数学八年级下册第17章第1课时变量与函数作业课件 华东师大版
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• A.h,t都是不变量 • B.t是自变量,h是因变量 • C.h,t都是自变量 • D.h是自变量,t是因变量
4.下列关系式中,y不是x的函数的是
• A.y=-
x
(
B.y=
D
)
• C.y=x2
D.|y|=x
5.写出下列各问题中的函数关系式:
(1)每个同学购买一本数学教科书,书的单价是10元,总金额y(元)与学生数 n(个)的函数关系式为__1_0_n____(__n______是自变量,y________是因变量); (2)计划购买50元的乒乓球,所能购买的总数n(个)与单价a(元)的函数关系式为 ___n=_____(____a____是自变量,______n__是因变量).
• 2.判断两个变量是否具有函数关系的三个要素:(1)是一 个变化过程;(2)有两个变量;(3)一个变量的值确定后, 另一个变量都有唯一的值和它对应.
ቤተ መጻሕፍቲ ባይዱ
易错提示:
• 1.对常量、变量的意义理解不透彻,忽视π为常数导致 出错.
• 2.对函数的定义理解不透彻,导致出错.
出常量、变量. • (1)面积S一定;(2)底边a一定;(3)高h一定.
(1)当面积S一定时,,S是常量,a,h是变量
(2)当底边a一定时,,a是常量,S,h是变量
(3)高h一定时,,h是常量,a,S是变量
知识点❷:自变量、因变量和函数
• 3.人的身高h随时间t的变化而变化,那么下列说法正确 的是( B )
• (2)当易拉罐底面半径为2.4 cm时,易拉罐需要的用铝量是 多少?
• (3)根据表格中的数据,你认为易拉罐的底面半径为多少 时比较适宜?说说你的理由;
• (4)粗略说一说易拉罐底面半径对所需铝质量的影响.
(1)表格反映了易拉罐底面半径和用铝量之间的关系,易拉罐底面半径为自 变量,用铝量为因变量 (2)当底面半径为2.4 cm时,易拉罐的用铝量为5.6 cm3 (3)易拉罐底面半径为2.8 cm时比较合适,因为此时用铝较少,成本低
第 17 章 函数及其图象 17.1 变量与函数
第 1 课时 变量与函数
知识点❶:常量与变量
1.半径是R的圆的周长C=2πR,下列说法正确的是( D )
A.C,π,R是变量,2是常量 B.C是变量,2,π,R是常量 C.R是变量,2,π,C是常量 D.C,R是变量,2,π是常量
2.已知△ABC的底边BC的长为a,BC边上的高为h,三角 形的面积为S,有关系式S= ah.在下面三种情况下,试指
6.下列关于变量x,y的关系式:①4x-3y =2,②y=|x|,③y= ,④2x-y2=0中,y
是x的函数的是( A )
• A.①②③ • C.①③
B.①②③④ D.①③④
7.已知某易拉罐厂设计一种易拉罐,在设 计过程中发现符合要求的易拉罐的底面半
径与用铝量有如下关系:
(1)上表反映了哪两个变量之间的关系?哪个是 自变量?哪个是因变量?
(4)当易拉罐底面半径在1.6~2.8 cm变化时,用铝量随半径的增大而减小, 当易拉罐底面半径在2.8~4.0 cm间变化时,用铝量随半径的增大而增大
• 方法技能:
• 1.判断一个量是变量还是常量的关键是看在变化过程中, 该量的值是否发生改变,或者说该量是否会取不同的数 值;其中在变化过程中不变的量是常量,可以取不同数 值的量是变量.注意:在变化过程中,常量与变量的个 数是不确定的.
4.下列关系式中,y不是x的函数的是
• A.y=-
x
(
B.y=
D
)
• C.y=x2
D.|y|=x
5.写出下列各问题中的函数关系式:
(1)每个同学购买一本数学教科书,书的单价是10元,总金额y(元)与学生数 n(个)的函数关系式为__1_0_n____(__n______是自变量,y________是因变量); (2)计划购买50元的乒乓球,所能购买的总数n(个)与单价a(元)的函数关系式为 ___n=_____(____a____是自变量,______n__是因变量).
• 2.判断两个变量是否具有函数关系的三个要素:(1)是一 个变化过程;(2)有两个变量;(3)一个变量的值确定后, 另一个变量都有唯一的值和它对应.
ቤተ መጻሕፍቲ ባይዱ
易错提示:
• 1.对常量、变量的意义理解不透彻,忽视π为常数导致 出错.
• 2.对函数的定义理解不透彻,导致出错.
出常量、变量. • (1)面积S一定;(2)底边a一定;(3)高h一定.
(1)当面积S一定时,,S是常量,a,h是变量
(2)当底边a一定时,,a是常量,S,h是变量
(3)高h一定时,,h是常量,a,S是变量
知识点❷:自变量、因变量和函数
• 3.人的身高h随时间t的变化而变化,那么下列说法正确 的是( B )
• (2)当易拉罐底面半径为2.4 cm时,易拉罐需要的用铝量是 多少?
• (3)根据表格中的数据,你认为易拉罐的底面半径为多少 时比较适宜?说说你的理由;
• (4)粗略说一说易拉罐底面半径对所需铝质量的影响.
(1)表格反映了易拉罐底面半径和用铝量之间的关系,易拉罐底面半径为自 变量,用铝量为因变量 (2)当底面半径为2.4 cm时,易拉罐的用铝量为5.6 cm3 (3)易拉罐底面半径为2.8 cm时比较合适,因为此时用铝较少,成本低
第 17 章 函数及其图象 17.1 变量与函数
第 1 课时 变量与函数
知识点❶:常量与变量
1.半径是R的圆的周长C=2πR,下列说法正确的是( D )
A.C,π,R是变量,2是常量 B.C是变量,2,π,R是常量 C.R是变量,2,π,C是常量 D.C,R是变量,2,π是常量
2.已知△ABC的底边BC的长为a,BC边上的高为h,三角 形的面积为S,有关系式S= ah.在下面三种情况下,试指
6.下列关于变量x,y的关系式:①4x-3y =2,②y=|x|,③y= ,④2x-y2=0中,y
是x的函数的是( A )
• A.①②③ • C.①③
B.①②③④ D.①③④
7.已知某易拉罐厂设计一种易拉罐,在设 计过程中发现符合要求的易拉罐的底面半
径与用铝量有如下关系:
(1)上表反映了哪两个变量之间的关系?哪个是 自变量?哪个是因变量?
(4)当易拉罐底面半径在1.6~2.8 cm变化时,用铝量随半径的增大而减小, 当易拉罐底面半径在2.8~4.0 cm间变化时,用铝量随半径的增大而增大
• 方法技能:
• 1.判断一个量是变量还是常量的关键是看在变化过程中, 该量的值是否发生改变,或者说该量是否会取不同的数 值;其中在变化过程中不变的量是常量,可以取不同数 值的量是变量.注意:在变化过程中,常量与变量的个 数是不确定的.