卡尔曼滤波方法应用共52页文档
《卡尔曼滤波教学》PPT课件
(6-61) 由(6-56)~(6-61)可以画出卡尔 曼滤波对 S (k )进行估计的递推模型,如 图6.13所示
• 输入为观测值X(k),输出为信号估计 值 Sˆ (k) 。
X(k) X~(k) H(k)
X ~(k)X(k X ˆ()k) (6-60)
显然,新息的产生是由于我们前面忽略 了w1(k)与 w(k)所引起的
• 用新息X~(k)乘以一个修正矩阵 H(k ),用 它来代替式(6-56)的w1(k来) 对S (k )进 行估计:
S ˆ(k A )S ˆ( k 1 )H ) X ~ ((k k))
令 Cε ((kk))τ C R (k (k S ) τ )S ,Uε(k)C(kτ ) 代入上式化简:
ε(k ) ε(k H ) (τK U)H τ U H (k (τ ) H k)τ(S kS
ε ( k U )τ ) ( 1 U S τ [S H U (τ ) k 1 ( ]S ) [S H U τ ( ) 1 ( ] k τS
Xˆ (k) C(k)
Sˆ (k)
z 1
A(k ) Sˆ (k 1)
图6.13 卡尔曼滤波的一步递推法模型
6.2.2 卡尔曼滤波的递推公式 从图6.13容易看出,要估计出 Sˆ (k) 就必须 要先找到最小均方误差下的修正矩阵
H (k ),结合式(6-61)、(6-56)、 (6-57)得:
S ˆ(k A )S ˆ( ( k k 1 H ) ) (K (k w )) [ ( C C k()S ˆ k ( k ) 1S A )
z w1(k ) S(k1) 1
S (k ) C(k)
09_卡尔曼滤波器的应用
s3 (n 1) s3 (n) Ts4 (n)
s4 (n 1) s4 (n) u2 (n)
(2.5.22) (2.5.23) (2.5.24) (2.5.25)
写成矩阵形式
s1 (n 1) 1 s (n 1) 2 0 s3 (n 1) 0 s4 (n 1) 0
E[u2 (n)u2 (n 1)] 0
(n 1) (n) u1 (n) (n 1) (n) u2 (n)
E[u1 (n)u2 (n)] 0
u1 (n) 和 u 2 (n)的方差分别为
E[u (n)]
2 1 2 1
2
其中, 和 通常是给定的, 因而可计算 Q (n)值. 为了得到R(n)值, 需 2 2 指定 u1 (n)和 u2 (n) 的方差 1 和 2 .
2
为简单起见, 假定在各个方向上, 加速度 u [包括径向加速度 (n) 和方 位角加速度 ( n)]服从均匀分布, 在 M 范围内, 其概率密度函数
( n 1) ( n) T ( n) ( n 1) ( n) T ( n)
(2.5.20)
, 另设目标的径向加速度和方位角加速度为 (n)和 ( n) 则经过 T 秒后, 目标的径向速度和方位角速度的变化量分别为
2.5.1卡尔曼滤波器在雷达跟踪系统中的应用
1.雷达跟踪原理运动方程 利用飞行目标对雷达发射脉冲的反射, 根据回波脉冲与发射脉冲的时 间间隔,确定目标的径向距离,方位角和速度等状态参数,从而达到跟踪目 标的目的. 设 n 时刻, 目标距离 0 (n) , 径向速度 (n) ; 方位角 (n) , 方位角速度 (n ) ; 其中, 0 表示平均距离, (n) 表示距离偏离量. 经过 T 秒后, 到达时刻 n 1 目标的上述参数相应为为: , 距离 0 (n 1) , 径向速度 (n 1) ; 方位角 (n 1) , 方位角速度 (n 1) ; 若 T不是太大, 则有下列近似的距离方程和方位角方程:
Kalman滤波及其应用(含仿真代码)
新息过程
考虑一步预测问题:给定观测值 y(1),..., y(n 1) ,求观测向量最小 def ˆ ˆ (n | y(1),..., y(n 1)) ,利用新息方法,很容易求解。 二乘估计 y1 (n) y
y (n) 的新息过程(innovation process)定义为:
ˆ 1 (n), n 1, 2,... (n) y(n) y
R(n)是新息过程的相关矩阵。
Riccati方程
为了最后完成Kalman自适应滤波,还需要推导 K (n, n 1) 的递推公式。
考查状态向量的预测误差
ˆ 1 (n 1) e (n 1, n) x (n 1) x ˆ 1 ( n) G ( n) ( n)} {F (n 1, n) x (n) v1 (n)} {F ( n 1, n) x [ F (n 1, n) G (n)C (n)]e(n, n 1) G (n)v2 (n) v1 ( n)
n 1
ˆ 1 ( n) F (n 1, n) E{ x (n) H (k )}R-1 (k ) (k ) F (n 1, n) x
k 1
n 1
定义:G(n) E{x(n 1) H (n)}R-1 (n) ,那么状态误差向量的一步预测为:
ˆ 1 (n 1) F (n 1, n) x ˆ 1 (n) G(n) (n) x
{ y(1),..., y(n)} { (1),..., (n)}
新息过程(cont.)
ˆ 1 ( n) , 在Kalman滤波中,并不直接估计观测数据向量的一步预测 y 而是先计算状态向量的一步预测 ˆ 1 (n) x(n | y(1),..., y(n 1)) x
经典的卡尔曼滤波算法doc资料
经典的卡尔曼滤波算法自适应卡尔曼滤波卡尔曼滤波发散的原因如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。
但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。
引起滤波器发散的主要原因有两点:(1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。
这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。
(2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。
如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。
这种由于计算舍入误差所引起的发散称为计算发散。
针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。
这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。
自适应滤波在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。
如果所建立的模型与实际模型不符可能回引起滤波发散。
自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。
在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。
自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。
在这里只讨论系统模型参数已知,而噪声统计参数Q 和R 未知情况下的自适应滤波。
由于Q 和R 等参数最终是通过增益矩阵K 影响滤波值的,因此进行自适应滤波时,也可以不去估计Q 和R 等参数而直接根据量测数据调整K 就可以了。
卡尔曼滤波的原理与应用pdf
卡尔曼滤波的原理与应用一、什么是卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的算法,其基本原理是将过去的观测结果与当前的测量值相结合,通过加权求和的方式进行状态估计,从而提高对系统状态的准确性和稳定性。
二、卡尔曼滤波的原理卡尔曼滤波的原理可以简单概括为以下几个步骤:1.初始化:初始状态估计值和协方差矩阵。
2.预测:使用系统模型进行状态的预测,同时更新预测的状态协方差矩阵。
3.更新:根据测量值,计算卡尔曼增益,更新状态估计值和协方差矩阵。
三、卡尔曼滤波的应用卡尔曼滤波在很多领域都有广泛的应用,下面列举了几个常见的应用场景:•导航系统:卡尔曼滤波可以用于航空器、汽车等导航系统中,实时估计和优化位置和速度等状态参数,提高导航的准确性。
•目标追踪:如在无人机、机器人等应用中,利用卡尔曼滤波可以对目标进行状态估计和跟踪,提高目标追踪的鲁棒性和准确性。
•信号处理:在雷达信号处理、语音识别等领域,可以利用卡尔曼滤波对信号进行滤波和估计,去除噪声和提取有效信息。
•金融预测:卡尔曼滤波可以应用于金融市场上的时间序列数据分析和预测,用于股价预测、交易策略优化等方面。
四、卡尔曼滤波的优点•适用于线性和高斯性:卡尔曼滤波适用于满足线性和高斯假设的系统,对于线性和高斯噪声的系统,卡尔曼滤波表现出色。
•递归性:卡尔曼滤波具有递归性质,即当前状态的估计值只依赖于上一时刻的状态估计值和当前的测量值,不需要保存全部历史数据,节省存储空间和计算时间。
•最优性:卡尔曼滤波可以依据系统模型和观测误差的统计特性,以最小均方差为目标,进行最优状态估计。
五、卡尔曼滤波的局限性•对线性和高斯假设敏感:对于非线性和非高斯的系统,卡尔曼滤波的性能会受到限制,可能会产生不理想的估计结果。
•模型误差敏感:卡尔曼滤波依赖于精确的系统模型和观测误差统计特性,如果模型不准确或者观测误差偏差较大,会导致估计结果的不准确性。
•计算要求较高:卡尔曼滤波中需要对矩阵进行运算,计算量较大,对于实时性要求较高的应用可能不适合。
卡尔曼滤波方法应用
MOS方法是被广泛释用的数值产 品方法,是以数值产品历史资料为 基础建立MOS方程的,资料年限太 短(不足一年),方程统计特性差, 资料年限长(2-3年),方程统计特 性好,但在积累资料及用MOS方程 作预报时不能改进及更新模式。在 数值预报迅速发展的今天显然是不 可能的。
MOS方法示意图
解决途径如下:
3、递推滤波的时间间隔
递推滤波的时间间隔不宜长,一 般在短时或短期预报中应用卡尔曼滤 波方法优于中期预报。
4、预报精度 选择好的预报因子是至关重要的。
5、预报滞后现象 预报值的变化滞后于观测实况的 变化,尤其在预报对象发生剧烈变化 时比较明显,要克服这一现象有待进 一步研究。
北京地区1989年11月~12月
利用已算出的前一次滤波值 β
t-1
t-1
和
滤波误差方差阵C ,便可算出新的
状态滤波值 β 和新的滤波误差方差
t
阵C 就能通过公式得到t+1时刻的
t,
预报值。
这样不论预报次数如何增加,不
需要存储大量历史的量测数据,大
大减少了计算机的存贮,而且只进
行矩阵的加、减、乘和求逆,通常 计算量不大,从而满足了应用滤波
维纳滤波:使用全部观测值保证平稳性
卡尔曼滤波方法示意图
二、卡尔曼滤波方法
递推滤波可用于解决如何利用前一时 刻预报误差 来及时 修正 预报方程 系数 这一问题。滤波对象假定是 离散时间 线性 动态系统,并认为天气预报对象 是具有这种特征的动态系统,可用以 下两组方程来描述:
β t=β t-1+εt-1
卡尔曼滤波方法应用非常广泛
• 飞行 • 潜艇导航 • 导弹弹道计算
(1969年的APPOLO)
卡尔曼滤波起源发展原理及应用
附录:kalman滤波(起源、发展、原理、应用)1、Kalman滤波起源及发展1960年,匈牙利数学家卡尔曼发表了一篇关于离散数据线性滤波递推算法的论文,这意味着卡尔曼滤波的诞生。
斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器,卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。
关于这种滤波器的论文由Swerling (1958)、Kalman (1960)与Kalman and Bucy (1961)发表.卡尔曼滤波是一种有着相当广泛应用的滤波方法,但它既需要假定系统是线性的,又需要认为系统中的各个噪声与状态变量均呈高斯分布,而这两条并不总是确切的假设限制了卡尔曼滤波器在现实生活中的应用。
扩展卡尔曼滤波器(EKF)极大地拓宽了卡尔曼滤波的适用范围。
EKF的基本思路是,假定卡尔曼滤滤对当前系统状态估计值非常接近于其真实值,于是将非线性函数在当前状态估计值处进行台劳展开并实现线性化。
另一种非线性卡尔曼滤波叫线性化卡尔曼滤波。
它与EKF的主要区别是前者将非线函数在滤波器对当前系统状态的最优估计值处线性化,而后者因为预先知道非线性系统的实际运行状态大致按照所要求、希望的轨迹变化,所以这些非线性化函数在实际状态处的值可以表达为在希望的轨迹处的台劳展开式,从而完成线性化。
不敏卡尔曼滤波器(UKF)是针对非线性系统的一种改进型卡尔曼滤波器。
UKF处理非线性系统的基本思路在于不敏变换,而不敏变换从根本上讲是一种描述高斯随机变量在非线性化变换后的概率分布情况的方法。
不敏卡尔曼滤波认为,与其将一个非线性化变换线性化、近似化,还不如将高斯随机变量经非线性变换后的概率分布情况用高斯分布来近似那样简单,因而不敏卡尔曼滤波算法没有非线性化这一步骤。
在每一定位历元,不敏卡尔曼滤波器按照一套公式产生一系列样点,每一样点均配有一个相应的权重,而这些带权的样点被用来完整地描述系统状态向量估计值的分布情况,它们替代了原先卡尔曼滤波器中的状态向量估计值及协方差。
卡尔曼滤波方法应用52页PPT
60、生活的道路一旦选定,就要勇敢地 走到底 ,中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
卡尔曼滤波方法资料课件
线性最小方差估计方法的优 点
适用于线性系统状态估计,计算量较小,易于实现。
线性最小方差估计方法的 缺点
对非线性系统效果不佳,需要先验知识或模 型参数。
04
卡尔曼滤波方法的实现 和应用案例
卡尔曼滤波方法的软件实现
软件平台
可以使用Python、C、Matlab等编程语言实现卡尔曼滤波算法。
卡尔曼滤波方法在控制系统中的应用案例
应用场景
卡尔曼滤波方法在控制系统中主要用于估计系统的状态变量。
案例分析
通过实际控制系统的数据和实验,验证卡尔曼滤波方法在控制系统中的可行性和稳定性。
卡尔曼滤波方法在雷达系统中的应用案例
应用场景
卡尔曼滤波方法在雷达系统中主要用于 目标跟踪和运动参数估计。
VS
案例分析
卡尔曼滤波方法的基本概念和原理
基本概念
卡尔曼滤波方法是一种递归估计方法,通过建立状态方程和观测方程,对系统状态进行最优估计。
原理
卡尔曼滤波方法基于最小均方误差准则,通过不断更新估计值来逼近真实值,具有计算量小、实时性 强的优点。
卡尔曼滤波方法的应用领域
机器人
用于机器人的定位、路径规划、 避障等。
描述系统状态和观测之间的关系。
定义初始状态和误差协方差
02
确定系统初始状态和误差协方差的估计值,为后续的滤波过程
提供初始条件。
选择合适的模型参数
03
根据实际情况选择合适的模型参数,如系统动态参数、观测参
数等,以更好地描述系统特性。
预测步骤
01
根据上一时刻的状态和误差协方 差,预测当前时刻的系统状态和 误差协方差。
3-卡尔曼滤波方法
• 时间更新
i k|k 1
f
k
(
i k
1
)
2n
xˆk
W (m) i
i
k|k 1
i0
2n
P x,k
W [ (c) i
i
k|k 1
xˆ k
][
i k|k
1
xˆ
k
]T
Qk
27
i0
UKF的具体应用过程(续)
• 测量更新
2n
i k|k 1
X (t) — — n 维 状 态 向 量 ; Z (t) — — m 维 观 测 向 量 ; W (t) — — p 维 系 统 随 机 干 扰 ; V (t) — — m 维 随 机 测 量 噪 声 ; f (t), h(t) — — n 维 和 m 维 向 量 函 数 。
3
系统的状态空间描述(续)
• KF要求明确已知系统模型。即在应用卡尔曼滤波之前,
首先要建立系统模型和观测模型,并假定过程噪声、观测 噪声为高斯白噪声。
• 应用领域:机器人导航、目标跟踪、组合导航等。其中,
组合导航是卡尔曼滤波最成功的应用领域。
2
3.2 系统的状态空间描述
• 连续系统模型:
-------------状态方程 -------------观测方程
4
3.3 卡尔曼滤波的直观推导
假 设 在k 时 刻 已 获 得k 次 测 量 结 果{Z1, Z2,, Zk1, Zk },
且
已
得
到X
k
1
的
最
优
线
性
估
卡尔曼滤波算法原理及应用
卡尔曼滤波算法原理及应⽤卡尔曼滤波是⼀种⾼效率的递归滤波器,它能够从⼀系列的不完全及包含噪声的测量中,估计动态系统的状态。
卡尔曼滤波在技术领域有许多的应⽤,常见的有飞机及太空船的导引、导航及控制。
卡尔曼算法主要可以分为两个步骤进⾏:预测和更新。
基于最⼩均⽅误差为最佳估计准则,利⽤上⼀时刻的估计值和状态转移矩阵进⾏预测,⽤测量值对预测值进⾏修正,得到当前时刻的估计值。
卡尔曼算法公式预测:1. ˆs(n |n −1)=A ˆs (n −1|n −1)2. P (n )=A ξ(n −1)A T +Q 更新:3. G (n )=P (n )C T [CP (n )C T +R ]−14. ξ(n )=(I −G (n )C )P (n )5. ˆs(n |n )=ˆs (n |n −1)+G (n )[x (n )−C ˆs (n |n −1)]利⽤上⾯五个式⼦可以递推得到状态的估计值ˆs (n |n )。
⽂章的组织如下:1.基本模型及假设2.卡尔曼算法原理及推导3.卡尔曼滤波算法举例4.Matlab 程序1.基本模型与假设状态⽅程(描述物体运动状态)s (n )=As (n −1)+w (n )测量⽅程(利⽤探测器等器件获取物体状态参数)x (n )=Cs (n )+v (n )其中w (n )为过程噪声,v (n )为测量噪声。
假设:w (n ),v (n ),为独⽴零均值的⽩噪声过程,即E [w (n )w T (k )]=Q (n ),n =k 0,n ≠k E [v (n )v T (k )]=R (n ),n =k 0,n ≠kv (n )和s (n )、w (n )不相关,即E [v (n )s (n )]=0E [v (n )w (n )]=02.卡尔曼算法原理及推导基于最⼩均⽅误差准则,通过观测值x (n )求真实信号s (n )的线性⽆偏最优估计。
已知上⼀时刻的估计值ˆs(n −1|n −1)利⽤状态⽅程对s (n )进⾏预测,最佳预测为{{ˆs(n|n−1)=Aˆs(n−1|n−1)利⽤测量⽅程对x(n)进⾏预测,最佳预测为ˆx(n|n−1)=Cˆs(n|n−1)=CAˆs(n−1|n−1)噪声不参与预测。
卡尔曼滤波原理及其应用
卡尔曼滤波卡尔曼滤波公式推导及应用摘要:卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。
它能够从一系列的不完全及包含噪声的测量中,估计动态系统状态。
对于解决大部分问题,它是最优、效率最高甚至是最有用的。
它的的广泛应用已经超过30年,包括机器人导航、控制,传感器数据融合甚至在局势方面的雷法系统及导航追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
关键字:卡尔曼滤波导航机器人一Kalmanl滤波器本质上来讲,滤波就是一个信号处理与变换(去除或减弱不想要的成分,增强所需成分)的过程,这个过程既可以通过硬件来实现,也可以通过软件来实现。
卡尔曼滤波属于一种软件滤波方法,基本思想是:以最小均方差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方差的估计。
二Kalman滤波起源及发展1960年,匈牙利数学家卡尔曼发表了一篇关于离散数据线性滤波递推算法的论文,这意味着卡尔曼滤波的诞生。
斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器,卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。
关于这种滤波器的论文由Swerling (1958)、Kalman (1960)与Kalman and Bucy (1961)发表.卡尔曼滤波是一种有着相当广泛应用的滤波方法,但它既需要假定系统是线性的,又需要认为系统中的各个噪声与状态变量均呈高斯分布,而这两条并不总是确切的假设限制了卡尔曼滤波器在现实生活中的应用。
扩展卡尔曼滤波器(EKF)极大地拓宽了卡尔曼滤波的适用范围。
《卡尔曼滤波》课件
3
无迹卡尔曼滤波线性系统的 估计。
卡尔曼滤波的应用案例
飞行器姿态估计
卡尔曼滤波在航空领域中被广泛应用于飞行器姿态估计,用于提高飞行器的稳定性和导航准 确性。
目标跟踪
卡尔曼滤波可用于跟踪移动目标的位置和速度,常见于机器人导航和视频监控等领域。
3 卡尔曼滤波的应用领
域
卡尔曼滤波被广泛应用于 航空航天、机器人、金融 等领域,用于提高系统的 状态估计精度。
卡尔曼滤波的数学模型
状态空间模型
卡尔曼滤波使用状态 空间模型表示系统的 状态和观测值之间的 关系,包括状态方程 和测量方程。
测量方程
测量方程描述观测值 与系统状态之间的关 系,用于将观测值纳 入到状态估计中。
了解更多关于卡尔曼滤波的内容和应用,推荐文献、学术论文和在线课程等资源。
《卡尔曼滤波》PPT课件
卡尔曼滤波是一种优秀的状态估计方法,被广泛用于目标跟踪、姿态估计和 股票预测等领域。
介绍卡尔曼滤波
1 什么是卡尔曼滤波?
卡尔曼滤波是一种递归状 态估计算法,用于通过系 统模型和测量信息估计系 统状态。
2 卡尔曼滤波的基本原
理
卡尔曼滤波基于贝叶斯估 计理论,通过最小化估计 误差的均方差来优化状态 估计。
股票预测
卡尔曼滤波可以应用于股票市场,通过对历史数据进行分析和预测,提供股票价格的预测和 趋势分析。
卡尔曼滤波的优化算法
粒子滤波
粒子滤波是一种基于蒙特卡洛 方法的状态估计算法,适用于 非线性和非高斯系统,提供更 广泛的估计能力。
自适应滤波
自适应滤波是一种根据系统的 特点自动调整滤波参数的方法, 提供更好的适应性和鲁棒性。
非线性滤波
非线性滤波是对卡尔曼滤波算 法的改进,用于处理非线性系 统和测量模型,提供更准确的 状态估计。
扩展卡尔曼滤波原理及其应用PPT课件
到现在为止,我们已经得到了k 状态下最优的估算值X(k|k)。 但是为了要另卡尔曼滤波器不断的运行下去直到系统过程 结束,我们还要更新k状态下X(k|k)的covariance:
P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入 k+1状态时,P(k|k)就是式子(2) 的P(k-1|k-1)。这样,算法就 可以自回归的运算下去。
F f ( xk 1) x
Hk
h( xk /k 1 ) x
xk1 xk vx _ k t yk1 yk vy _ k t
vx _ k1 vx _ k (ax _ k cos ay sin ) t vy _ k1 vy _ k (ax _ k sin ay cos ) t k1 k t
现在我们有了现在状态的预测结果,然后我们再收集现 在状态的测量值。结合预测值和测量值,我们可以得到 现在状态(k) 的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)
其中Kg为卡尔曼增益(Kalman Gain): Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)
在进入k+1时刻之前,我们还要算出k 时刻那个最优值(24.56度)的 偏差。算法如下:((1-Kg)*5^2) ^0.5=2.35。这里的5就是上面的k时刻 你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k 时刻估算出的最优温度值的偏差(对应于上面的3)。
1. 首先我们要利用系统的过程模型,来预测下一状态的系 统。假设现在的系统状态是k ,根据系统的模型,可以基 于系统的上一状态而预测出现在状态: X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
卡尔曼滤波算法应用
卡尔曼滤波算法应用卡尔曼滤波算法应用在现代科学技术中,卡尔曼滤波是一种广泛应用于估计、控制等领域的滤波算法,它可以精确地预测和估计系统状态。
卡尔曼滤波算法的应用范围非常广泛,在航空航天、水利水电、机电管控等领域都有着重要的作用。
本文将对卡尔曼滤波算法的应用进行介绍,并分为以下几类:航空航天、水利水电、机电管控。
航空航天卡尔曼滤波算法在航空航天领域有着广泛的应用,它可以用来进行导航、控制等任务。
通过对飞行器的测量数据进行处理,卡尔曼滤波算法能够估计出飞行器当前的位置、速度、姿态等状态,从而实现对飞行器的精确控制。
另外,卡尔曼滤波算法还可以应用于导弹制导、卫星轨道预测等领域,提高了导弹和卫星的精确度和可靠性。
水利水电在水利水电领域,卡尔曼滤波算法常常用来预测水文数据,如水位、流量等。
通过对历史数据的处理,卡尔曼滤波算法可以准确地预测未来水文数据的变化趋势,为水利水电项目的调度和管理提供依据。
另外,卡尔曼滤波算法还可以应用于水文监测、灾害预警等领域,提高了灾害预测和监测的准确度。
机电管控在机电管控领域,卡尔曼滤波算法可以用来估计机器人、机械臂等机电系统的位置、速度、加速度等状态,从而实现对机器人和机械臂的精确控制和定位。
另外,卡尔曼滤波算法还可以应用于车辆车速估计、信号滤波等领域,提高了车辆控制和信号处理的精确度。
总结卡尔曼滤波算法是一种非常实用的滤波算法,在航空航天、水利水电、机电管控等领域都有着广泛的应用。
通过对历史数据的处理和统计分析,卡尔曼滤波算法可以准确地预测系统的状态,从而实现对系统的控制和管理。
在现代科学技术的发展中,卡尔曼滤波算法将会有更加广阔的应用前景。
卡尔曼滤波算法(含详细推导)PPT
3、kalman滤波算法
求式(3)所示状态向量的一步预测误差向量的相关矩阵,容易证明:
K(n1,n)E{e(n1,n)e]H(n1,n)} [F(n1,n)G (n)C (n)K ](n,n1)F [(n1,n) G (n)C (n)H ]Q 1(n)G (n)Q 2(n)G H(n)........3 ...).1 .(.
n
(n )(n 1y(1 ),y .(n .). ),
1
W 1 (k)(k)
式中W1(k)表示与一步预测项对应的权矩k 阵 1 ,且k为离散时间。
现在的问题是如何确定这个权矩阵?
(1)、状态向量的一布预测
根据正交性原理,最优预测的估计误差
e(1 nn, )x(n1)x1(n1)
12
3、kalman滤波算法
C (n )K (n ,n 1 )C H (n ) Q 2(n ).................1.).(6..
式中Q2(n)是观测噪声v2(n)的相关矩阵,而
K (n ,n 1 ) E { e (n ,n 1 )e H (n ,n 1 )}................1 ..) ....( 7 ..
这里使用了状态向量与观测噪声不相关的事实。 进一步地,由正交原理引
理知,在最小均方误差准则下求得的一步预测估 x 1 ( n )与预测误差e(n,n-1)彼
此正交,即
E{x1(n)eH(N,N1)}0
17
3、kalman滤波算法
因此,由式(26)及式(27)易得:
E {x(n1)H(n)} F(n1,n)E {x[(n)e(n,n1)e]H(n,n1)C }H(n)
卡尔曼滤波方法资料
二、卡尔曼滤波方法
递推滤波可用于解决如何利用前一时 刻预报误差 来及时 修正 预报方程 系数 这一问题。滤波对象假定是 离散时间 线性 动态系统,并认为天气预报对象 是具有这种特征的动态系统,可用以 下两组方程来描述:
β t=β t-1+εt-1
Yt=Xtβ t+еt
(1) (2)
(1)式为预报方程, еt为量测噪声,是n维随机向量;Yt是
义最小二乘法,可以得到一组递推滤波公式,这
#43;W =XRX =RX β = β + At(Yt –Y ) C = R - A A
t t t-1 t t-1 t t t t T t t T -1 t
A
t
t
t-1
t
t
上述六个公式组成的递推滤波系统体 现了卡尔曼滤波的基本思想。
t
t
t
t
T
每加进一次新的量测 (Yt , Xt), 只需
利用已算出的前一次滤波值 β
t-1
t-1
和
滤波误差方差阵C ,便可算出新的
状态滤波值 β 和新的滤波误差方差
t
阵C 就能通过公式得到t+1时刻的
t,
预报值。
这样不论预报次数如何增加,不
需要存储大量历史的量测数据,大
大减少了计算机的存贮,而且只进
数值模式更新快,广大台站积累足
够供建立MOS方程使用的数值产
品历史资料比较困难,因此,卡尔
曼滤波方法在我国天气预报中有广 泛的应用前景。
卡尔曼滤波方法--递推式滤波方法 突出优点: 不需要保存全部历史资料数据,可借助 于前时刻的滤波结果,递推出现时刻的 状态估计量,大大减少了存储量和计算 量。 预报对象: 一般为具有线性变化特征的连续性变量。
Kalman滤波在信号跟踪预测中的应用演示文稿
似然函数
j k P Zk
M k ,Z k1
1 2
2
S
j
k
exp
1 2
v
j
S
v 1
jj
滤波更新
K j k P j k k 1H HP j k k 1H R 1
^
X j k
k
^
X j k
k 1 K j k Z k H
^
X j k
k 1
P j k k I K j k P j k k 1
和)以得到状态估计
模型初始化 输入交互
MX1
MX 2 … MX r
输
…
出
交
互
各模型及其它的计算
N
k<=N?
Y
End
第20页,共25页。
交互多模(IMM)算法的递推步骤
1 模型条件初始化
混合概率
ij k 1 k 1 p M i k 1 M j k , Z k1 pij i k 1 c j
Kalman滤波在信号跟踪预测中 的应用演示文稿
第1页,共25页。
Kalman滤波在信号跟踪预测中 的应用
第2页,共25页。
Kalman滤波在雷达数据处理中的应用
雷达数据处理就是雷达探测到目标后,提取目标位置信息所形 成的点迹数据,经预处理后,新的点迹与已存在的航迹进行数 据关联,关联上的点迹用来更新航迹信息,并形成对目标下一 位置的预测波门,没有关联上的点迹进行新航迹起始。雷达数 据处理的关键技术是航迹的起始与终止、跟踪滤波、数据关联。
X k 1 X k GW k
式中
x(k )
X
(k)
x(k
)
y(k )