;
2. 对数大小比较的常见规律;
3. 通过实例演练对数大小比较技巧。

四、综合应用:
通过综合性的例题,引导学生对函数和对数的大小比较方法进行综合运用,提高学生的解题能力。

五、总结:
让学生总结函数和对数大小比较的方法和技巧,巩固所学知识。

六、作业布置:
布置作业,要求学生练习函数和对数大小比较的题目,巩固所学知识。

教学反思:
1. 鼓励学生多练习、多思考,提高问题解决能力;
2. 注重培养学生的逻辑思维和数学分析能力;
3. 根据学生实际情况,调整教学方法,提高学生学习效果。

[对数函数]对数函数比较大小口诀

[对数函数]对数函数比较大小口诀

[对数函数]对数函数比较大小口诀教学建议教材分析(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.教法建议(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.对数函数教学目标1.在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.3.通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.教学重点,难点重点是理解对数函数的定义,掌握图像和性质.难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.教学方法启发研讨式教学用具投影仪教学过程一.引入新课今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度新的函数.反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.提问:什么是指数函数指数函数存在反函数吗由学生说出是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:由得所求反函数为.那么我们今天就是研究指数函数的反函数-----对数函数.2.8对数函数(板书)一.对数函数的概念1.定义:函数的反函数叫做对数函数.由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗最初步的认识是什么教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件.在此基础上,我们将一起来研究对数函数的图像与性质.二.对数函数的图像与性质(板书)1.作图方法提问学生打算用什么方法来画函数图像学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.由于指数函数的图像按和分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况具体操作时,要求学生做到:(1)指数函数和的图像要尽量准确(关键点的位置,图像的变化趋势等).(2)画出直线.(3)的图像在翻折时先将特殊点对称点找到,变化趋势由靠近轴对称为逐渐靠近轴,而的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在右侧的部分.学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出和的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:2.草图.教师画完图后再利用投影仪将和的图像画在同一坐标系内,如图:然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度)3.性质(1)定义域:(2)值域:由以上两条可说明图像位于轴的右侧.(3)截距:令得,即在轴上的截距为1,与轴无交点即以轴为渐近线.(4)奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称.(5)单调性:与有关.当时,在上是增函数.即图像是上升的之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正学生看着图可以答出应有两种情况:当时,有;当时,有.学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)对图像和性质有了一定的了解后,一起来看看它们的.三.简单应用(板书)1.研究相关函数的性质例1.求下列函数的定义域:(1)(2)(3)先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.2.利用单调性比较大小(板书)例2.比较下列各组数的大小(1)与;(2)与;(3)让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.三.巩固练习练习:若,求的取值范围.四.小结五.作业略板书设计2.8对数函数一.概念1.定义2.认识二.图像与性质1.作图方法2.草图图1图23.性质(1)定义域(2)值域(3)截距(4)奇偶性(5)单调性三.应用1.相关函数的研究例1例2练习探究活动(1)已知是函数的反函数,且都有意义.②试比较与4的大小,并说明理由.(2)设常数则当满足什么关系时,的解集为答案:(1)①;②当时,<4;当时,4(2).。

数学(文)一轮复习:第二章 基本初等函数、导数及其应用 第讲对数与对数函数

数学(文)一轮复习:第二章 基本初等函数、导数及其应用 第讲对数与对数函数

第6讲对数与对数函数,)1.对数概念如果a x=N(a〉0,a≠1),那么数x叫做以a 为底N的对数,记作x=log a N.其中a叫做对数的底数,N叫做真数性质底数的限制:a>0,且a≠1对数式与指数式的互化:a x=N⇒log a N=x负数和零没有对数1的对数是零:log a1=0底数的对数是1:log a a=1对数恒等式:a log a N=N运算性质log a(M·N)=log a M+log a N a>0,且a≠1, log a错误!=log a M-log a Nlog a M n=n log a M(n∈R)M >0,N〉0 2.对数函数的图象与性质a〉10<a<1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x〉1时,y〉0当0〈x〈1时,y<0当x〉1时,y〈0当0<x<1时,y〉在(0,+∞)上是增函数在(0,+∞)上是减函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.1.辨明三个易误点(1)在运算性质中,要特别注意条件,底数和真数均大于0,底数不等于1。

(2)对公式要熟记,防止混用.(3)对数函数的单调性、最值与底数a有关,解题时要按0〈a 〈1和a〉1分类讨论,否则易出错.2.对数函数图象的两个基本点(1)当a>1时,对数函数的图象“上升”;当0<a〈1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),错误!,函数图象只在第一、四象限.3.换底公式及其推论(1)log a b=错误!(a,c均大于0且不等于1,b〉0);(2)log a b·log b a=1,即log a b=错误!(a,b均大于0且不等于1);(3)log am b n=错误!log a b(a〉0且a≠1,b>0,m≠0,n∈R);(4)log a b·log b c·log c d=log a d(a,b,c均大于0且不等于1,d>0).1.函数y=错误!ln(1-x)的定义域为()A.(0,1) B.D.B 因为y=错误!ln(1-x),所以错误!解得0≤x〈1.2.错误!(log29)·(log34)=()A.错误!B.错误!C.2 D.4D原式=错误!·错误!=4。

高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数

高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数

方法归纳 两类对数不等式的解法 (1)形如 logaf(x)<logag(x)的不等式. ①当 0<a<1 时,可转化为 f(x)>g(x)>0; ②当 a>1 时,可转化为 0<f(x)<g(x). (2)形如 logaf(x)<b 的不等式可变形为 logaf(x)<b=logaab. ①当 0<a<1 时,可转化为 f(x)>ab; ②当 a>1 时,可转化为 0<f(x)<ab.
1 3 1 5
)
③log23 与 log54.
【解析】 (1)0<0.43<1,30.4>1,log40.3<0,故选 C. (2)①方法一:对数函数 y=log5x 在(0,+∞)上是增函数. 3 4 3 4 而4<3,∴log54<log53. 3 4 3 4 方法二:∵log54<0,log53>0,∴log54<log53.
1 5
∴log 1.6>log 2.9.
1 5 1 5
(2)∵y=log2x 在(0,+∞)上单调递增, 而 1.7<3.5, ∴log21.7<log23.5.
(3)借助 y=log x 及 y=log x 的图像,如图所示.
1 2 1 5
在(1,+∞)上,前者在后者的下方, ∴log 3<log 3.
1 5 1 3 1 5
1
1
类型二 解对数不等式 [ 例 2] (1) 已知 log0.72x<log0.7(x - 1) , 则 x 的取值范围为 ________; (2)已知 loga(x-1)≥loga(3-x)(a>0, 且 a≠1), 求 x 的取值范围.

指数函数、对数函数、幂函数、三角函数比较大小问题

指数函数、对数函数、幂函数、三角函数比较大小问题

指、对、幂、及三角值比较大小的方法总结基础知识储备1直接利用函数基本单调性比较大小例1.已知a =log 23,b =log 46利用指数对数单调性比较大小;当底数一样或者可以化成一样,直接利用单调性比较即可,c =log 89,则a 、b 、c 的大小顺序为()A.a <b <cB.a <c <bC.c <b <aD.b <c <a先利用对数运算法则进行化简,再用函数单调性比较大小.【解答】b =log 46=log 26,又c =log 89=log 239,∵3>6>39,y =log 2x 单调递增,∴c <b <a .课堂练兵1.下列选项正确的是()A.log 25.3<log 24.7 B.log 0.27<log 0.29C.log 3π>log π3D.log a 3.1<log a 5.2(a >0且a ≠1)2.已知a =log 23,b =ln2,c =log 2π,则a ,b ,c 的大小关系为()A.a >b >cB.c >a >bC.a >c >bD.c >b >a3.已知1a=ln3,b =log 35-log 32,c =2ln 3,则a ,b ,c 的大小关系为()A.a >c >bB.b >c >aC.c >a >bD.c >b >a4.已知x =90.91,y =log 20.1,z =log 20.2,则()A.x >y >zB.x >z >yC.z >x >yD.z >y >x比较与0,1的大小关系,此类题目一般会放在单选题靠前位置,比如0<0.20.3<0.20=1, 0=log 0.21<log 0.20.3<log 0.20.2=2比较与0,1的大小关系1例2.若a =23 12,b =ln 12,c =0.6-0.2,则a ,b ,c 的大小关系为()A.c >b >aB.c >a >bC.b >a >cD.a >c >b分别根据y =23x、y =ln x 、y =0.6x 的单调性,比较a ,b ,c 与0、1的大小,即可.【解答】y =23 x 在-∞,+∞ 上是减函数,0<a =23 12<23=1;y =ln x 在0,+∞ 上是增函数,b =ln 12<ln1=0;y =0.6x 在-∞,+∞ 上是减函数,c =0.6-0.2>0.60=1,故c >a >b 例3.已知a =log 132,b =log 23,c =2-0.3,则a ,b ,c 的大小关系是()A.a >b >cB.b >a >cC.c >a >bD.b >c >a利用函数的单调性判断出a <0,b >1,0<c <1,即可得到正确答案.【解答】∵y =log 13x 为减函数,∴a =log 132<log 131=0,即a <0;∵y =log 2x 为增函数,∴b =log 23>log 22=1,即b >1;∵y =2x 为增函数,∴0<c =2-0.3<20=1,即0<c <1;∴b >c >a .例3.已知a=20.7,b=130.7,c=log213,则()A.a>c>bB.b>c>aC.a>b>cD.c>a>b利用幂函数、对数函数的单调性结合中间值法可得出a、b、c的大小关系.【解答】∵20.7>13 0.7>0=log21>log213,∴a>b>c.课堂练兵1.若a=100.1,b=lg0.8,c=log53.5,则()A.a>b>cB.b>a>cC.c>a>bD.a>c>b2.已知a=lg0.2,b=log56,c=ln2,则a,b,c的大小关系为()A.a<b<cB.c<a<bC.a<c<bD.c<b<a3.已知a=20.6,b=e-0.6,c=log20.6,则a,b,c的大小关系为()A.b>a>cB.b>c>aC.a>b>cD.a>c>b取中间值,比如遇到两个数都在0到1之间,我们可以比较它们与(0,1)之间的某个数进行大小比较,常用的中间值是13取中间值比较大小2例4.已知a=log323,b=log23,c=913,则()A.c>a>bB.b>a>cC.b>c>aD.c>b>a 利用幂函数、对数函数的单调性结合中间值法可得出a、b、c的大小关系.【解答】∵a=log323<log31=0,1=log22<b=log23<log24=2,c=913>813=2,∴c>b>a.例5.已知a=log52,b=log83,c=12,则下列判断正确的是()A.c<b<aB.b<a<cC.a<c<bD.a<b<c 利用对数函数的单调性可比较a、b与c的大小关系,由此可得出结论.【解答】a=log52<log55=12=log822<log83=b,即a<c<b.例6.已知a=log62,b=log0.50.2,c=0.60.3,则a,b,c的大小关系为()A.a<c<bB.a<b<cC.b<c<aD.c<a<b 根据指数函数、对数函数的性质计算可得.【解答】log0.50.2=log2-15-1=log25>log24=2,即b>2,0=log61<log62<log66=12,即0<a<12,1=0.60>0.60.3>0.50.3>0.51=12,即12<c<1,∴b>c>a;课堂练兵1.已知a=log34,b=log45,c=32,则有()A.a>b>cB.c>b>aC.a>c>bD.c>a>b2.设a=0.61,b=lg90.6,c=log328,则有()A.b<a<cB.c<b<aC.a<c<bD.b<c<a3.已知a =2log 54,b =12log 37,c =2log 45,则a ,b ,c 的大小关系是()A.b <c <aB.b <a <cC.c <a <bD.a <b <c当真数一样我们考虑用换底公式,换为底数一样,再比较分母,如a =ln2和b =log 324利用换底公式比较大小,a =ln2=1log 2e,b =log 32=1log 23,∵log 23>log 2e ,∴a >b 例7.设x ,y ,z 为正数,且3x =4y =5z ,则()A.x <y <zB.y <x <zC.y <z <xD.z <y <x令3x =4y =5z =k >1,用k 表示出x ,y ,z ,再借助对数函数的性质即可比较大小.【解答】因x ,y ,z 为正数,令3x =4y =5z =k ,则k >1,因此有:x =log 3k =1log k 3,y =log 4k =1log k 4,z =log 5k =1log k 5,又函数f (t )=log k t 在(0,+∞)上单调递增,而1<3<4<5,则0<log k 3<log k 4<log k 5,于是得1log k 3>1log k 4>1log k 5,所以z <y <x .例8.设a =log 32,b =ln2,c =512,则a 、b 、c 三个数的大小关系是()A.a >b >cB.b >a >cC.c >a >bD.c >b >a根据对数函数与指数函数性质,结合中间值0、1比较即可.【解答】∵0<ln2<ln e =1,ln3>1,∴log 32=ln2ln3<ln2,∴a <b <1,∵c =512>50=1,∴c >b >a例9.设a =log 32,b =ln2,c =512,则a 、b 、c 三个数的大小关系是()A.a >b >cB.b >a >cC.c >a >bD.c >b >a根据对数函数与指数函数性质,结合中间值0、1比较即可.【解答】∵0<ln2<ln e =1,ln3>1,∴log 32=ln2ln3<ln2,∴a <b <1,∵c =512>50=1,∴c >b >a 课堂练兵1.设a =log 0.14,b =log 504,则()A.2ab <2a +b <ab B.2ab <a +b <4ab C.ab <a +b <2abD.2ab <a +b <ab2.设a =log 2π,b =log 6π,则()A.a -b <0<ab B.ab <0<a -b C.0<ab <a -bD.0<a -b <ab 3.设0.2a =0.3,2b =0.3,则()A.a +b <ab <0 B.ab <a +b <0C.a +b <0<abD.ab <0<a +b 4.已知正数x ,y ,z 满足3x =4y =6z ,则下列说法中正确的是()A.1x +12y =1zB.3x >4y >6zC.xy >2z 2D.x +y >32+2z 去常数再比大小当底数和真数出现了倍数关系时,需要将对数进行分离常数再比较.这是对数值所独有的技巧,类似于分式型的分离常数,借助此法可以把较复杂的数值,转化为某一单调区间,或者某种具有单调性的形式,以利于比较大小 例如:log a ma =log a m +1;log a ma n =log a m +n 5分离常数再比较大小.例10.已知a =log 63,b =log 84,c =log 105,则().A.b <a <cB.c <b <aC.a <c <bD.a <b <c结合对数的运算公式以及对数函数的单调性进行转化求解即可.【解答】由题意得:a =log 63=log 662=1-log 62=1-1log 26,b =log 84=log 882=1-log 82=1-1log 28,a =log 105=log 10102=1-log 102=1-1log 210,∵函数y =log 2x 在(0,+∞)上单调递增,∴log 26<log 28<log 210,则1log 26>1log 28>1log 210,所以a <b <c 课堂练兵1.设a =log 36,b =log 510,c =log 714,则()A.c >b >aB.b >c >aC.a >c >bD.a >b >c例11.a 6利用均值不等式比较大小=73,b =log 420,c =log 32+log 36,则a ,b ,c 的大小关系是()A.a >b >cB.a >c >bC.c >b >aD.c >a >b根据对数函数的性质结合基本不等式分析比较即可【解答】a =73=1+43,b =log 420=log 44+log 45=1+log 45,c =log 32+log 36=1+log 34,∵43=log 3343=log 3381>log 3364=log 34,∴a >c ,∵log 45log 34=lg5lg4⋅lg3lg4<lg3+lg52 2(lg4)2=lg152 2(lg4)2<lg162 2(lg4)2=2lg422(lg4)2=1,log 45>1,log 34>1,∴log 45<log 34,所以c >b ,综上a >c >b ,故选B 例12.若a =lg2⋅lg5,b =ln22,c =ln33,则a ,b ,c 的大小关系为()A.a <b <cB.b <c <aC.b <a <cD.a <c <b由基本不等式可判断a <14,由对数的性质可得b >14,再作差可判断c ,b 大小.【解答】a =lg2⋅lg5<lg2+lg5 24=14,b =2ln24=ln44>14c -b =ln33-ln22=2ln3-3ln26=ln 986>0, 则c >b .所以a <b <c .课堂练兵1.已知9m =10,a =10m -11,b =8m -9,则()B.a >b >0C.b >a >0D.b >0>ab =20.6,c =-log 0.26,则实数a ,b ,c 的大小关系为()B.a >b >cC.b >a >cD.b >c >a乘倍数后再进行大小比较,比如a =log 23和b =log 34,则3a =3log 23=log 227∈4,5 A.a >0>b2.已知a =log 25,A.a >c >b 7乘倍数比较大小, 3b =3log 34=log 364∈3,4 ,∴3a >3b ,∴a >b例13.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b题意可得a 、b 、c ∈0,1 ,利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系【解答】由题意可知a 、b 、c ∈0,1 ,a b =log 53log 85=lg3lg5⋅lg8lg5<1lg52⋅lg3+lg82 2=lg3+lg82lg52=lg24lg252<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45;由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c .课堂练兵1.已知a =log 23,b =log 34,c =log 45,则实数a ,b ,c 的大小关系为()A.a <b <cB.a >b >cC.b >a >cD.b >c >a8初等型双元变量构造函数比大小构造简单函数,利用函数的单调性比较大小例14.设a >0,b >0,则下列叙述正确的是()A.若ln a -2b >ln b -2a ,则a >b B.若ln a -2b >ln b -2a ,则a <b C.若ln a -2a >ln b -2b ,则a >b D.若ln a -2a >ln b -2b ,则a <b构造函数,利用函数的单调性分析判断即可【解答】∵y =ln x 和y =2x 在(0,+∞)上均为增函数,∴f (x )=ln x +2x 在(0,+∞)上为增函数,∴f (a )>f (b )时,得a >b >0,反之也成立,即ln a +2a >ln b +2b 时,a >b >0,反之也成立,∴ln a -2b >ln b -2a 时,a >b >0,反之也成立例15.若2x -e -x <2y -e -y ,则()A.ln y -x +1 <0B.ln y -x +1 >0C.ln x -y >0D.ln x -y <0先构造函数f x =2x -e -x ,通过观察导函数得到f x 单调性,从而得到x <y ,故可通过函数单调性判断出ln y -x +1 >ln1=0,而x -y 的可能值在[1,+∞)⋃0,1 ,故CD 均错误.【解答】令f x =2x -e -x ,则f x =2x ln2+e -x >0恒成立,故f x =2x -e -x 单调递增,由2x -e -x <2y -e -y 可得:x <y ,故ln y -x +1 >ln1=0,A 错误,B 正确;x -y 的可能值在[1,+∞)⋃0,1 ,故不能确定ln x -y 与0的大小关系,CD 错误.课堂练兵1.若a >b >1,且a x -a y >b -x -b -y ,则()A.ln x -y +1 >0B.ln x -y +1 <0C.ln x -y >0D.ln x -y <02.已知正实数x ,y 满足log 2x +log 12y <12 x -12 y,则()A.1x <1yB.x 3<y 3C.ln y -x +1 >0D.2x -y <12例16.设a ≠0,若x =a 为函数f x 9利用导数研究函数的单调性比较大小=a x -a 2x -b 的极大值点,则()A.a <b B.a >bC.ab <a 2D.ab >a 2【解答】若a =b ,则f x =a x -a 3为单调函数,无极值点,不符合题意,故a ≠b .∴f x 有x =a 和x =b 两个不同零点,且在x =a 左右附近是不变号,在x =b 左右附近是变号的.依题意,x =a 为函数f (x )=a (x -a )2(x -b )的极大值点,∴在x =a 左右附近都是小于零的.当a <0时,由x >b ,f x ≤0,画出f x 的图象如下图所示:由图可知b <a ,a <0,故ab >a 2.当a >0时,由x >b 时,f x >0,画出f x 的图象如下图所示:由图可知b >a ,a >0,故ab >a 2.故选:D .课堂练兵1.(多选题)已知正数x ,y ,z 满足x ln y =ye z =zx ,则x ,y ,z 的大小关系为()A.x >y >z B.y >x >z C.x >z >y D.以上均不对2.设a =2021ln2019,b =2020ln2020,c =2019ln2021,则()A.a >b >cB.c >b >aC.a >c >bD.b >a >c一般情况下,作差或者做商,可处理底数不一样的的对数比较大小10差比法与商比法作差或者做商的难点在于后续变形处理,注意此处的常见解题技巧和方法例17.已知实数a 、b 、c 满足a =613,b =log 23+log 64,5b +12b =13c ,则a 、b 、c 的关系是()A.b >a >cB.c >b >aC.b >c >aD.c >a >b利用幂函数的性质知a <2,利用对数的运算性质及差比法可得b -2>0,再构造13c -13b ,根据指数的性质判断其符号,即可知b ,c 的大小.【解答】a =613<813=2;b =log 23+log 64=log 23+21+log 23,b -2=log 23⋅log 23-1 1+log 23>0,b >2;13c =5b +12b >52+122=132,c >2;13c -13b =5b +12b -13b =52⋅5b -2+122⋅12b -2-132⋅13b -2<52⋅12b -2+122⋅12b -2-132⋅13b -2=12b -2(52+122)-132⋅13b -2=132(12b -2-13b -2)<0,∴b >c ,综上,b >c >a .课堂练兵1.已知a =0.8-0.4,b =log 53,c =log 85,则()A.a <b <cB.b <c <aC.c <b <aD.a <c <b2.已知a =5log 23.4,b =5log 43.6,c =15log 30.3,则()A.a >b >cB.b >a >cC.a >c >bD.c >a >b 3.已知3a =6b =10,则2,ab ,a +b 的大小关系是()A.ab <a +b <2B.ab <2<a +bC.2<a +b <abD.2<ab <a +bf x 11构造函数:ln x /x 型函数 =ln xx出现的比较大小问题:①f x =ln x x 在区间(0,e )上单调递增,在区间(e ,+∞)单调递减;当x =e 时,取得最大值1e;②注意:f 2 =ln22=2ln24=f 4 例18.设a =4-ln4e2,b =1e ,c =ln22,则a ,b ,c 的大小关系为()A.a <c <bB.c <a <bC.a <b <cD.b <a <c设f x =ln x x ,利用导数判断单调性,利用对数化简a =f e 22 ,b =f e ,c =f 2 =f 4 ,再根据单调性即可比较a ,b ,c 的大小关系.【解答】设f x =ln x x ,则f x =1x⋅x -ln xx 2=1-ln x x 2,当x ∈1,e ,f x >0,f x 单调递增,当x ∈e ,+∞ ,f x <0,f x 单调递减,因为a =4-ln4e 2=2ln e 2-ln2 e 2=ln e 22e 22=f e 22 ,b =1e =ln e e =f e ,c =ln22=f 2 ,所以b =f e 最大, 又因为c =f 2 =f 4 ,e <e 22<4,所以a =f e 22 >f 4 =c ,所以b >a >c课堂练兵1.已知a =3ln2π,b =2ln3π,c =3ln π2,则下列选项正确的是()A.a >b >c B.c >a >b C.c >b >aD.b >c >a2.以下四个数中,最大的是()A.ln 33 B.1e C.ln ππD.15ln15303.下列命题为真命题的个数是()①ln3<3ln2;②ln π<πe;③215<15;④3e ln2<42B.2D.4A.1C.312放缩①对数,利用单调性,放缩底数,或者放缩真数,指数和幂函数结合来放缩。

高中数学第二章基本初等函数(Ⅰ)2.2.1对数与对数运算第一课时对数课件新人教A版必修13

高中数学第二章基本初等函数(Ⅰ)2.2.1对数与对数运算第一课时对数课件新人教A版必修13
(1)解析:因为 a=log35, 所以 3a+9a= 3log3 5 +( 3log3 5 )2=5+25=30.选 D.
log3 x, x 0, (2)若函数 f(x)= 3x , 1 x 0, 求 f(f(f(-2-
3x 2 , x 1,
2 ))).
(2)解:因为-2- 2 <-1,所以 f(-2- 2 )=- 32 2 2 =- 1 . 9
(4)因为 logx64=-2, 所以 x-2=64,所以 x= 1 .
8
题型二 对数的简单性质 [例2] 求下列各式中的x. (1)log3(x2-1)=0;
解:(1)因为 log3(x2-1)=0,
所以
x 2
x
2
1 1
0, 1,
所以 x=± 2 .
(2)log(x+3)(x2+3x)=1.
又- 1 ∈(-1,0],所以 f(f(-2-
2
))=f(-
1
)=
3
1 9
.
9
9
因为
3
1 9
>0,所以
f(
3
1 9
)=log3
3
1 9
=-
1
.即原式=-
1
.
9
9
学霸经验分享区
(1)指数式与对数式互化时的技能及应注意的问题 ①技能:若是指数式化为对数式,只要将幂作为真数,指数当成对数 值,而底数不变即可;若是对数式化为指数式,则正好相反. ②注意问题:利用对数式与指数式间的互化公式互化时,要注意字母 的位置改变;对数式的书写要规范:底数a要写在符号“log”的右下 角,真数正常表示. (2)对数性质的运用技能 logaa=1及loga1=0是对数计算的两个常用量,可以实现数1,0与对数 logaa及loga1的互化.

高中数学对数大小对比教案

高中数学对数大小对比教案

高中数学对数大小对比教案教学目标:
1. 理解对数的基本概念和性质;
2. 掌握对数的运算规律;
3. 能够比较不同底数和不同指数的大小关系。

教学重点:
1. 对数的概念和性质;
2. 对数的运算规律;
3. 对数大小的比较。

教学难点:
1. 理解对数的定义和运算规律;
2. 掌握对数大小的比较方法。

教学准备:
1. 教材《高中数学》;
2. 讲义PPT;
3. 黑板、彩色粉笔;
4. 练习题及答案。

教学过程:
一、导入(5分钟)
利用实例引入对数的概念,引出对数的定义和性质。

二、讲解(15分钟)
1. 对数的定义和性质;
2. 对数的运算规律;
3. 对数大小的比较方法。

三、练习(20分钟)
1. 练习对数的运算;
2. 练习对数大小的比较。

四、讲评(10分钟)
批改练习题,解答学生提出的问题。

五、课堂小结(5分钟)
总结对数的基本概念和运算规律,强调对数大小的比较方法。

教学反思:
通过本节课的教学,学生应该对对数的概念和性质有了更深入的理解,能够熟练运用对数的运算规律,并能够准确比较不同底数和不同指数的大小关系。

在教学过程中,要注重让学生动手操作,通过练习加深对知识点的理解,提高学生的运用能力。

基本初等函数之对数与对数函数,附练习题

基本初等函数之对数与对数函数,附练习题

对数与对数函数(讲义)知识点睛一、对数与对数的运算1.对数(1)如果x a N =(a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数.常用对数:10log lg N N =;自然对数:e log ln N N =.(2)当a >0,且a ≠1时,x a N =⇔log a x N =.(3)负数和零没有对数;log 10a =,log 1a a =.2.对数的运算性质(1)如果a >0,且a ≠1,M >0,N >0,那么①log ()log log a a a M N M N ⋅=+;②log log log aa a MM N N=-;③log log ()n a a M n M n =∈R .(2)换底公式:log log log c a c bb a=(a >0,且a ≠1;c >0,且c ≠1;b >0).(3)log (010)a b a b a a b =>≠>,;.二、对数函数及其性质1.定义:一般地,函数log (0,1)a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.对数函数log (0,1)a y x a a =>≠且的图象和性质:0<a <1a >1图象定义域(0,+∞)值域R性质①过定点(1,0),即x =1时,y =0②在(0,+∞)上是减函数②在(0,+∞)上是增函数3.对数函数底数变化与图象分布规律1log a y x =;②log b y x =;③log c y x =;④log d y x =,则有0<b <a <1<d <c ,即:x ∈(1,+∞)时,log log log log a b c d x x x x <<<;x ∈(0,1)时,log log log log a b c d x x x x >>>.4.反函数对数函数与指数函数互为反函数,互为反函数的两个函数的图象关于直线y x =对称.精讲精练1.把下列指数式化为对数式,对数式化为指数式.(1)32=8_______________;(2)415625-=_______________;(3)13127=3-_______________;(4)lg 0.0013=-_____________;(5)0.3log 2=a _____________;(6)ln x =_____________.2.求下列各式的值.(1)43log (927)⨯(2)1lg lg 4lg 52++(3)661log 12log 2-(4)22333399(log 2)(log )log log 422++⋅(5)2345log 3log 4log 5log 2⋅⋅⋅(6)48525(log 5log 5)(log 2log 2)++3.已知234log [log (log )]0x =,则x 的值为_________.4.已知3485log 4log 8log log 25m ⋅⋅=,那么m 的值为()A .9B .18C .12D .275.已知4823log 3x y ==,,则x +2y 的值为()A .3B .8C .4D .log 486.已知log 3a m =,log 2a n =,那么a 2m +3n =()A .17B .72C .108D .317.已知lg lg 2lg(2)x y x y +=-,则xy的值为_________.8.设lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则2(lg )ab的值等于()A .2B .12C .4D .149.已知函数()lg f x x =.若()1f ab =,则22()()f a f b +=_____.10.下列函数表达式中是对数函数的是()A .0.01log (0)y x x =>B .22log y x =C .2log (2)(2)y x x =+>-D .2ln(1)y x =+11.若点(a ,b )在lg y x =图象上,且a ≠1,则下列点也在此图象上的是()A .1()b a ,B .(10a ,1-b )C .10(1)b a+,D .(a 2,2b )12.若函数log ()a y x b =+(a >0,a ≠1)的图象过两点(-1,0)和(0,1),则()A .a =2,b =2B .2a b ==C .a =2,b =1D .a b ==13.直接写出下列函数的定义域:311log (2)_______________2345log (3)_______________16_______________ln(1)x y x y y y y x y x -=-====-=+=+();();();();();().14.已知()f x 的定义域为[0,1],则函数12[log (3)]y f x =-的定义域是_____________.15.函数212log (613)y x x =++的值域为()A .RB .[8,+∞)C .(-∞,-2]D .[-3,+∞)16.函数log a y x =在区间[2,π]上最大值比最小值大1,则a =__________.17.下列判断不正确的是()A .22log 3.4log 4.3<B .0.20.3log 0.4log 0.4<C .67log 7log 6>D .30.3log log 4π<18.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点()A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度19.函数21log (01)1a x y a a x +=>≠-,的图象过定点P ,则点P 的坐标为()A .(1,0)B .(-2,0)C .(2,0)D .(-1,0)20.已知函数()log (1)a f x x =+,()log (1)a g x x =-(a >0,且a ≠1).(1)求函数()()f x g x +的定义域;(2)判断函数()()f x g x +的奇偶性,并说明理由.21.设a ,b ∈R 且a ≠2,定义在区间(-b ,b )上的函数1()lg12axf x x+=+满足:()()0f x f x +-=.(1)求实数a 的值;(2)求b 的取值范围.22.已知关于x 的方程212log 210x a x ⋅--=有实数根,求a 的取值范围.23.已知函数2log [(21)]a y x a x a =--+的定义域为R ,求实数a 的取值范围.回顾与思考________________________________________________________________________________________________________________________________________________________________________【参考答案】1.(1)2log 83=;(2)51log 4625=-;(3)2711log 33=-;(4)3100.001-=;(5)0.32a =;(6)e x =2.(1)11;(2)1;(3)12;(4)4;(5)1;(6)543.644.A 5.A 6.B 7.48.A 9.210.A 11.D 12.A13.(1)(2)+∞,;(2)(0)+∞,;(3)2(1]3,;(4)(0;(5)(12)(23)⋃,,;(6)(10)(02]-⋃,,14.5[22,15.C16.2π或2π17.D18.C 19.B20.(1)(-1,1);(2)偶函数,证明()()()()f x g x f x g x -+-=+21.(1)2a =-;(2)102b ≤<22.02a ≤<23.33(11)(1122,-⋃+对数与对数函数(随堂测试)1.函数22()log (2)f x x x a =-+的值域为[0,+∞),则正实数a 等于()A .1B .2C .3D .42.求函数2log (4)(01)a y x x a a =->≠,且的单调递减区间.【参考答案】1.B2.当01a <<时,f (x )的单调递减区间为(0,2];当1a >时,f (x )的单调递减区间为[2,4)对数与对数函数(作业)1.求下列各式的值.(1)lg +(2)553log 10log 0.125+(3)22(lg 2)(lg 5)lg 4lg 5++⋅(4)22lg 5lg83+(5)20321log log ()52-+-(6)231lg 25lg 2lg log 9log 22+-⨯2.下列对数运算中,一定正确的是()A .lg()lg lg M N M N +=⋅B .ln ln n M n M =C .lg()lg lg M N M N⋅=+D .lg log lg a b b a=3.已知3log 2a =,那么33log 22log 6-用a 表示是()A .5a -2B .-a -2C .3a -(1+a )2D .3-a 2-14.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是()A .log log log a c c b b a ⋅=B .log log log a c c b a b ⋅=C .log ()log log a a a bc b c =⋅D .log ()log log a a a b c b c+=+5.已知x ,y 为正实数,则下列式子中正确的是()A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=⋅C .lg lg lg lg 222x y x y⋅=+D .lg()lg lg 222x y x y⋅=⋅6.设方程22(lg )lg 30x x --=的两实根是a ,b ,则log log a b b a +等于()A .1B .-2C .-4D .103-7.在(2)log (5)a y a -=-中,实数a 的取值范围是()A .5a >或2a <B .23a <<或35a <<C .25a <<D .34a <<8.函数()ln1xf x x =+-的定义域为()A .(0,+∞)B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)9.已知函数12()2log f x x =的值域为[-1,1],则函数()f x 的定义域为()A .22B .[11]-,C .1[2]2,D .2(])2-∞⋃∞,+10.已知3log 6a =,5log 10b =,7log 14c =,则()A .c b a >>B .b c a >>C .a c b >>D .a b c>>11.已知2log 3.45a =,4log 3.65b =,3log 0.31()5c =,则()A .a b c >>B .b a c >>C .a c b >>D .c a b>>12.函数12log 2y x =+的单调增区间为()A .()-∞∞,+B .(2)-∞-,C .(2)-∞+,D .(2)(2)-∞-⋃∞,,+13.若函数log (01)a y x a =<<在区间[a ,2a ]上的最大值是最小值的3倍,则a的值为()A .22B .24C .12D .1414.函数log (2)5a y x =-+过定点()A .(1,0)B .(3,1)C .(3,5)D .(1,5)15.当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象大致是()A .B .C .D .16.设函数()(01)x x f x ka a a a -=->≠,在()-∞+∞,上既是奇函数又是增函数,则()log ()a g x x k =+的图象是()A .B .C .D .17.已知函数e 1(1)()ln (1)x x f x x x ⎧-=⎨>⎩≤,则(ln 2)f 的值为_________.18.函数12log (1)()2(1)x x x f x x ⎧⎪=⎨⎪<⎩≥的值域是_________________.19.已知13log 2a =,0.62b =,4log 3c =,则a ,b ,c 的大小关系为_____________.20.给出下列命题:12log 2log a a x x =;2函数2log (1)y x =+是对数函数;3函数1ln1xy x+=-与ln(1)ln(1)y x x =+--的定义域相同;4若log log a a m n <,则m n <.其中正确的命题是_________.21.已知函数()f x 在[0)+∞,上是增函数,()(||)g x f x =-,若(lg )(1)g x g >,求x 的取值范围.22.设函数212log (0)()log ()(0)xx f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,求实数a 的取值范围.23.已知函数3()2log f x x =+(1≤x ≤9),求函数22[()]()y f x f x =+的最大值.【参考答案】24.(1)1;(2)3;(3)1;(4)2;(5)4;(6)12-25.D26.B27.B28.D29.D30.B31.B32.A33.D34.C35.B36.B37.C38.A39.C40.141.(2)-∞,42.a <c <b43.③44.11010x <<45.1a >或10a -<<46.22阅读材料反函数趣谈在指数函数2x y =中,x 为自变量,y 为因变量.如果把y 当成自变量,x 当成因变量,同学们思考一下,x 是不是y 的函数?在指数函数2x y =中,过y 轴正半轴上任意一点作x 轴的平行线,与2x y =的图象有且只有一个交点.另一方面,根据指数与对数的关系,由指数式2x y =可得到对数式2log x y =.这样,对于任意一个(0)y ∈+∞,,通过式子2log x y =,在R 中都有唯一确定的x 和它对应.此时,可以把y 作为自变量,x 作为y 的函数,这时我们就说2log x y =((0))y ∈+∞,是函数2x y =()x ∈R 的反函数.注意到,在函数2log x y =中,y 是自变量,x 是函数,但是习惯上,我们通常用x 表示自变量,y 表示函数,因此我们对调函数2log x y =中的字母,把它写成2log y x =,这样,对数函数2log y x =((0))x ∈+∞,是指数函数2x y =()x ∈R 的反函数.由前面的讨论可知,指数函数2x y =()x ∈R 与对数函数2log y x =((0))x ∈+∞,是互为反函数的.类似地,我们可以得到对数函数log (01)a y x a a =>≠,且和指数函数x y a =(01)a a >≠,且互为反函数.在上面的讨论过程中我们发现,过y 轴正半轴上任意一点作x 轴的平行线,与2x y =的图象有且只有一个交点,这就保证了对于任意一个(0)y ∈+∞,,都有唯一确定的2log x y =和它对应,进而才能得到反函数.这就启发我们,不是任意的函数都存在反函数的,只有一一对应的函数才存在反函数.一一对应的函数是指值域中的每一个元素y 只有定义域中的唯一的一个元素x 和它相对应,即定义域中的元素x 和值域中的元素y ,通过对应法则y=f (x )存在着一一对应关系.清楚了反函数存在的条件后,我们接下来讨论反函数的性质.通过画出指数函数2x y =与对数函数2log y x =的图象后,我们发现它们是关于直线y=x 对称的,也就是互为反函数的两个函数的图象是关于直线y=x 对称的.这与我们前面的分析也是一致的,原函数与反函数是定义域、值域互换,对应法则互逆.研究反函数的性质离不开函数的单调性和奇偶性,下面的结论同学们可以自己尝试证明.一个函数与它的反函数在相应区间上单调性是一致的,也就是说如果原函数在某个区间上是单调递增(减)的,那么它的反函数在相应区间上也是单调递增(减)的.关于奇偶性,如果一个奇函数存在反函数,那么它的反函数也是奇函数;一般情况下偶函数是不存在反函数的,例外情况是f (x )=C (C 为常数).学习了反函数这种重要的工具,它可以帮助我们解决很多问题.当原函数的性质不容易研究时,我们可以考虑研究它的反函数.比如当直接求原函数的值域比较困难时,可以通过求其反函数的定义域来确定原函数的值域,来看一道具体的例题.【例】已知函数10110x xy =+,求它的值域.解析:先计算它的反函数,由10110x x y =+得到(110)10x x y +=,解得101x y y =-,反函数即为lg 1y x y =-,反函数的定义域为原函数的值域,也就是01y y >-,原函数的值域即为(01),.练习题1.下列函数中,有反函数的是()A .22y x x=+B .||y x =C .2lg y x =D .11y x =-2.函数21x y =-的反函数为_____________.3.已知函数1212x x y -=+,求它的值域.【参考答案】1.D2.2log (1)y x =+3.(-1,1)。

高一数学上册 第二章基本初等函数之对数函数知识点总结及练习题(含答案)

高一数学上册 第二章基本初等函数之对数函数知识点总结及练习题(含答案)

高一数学上册第二章基本初等函数之对数函数知识点总结及练习题(含答案)高一数学上册第二章基本初等函数之对数函数知识点总结及练习题(含答案)〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若a某N(a0,且a1),则某叫做以a为底N的对数,记作某logaN,其中a叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:某logaNa某N(a0,a1,N0).(2)几个重要的对数恒等式:loga10,logaa1,logaabb.N;自然对数:lnN,即loge(3)常用对数与自然对数:常用对数:lgN,即log10…).e2.71828(4)对数的运算性质如果a0,a1,M①加法:logaN(其中0,N0,那么MlogaNloga(MN)M②减法:logaMlogaNlogaN③数乘:nlogaMlogaMn(nR)④alogaNNnlogaM(b0,nR)bn⑤logabM⑥换底公式:logaNlogbN(b0,且b1)logba【2.2.2】对数函数及其性质(5)对数函数函数名称定义函数对数函数yloga某(a0且a1)叫做对数函数a1y某10a1y某1yloga某yloga某图象O(1,0)O(1,0)某某定义域值域过定点奇偶性(0,)R图象过定点(1,0),即当某1时,y0.非奇非偶单调性在(0,)上是增函数在(0,)上是减函数loga某0(某1)函数值的变化情况loga某0(某1)loga某0(某1)loga某0(0某1)loga某0(某1)loga某0(0某1)a变化对图象的影响在第一象限内,a越大图象越靠低,越靠近某轴在第一象限内,a越小图象越靠低,越靠近某轴在第四象限内,a越大图象越靠高,越靠近y轴在第四象限内,a越小图象越靠高,越靠近y轴(6)反函数的概念设函数果对于yf(某)的定义域为A,值域为C,从式子yf(某)中解出某,得式子某(y).如y在C中的任何一个值,通过式子某(y),某在A中都有唯一确定的值和它对应,那么式子某(y)表示某是y的函数,函数某(y)叫做函数yf(某)的反函数,记作某f1(y),习惯上改写成yf1(某).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式③将某yf(某)中反解出某f1(y);f1(y)改写成yf1(某),并注明反函数的定义域.(8)反函数的性质①原函数②函数yf(某)与反函数yf1(某)的图象关于直线y某对称.yf(某)的定义域、值域分别是其反函数yf1(某)的值域、定义域.yf(某)的图象上,则P"(b,a)在反函数yf1(某)的图象上.③若P(a,b)在原函数④一般地,函数yf(某)要有反函数则它必须为单调函数.一、选择题:1.log89的值是log23A.()23B.1C.32D.22.已知某=2+1,则log4(某3-某-6)等于A.()C.0D.32B.54123.已知lg2=a,lg3=b,则lg12等于lg15()A.2ab1abB.a2b1abC.2ab1abD.a2b1ab4.已知2lg(某-2y)=lg某+lgy,则某的值为 yA.1B.4()C.1或4C.(C.ln5D.4或-1()5.函数y=log1(2某1)的定义域为2A.(1,+∞)B.[1,+∞)2B.5e1,1]2D.(-∞,1)()D.log5e()y6.已知f(e某)=某,则f(5)等于A.e57.若f(某)loga某(a0且a1),且f1(2)1,则f(某)的图像是yyyABCD8.设集合A{某|某10},B{某|log2某0|},则AB等于A.{某|某1}C.{某|某1}B.{某|某0}D.{某|某1或某1}2O某O某O某O某()9.函数yln某1,某(1,)的反函数为()某1e某1,某(0,)B.y某e1e某1,某(,0)D.y某e1e某1,某(0,)A.y某e1e某1,某(,0)C.y某e1二、填空题:10.计算:log2.56.25+lg11log23+lne+2=10011.函数y=log4(某-1)2(某<1的反函数为__________.12.函数y=(log1某)2-log1某2+5在2≤某≤4时的值域为______.44三、解答题:13.已知y=loga(2-a某)在区间{0,1}上是某的减函数,求a的取值范围.14.已知函数f(某)=lg[(a2-1)某2+(a+1)某+1],若f(某)的定义域为R,求实数a的取值范围.15.已知f(某)=某2+(lga+2)某+lgb,f(-1)=-2,当某∈R时f(某)≥2某恒成立,求实数a的值,并求此时f(某)的最小值?一、选择题:.15.(lgm)0.9≤(lgm)0.8,16.25y8413,14.y=1-2某(某∈R),217.解析:因为a是底,所以其必须满足a>0且a不等于1a>0所以2-a某为减函数,要是Y=loga(2-a某)为减函数,则Y=loga(Z)为增函数,得a>1又知减函数区间为[0,1],a必须满足2-a某0>02-a某1>0即得a扩展阅读:高一数学上册_第二章基本初等函数之对数函数知识点总结及练习题(含答案)〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若a某N(a0,且a1),则某叫做以a为底N的对数,记作某logaN,其中a叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:某logaNa某N(a0,a1,N0).(2)几个重要的对数恒等式:loga10,logaa1,logbaab.(3)常用对数与自然对数:常用对数:lgN,即log10N;自然对数:lnN,即logeN(其中e2.71828…).(4)对数的运算性质如果a0,a1,M0,N0,那么①加法:logaMlogaNloga(MN)②减法:logaMlogaNlogMaN③数乘:nlogaMlogaMn(nR)log④aaNN⑤lognnabMblogaM(b0,nR)⑥换底公式:logbNaNloglog(b0,且b1)ba【2.2.2】对数函数及其性质(5)对数函数函数名称对数函数定义函数yloga某(a0且a1)叫做对数函数a10a1y某1ylog某1a某yyloga某图象(1,0)OO(1,0)某某定义域(0,)值域R 过定点图象过定点(1,0),即当某1时,y0.奇偶性非奇非偶单调性在(0,)上是增函数在(0,)上是减函数loga某0(某1)loga某0(某1)函数值的变化情况loga某0(某1)loga某0(某1)loga某0(0某1)loga某0(0某1)a变化对在第一象限内,a越大图象越靠低,越靠近某轴在第四象限内,a越大图象越靠高,越靠近y轴在第一象限内,a越小图象越靠低,越靠近某轴在第四象限内,a越小图象越靠高,越靠近y轴④一般地,函数yf(某)要有反函数则它必须为单调函数.图象的影响(6)反函数的概念设函数yf(某)的定义域为A,值域为C,从式子yf(某)中解出某,得式子某(y).如果对于y在C中的任何一个值,通过式子某(y),某在A中都有唯一确定的值和它对应,那么式子某(y)表示某是y的函数,函数某(y)叫做函数yf(某)的反函数,记作某f1(y),习惯上改写成yf1(某).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式yf(某)中反解出某f1(y);③将某f1(y)改写成yf1(某),并注明反函数的定义域.(8)反函数的性质①原函数②函数yf(某)与反函数yf1(某)的图象关于直线y某对称.yf(某)的定义域、值域分别是其反函数yf1(某)的值域、定义域.yf(某)的图象上,则P(b,a)在反函数yf(某)的图象"1③若P(a,b)在原函数上.一、选择题:1.log89log的值是23A.23B.12.已知某=2+1,则log4(某3-某-6)等于A.3B.5243.已知lg2=a,lg3=b,则lg12lg15等于A.2ab1abB.a2b1abD.a2b1ab4.已知2lg(某-2y)=lg某+lgy,则某y的值为A.1B.45.函数y=log1(2某1)的定义域为2A.(12,+∞)B.[1,+∞)1)6.已知f(e某)=某,则f(5)等于C.32()C.0()C.()C.1或4C.(12,1]()D.2D.122ab1abD.4或-1)D.(-∞,()A.e5B.5eC.ln5D.log5e7.若f(某)loga某(a0且a1),且f1(2)1,则f(某)的图像是()yyyyABCDO某O某某OO某8.设集合A{某|某210},B{某|lo2某g0|}则,AB等于()A.{某|某1}B.{某|某0}C.{某|某1}D.{某|某1或某1}9.函数yln某1某1,某(1,)的反函数为()A.ye某1e某1,某(0,)B.ye某1e某1,某(0,)C.ye某1e某1e某1,某(,0)D.ye某1,某(,0)二、填空题:10.计算:log2.56.25+lg1100+lne+21log23=(11.函数y=log4(某-1)2(某<1的反函数为__________.12.函数y=(log1某)2-log1某2+5在2≤某≤4时的值域为______.44三、解答题:13.已知y=loga(2-a某)在区间{0,1}上是某的减函数,求a的取值范围.14.已知函数f(某)=lg[(a2-1)某2+(a+1)某+1],若f(某)的定义域为R,求实数a的取值范围.15.已知f(某)=某2+(lga+2)某+lgb,f(-1)=-2,当某∈R时f(某)≥2某恒成立,求实数a的值,并求此时f(某)的最小值?一、选择题:.132,14.y=1-2某(某∈R),15.(lgm)0.9≤(lgm)0.8,16.254y817.解析:因为a是底,所以其必须满足a>0且a不等于1a>0所以2-a某为减函数,要是Y=loga(2-a某)为减函数,则Y=loga(Z)为增函数,得a>1又知减函数区间为[0,1],a必须满足2-a某0>02-a某1>0即得a。

2021年人教A版高一数学必修1:第3章对数函数比较大小及复合函数的单调性 Word版含答案

2021年人教A版高一数学必修1:第3章对数函数比较大小及复合函数的单调性 Word版含答案

对数函数比较大小及复合函数的单调性一、单选题(共10道,每道10分)1.设,则( )A.b<a<cB.c<a<bC.c<b<aD.a<c<b答案:B解题思路:试题难度:三颗星知识点:基本初等函数值大小的比较2.设,则( )A.a>b>cB.b>a>cC.b>c>aD.c>a>b答案:B解题思路:试题难度:三颗星知识点:基本初等函数值大小的比较3.已知,则( )A.a=b<cB.a<b<cC.a=c>bD.a>c>b答案:C解题思路:试题难度:三颗星知识点:基本初等函数值大小的比较4.设,,,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:对数值大小的比较5.已知函数是定义在上的偶函数,当时,是减函数,若,则( )A.a>b>cB.c>b>aC.c>a>bD.a>c>b答案:B解题思路:试题难度:三颗星知识点:基本初等函数值大小的比较6.已知函数在上是增函数,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:对数函数的单调性7.函数上为减函数,则a的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:对数函数的单调性8.函数的单调递增区间是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:对数函数的单调性9.若函数有最小值,则a的取值范围是( )A.0<a<1B.0<a<2且a≠1C.1<a<2D.a≥2答案:C解题思路:试题难度:三颗星知识点:对数函数的单调性10.定义在上的偶函数在上递增,,则满足的x 的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:对数函数图象与性质的综合应用。

对数函数比较大小方法

对数函数比较大小方法

对数函数比较大小方法教学目标:使学生掌握对数形式复合函数的单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.教学重点:复合函数单调性、奇偶性的讨论方法.教学难点:复合函数单调性、奇偶性的讨论方法.教学过程:[例1]设loga23 <1,则实数a的取值范围是a.0<a<23b. 23 <a<1c.0<a<23 或a>1d.a>23求解:由loga23 <1=logaa得(1)当0<a<1时,由y=logax是减函数,得:0<a<23(2)当a>1时,由y=logax就是增函数,得:a>23 ,∴a>1综合(1)(2)得:0<a<23 或a>1 答案:c[基准2]三个数60.7,0.76,log0.76的大小顺序就是a.0.76<log0.76<60.7b.0.76<60.7<log0.76c.log0.76<60.7<0.76d.log0.76<0.76<60.7解:由于60.7>1,0<0.76<1,log0.76<0 答案:d[基准3]设0<x<1,a>0且a≠1,先行比较|loga(1-x)|与|loga(1+x)|的大小解法一:作差法|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga |=1|lga| (|lg(1-x)|-|lg(1+x)|)∵0<x<1,∴0<1-x<1<1+x∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,∴|loga(1-x)|>|loga(1+x)|数学分析二:并作商法lg(1+x)lg(1-x) =|log(1-x)(1+x)|∵0<x<1 ∴0<1-x<1+x∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x由0<x<1 ∴1+x>1,0<1-x2<1∴0<(1-x)(1+x)<1 ∴11+x >1-x>0∴0<log(1-x) 11+x <log(1-x)(1-x)=1∴|loga(1-x)|>|loga(1+x)|数学分析三:平方后比较大小∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x∵0<x<1,∴0<1-x2<1,0<1-x1+x <1∴lg(1-x2)<0,lg1-x1+x <0∴loga2(1-x)>loga2(1+x)即为|loga(1-x)|>|loga(1+x)|解法四:分类讨论去掉绝对值当a>1时,|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2)∵0<1-x<1<1+x,∴0<1-x2<1∴loga(1-x2)<0,∴-loga(1-x2)>0当0<a<1时,由0<x<1,则存有loga(1-x)>0,loga(1+x)<0∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0∴当a>0且a≠1时,总存有|loga(1-x)|>|loga(1+x)|[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为r,求实数a的取值范围求解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈r恒设立.当a2-1≠0时,其充要条件是:a2-1>0△=(a+1)2-4(a2-1)<0 Champsaura<-1或a>53又a=-1,f(x)=0满足题意,a=1不合题意.所以a的值域范围就是:(-∞,-1]∪(53 ,+∞)[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小求解:易知f(x)、g(x)的定义域均就是:(0,1)∪(1,+∞)f(x)-g(x)=1+logx3-2logx2=logx(34 x).①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).若34 x<1,则1<x<43 ,这时f(x)<g(x)②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x)当x∈(1,43 )时,f(x)<g(x)[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]求解:原方程可以化成(9x-1-5)= [4(3x-1-2)]∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3∴x=1或x=2 经检验x=1就是减根∴x=2是原方程的根.[基准7]解方程log2(2-x-1) (2-x+1-2)=-2解:原方程可化为:log2(2-x-1)(-1)log2[2(2-x-1)]=-2即:log2(2-x-1)[log2(2-x-1)+1]=2令t=log2(2-x-1),则t2+t-2=0解之得t=-2或t=1∴log2(2-x-1)=-2或log2(2-x-1)=1解之得:x=-log 或x=-log23一、说道教材1、地位和作用本章自学就是在学生顺利完成函数的第一阶段自学(初中)的基础上,展开第二阶段的函数自学。

新高考A版讲义:初等函数 第4节 对数函数

新高考A版讲义:初等函数 第4节 对数函数

第4节 对数函数知识点一 对数函数的概念一般地,函数y =log a x (a >0,且a ≠1)叫做对数函数, 其中x 是自变量,函数的定义域是(0,+∞).思考函数y =log πx ,y =log 2x 3是对数函数吗?答y =log πx 是对数函数,y =log 2x3不是对数函数.题型一、对数函数的概念及应用例1 (1)下列给出的函数:①y =log 5x +1;②y =log a x 2(a >0,且a ≠1);③1)log ;y x =④y =log 3x2;⑤y =log x 3(x >0,且x ≠1);⑥2πlog .y x =其中是对数函数的为( )A .③④⑤B .②④⑥C .①③⑤⑥D .③⑥ (2)已知对数函数的图象过点M (8,3),则f ⎝⎛⎭⎫12=________.解析 (1)①中对数式后面加1,所以不是对数函数;②中真数不是自变量x ,所以不是对数函数;③和⑥符合对数函数概念的三个特征,是对数函数;④不是对数函数;⑤中底数是自变量x ,而非常数a ,所以不是对数函数,故③⑥正确.(2)设f (x )=log a x (a >0,且a ≠1),由图象过点M (8,3),则有3=log a 8,解得a =2.所以对数函数的解析式为f (x )=log 2x ,所以f ⎝⎛⎭⎫12=log 212=-1. 反思感悟 判断一个函数是否为对数函数的方法对数函数必须是形如y =log a x (a >0,且a ≠1)的形式,即必须满足以下条件: (1)对数式系数为1.(2)底数为大于0且不等于1的常数.(3)对数的真数仅有自变量x . 跟踪训练1 (1)下列函数表达式中,是对数函数的有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log x (x +2);⑥y =log 2(x +1). A .1个 B .2个 C .3个 D .4个 答案 B(2)若对数函数f (x )的图象过点(4,-2),则f (8)=________. 答案 -3题型二、与对数函数有关的定义域例2 求下列函数的定义域.(1)y =log a (3-x )+log a (3+x );(2)y =log 2(16-4x );(3)y =log 1-x 5.解 (1)由⎩⎪⎨⎪⎧3-x >0,3+x >0,得-3<x <3,∴函数的定义域是(-3,3).(2)由16-4x >0,得4x <16=42,由指数函数的单调性得x <2,∴函数y =log 2(16-4x )的定义域为(-∞,2).(3)依题意知⎩⎪⎨⎪⎧1-x >0,1-x ≠1,得x <1且x ≠0,∴定义域为(-∞,0)∪(0,1).反思感悟 求含对数式的函数定义域关键是真数大于0,底数大于0且不为1.如需对函数式变形,需注意真数、底数的取值范围是否改变.跟踪训练2 求下列函数的定义域.(1)y =x 2-4lg (x +3);(2)y =12-x +ln(x +1).解 (1)要使函数有意义,需⎩⎪⎨⎪⎧x 2-4≥0,x +3>0,x +3≠1,即⎩⎪⎨⎪⎧x ≤-2或x ≥2,x >-3,x ≠-2,即-3<x <-2或x ≥2,故所求函数的定义域为(-3,-2)∪[2,+∞).(2)要使函数有意义,需⎩⎪⎨⎪⎧ 2-x >0,x +1>0,即⎩⎪⎨⎪⎧x <2,x >-1,∴-1<x <2.故所求函数的定义域为(-1,2).题型三、对数函数模型的应用例3 大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以表示为函数v =12log 3θ100,单位是m/s ,θ是表示鱼的耗氧量的单位数.(1)当一条鲑鱼的耗氧量是900个单位时,它的游速是多少?(2)某条鲑鱼想把游速提高1 m/s ,那么它的耗氧量的单位数是原来的多少倍? 解 (1)由v =12log 3θ100可知,当θ=900时,v =12log 3900100=12log 39=1(m/s).所以当一条鲑鱼的耗氧量是900个单位时,它的游速是1 m/s.(2)设鲑鱼原来的游速、耗氧量为v 1,θ1,提速后的游速、耗氧量为v 2,θ2.由v 2-v 1=1,即12log 3θ2100-12log 3θ1100=1,得θ2θ1=9.所以耗氧量的单位数为原来的9倍.反思感悟 对数函数应用题的解题思路(1)依题意,找出或建立数学模型.(2)依实际情况确定解析式中的参数.(3)依题设数据解决数学问题.(4)得出结论.知识点二对数函数的图象和性质1.对数函数y=log a x(a>0,且a≠1)的图象和性质如下表:y=log a x (a>0,且a≠1)底数a>10<a<1图象定义域(0,+∞)值域R单调性在(0,+∞)上是增函数在(0,+∞)上是减函数共点性图象过定点(1,0),即x=1时,y=0函数值特点x∈(0,1)时,y∈(-∞,0);x∈[1,+∞)时,y∈[0,+∞)x∈(0,1)时,y∈(0,+∞);x∈[1,+∞)时,y∈(-∞,0]对称性函数y=log ax与y=1logax的图象关于x轴对称2.不同底的对数函数图象的相对位置一般地,对于底数a>1的对数函数,在区间(1,+∞)内,底数越大越靠近x轴;对于底数0<a<1的对数函数,在区间(1,+∞)内,底数越小越靠近x轴.题型一、对数函数的图象问题例1(1)函数y=x+a与y=log a x的图象可能是下图中的()答案C(2)函数y=log a(x+2)+3(a>0且a≠1)的图象过定点________.解析令x+2=1,所以x=-1,y=3.所以过定点(-1,3).(3)已知f(x)=log a|x|满足f(-5)=1,试画出函数f(x)的图象.解因为f(-5)=1,所以log a5=1,即a=5,故f (x )=log 5|x |=⎩⎪⎨⎪⎧log 5x ,x >0,log 5(-x ),x <0.所以函数y =log 5|x |的图象如图所示. 延伸探究在本例中,若条件不变,试画出函数g (x )=log a |x -1|的图象. 解 因为f (x )=log 5|x |, 所以g (x )=log 5|x -1|,如图,g (x )的图象是由f (x )的图象向右平移1个单位长度得到.反思感悟 现在画图象很少单纯依靠描点,大多是以常见的函数为原料加工,所以一方面要掌握一些平移、对称变换的结论,另一方面要关注定义域、值域、单调性、关键点. 跟踪训练1 (1)如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1解析 作直线y =1,则直线与C 1,C 2的交点的横坐标分别为a ,b ,易知0<b <a <1. (2)画出函数y =|lg(x -1)|的图象. 考点 对数函数的图象题点 含绝对值的对数函数的图象 解 ①先画出函数y =lg x 的图象(如图).②再画出函数y =lg(x -1)的图象(如图).③最后画出函数y =|lg(x -1)|的图象(如图).二、比较大小例2 比较下列各组数的大小:(1)log 534与log 543;(2)13log 2与15log 2;(3)log 23与log 54.解 (1)方法一 对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.方法二 因为log 534<0,log 543>0,所以log 534<log 543.(2)由于13log 2=1log 213,15log 2=1log 215,又对数函数y =log 2x 在(0,+∞)上是增函数,且0<15<13<1,所以0>log 213>log 215,所以1log 213<1log 215,所以3151log l .og 22< (3)取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 反思感悟 比较对数值大小时常用的四种方法 (1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论. 跟踪训练2 (1)(2019·全国Ⅰ)已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <b D .b <c <a解析 ∵a =log 20.2<0,b =20.2>1,c =0.20.3∈(0,1),∴a <c <b .故选B. (2)比较下列各组值的大小:①2233log 0.5,log 0.6;②log 1.51.6,log 1.51.4;③log 0.57,log 0.67;④log 3π,log 20.8.解 ①因为函数23log y x =是(0,+∞)上的减函数,且0.5<0.6,所以3232log log 0.50.6.>②因为函数y =log 1.5x 是(0,+∞)上的增函数,且1.6>1.4,所以log 1.51.6>log 1.51.4. ③因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57.④因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8.知识点三 反函数的概念一般地,指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数. (1)y =a x 的定义域R 就是y =log a x 的值域;而y =a x 的值域(0,+∞)就是y =log a x 的定义域. (2)互为反函数的两个函数y =a x (a >0,且a ≠1)与y =log a x (a >0,且a ≠1)的图象 关于直线y =x 对称.(3)互为反函数的两个函数y =a x (a >0,且a ≠1)与y =log a x (a >0,且a ≠1)的单调性相同.但单调区间不一定相同.一、反函数例1 函数f (x )与g (x )互为反函数,若f (x )=201910x (x <0).求函数g (x )的解析式,定义域、值域.解 120192019()1010xxf x ⎛⎫== ⎪ ⎪⎝⎭(x <0)是增函数,所以0<1201910x⎛⎫ ⎪ ⎪⎝⎭<100,所以0<1201910x⎛⎫⎪ ⎪⎝⎭<1, 故f (x )=1201910x⎛⎫⎪ ⎪⎝⎭的定义域为(-∞,0),值域为(0,1), 所以g (x )=2 019lg x ,定义域为(0,1),值域为(-∞,0). 反思感悟 互为反函数的常用结论(1)同底的指数函数、对数函数互为反函数.(2)若f (x )与g (x )互为反函数,则f (x )的定义域、值域分别为g (x )的值域、定义域. (3)互为反函数的两个函数的图象关于直线y =x 对称.跟踪训练1 (1)已知函数y =a x 与y =log a x ,其中a >0且a ≠1,下列说法不正确的是( ) A .两者的图象关于直线y =x 对称B .前者的定义域、值域分别是后者的值域、定义域C .两函数在各自的定义域内增减性相同D .y =a x 的图象经过平行移动可得到y =log a x 的图象 答案 D(2)函数y =f (x )是()g x x =的反函数,则f (2)=________.解析 f (x )=⎝⎛⎭⎫22x ,f (2)=⎝⎛⎭⎫222=12. 题型二、解对数不等式例2 解下列关于x 的不等式:(1)7171log (4)og ;l x x >-(2)log a (2x -5)>log a (x -1).解 (1)由题意可得⎩⎪⎨⎪⎧x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为{x |0<x <2}.(2)当a >1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5>x -1.解得x >4.当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4.综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <4. 反思感悟 对数不等式的三种考查类型及解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况进行讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式(b =log a a b ),再借助y =log a x 的单调性求解.(3)形如log f (x )a >log g (x )a (f (x ),g (x )>0且不等于1,a >0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解.跟踪训练2 (1)求满足不等式log 3x <1的x 的取值集合; (2)若log a 25<1(a >0,且a ≠1),求实数a 的取值范围.解 (1)因为log 3x <1=log 33,所以x 满足的条件为⎩⎪⎨⎪⎧x >0,log 3x <log 33,即0<x <3.(2)log a 25<1,即log a 25<log a a .当a >1时,函数y =log a x 在定义域内是增函数,所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数,由log a 25<log a a ,得a <25,即0<a <25.所以实数a 的取值范围为⎝⎛⎭⎫0,25∪(1,+∞).题型三、对数型复合函数的单调性例3 求函数212log (1)y x =-的单调区间.解 要使212log (1)y x =-有意义,则1-x 2>0,所以x 2<1,所以-1<x <1,因此函数的定义域为(-1,1).令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,当x 增大时,t 增大,12log y t =减小.所以当x ∈(-1,0]时,212log (1)y x =-是减函数;同理可知,当x ∈[0,1)时,212log (1)y x =-是增函数.即函数212log (1)y x =-的单调递减区间是(-1,0],单调递增区间为[0,1).反思感悟 求形如y =log a f (x )的函数的单调区间的步骤 (1)求出函数的定义域.(2)研究函数t =f (x )和函数y =log a t 在定义域上的单调性. (3)判断出函数的增减性求出单调区间.跟踪训练3 已知函数f (x )=log 2x +1x -1.(1)判断函数的奇偶性;(2)求函数的单调区间.解 (1)要使函数有意义,则有⎩⎪⎨⎪⎧ x +1>0,x -1>0,或⎩⎪⎨⎪⎧x +1<0,x -1<0.解得x >1或x <-1. 所以此函数的定义域是(-∞,-1)∪(1,+∞).所以函数的定义域关于原点对称. f (-x )=log 2-x +1-x -1=log 2x -1x +1=-log 2x +1x -1=-f (x ).所以f (x )为奇函数.(2)设x 1,x 2∈(1,+∞),且x 1<x 2, 则x 2+1x 2-1-x 1+1x 1-1=2(x 1-x 2)(x 2-1)(x 1-1)<0,所以x 2+1x 2-1<x 1+1x 1-1,所以log 2x 2+1x 2-1<log 2x 1+1x 1-1,即f (x 2)<f (x 1). 所以f (x )在(1,+∞)上为减函数.同理,f (x )在(-∞,-1)上也是减函数. 故f (x )=log 2x +1x -1的单调递减区间是(-∞,-1)和(1,+∞).求与对数函数有关的复合函数的值域或最值典例 求函数f (x )=log 2(4x )·14log 2x,x ∈⎣⎡⎦⎤12,4的值域. 解 f (x )=log 2(4x )·14log 2x =(log 2x +2)·⎣⎡⎦⎤-12(log 2x -1)=-12[(log 2x )2+log 2x -2]. 设log 2x =t .∵x ∈⎣⎡⎦⎤12,4,∴t ∈[-1,2],则有y =-12(t 2+t -2),t ∈[-1,2],因此二次函数图象的对称轴为t =-12,∴函数y =-12(t 2+t -2)在⎣⎡⎦⎤-1,-12上是增函数,在⎣⎡⎦⎤-12,2上是减函数, ∴当t =-12时,有最大值,且y max =98.当t =2时,有最小值,且y min =-2.∴f (x )的值域为⎣⎡⎦⎤-2,98.对数的概念1.给出下列函数:①y =223log x ;②y =log 3(x -1);③y =log (x +1)x ;④y =log πx .其中是对数函数的有( )A .1个B .2个C .3个D .4个 考点 对数函数的概念 题点 对数函数的概念解析 ①②不是对数函数,因为对数的真数不是仅有自变量x ;③不是对数函数,因为对数的底数不是常数;④是对数函数. 2.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( ) A .{x |x >-1} B .{x |x <1} C .{x |-1<x <1}D .∅考点 对数函数的定义域 题点 对数函数的定义域解析 ∵M ={x |1-x >0}={x |x <1},N ={x |1+x >0}={x |x >-1},∴M ∩N ={x |-1<x <1}. 3.下列函数中,与函数y =x 相等的是( ) A .y =(x )2 B .y =x 2 C .y =2log 2xD .y =log 22x解析 因为y =log 22x 的定义域为R ,且根据对数恒等式知y =x . 4.对数函数的图象过点M (16,4),则此对数函数的解析式为( ) A .y =log 4x B .y =14log xC .y =12log xD .y =log 2x解析 由于对数函数的图象过点M (16,4),所以4=log a 16,得a =2. 所以对数函数的解析式为y =log 2x ,故选D.5.已知函数f (x )=log a (x +2),若图象过点(6,3),则f (2)的值为( )A .-2B .2 C.12 D .-12考点 对数函数的性质 题点 对数函数图象过定点问题 解析 代入(6,3),得3=log a (6+2)=log a 8,即a 3=8,∴a =2. ∴f (x )=log 2(x +2),∴f (2)=log 2(2+2)=2.6.若f (x )=log a x +a 2-4a -5是对数函数,则a =________. 解析 由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5.7.函数y =()12log 3x a -的定义域是⎝⎛⎭⎫23,+∞,则a =________.解析 由y =()12log 3x a -知,3x -a >0,即x >a 3.∴a 3=23,即a =2.8.某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额为x 万元时,奖励y 万元.若公司拟定的奖励方案为y =2log 4x -2,某业务员要得到5万元奖励,则他的销售额应为________万元.解析 由题意得5=2log 4x -2,即7=log 2x ,得x =128. 9.求下列函数的定义域: (1)f (x )=log (x -1)(3-x ); (2)f (x )=2x +3x -1+log 2(3x -1). 解 (1)由题意知⎩⎪⎨⎪⎧3-x >0,x -1>0,x -1≠1,解得1<x <3,且x ≠2,故f (x )的定义域是(1,2)∪(2,3).(2)由题意知⎩⎪⎨⎪⎧2x +3≥0,x -1≠0,3x -1>0,解得x >13,且x ≠1. 故f (x )的定义域是⎝⎛⎭⎫13,1∪(1,+∞). 10.20世纪70年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为M =lg A -lg A 0.其中A 是被测地震的最大振幅,A 0是“标准地震”的振幅.(1)假设在一次地震中,一个距离震中1 000千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.002,计算这次地震的震级;(2)5级地震给人的震感已比较明显,我国发生在汶川的8级地震的最大振幅是5级地震的最大振幅的多少倍?解 (1)M =lg A -lg A 0=lg A A 0=lg 200.002=lg 104=4.即这次地震的震级为4级.(2)由题意得⎩⎪⎨⎪⎧5=lg A 5-lg A 0,8=lg A 8-lg A 0,所以lg A 8-lg A 5=3,即lg A 8A 5=3.所以A 8A 5=103=1 000.即8级地震的最大振幅是5级地震的最大振幅的1 000倍.11.函数y =log 2(x -1)2-x的定义域是( )A .(1,2]B .(1,2)C .(2,+∞)D .(-∞,2)解析 由⎩⎪⎨⎪⎧ x -1>0,2-x >0,得⎩⎪⎨⎪⎧x >1,x <2,∴1<x <2.∴函数的定义域为(1,2).12.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y (只)与引入时间x (年)的关系为y =a log 2(x +1),若该动物在引入一年后的数量为100只,则7年后它们发展到( )A .300只B .400只C .600只D .700只解析 将x =1,y =100代入y =a log 2(x +1)得,100=a log 2(1+1),解得a =100, 所以x =7时,y =100log 2(7+1)=300.13.若函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =________.解析 由a 2-a +1=1,解得a =0或a =1.又底数a +1>0,且a +1≠1,所以a =1. 14.函数f (x )=lg ⎝⎛⎭⎫2kx 2-kx +38的定义域为R ,则实数k 的取值范围是________. 解析 依题意,2kx 2-kx +38>0的解集为R ,即不等式2kx 2-kx +38>0恒成立,当k =0时,38>0恒成立,∴k =0满足条件.当k ≠0时,则⎩⎪⎨⎪⎧k >0,Δ=k 2-4×2k ×38<0,解得0<k <3.综上,k 的取值范围是[0,3).15.函数f (x )=a -lg x 的定义域为(0,10],则实数a 的值为( ) A .0 B .10 C .1 D.110解析 由已知,得a -lg x ≥0的解集为(0,10],由a -lg x ≥0,得lg x ≤a , 又当0<x ≤10时,lg x ≤1,所以a =1,故选C.16.国际视力表值(又叫小数视力值,用V 表示,范围是[0.1,1.5])和我国现行视力表值(又叫对数视力值,由缪天容创立,用L 表示,范围是[4.0,5.2])的换算关系式为L =5.0+lg V .(1)请根据此关系式将下面视力对照表补充完整;(2)甲、乙两位同学检查视力,其中甲的对数视力值为4.5,乙的小数视力值是甲的2倍,求乙的对数视力值.(所求值均精确到小数点后面一位数,参考数据:lg 2≈0.301 0,lg 3≈0.477 1)解 (1)因为5.0+lg 1.5=5.0+lg 1510=5.0+lg 32=5.0+lg 3-lg 2≈5.0+0.477 1-0.301 0≈5.2,所以①应填5.2;因为5.0=5.0+lg V ,所以V =1,②处应填1.0;因为5.0+lg 0.4=5.0+lg 410=5.0+lg 4-1=5.0+2lg 2-1≈5.0+2×0.301 0-1≈4.6,所以③处应填4.6;因为4.0=5.0+lg V ,所以lg V =-1.所以V =0.1.所以④处应填0.1. 对照表补充完整如下:(2)先将甲的对数视力值换算成小数视力值,则有4.5=5.0+lg V 甲,所以V 甲=10-0.5,则V 乙=2×10-0.5.所以乙的对数视力值L 乙=5.0+lg(2×10-0.5)=5.0+lg 2-0.5≈5.0+0.301 0-0.5≈4.8.对数的图像与性质1.若0<a <1,则函数y =log a (x +5)的图象不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 ∵y =log a (x +5)过定点(-4,0)且单调递减,∴函数图象不过第一象限,故选A. 2.已知12log m <12log n <0,则( )A .n <m <1B .m <n <1C .1<m <nD .1<n <m解析 因为0<12<1,12log m <12log n <0,所以m >n >1,故选D.3.设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >bD .a >b >c考点 对数值大小比较 题点 对数值大小比较 解析 a =log 36=log 32+1,b =log 52+1,c =log 72+1, 在同一坐标系内分别画出y =log 3x ,y =log 5x ,y =log 7x 的图象,当x =2时,由图易知log 32>log 52>log 72,∴a >b >c .4.如图,曲线是对数函数y =log a x 的图象,已知a 的取值有43,3,35,110,则相应C 1,C 2,C 3,C 4的a 的值依次是( )A.3,43,110,35B.3,43,35,110C.43,3,35,110D.43,3,110,355.已知实数a =log 45,b =⎝⎛⎭⎫120,c =log 30.4,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <a <bD .c <b <a解析 由题意知,a =log 45>1,b =⎝⎛⎭⎫120=1,c =log 30.4<0,故c <b <a . 6.比较大小,用不等号连接起来.(1)log 0.81.5________log 0.82;(2)log 25________log 75;(3)log 34________2;(4)log 35________log 64. 答案 (1)> (2)> (3)< (4)>7.函数y =log a (x -4)+2(a >0且a ≠1)恒过定点________.解析 令x -4=1得x =5,此时y =log a 1+2=2,所以函数y =log a (x -4)+2恒过定点(5,2). 8.如果函数f (x )=(3-a )x 与g (x )=log a x 的增减性相同,则实数a 的取值范围是________.解析 若f (x ),g (x )均为增函数,则⎩⎪⎨⎪⎧3-a >1,a >1,即1<a <2;若f (x ),g (x )均为减函数,则⎩⎪⎨⎪⎧0<3-a <1,0<a <1,无解.故1<a <2.9.已知函数y =log a (x +b )的图象如图所示.(1)求实数a 与b 的值;(2)函数y =log a (x +b )与y =log a x 的图象有何关系?解 (1)由图象可知,函数的图象过(-3,0)点与(0,2)点,所以得方程0=log a (-3+b )与2=log a b , 解得a =2,b =4.(2)由(1)知,y =log 2(x +4).函数y =log 2(x +4)的图象可以由y =log 2x 的图象向左平移4个单位长度得到.10.求下列函数的定义域与值域: (1)y =log 2(x -2); (2)y =log 4(x 2+8).解 (1)由x -2>0,得x >2,所以函数y =log 2(x -2)的定义域是(2,+∞),值域是R . (2)因为对任意实数x ,log 4(x 2+8)都有意义,所以函数y =log 4(x 2+8)的定义域是R . 又因为x 2+8≥8,所以log 4(x 2+8)≥log 48=32,即函数y =log 4(x 2+8)的值域是⎣⎡⎭⎫32,+∞.11.函数f (x )=log 2(3x +1)的值域为( ) A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)解析 ∵3x >0,∴3x +1>1.∴log 2(3x +1)>0.∴函数f (x )的值域为(0,+∞). 12.若0<x <y <1,则( )A .3y <3xB .log x 3<log y 3C .log 4x <log 4yD.⎝⎛⎭⎫14x <⎝⎛⎭⎫14y解析 因为0<x <y <1,所以由函数的单调性得3x <3y ,log x 3>log y 3,log 4x <log 4y ,⎝⎛⎭⎫14x >⎝⎛⎭⎫14y,故选C.13.若f (x )是对数函数且f (9)=2,当x ∈[1,3]时,f (x )的值域是________. 解析 设f (x )=log a x (a >0,且a ≠1),因为log a 9=2,所以a =3,即f (x )=log 3x . 又因为x ∈[1,3],所以0≤f (x )≤1.14.已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +5a ,x <1,log 7x ,x ≥1的值域为R ,那么实数a 的取值范围是________.解析 要使函数f (x )的值域为R ,则必须满足⎩⎪⎨⎪⎧1-2a >0,log 71≤1-2a +5a ,即⎩⎨⎧a <12,a ≥-13,15.若函数f (x )=log a (x +b )的图象如图所示,其中a ,b 为常数,则函数g (x )=a x +b 的图象大致是( )考点 对数函数的图象 题点 同一坐标系下的指数函数与对数函数的图象 解析 由f (x )的图象可知0<a <1,0<b <1,∴g (x )的图象应为D. 16.已知函数f (x )=|12log x |.(1)画出函数y =f (x )的图象;(2)写出函数y =f (x )的单调区间;(3)当x ∈⎣⎡⎦⎤12,m 时,函数y =f (x )的值域为[0,1],求m 的取值范围.解 (1)先作出y =12log x 的图象,再把y =12log x 的图象x 轴下方的部分往上翻折,得到f (x )=|12log x |的图象如图.(2)f (x )的定义域为(0,+∞),由图可知,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增. (3)由f (x )=|12log x |的图象可知f ⎝⎛⎭⎫12=f (2)=1,f (1)=0,由题意结合图象知,1≤m ≤2.反函数1.函数y =log 3(2x -1)的定义域为( )A .[1,+∞)B .(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1考点 对数不等式 题点 解对数不等式解析 要使函数有意义,需满足⎩⎪⎨⎪⎧log 3(2x -1)≥0,2x -1>0,∴⎩⎪⎨⎪⎧2x -1≥1,2x -1>0, ∴x ≥1,∴函数y =log 3(2x -1)的定义域为[1,+∞). 2.若log a 2<log b 2<0,则下列结论正确的是( ) A .0<a <b <1 B .0<b <a <1 C .a >b >1D .b >a >1解析 因为log a 2<0,log b 2<0,所以0<a <1,0<b <1,又log a 2<log b 2,所以a >b ,故0<b <a <1. 3.函数f (x )与函数g (x )互为反函数,若f (x )=⎝⎛⎭⎫12x 且x ∈(0,+∞),则函数g (x )的定义域为( ) A .(0,+∞) B .R C .(0,1)D .(1,+∞)解析 ∵当x ∈(0,+∞)时,⎝⎛⎭⎫12x∈(0,1),∴函数f (x )=⎝⎛⎭⎫12x ,x ∈(0,+∞)的值域为(0,1), 又f (x )与g (x )互为反函数,故g (x )的定义域为(0,1),故选C. 4.已知log a 12<2,那么a 的取值范围是( )A .0<a <22 B .a >22 C.22<a <1 D .0<a <22或a >1 考点 对数不等式 题点 解对数不等式解析 当a >1时,由log a 12<log a a 2得a 2>12,故a >1;当0<a <1时,由log a 12<log a a 2得0<a 2<12,故0<a <22.综上可知,a 的取值范围是0<a <22或a >1. 5.函数y =()213log 34x x -+-的单调递增区间是( )A .(-∞,2)B .(2,+∞)C .(1,2)D .(2,3)解析 由-3+4x -x 2>0,得x 2-4x +3<0,得1<x <3.设t =-3+4x -x 2,其图象的对称轴为x =2.∵函数y =13log t 为减函数,∴要求函数y =()213log 34x x -+-的单调递增区间,即求函数t =-3+4x -x 2,1<x <3的单调递减区间,∵函数t =-3+4x -x 2,1<x <3的单调递减区间是(2,3),∴函数y =()213log 34x x -+-的单调递增区间为(2,3),故选D.6.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎪⎫32,23,则a =________.考点 函数的反函数 题点 反函数的图象与性质解析 因为点⎝ ⎛⎭⎪⎫32,23在y =f (x )的图象上,所以点⎝ ⎛⎭⎪⎫23,32在y =a x 的图象上,则有32=23a ,即a 2=2,又因为a >0,所以a = 2.7.函数y =()15log 13x -的值域为________.解析 因为3x >0,所以-3x <0,所以0<1-3x <1.又y =15log t (t =1-3x )是关于t 的减函数,所以y =15log t >15log 1=0.∴y >08.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x -1)<f (2-x )的解集是________.解析 ∵f (2)>f (3),∴f (x )=log a x 是减函数,由f (2x -1)<f (2-x ),得⎩⎪⎨⎪⎧2x -1>0,2-x >0,2x -1>2-x ,∴⎩⎪⎨⎪⎧x >12,x <2,x >1,∴1<x <2.9.已知f (x )=log a (1-x )+log a (x +3)(a >0且a ≠1).(1)求函数f (x )的定义域,值域;(2)若函数f (x )有最小值为-2,求a 的值.解 (1)由⎩⎪⎨⎪⎧1-x >0,x +3>0,得定义域为{x |-3<x <1}.f (x )=log a (-x 2-2x +3),令t =-x 2-2x +3=-(x +1)2+4,因为x ∈(-3,1),所以t ∈(0,4]. 所以f (t )=log a t ,t ∈(0,4].当0<a <1时,y min =f (4)=log a 4,值域为[log a 4,+∞).当a >1时,值域为(-∞,log a 4].(2)y min =-2,由(1)及题意得⎩⎪⎨⎪⎧0<a <1,log a 4=-2,得a =12.10.已知函数f (x -1)=lg x2-x .(1)求函数f (x )的解析式; (2)判断f (x )的奇偶性;(3)解关于x 的不等式f (x )≥lg(3x +1).解 (1)令t =x -1,则x =t +1,由题意知x2-x >0,即0<x <2,则-1<t <1,所以f (t )=lgt +12-(t +1)=lg t +11-t ,故f (x )=lg x +11-x(-1<x <1).(2)由(1)知,f (x )=lg x +11-x (-1<x <1),所以f (-x )=lg -x +11-(-x )=lg 1-x 1+x =lg ⎝ ⎛⎭⎪⎫1+x 1-x -1=-lg1+x1-x=-f (x ),所以f (x )为奇函数. (3)原不等式可化为lg x +11-x≥lg(3x +1),-1<x <1, 即x +11-x≥3x +1>0,-1<x <1,解得-13<x ≤0或13≤x <1,故原不等式的解集为⎝⎛⎦⎤-13,0∪⎣⎡⎭⎫13,1.11.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( ) A.14 B.12C .2D .4 解析 当a >1时,a +log a 2+1=a ,log a 2=-1,a =12,与a >1矛盾;当0<a <1时,1+a +log a 2=a ,log a 2=-1,a =12.12.设偶函数f (x )=log a |x -b |在(-∞,0)上单调递增,则f (a +1)与f (b +2)的大小关系是( ) A .f (a +1)<f (b +2) B .f (a +1)≤f (b +2) C .f (a +1)≥f (b +2)D .f (a +1)>f (b +2)解析 由于此函数是偶函数,函数f (x )=log a |x -b |中b =0,又函数在(-∞,0)上单调递增,所以在(0,+∞)上单调递减,则0<a <1,所以有1<a +1<2,因为f (a +1)=log a |a +1|,f (b +2)=log a 2,且1<a +1<2,所以,f (a +1)>f (b +2).13.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上为增函数,f ⎝⎛⎭⎫13=0,则不等式f (18log x )>0的解集为________.解析 ∵f (x )是R 上的偶函数,∴它的图象关于y 轴对称. ∵f (x )在[0,+∞)上为增函数,∴f (x )在(-∞,0]上为减函数, 作出函数图象如图所示.由f ⎝⎛⎭⎫13=0,得f ⎝⎛⎭⎫-13=0.若f (18log x )>0,则18log x <-13或18log x >13,解得x >2或0<x <12, 14.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,直线y =a 与函数f (x )的图象恒有两个不同的交点,则a的取值范围是________. 解析 函数f (x )的图象如图所示,要使y =a 与f (x )有两个不同交点,则0<a ≤1.15.若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( ) A .(0,1) B .(1,3) C .(1,3] D .[3,+∞)考点 对数函数的单调性 题点 由对数型复合函数的单调性求参数的取值范围解析 函数由y =log a u ,u =6-ax 复合而成,因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1,因为[0,2]为定义域的子集,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3,所以1<a <3.故选B.16.已知f (x )=2+log 3x ,x ∈[1,9],求函数y =[f (x )]2+f (x 2)的最大值及此时x 的值. 解 y =[f (x )]2+f (x 2)=(2+log 3x )2+log 3x 2+2=(log 3x )2+6log 3x +6=(log 3x +3)2-3. ∵f (x )的定义域为[1,9],∴y =[f (x )]2+f (x 2)中,x必须满足⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴1≤x ≤3,∴0≤log 3x ≤1,∴6≤y ≤13. ∴当x =3时,y 取得最大值,为13.。

高中数学第二章基本初等函数(ⅰ)2.2.2对数函数及其性质第22课时对数函数的性质及应用

高中数学第二章基本初等函数(ⅰ)2.2.2对数函数及其性质第22课时对数函数的性质及应用
12/13/2021
(2)形如 y=logaf(x)的函数的单调性 首先要确保 f(x)>0, 当 a>1 时,y=logaf(x)的单调性在 f(x)>0 的前提下与 y=f(x) 的单调性一致. 当 0<a<1 时,y=logaf(x)的单调性在 f(x)>0 的前提下与 y= f(x)的单调性相反.
12/13/2021
(3)F(x)在区间(0,1)上是减函数. 设 x1,x2∈(0,1)且 x1<x2,则 F(x1)-F(x2)=lg(1-x21)-lg(1-x22)=lg11--xx2122. ∵x1,x2∈(0,1),且 x1<x2, ∴(1-x21)-(1-x22)=(x2+x1)(x2-x1)>0,
x∈(0,+∞)时,f(x)=|log2x|,若 a=f(-3),b=f14,c=f(2), 则 a,b,c 的大小关系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
12/13/2021
解析:选 B ∵函数 y=f(x+2)的图象关于 x=-2 对称, ∴函数 y=f(x)的图象关于 y 轴对称, ∴函数 y=f(x)是偶函数. ∴a=f(-3)=f(3)=|log23|=log23, 又 b=f14=log214=|-2|=2, c=f(2)=|log22|=1,∴c<a<b.故选 B.
4.函数 y=log2(x2-2x)的单调增区间是________. 解析:由 t=x2-2x>0 得,x>2 或 x<0,当 x>2 时,t=x2- 2x 单调递增,log2t 单调递增,∴函数 y=log2(x2-2x)为增函数; 当 x<0 时,t=x2-2x 单调递减,log2t 单调递增,∴函数 y=log2(x2 -2x)为减函数,∴函数 y=log2(x2-2x)的增区间为(2,+∞). 答案:(2,+∞)

(完整版)基本初等函数知识点及函数的基本性质

(完整版)基本初等函数知识点及函数的基本性质

指数函数及其性质一、指数与指数幂的运算 (一)根式的观点1、假如 x na, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根.当 n 是奇数时, a的 n 次方根用符号 n a 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号 na 表示,负的 n 次方根用符号 na 表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.2、式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a0 .3 、 根 式 的 性 质 : ( n a )na ; 当 n 为 奇 数 时 , n a na ; 当 n 为 偶 数 时 ,na n|a |a (a 0) . a (a 0)(二)分数指数幂的观点mna m (a 0,m, n1、正数的正分数指数幂的意义是:a n N , 且 n1) .0 的正分数指数幂等于 0.mm1)m (a2、正数的负分数指数幂的意义是:a n( 1) nn ( 0, m, n N , 且 n 1). 0 的负aa分数指数幂没存心义.注意口诀: 底数取倒数,指数取相反数. 3、a 0=1 ( a 0) a p1/a p ( a 0; p N )4、指数幂的运算性质a r a sa r s (a 0, r , s R)( a r )s a rs (a 0, r , s R)( ab) r a r b r (a 0, b0, r R)5 、 0 的正分数指数幂等于 0,0 的负分数指数幂无心义。

二、指数函数的观点一般地,函数 xy a ( a 0, 且a 1) 叫做指数函数,此中 x是自变量,函数的定义域为R.注意:○1 指数函数的定义是一个形式定义;○2 注意指数函数的底数的取值范围不可以是负数、零和 1.三、指数函数的图象和性质 函数名称指数函数定义函数 ya x ( a 0 且 a 1) 叫做指数函数a 10 a 1y图象y 1Oya xya xy(0,1) y 1(0,1)xOx定义域 R值域 ( 0,+ ∞)过定点 图象过定点( 0,1 ),即当 x=0 时, y=1.奇偶性 非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y > 1(x < 0),y=1(x=0),y=1(x=0),变化状况0< y < 1(x < 0)0 < y < 1(x > 0)a 变化对在第一象限内, a 越大图象越高, 越凑近 在第一象限内, a 越小图象越高, 越凑近y 轴; a 越大图象越低, 越凑近 y 轴;a 越小图象越低, 越凑近图象影响 在第二象限内, 在第二象限内, x 轴. x 轴.注意:利用函数的单一性,联合图象还能够看出:( 1)在 [a , b] 上, f (x )a x (a 0且 a 1) 值域是 [ f (a), f ( b)] 或 [ f (b), f (a)] ( 2)若 x 0,则 f (x ) 1; f ( x) 取遍全部正数当且仅当 x R ( 3)对于指数函数 f (x ) a x (a 0 a 1),总有 f (1) a 且( 4)当 a 1 时,若 x 1 x 2 ,则 f (x 1 ) f ( x 2 )四、底数的平移对于任何一个存心义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质教材梳理素材新人教A版必修1(new)

高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质教材梳理素材新人教A版必修1(new)

2。

2。

2 对数函数及其性质疱丁巧解牛知识·巧学·升华一、对数函数及其性质1.对数函数一般地,函数y=log a x (a>0,a ≠1)叫对数函数,其中x 是自变量,函数的定义域是(0,+∞)。

因为对数函数是由指数函数变化而来的,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞),指数函数与对数函数的定义域和值域是互换的。

只有形如y=log a x (a>0,a ≠1,x>0)的函数才叫对数函数。

像y=log a (x+1),y=2log a x ,y=log a x+3等函数,它们是由对数函数变化而得到的,都不是对数函数。

对数函数同指数函数一样都是基本初等函数,它来自于实践.2.对数函数的图象和性质(1)下面先画指数函数y=log 2x 及y=log 1/2x 图象列出x ,y 的对应值表,用描点法画出图象:描点即可完成y=log 2x,y=x 21log 的图象,如下图.0 1 2 4 8 x—1—2 y=log 1/2x-3s由表及图可以发现:我们可以通过函数y=log 2x 的图象得到函数y=log 0。

5x 的图象.利用换底公式可以得到:y=log 0。

5x=-log 2x ,点(x,y)与点(x,-y )关于x 轴对称,所以y=log 2x 的图象上任意一点(x ,y )关于x 轴对称点(x ,-y )在y=log 0。

5x 的图象上,反之亦然.根据这种对称性就可以利用函数y=log 2x 的图象画出函数y=log 0.5x 的图象.方法点拨 注意此处空半格①作对数函数图象,其关键是作出三个特殊点(a 1,-1),(1,0),(a ,1).一般情况下,作对数函数图象有这三点就足够了.不妨叫做“三点作图法。

"②函数y=log a x 与y=x a 1log 的图象关于x 轴对称。

(2)对数函数y=log a x 在底数a >1及0<a <1这两种情况下的图象和性质如下表所示: a >1 0<a <1图 象定义域(0,+∞) 值 域R 性 质 (1)过点(1,0),即x=1时,y=0要点提示(1)对数函数的图象恒在y轴右方.(2)对数函数的单调性取决于它的底数。

必修一第二章《基本初等函数》复习课 比较两数大小

必修一第二章《基本初等函数》复习课 比较两数大小

必修一第二章《基本初等函数》复习课——比较两数大小教学内容及其解析人教A版必修一第二章的内容主要分为两大块,一是根式、指数幂及对数的运算,二是三个基本初等函数的图像与性质,培养学生的数学运算能力和运用数学知识分析和解决问题的能力.教学重点是运用函数的图像及性质来解决高考中的常考题型——比较两数大小.教学目标及其解析1.知识与技能:能运用函数的图像和性质比较两数的大小.2.过程与方法:通过问题导学的形式回顾知识、自主构建知识结构,加深对函数图像与性质的理解.3.情感态度与价值观:通过自主构建和应用探索,感受知识的迁移和应用,体会数形结合和化归的思想,培养学生分析问题、解决问题的能力.学生学情分析学情分析:学生在本章学习后依然停留在三个基本初等函数的定义、图像及性质的理解,对函数图像及性质的用法不明确,也缺乏对基本题型和基本方法的归纳、总结,没有构建完整的结构框图.本节课将从函数的图像与性质的应用出发,解决比较两数大小问题.本节课难点:选择合适的函数模型解决比较两数大小问题.本节课通过自主构建知识网络,以问题导学的形式加深学生对知识和方法的掌握和理解.教学策略分析本节课的关键是比较不同底数、不同幂次、不同真数的两数大小.在问题的设置上应由浅入深,先解决同底数、同幂次、同真数的类型,提炼方法后,再由学生自主思考,构建知识体系,联系所学知识解决关键问题,培养学生观察分析、归纳类比、逻辑推理的能力.教学过程设计一、知识回顾问题1:第二章基本初等函数主要涉及哪些内容?设计意图:通过思维导图简单回顾本章知识结构,对知识进行二次理解和加工,为自主构建环节做铺垫.问题2:目前,利用三个基本初等函数的图像及性质可以解决哪些常见问题?解析:常见题型有运用函数图像及性质比较大小、解不等式、求定义域、求值域、求复合函数的单调性等.设计意图:由函数图像及性质性的用法,引出本节课的核心问题——比较大小.二、自主构建例1.比较以下两数的大小.(1)3.02 4.02;3.021⎪⎭⎫⎝⎛4.021⎪⎭⎫⎝⎛; 解析:这两组数都是同底的,学生利用函数的单调性得到答案,设计两个不同底的指数幂,主要引导学生观察分析、分类讨论110><<a a 、的两种情况,具体复习指数函数的图像.(2)9.04 48.08;解析:x y 2,2)2(8,2)2(444.148.0348.08.19.029.0===== 在R 上单调递增,48.044.18.19.08224=>=∴.总结:当底数不同,但易化同底,则先化同底,再化归为(1)类.(3)67.0 7.06;解析:17.06< ,167.0>,∴67.07.016>>. 总结:当底数不同,难化同底,利用“中间值”解决(4)2152⎪⎭⎫⎝⎛2153⎪⎭⎫ ⎝⎛. 解析:法一:因为21215352⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛、的幂次相同,所以我们将类比上面的方法,构建幂函数21x y =并利用幂函数的单调性和图像解决问题 .21x y =的图像在第一象限是单调递增的,且5352<,21215352⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛∴. 法二:因为21215352⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛、的底数不同、指数相同,所以回归两个指数函数的图像上也可以由图像变化规律(“底大图高”)来判断两数的大小.x a y = 恒过),1()1,0(a 、,∴当a 越大时,),1(a 会逐渐升高,x a y =在第一象限内的图像越高,故当0>x 时,若21a a <则x x a a 21<.如图所示:总结:在解决比较底数不同、指数相同的两数大小的问题时,幂函数模型比指数函数模型的更具有优势.让学生自主解决问题,自主归纳总结,感受从特殊到一般的数学思想,体会数形结合的思想方法,培养观察分析、解决问题的能力和数学建模的能力.问题3:比较指数型两数大小的方法是否适用对数型的呢?说说你的看法.设计意图:引导学生进行类比学习,对知识间的联系应用到解决问题的层面,培养学生分析问题、解决问题的能力,三、应用探索例2.比较下列各组数的大小.(1)3.0log 2 4.0log 2;3.0log 21 4.0log 21;(2)09.0log 4 3log 21;(3)3.0log 2 4.0log 2.0;xa y 2=()2,1a xa y 1=()1,1a(4)4.0log 2 4.0log 3.设计意图:让学生通过类比学习来解决对数型的两数大小问题,理解指数与对数的紧密关系,体会数形结合的思想方法,培养观察分析.问题4.通过对例1、例2探讨,比较两数大小的常见题型、解决方法有哪些?设计意图:通过比较两数大小的题型归纳,使学生学会选择合适的函数模型,优化解题方式,培养学生归纳类比的能力.四、总结归纳问题5:这节课你学到了什么?请谈谈你的收获.1. 知识内容收获2.数学思想方法数形结合的思想、分类讨论的思想、类比学习的思想、转化化归的思想.五、作业布置:必做题:本章复习题A P 82组4.5.6题.选做题:比较4.03.04.03.0、的大小.探究题:设z y x ,,为正数,且z y x 532==.比较z y x 5,3,2的大小.。

新高考数学复习考点知识专题讲义 2---基本初等函数、函数与方程

新高考数学复习考点知识专题讲义 2---基本初等函数、函数与方程

新高考数学复习考点知识专题讲义第2讲基本初等函数、函数与方程[考情分析]1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.例1(1)已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)()A.有最小值-1,最大值1B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值答案C解析画出y=|f(x)|=|2x-1|与y=g(x)=1-x2的图象,它们交于A,B两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.(2)已知函数f (x )=e x +2(x <0)与g (x )=ln(x +a )+2的图象上存在关于y 轴对称的点,则a 的取值范围是()A.⎝ ⎛⎭⎪⎫-∞,1e B .(-∞,e) C.⎝ ⎛⎭⎪⎫-1e ,e D.⎝ ⎛⎭⎪⎫-e ,1e 答案B解析由题意知,方程f (-x )-g (x )=0在(0,+∞)上有解, 即e -x +2-ln(x +a )-2=0在(0,+∞)上有解,即函数y =e -x 与y =ln(x +a )的图象在(0,+∞)上有交点. 函数y =ln(x +a )可以看作由y =ln x 左右平移得到, 当a =0时,两函数有交点,当a <0时,向右平移,两函数总有交点,当a >0时,向左平移,由图可知,将函数y =ln x 的图象向左平移到过点(0,1)时,两函数的图象在(0,+∞)上不再有交点,把(0,1)代入y=ln(x+a),得1=ln a,即a=e,∴a<e.规律方法(1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a的值不确定时,要注意分a>1和0<a<1两种情况讨论:当a>1时,两函数在定义域内都为增函数;当0<a<1时,两函数在定义域内都为减函数.(2)基本初等函数的图象和性质是统一的,在解题中可相互转化.跟踪演练1(1)函数f(x)=ln(x2+2)-e x-1的大致图象可能是()答案A解析当x→+∞时,f(x)→-∞,故排除D;函数f(x)的定义域为R,且在R上连续,故排除B;f(0)=ln2-e-1,由于ln2>ln e=12,e-1<12,所以f(0)=ln2-e-1>0,故排除C.(2)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-1 2的解集是()A.(-∞,-1) B.(-∞,-1] C.(1,+∞) D.[1,+∞)答案A解析当x >0时,f (x )=1-2-x >0. 又f (x )是定义在R 上的奇函数,所以f (x )<-12的解集和f (x )>12的解集关于原点对称,由1-2-x >12得2-x <12=2-1, 即x >1,则f (x )<-12的解集是(-∞,-1).故选A.考点二函数的零点 核心提炼判断函数零点个数的方法: (1)利用零点存在性定理判断法. (2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f (x )的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.考向1函数零点的判断例2(1)(2022·长沙调研)已知函数f (x )=⎩⎨⎧x e x ,x ≤0,2-|x -1|,x >0,若函数g (x )=f (x )-m 有两个不同的零点x 1,x 2,则x 1+x 2等于()A.2B.2或2+1 eC.2或3D.2或3或2+1 e答案D解析当x≤0时,f′(x)=(x+1)e x,当x<-1时,f′(x)<0,故f(x)在(-∞,-1)上单调递减,当-1<x≤0时,f′(x)>0,故f(x)在(-1,0]上单调递增,所以x≤0时,f(x)的最小值为f(-1)=-1e.又当x≥1时,f(x)=3-x,当0<x<1时,f(x)=x+1.作出f(x)的图象,如图所示.因为g(x)=f(x)-m有两个不同的零点,所以方程f(x)=m 有两个不同的根,等价于直线y=m与f(x)的图象有两个不同的交点,且交点的横坐标分别为x1,x2,由图可知1<m<2或m=0或m=-1e.若1<m<2,则x1+x2=2;若m =0,则x 1+x 2=3;若m =-1e ,则x 1+x 2=-1+3+1e =2+1e .(2)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x -1,则关于x 的方程f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为()A .1B .2C .3D .4 答案C解析对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x -1,且函数f (x )是定义在R 上的偶函数,且f (6)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f (x )-log 8(x +2)=0在区间(-2,6)上有3个根.考向2求参数的值或取值范围例3(1)已知关于x 的方程9-|x -2|-4·3-|x -2|-a =0有实数根,则实数a 的取值范围是________. 答案[-3,0)解析设t =3-|x -2|(0<t ≤1), 由题意知a =t 2-4t 在(0,1]上有解, 又t 2-4t =(t -2)2-4(0<t ≤1), ∴-3≤t 2-4t <0,∴实数a 的取值范围是[-3,0).(2)已知函数f (x )=⎩⎨⎧x +3,x >a ,x 2+6x +3,x ≤a ,若函数g (x )=f (x )-2x 恰有2个不同的零点,则实数a 的取值范围为____________________. 答案[-3,-1)∪[3,+∞)解析由题意得g (x )=⎩⎪⎨⎪⎧x +3-2x ,x >a ,x 2+6x +3-2x ,x ≤a ,即g (x )=⎩⎪⎨⎪⎧3-x ,x >a ,x 2+4x +3,x ≤a ,如图所示,因为g(x)恰有两个不同的零点,即g(x)的图象与x轴有两个交点.若当x≤a时,g(x)=x2+4x+3有两个零点,则令x2+4x+3=0,解得x=-3或x=-1,则当x>a时,g(x)=3-x没有零点,所以a≥3.若当x≤a时,g(x)=x2+4x+3有一个零点,则当x>a时,g(x)=3-x必有一个零点,即-3≤a<-1,综上所述,a∈[-3,-1)∪[3,+∞).规律方法利用函数零点的情况求参数值(或取值范围)的三种方法跟踪演练2(1)已知偶函数y=f(x)(x∈R)满足f(x)=x2-3x(x≥0),若函数g(x)=⎩⎪⎨⎪⎧log 2x ,x >0,-1x,x <0,则y =f (x )-g (x )的零点个数为()A .1B .3C .2D .4 答案B解析作出函数f (x )与g (x )的图象如图,由图象可知两个函数有3个不同的交点,所以函数y =f (x )-g (x )有3个零点.(2)(多选)已知函数f (x )=⎩⎨⎧x +2a ,x <0,x 2-ax ,x ≥0,若关于x 的方程f (f (x ))=0有8个不同的实根,则a 的值可能为() A .-6B .8C .9D .12 答案CD解析当a ≤0时,f (x )仅有一个零点x =0,故f (f (x ))=0有8个不同的实根不可能成立.当a >0时,f (x )的图象如图所示,当f (f (x ))=0时,f 1(x )=-2a ,f 2(x )=0,f 3(x )=a .又f (f (x ))=0有8个不同的实根,故f 1(x )=-2a 有三个根,f 2(x )=0有三个根,f 3(x )=a 有两个根,又x 2-ax =⎝ ⎛⎭⎪⎫x -a 22-a24,所以-2a >-a 24且a <2a ,解得a >8且a >0,综上可知,a >8.专题强化练一、单项选择题1.(2022·全国Ⅰ)设a log 34=2,则4-a 等于() A.116B.19C.18D.16 答案B解析方法一因为a log 34=2, 所以log 34a =2, 所以4a =32=9, 所以4-a =14a =19. 方法二因为a log 34=2,所以a =2log 34=2log 43=log 432=log 49,所以4-a =4log 94-=14log 94-=9-1=19.2.函数f (x )=ln x +2x -6的零点一定位于区间()A.(1,2) B.(2,3) C.(3,4) D.(4,5)答案B解析函数f(x)=ln x+2x-6在其定义域上连续且单调,f(2)=ln2+2×2-6=ln2-2<0,f(3)=ln3+2×3-6=ln3>0,故函数f(x)=ln x+2x-6的零点在区间(2,3)上.3.在同一直角坐标系中,函数f(x)=2-ax和g(x)=log a(x+2)(a>0且a≠1)的大致图象可能为()答案A解析由题意知,当a>0时,函数f(x)=2-ax为减函数.若0<a<1,则函数f(x)=2-ax的零点x0=2a∈(2,+∞),且函数g(x)=log a(x+2)在(-2,+∞)上为减函数;若a>1,则函数f(x)=2-ax的零点x0=2a∈(0,2),且函数g(x)=log a(x+2)在(-2,+∞)上为增函数.故A 正确.4.(2022·广东省揭阳三中模拟)已知a ,b ,c 满足4a =6,b =12log 4,c 3=35,则()A .a <b <cB .b <c <aC .c <a <bD .c <b <a 答案B解析4a =6>4,a >1,b =12log 4=-2,c 3=35<1,0<c <1,故a >c >b .5.(2022·全国Ⅲ)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln19≈3)() A .60B .63C .66D .69 答案C 解析因为I (t )=K1+e -0.23(t -53),所以当I (t *)=0.95K 时,*0.23531et K⎛⎫-- ⎪⎝⎭+=0.95K ,即*0.235311et ⎛⎫-- ⎪⎝⎭+=0.95,即1+*0.2353et ⎛⎫-- ⎪⎝⎭=10.95,即*0.2353et ⎛⎫-- ⎪⎝⎭=10.95-1,∴*0.2353et ⎛⎫- ⎪⎝⎭=19,∴0.23(t *-53)=ln19, ∴t *=ln190.23+53≈30.23+53≈66.6.(2022·泉州模拟)若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是() A .1<a <2B .0<a <2,a ≠1 C .0<a <1D .a ≥2 答案A解析令u (x )=x 2-ax +1,函数y =log a (x 2-ax +1)有最小值,∴a >1,且u (x )min >0,∴Δ=a 2-4<0,∴1<a <2,∴a 的取值范围是1<a <2.7.(2022·太原质检)已知函数f (x )=⎩⎨⎧e x ,x >0,-2x 2+4x +1,x ≤0(e 为自然对数的底数),若函数g (x )=f (x )+kx 恰好有两个零点,则实数k 等于() A .-2eB .eC .-eD .2e 答案C解析g (x )=f (x )+kx =0,即f (x )=-kx ,如图所示,画出函数y =f (x )和y =-kx 的图象, -2x 2+4x +1=-kx ,即2x 2-(4+k )x -1=0, 设方程的两根为x 1,x 2,则Δ=(4+k )2+8>0,且x 1x 2=-12, 故g (x )在x <0时有且仅有一个零点, y =-kx 与y =f (x )在x >0时相切.当x >0时,设切点为(x 0,-kx 0),f (x )=e x , f ′(x )=e x ,f ′(x 0)=0e x =-k ,0e x =-kx 0, 解得x 0=1,k =-e.8.已知函数f (x )=⎩⎪⎨⎪⎧a ,x =0,⎝ ⎛⎭⎪⎫1e |x |+1,x ≠0,若关于x 的方程2f 2(x )-(2a +3)f (x )+3a =0有五个不同的解,则a 的取值范围是() A .(1,2) B.⎣⎢⎡⎭⎪⎫32,2C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,2 答案D解析作出f (x )=⎝ ⎛⎭⎪⎫1e |x |+1,x ≠0的图象如图所示.设t =f (x ),则原方程化为2t 2-(2a +3)t +3a =0, 解得t 1=a ,t 2=32.由图象可知,若关于x 的方程2f 2(x )-(2a +3)f (x )+3a =0有五个不同的实数解,只有当直线y =a 与函数y =f (x )的图象有三个不同的交点时才满足条件, 所以1<a <2.又方程2t 2-(2a +3)t +3a =0有两个不相等的实数根, 所以Δ=(2a +3)2-4×2×3a =(2a -3)2>0, 解得a ≠32,综上,得1<a <2,且a ≠32. 二、多项选择题9.(2022·临沂模拟)若10a =4,10b =25,则() A .a +b =2B .b -a =1 C .ab >8lg 22D .b -a >lg6 答案ACD解析由10a =4,10b =25,得a =lg4,b =lg25,则a +b =lg4+lg25=lg100=2,故A 正确;b-a=lg25-lg4=lg 254>lg6且lg254<1,故B错误,D正确;ab=lg4·lg25=4lg2·lg5>4lg2·lg4=8lg22,故C正确.10.已知函数f(x)=log a(x+1),g(x)=log a(1-x),a>0,a≠1,则()A.函数f(x)+g(x)的定义域为(-1,1)B.函数f(x)+g(x)的图象关于y轴对称C.函数f(x)+g(x)在定义域上有最小值0D.函数f(x)-g(x)在区间(0,1)上是减函数答案AB解析∵f(x)=log a(x+1),g(x)=log a(1-x),a>0,a≠1,∴f(x)+g(x)=log a(x+1)+log a(1-x),由x+1>0且1-x>0得-1<x<1,故A对;由f(-x)+g(-x)=log a(-x+1)+log a(1+x)=f(x)+g(x),得函数f(x)+g(x)是偶函数,其图象关于y轴对称,B对;∵-1<x<1,∴f(x)+g(x)=log a(1-x2),∵y=1-x2在[0,1)上单调递减,由复合函数的单调性可知,当0<a<1时,函数f(x)+g(x)在[0,1)上单调递增,有最小值f(0)+g(0)=log a(1-0)=0;当a>1时,函数f(x)+g(x)在[0,1)上单调递减,无最小值,故C错;∵f(x)-g(x)=log a(x +1)-log a(1-x),当0<a<1时,f(x)=log a(x+1)在(0,1)上单调递减,g(x)=log a(1-x)在(0,1)上单调递增,函数f(x)-g(x)在(0,1)上单调递减;当a>1时,f(x)=log a(x+1)在(0,1)上单调递增,g(x)=log a(1-x)在(0,1)上单调递减,函数f(x)-g(x)在(0,1)上单调递增,故D错.11.(2022·淄博模拟)已知函数y =f (x )是R 上的奇函数,对于任意x ∈R ,都有f (x +4)=f (x )+f (2)成立.当x ∈[0,2)时,f (x )=2x -1.给出下列结论,其中正确的是() A .f (2)=0B .点(4,0)是函数y =f (x )图象的一个对称中心C .函数y =f (x )在区间[-6,-2]上单调递增D .函数y =f (x )在区间[-6,6]上有3个零点 答案AB解析对于A ,因为f (x )为奇函数且对任意x ∈R ,都有f (x +4)=f (x )+f (2),令x =-2,则f (2)=f (-2)+f (2)=0,故A 正确;对于B ,由A 知,f (2)=0,则f (x +4)=f (x ),则4为f (x )的一个周期,因为f (x )的图象关于原点(0,0)成中心对称,则(4,0)是函数f (x )图象的一个对称中心,故B 正确;对于C ,因为f (-6)=0,f (-5)=f (-5+4)=f (-1)=-f (1)=-1,-6<-5,而f (-6)>f (-5),所以f (x )在区间[-6,-2]上不是单调递增的,故C 错误;对于D ,因为f (0)=0,f (2)=0,所以f (-2)=0,又4为f (x )的一个周期,所以f (4)=0,f (6)=0,f (-4)=0,f (-6)=0,所以函数y =f (x )在区间[-6,6]上有7个零点,故D 错误. 12.对于函数f (x )=⎩⎪⎨⎪⎧sinπx ,x ∈[0,2],12f (x -2),x ∈(2,+∞),则下列结论正确的是()A .任取x 1,x 2∈[2,+∞),都有|f (x 1)-f (x 2)|≤1B .函数y =f (x )在[4,5]上单调递增C .函数y =f (x )-ln(x -1)有3个零点D .若关于x 的方程f (x )=m (m <0)恰有3个不同的实根x 1,x 2,x 3,则x 1+x 2+x 3=132 答案ACD解析f (x )=⎩⎨⎧sinπx ,x ∈[0,2],12f (x -2),x ∈(2,+∞)的图象如图所示,当x ∈[2,+∞)时,f (x )的最大值为12,最小值为-12,∴任取x 1,x 2∈[2,+∞),都有|f (x 1)-f (x 2)|≤1恒成立,故A 正确;函数y =f (x )在[4,5]上的单调性和在[0,1]上的单调性相同,则函数y =f (x )在[4,5]上不单调,故B 错误;作出y =ln(x -1)的图象,结合图象,易知y =ln(x -1)的图象与f (x )的图象有3个交点,∴函数y =f (x )-ln(x -1)有3个零点,故C 正确;若关于x 的方程f (x )=m (m <0)恰有3个不同的实根x 1,x 2,x 3,不妨设x 1<x 2<x 3,则x 1+x 2=3,x 3=72,∴x 1+x 2+x 3=132,故D 正确. 三、填空题13.(2022·全国Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln2)=8,则a =________. 答案-3解析当x >0时,-x <0,f (-x )=-e -ax .因为函数f (x )为奇函数,所以当x >0时,f (x )=-f (-x )=e -ax ,所以f (ln2)=e -a ln2=⎝⎛⎭⎪⎫12a=8,所以a =-3. 14.已知函数f (x )=|lg x |,若f (a )=f (b )(a ≠b ),则函数g (x )=⎩⎨⎧x 2+22x +5,x ≤0,ax 2+2bx ,x >0的最小值为________. 答案2 2解析因为|lg a |=|lg b |,所以不妨令a <b , 则有-lg a =lg b ,所以ab =1,b =1a(0<a <1),所以g (x )=⎩⎨⎧(x +2)2+3,x ≤0,ax +2ax ,x >0,当x ≤0时,g (x )=(x +2)2+3≥3,取等号时x =-2; 当x >0时,g (x )=ax +2ax ≥2ax ·2ax =22,当且仅当x =2a 时,等号成立, 综上可知,g (x )min =2 2.15.定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧-2x x +1,x ∈[0,1),1-|x -3|,x ∈[1,+∞),则函数F (x )=f (x )-1π的所有零点之和为________.答案11-2π解析由题意知,当x <0时, f (x )=⎩⎪⎨⎪⎧-2x 1-x ,x ∈(-1,0),|x +3|-1,x ∈(-∞,-1],作出函数f (x )的图象如图所示,设函数y =f (x )的图象与y =1π交点的横坐标从左到右依次为x 1,x 2,x 3,x 4,x 5,由图象的对称性可知,x 1+x 2=-6,x 4+x 5=6,x 1+x 2+x 4+x 5=0,令-2x 1-x =1π,解得x 3=11-2π,所以函数F (x )=f (x )-1π的所有零点之和为11-2π. 16.对于函数f (x )与g (x ),若存在λ∈{x ∈R |f (x )=0},μ∈{x ∈R |g (x )=0},使得|λ-μ|≤1,则称函数f (x )与g (x )互为“零点密切函数”,现已知函数f (x )=e x -2+x -3与g (x )=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________. 答案[3,4]解析由题意知,函数f (x )的零点为x =2, 设g (x )的零点为μ,满足|2-μ|≤1, 因为|2-μ|≤1,所以1≤μ≤3.21 / 21 方法一因为函数g (x )的图象开口向上,所以要使g (x )的至少一个零点落在区间[1,3]上,则需满足g (1)g (3)≤0,或⎩⎪⎨⎪⎧ g (1)>0,g (3)>0,Δ≥0,1<a +12<3,解得103≤a ≤4,或3≤a <103,得3≤a ≤4. 故实数a 的取值范围为[3,4].方法二因为g (μ)=μ2-aμ-μ+4=0, a =μ2-μ+4μ=μ+4μ-1,因为1≤μ≤3,所以3≤a ≤4.故实数a 的取值范围为[3,4].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数之 初等函数之 对数函数之 比较大小
1.已知,
,则a,b,c 的大小关系是
(A ) (B ) (C )
(D )
2.已知,
,,则( ) (A ) (B )
(C )
(D )
3.设的大小关系是( )
A .
B .
C .
D .
4.设 a >b >1, ,给出下列三个结论:其中所有的正确结论的序号是.


;②

; ③

A .① B.① ② C.② ③ D.① ②③ 5.已知则( )
A. B.
C.
D.
6.设
( ) (A)a<c<b (B) )b<c<a (C) )a<b<c (D) )b<a<c 7.若,,,则下列结论正确的是( ) (A ) (B )
(C )
(D )
8.若,则
的大小关系是( ) A . B . C . D .
9.若,,,,则( )
A .
B .
C .
D .
10.已知a=21.2
,b=
()
1
2
-0.2
,c=2log 52,则a ,b ,c 的大小关系为( )
(A )c<b<a (B )c<a<b C )b<a<c (D )b<c<a 11.若1
3
(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <c
B .c <a <b
C . b <a <c
D . b <c <a
12.已知0<a <1,b >1,且ab >1,则下列不等式中成立的是( )
A.log b
b 1<log a b <log a b
1
B.log a b <log b
b 1<log a b
1
C.log a b <log a
b 1<log b b
1 D.log b
b 1<log a b
1
<log a b 13.a=log 0.50.6,b=log
2
0.5,c=log
3
5,则( )
A.a <b <c
B.b <a <c
C.a <c <b
D.c <a <b
14.若0<a<1,b>1,则M=a b
,N=log b a,p=b a
的大小是( )
(A )M<N<P (B )N<M<P (C )P<M<N (D )P<N<M 15.已知函数f(x)=log 0.5 (-x 2
+4x+5),则f(3)与f (4)的大小关系为 。

16.若f(x)=1+log x 3,g(x)=2log 2x ,试比较f(x)与g(x)的大小。

本类题的特征是:__________________________________________________________________________________ _________________________________________________________________________________________________ 本类题的做法是:__________________________________________________________________________________ _________________________________________________________________________________________________
答案
1.
2.
3.【答案】B
4.
5.
6.【答案】D 【解析】本题主要考查利用对数函数的单调性比较大小的基本方法,属于容易题。

因为
【温馨提示】比较对数值的大小时,通常利用0,1进行,本题也可以利用对数函数的图像进行比较。

7.【答案】D 【解析】由题意知,,故选D.
8.
9.
10.
11.C 12.B 13.B 14.B 15.f(3)<f(4) 16.f(x)-g(x)=log x 3x-log x 4=log x 4
3x . 当0<x<1时,
f(x)>g(x);
50log 41,<<所以
b<a<c
当x=
3
4
时,f(x)=g(x); 当1<x<
3
4
时,f(x)<g(x); 当x>3
4
时,f(x)>g(x)。

相关文档
最新文档