线性规划PPT
合集下载
线性规划PPT课件
线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义
4.2线性规划ppt课件
4.2线性规划ppt课件
目录
• 线性规划简介 • 线性规划的求解方法 • 线性规划的软件实现 • 线性规划案例分析 • 线性规划的优化策略
01
线性规划简介
线性规划的定义
线性规划是数学优化技术的一种 ,它通过将问题转化为线性方程 组,并寻找满足一定约束条件的 解,以实现目标函数的最优解。
线性规划问题通常由决策变量、 约束条件和目标函数三部分组成
运输问题
总结词
运输问题是在物流和供应链管理中常见的线性规划应用,旨在优化运输成本和时 间。
详细描述
运输问题通常涉及多个起点、终点和运输方式,需要考虑运输成本、时间、容量 和路线等约束条件。通过线性规划方法,可以找到最优的运输方案,使得总运输 成本最低或运输时间最短。
投资组合优化问题
总结词
投资组合优化问题是在金融领域中常见的线性规划应用,旨 在实现风险和收益之间的平衡。
对偶问题在理论研究和实际应用中都 具有重要的意义,可以用于求解一些 特殊类型的问题,如运输问题、分配 问题等。
对偶问题具有一些特殊的性质,如对 偶变量的非负性、对偶问题的最优解 与原问题的最优解之间的关系等。
初始解的确定
初始解的确定是线性规划求解过程中的 一个重要步骤,一个好的初始解可以大
大减少迭代次数,提高求解效率。
。
决策变量是问题中需要求解的未 知数,约束条件是限制决策变量 取值的条件,目标函数是要求最
大或最小的函数。
线性规划的数学模型
线性规划的数学模型通常由一 组线性不等式和等式约束以及 一个线性目标函数组成。
线性不等式和等式约束条件可 以用来表示各种资源和限制条 件。
目标函数是决策变量的线性函 数,表示要优化的目标。
目录
• 线性规划简介 • 线性规划的求解方法 • 线性规划的软件实现 • 线性规划案例分析 • 线性规划的优化策略
01
线性规划简介
线性规划的定义
线性规划是数学优化技术的一种 ,它通过将问题转化为线性方程 组,并寻找满足一定约束条件的 解,以实现目标函数的最优解。
线性规划问题通常由决策变量、 约束条件和目标函数三部分组成
运输问题
总结词
运输问题是在物流和供应链管理中常见的线性规划应用,旨在优化运输成本和时 间。
详细描述
运输问题通常涉及多个起点、终点和运输方式,需要考虑运输成本、时间、容量 和路线等约束条件。通过线性规划方法,可以找到最优的运输方案,使得总运输 成本最低或运输时间最短。
投资组合优化问题
总结词
投资组合优化问题是在金融领域中常见的线性规划应用,旨 在实现风险和收益之间的平衡。
对偶问题在理论研究和实际应用中都 具有重要的意义,可以用于求解一些 特殊类型的问题,如运输问题、分配 问题等。
对偶问题具有一些特殊的性质,如对 偶变量的非负性、对偶问题的最优解 与原问题的最优解之间的关系等。
初始解的确定
初始解的确定是线性规划求解过程中的 一个重要步骤,一个好的初始解可以大
大减少迭代次数,提高求解效率。
。
决策变量是问题中需要求解的未 知数,约束条件是限制决策变量 取值的条件,目标函数是要求最
大或最小的函数。
线性规划的数学模型
线性规划的数学模型通常由一 组线性不等式和等式约束以及 一个线性目标函数组成。
线性不等式和等式约束条件可 以用来表示各种资源和限制条 件。
目标函数是决策变量的线性函 数,表示要优化的目标。
最新-第三章线性规划数学模型课件-PPT
X1
18
例4、 maxZ=3X1+2X2
X2
-X1 -X2 1
X1 , X2 0
无解
无可行解
-1
0
X1
-1
19
总结
唯一解 有解
无穷多解 无解 无有限最优解
无可行解
20
单纯形法
• 单纯形法(Simplex Method)是美国数学 家但泽(Dantzig)于1947年提出的。基 本思想是通过有限次的换基迭代来求出 线性规划的最优解。
3
线性规划的特点
❖决策变量连续性:求解出的决策变量值 可以是整数、小数;
❖线性函数:目标函数方程和约束条件方 程都是线性方程;
❖单目标:目标函数是单目标,只有一个 极大值或一个极小值;
❖确定性:只能应用于确定型决策问题。
4
例1、生产计划问题
A B 备用资源
煤12
30
劳动日 3 2
60
仓库 0 2
• 利用单纯形法解决线性规划问题,实际上是从 线性规划问题的一个基本可行解转移到另一个 基本可行解,同时目标函数值不减少的过程。
• 对于两个变量的线性规划问题,就是从可行域 的一个端点转移到另一个端点,而使得目标函 数的值不减少。
25
线性规划的扩展
一、整数规划(整数线性规划):部分或 全部的决策变量只能取整数值。
8
一般式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn (=, )b1 a21X1+ a22X2+…+ a2nXn (=, )b2 ……… am1X1+ am2X2+…+ amnXn (=, )bm Xj 0(j=1,…,n)
线性规划ppt课件
a11x1+a12x2++a1nxn=b1
a21x1+a22x2++a2nxn=b2
(*)
am1x1+am2x2++amnxn=bm
x1, x2, , xn≥0
其中,bi≥0 (i=1,2,,m)
或者更简洁的,利用矩阵与向量记为
max z CT x
s.t. Ax b
(**)
x0
其中C和x为n维列向量,b为m维列向量, b≥0,A为m×n矩阵,m<n且rank(A)=m
⑵约束条件为 a11x1+a12x2++a1nxn≤b1 加入非a1负1x1变+a量12xx2n++1,+称a为1nx松n+弛xn+变1=量b1,有
⑶约束条件为 a11x1+a12x2++a1nxn≥b1 减去非a1负1x1变+a量12xx2n++1,+称a为1nx剩n -余xn变+1=量b1,有
⑷变量xj无约束。
令xj= xj - xj,对模型中的进行变量代换。
1.2 线性规划问题的求解——单纯形法 1.2.1 基本概念
可行解 满足约束条件(包括非负条 件)的一组变量值,称可行解。
所有可行解的集合称为可行域。
最优解 使目标函数达到最大的可行解 称为最优解。
基本解 对于有n个变量、m个约束方程的标准 型线性规划问题,取其m个变量。若这些变量在约 束方程中的系数列向量线性无关,则它们组成一组 基变量。确定了一组基变量后,其它n-m个变量称 为非基变量。
x0 必非最优解。
证 (1)显然
《线性规划》PPT课件
精选ppt
2
3.线性规划:在线性约束条件下 求线性目标函数的最值问题。
①.可行域:约束条件所确定的平 面区域。
②.目标函数:需求最值的二元一 次函数。
③.最优解:使目标函数取到最值 的点的坐标。
精选ppt
3
二.习题
1.原点和点(1,1)在直线x+y-a=0的
两侧,则a的取值范围是( C )。 A.(-∞,0)∪(2,+∞) B.{0,2} C.(0,2) D.[0,2]
最优解有无穷多个,则m的值为
(A ) A.4 B.2 C.0.5 D.不确定
②.求目标函数z=x2+y2取最小值
的最优解。
(1.精5选pp,t 1.5)
6
5.某家具公司生产甲、乙两种型
号的组合柜,每种柜的制造白坯
的时间分别为6、12,油漆时间分
别为8、4,生产能力是每天有制
坯时间与油漆时间分别为120、
2.
4 xx
3 y
y 12
1 表示的平面区域内的
y 0
整点个数有__5___个
精选ppt
4
3.不等式(x-2y+1)(x+y-3)<0表示 的平面区域是( D )
精选ppt
5
4.在约束条件
xy30 x 2y 4 0
下,
x y 3 0
①.生产一
组组合柜的利润甲、乙分别为20、
24问公司怎样安排生产可使所得
利润最大?
精选ppt
7
线性规划 一.复习 1.二元一次不等式表示区域:
Ax+By+C≥0表示 平面上直线 Ax+By+C=0的某 一侧(包括直线)。
线性规划课件ppt
根据实际问题的特点,选择适合的线性规划模型进行建模和优化。
详细描述
在选择线性规划模型时,应根据实际问题的特点进行选择。例如,对于简单的最优化问题,可以使用标准型线性规划模型;对于需要约束条件或特殊处理的问题,可以选择扩展型线性规划模型。在建立模型后,还可以使用优化软件对模型进行优化,以提高求解效率和准确性。
CHAPTER
线性规划的求解方法
总结词
最常用的方法
要点一
要点二
详细描述
单纯形法是一种迭代算法,用于求解线性规划问题。它通过不断地在可行解域内寻找新的解,直到找到最优解或确定无解为止。单纯形法的主要步骤包括建立初始单纯形、确定主元、进行基变换和更新单纯形等。该方法具有简单易行、适用范围广等优点,但在某些情况下可能会出现迭代次数较多、计算量大等问题。
在选择变量时,应考虑其物理意义、数据的可靠性和敏感性等因素。
选择变量时,首先要考虑变量的物理意义和实际背景,以便更好地理解模型和求解结果。同时,要重视数据的可靠性,避免使用不可靠的数据导致模型失真或错误。敏感度分析可以帮助我们了解变量对目标函数的影响程度,从而更好地选择变量。
总结词
详细描述
总结词
线性规划在工业生产中的应用已经非常广泛,未来将会进一步拓展其应用领域。
工业生产
线性规划在物流运输领域中的应用也将会有更广阔的前景,例如货物的合理配载、车辆路径规划等。
物流运输
线性规划在金融管理中的应用也将逐渐增多,例如投资组合优化、风险控制等。
金融管理
非线性优化
将线性规划拓展到非线性优化领域是一个具有挑战性的研究方向,但也为线性规划的应用提供了更广阔的发展空间。
软件特点
Lingo具有强大的求解能力,可以高效地解决大规模线性规划问题,同时具有友好的用户界面,方便用户进行模型输入和结果输出。
详细描述
在选择线性规划模型时,应根据实际问题的特点进行选择。例如,对于简单的最优化问题,可以使用标准型线性规划模型;对于需要约束条件或特殊处理的问题,可以选择扩展型线性规划模型。在建立模型后,还可以使用优化软件对模型进行优化,以提高求解效率和准确性。
CHAPTER
线性规划的求解方法
总结词
最常用的方法
要点一
要点二
详细描述
单纯形法是一种迭代算法,用于求解线性规划问题。它通过不断地在可行解域内寻找新的解,直到找到最优解或确定无解为止。单纯形法的主要步骤包括建立初始单纯形、确定主元、进行基变换和更新单纯形等。该方法具有简单易行、适用范围广等优点,但在某些情况下可能会出现迭代次数较多、计算量大等问题。
在选择变量时,应考虑其物理意义、数据的可靠性和敏感性等因素。
选择变量时,首先要考虑变量的物理意义和实际背景,以便更好地理解模型和求解结果。同时,要重视数据的可靠性,避免使用不可靠的数据导致模型失真或错误。敏感度分析可以帮助我们了解变量对目标函数的影响程度,从而更好地选择变量。
总结词
详细描述
总结词
线性规划在工业生产中的应用已经非常广泛,未来将会进一步拓展其应用领域。
工业生产
线性规划在物流运输领域中的应用也将会有更广阔的前景,例如货物的合理配载、车辆路径规划等。
物流运输
线性规划在金融管理中的应用也将逐渐增多,例如投资组合优化、风险控制等。
金融管理
非线性优化
将线性规划拓展到非线性优化领域是一个具有挑战性的研究方向,但也为线性规划的应用提供了更广阔的发展空间。
软件特点
Lingo具有强大的求解能力,可以高效地解决大规模线性规划问题,同时具有友好的用户界面,方便用户进行模型输入和结果输出。
第一 线性规划(共188张PPT)
个要求表述为
x1 ≥0, x2 ≥0
• 综上所述,该问题的数学模型表示为
maxZ= 3x1 +5 x2
x1
≤8
2x2 ≤12
3x1 +4 x2 ≤36
x1 ≥0, x2 ≥0
5
第一节 线性规划一般模型
• 例2. 运输问题 某名牌饮料在国内有三个生产厂,分布在城市A1、 A2、A3,其一级承销商有4个,分布在城市B1、B2、B3、 B4,已知各厂的产量、各承销商的销售量及从Ai到Bj 的每吨饮料运费为Cij,为发挥集团优势,公司要统 一筹划运销问题,求运费最小的调运方案。
(3)约束条件。产量之和等于销量之和,故要满足:
▪ 供应平衡条件
x11+x12+x13+x14=5 x21+x22+x23+x24=2 x31+x32+x33+x34 =3
§ 销售平衡条件
x11+x21+x31=2 x12+x22+x32=3 x13+x23+x33=1 x14+x24+x34=4
§ 非负性约束
29
第三节 线性规划的标准型
§ 标准化2
minZ= x1 +2 (x2′-x 2〃) +3 x3′
函数。可能是最大化,也可能是最小化。 • 线性规划一般模型的代数式 为:
max(min)Z=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn ≤(≥,=)b1 a21x1+a22x2+…+a2nxn ≤(≥,=)b2 …………… am1x1+am2x2+…+amnxn≤(≥,=)bm x1,x2,…,xn ≥(≤)0
x1 ≥0, x2 ≥0
• 综上所述,该问题的数学模型表示为
maxZ= 3x1 +5 x2
x1
≤8
2x2 ≤12
3x1 +4 x2 ≤36
x1 ≥0, x2 ≥0
5
第一节 线性规划一般模型
• 例2. 运输问题 某名牌饮料在国内有三个生产厂,分布在城市A1、 A2、A3,其一级承销商有4个,分布在城市B1、B2、B3、 B4,已知各厂的产量、各承销商的销售量及从Ai到Bj 的每吨饮料运费为Cij,为发挥集团优势,公司要统 一筹划运销问题,求运费最小的调运方案。
(3)约束条件。产量之和等于销量之和,故要满足:
▪ 供应平衡条件
x11+x12+x13+x14=5 x21+x22+x23+x24=2 x31+x32+x33+x34 =3
§ 销售平衡条件
x11+x21+x31=2 x12+x22+x32=3 x13+x23+x33=1 x14+x24+x34=4
§ 非负性约束
29
第三节 线性规划的标准型
§ 标准化2
minZ= x1 +2 (x2′-x 2〃) +3 x3′
函数。可能是最大化,也可能是最小化。 • 线性规划一般模型的代数式 为:
max(min)Z=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn ≤(≥,=)b1 a21x1+a22x2+…+a2nxn ≤(≥,=)b2 …………… am1x1+am2x2+…+amnxn≤(≥,=)bm x1,x2,…,xn ≥(≤)0
线性规划完整ppt课件
设变量 x、 y 满足 | x|| y|1,则 x 2 y 的最大值和式训练(三)
若 x、 y 满足
y 1
y
2 x -1
x y m
若目标函数 zxy最小值-1,则m的值.
可编辑课件
15结束
变式训练(四)
x y 1
若 x、 y 满足 x y 4
x
y
2
x y 2
可编辑课件
6
问题(四)
用什么方法解决这个问题呢? 根据什么判断这是一个线性规划问题呢?
可编辑课件
7
解:设每天吃x百克苹果,y百克桔子,花 钱z元,则 50x 25y 75
0.2x 0.4y 1 x0 y0
z 0.75x y
可编辑课件
8
M
M
可编辑课件
9
当直线z=0.75x+y经过可行域上的点M时,z有最小值
巩固练习
x y 1
若点M( x , y ) 在平面区域 x y 4 上
x
y
2
x y 2
向量a (1, 2),则 OM a 的最大值.
可编辑课件
12
变式训练(一)
x y 1
若 x、 y
满足
x
x
y y
4 2
x y 2
则 z | x2y| 最大值.
可编辑课件
13
变式训练(二)
解方程组500.2xx++205.y4=y=751
得M的坐标为(1,7) 33
所以,zmin
0.75x
y
31 12
2.6
答:最少可以花约2.6元.
可编辑课件
10
问题(五)
解决线性规划实际问题的步骤:
若 x、 y 满足
y 1
y
2 x -1
x y m
若目标函数 zxy最小值-1,则m的值.
可编辑课件
15结束
变式训练(四)
x y 1
若 x、 y 满足 x y 4
x
y
2
x y 2
可编辑课件
6
问题(四)
用什么方法解决这个问题呢? 根据什么判断这是一个线性规划问题呢?
可编辑课件
7
解:设每天吃x百克苹果,y百克桔子,花 钱z元,则 50x 25y 75
0.2x 0.4y 1 x0 y0
z 0.75x y
可编辑课件
8
M
M
可编辑课件
9
当直线z=0.75x+y经过可行域上的点M时,z有最小值
巩固练习
x y 1
若点M( x , y ) 在平面区域 x y 4 上
x
y
2
x y 2
向量a (1, 2),则 OM a 的最大值.
可编辑课件
12
变式训练(一)
x y 1
若 x、 y
满足
x
x
y y
4 2
x y 2
则 z | x2y| 最大值.
可编辑课件
13
变式训练(二)
解方程组500.2xx++205.y4=y=751
得M的坐标为(1,7) 33
所以,zmin
0.75x
y
31 12
2.6
答:最少可以花约2.6元.
可编辑课件
10
问题(五)
解决线性规划实际问题的步骤:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所有可行解的集合称为可行域。
最优解 使目标函数达到最大的可行解 称为最优解。
基本解 对于有n个变量、m个约束方程的标准 型线性规划问题,取其m个变量。若这些变量在约 束方程中的系数列向量线性无关,则它们组成一组 基变量。确定了一组基变量后,其它n-m个变量称 为非基变量。
令非基变量都为 0 ,解约束方程,可唯一得到 基变量的值,从而得到一个满足约束方程的解,称 为基本解。由此可见,一个基本解的非零分量个数 不超过m个。
量,记为xN。对线性规划(**) 取定一个基矩阵B, 令其非
基变量xN=0, 可以唯一的解出xB, xB=B-1b。 这样得到的点 x=(B-1 b,0)称为(**)的一个基本解。为了叙述方便,这里
我们将xB放在了前面, 其实它的位置可以是任意的, 这并
不影响问题的实质。显然基本解不一定是可行解,当一个 基本解同时还是可行解时(即B-1 b≥0),称之为线性规划 问题(**)的一个基本可行解,进而若B-1 b>0,则称 x=(B-1 b,0)为(**)的一个非退化的基本可行解,并称B为 一组非退化的可行基。由于基矩阵最多只有Cnm 种不同的取 法,即使A的任意m列均线性无关,且对应的基本解均可行, (**)最多也只有C nm个不同的基本可行解。
污水的含量应不大于0.2%。而工 Min z=1000x1+800x2
厂1和工厂2处理污水的成本分别为 (2-x1)/500 ≤0.002
1000元/万m3和800元/万m3。问两 工厂各应处理多少污水才能使处理 污水的总费用最低?
[0.8(2-x1)+1.4-x2]/700 ≤0.002
x1≤2, x2≤1.4
已知生产单位产品所需的设备台时和原料A、B的消
耗量如下表。 该工厂每生产一件
ⅠⅡ
产品Ⅰ可获利2元,每生产一件产 品Ⅱ可获利3元,问应如何安排生 产计划能使该厂获利最多?
设备 1 原料 A 4 原料 B 0
2 8 台时 0 16kg 4 12kg
这个问题可以用下面的数
学模型来描述,设计划期内产 品Ⅰ、Ⅱ的产量分别为x1,x2, 可获利润用z表示,则有:
x1, x2≥0
1.1.1 问题的提出(三)
以上两例都有一些共 同的特征:
⑴用一组变量表示某个 方案,一般这些变量取
值是非负的。
⑵存在一定的约束条件, 可以用线性等式或线性
不等式来表示。
⑶都有一个要达到的目 标,可以用决策变量的
线性函数来表示。
满足以上条件的数学 模型称为线性规划模型。 线性规划模型的一般形式 如下:
基本可行解 满足非负条件的基本解称为基本 可行解。
基本可行解既是基本解、又是可行解,它对 应于线性规划问题可行域的顶点。
考察(**), 取出A的m个线性无关的列,这些列构成A的
一个m阶非奇异子矩阵B, 称B为A的一个基矩阵。 A的其
余n-m列构成一个m× (n-m)矩阵N。称对应于B的列的变量
为基变量(共m个), 记它们为xB。 其余变量称为非基变
线性规划
1.1 线性规划问题及其数学模型 1.1.1 问题的提出 1.1.2 图解法 1.1.3 线性规划问题的标准型
1.2 线性规划问题的求解——单纯形法 1.2.1 基本概念 1.2.2 单纯形法
1.1 线性规划问题及其数学模型
1.1.1 问题的提出(一)
例 某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,
⑶约束条件为 a11x1+a12x2++a1nxn≥b1 减去非a1负1x1变+a量12xx2n++1,+称a为1nx剩n -余xn变+1=量b1,有
⑷变量xj无约束。
令xj= xj - xj,对模型中的进行变量代换。
1.2 线性规划问题的求解——单纯形法 1.2.1 基本概念
可行解 满足约束条件(包括非负条 件)的一组变量值,称可行解。
两个定理
定理1 (基本可行解与极点的等价定理)设A为一个秩为m的 m×n矩阵(n>m),b为m维列向量,b≥0,记R为可行域。 则x为R的极点的充分必要条件为
x是
Ax b
不符合标准型的几种情况:
⑴目标函数为 min z=c1x1+c2x2++cnxn 令z=-z ,变为 max z= -c1x1- c2x2- -cnxn
⑵约束条件为 a11x1+a12x2++a1nxn≤b1 加入非a1负1x1变+a量12xx2n++1,+称a为1nx松n+弛xn+变1=量b1,有
Max Z=2x1+3x2 x1+2x2≤8 4x1 ≤16
4x2≤12 x1, x2≥0
1.1.1 问题的提出(二)
例 靠近某河流有两个化工厂,
流经第一化工厂的河流流量为每天
500万m3,两工厂之间有一条流量
为每天200万m3的支流(见图)。
第污自二水然第化从净一工工化化厂厂 。工每根1厂流天据每到排环天工放保排厂污要放2水求前污,会水1.河有42万万水20mm%中33。,每和天x2万设分m工别3厂,处1则理和有污工:水厂x21
a11x1+a12x2++a1nxn=b1
a21x1+a22x2++a2nxn=b2
(*)
am1x1+am2x2++amnxn=bm
x1, x2, , xn≥0
其中,bi≥0 (i=1,2,,m)
或者更简洁的,利用矩阵与向量记为
max z CT x
s.t. Ax b
(**)
x0
其中C和x为n维列向量,b为m维列向量, b≥0,A为m×n矩阵,m<n且rank(A)=m
s.t. x1 2 x2 8
x2
x2
4 x1 16
4 x2 12
x1, x2 0
线性规划问题 如果有最优解,则最 优解一定在可行域 的边界上取得,特别 地,一定可在可行域 的顶点上取得.
x1
x1
唯一最优解
无穷多最优解
解Байду номын сангаас界
无可行解
1.1.3 线性规划问题的标准型
线性规划问题的标准型
max z=c1x1+c2x2++cnxn
max(min)z c1x1 c2 x2 cn xn a11x1 a12 x2 a1n xn (, )b1 a21x1 a22 x2 a2n xn (, )b2 am1x1 am2 x2 amn xn (, )bm x1, x2 , xn 0
1.1.2图解法
max z 2x1 3x2
最优解 使目标函数达到最大的可行解 称为最优解。
基本解 对于有n个变量、m个约束方程的标准 型线性规划问题,取其m个变量。若这些变量在约 束方程中的系数列向量线性无关,则它们组成一组 基变量。确定了一组基变量后,其它n-m个变量称 为非基变量。
令非基变量都为 0 ,解约束方程,可唯一得到 基变量的值,从而得到一个满足约束方程的解,称 为基本解。由此可见,一个基本解的非零分量个数 不超过m个。
量,记为xN。对线性规划(**) 取定一个基矩阵B, 令其非
基变量xN=0, 可以唯一的解出xB, xB=B-1b。 这样得到的点 x=(B-1 b,0)称为(**)的一个基本解。为了叙述方便,这里
我们将xB放在了前面, 其实它的位置可以是任意的, 这并
不影响问题的实质。显然基本解不一定是可行解,当一个 基本解同时还是可行解时(即B-1 b≥0),称之为线性规划 问题(**)的一个基本可行解,进而若B-1 b>0,则称 x=(B-1 b,0)为(**)的一个非退化的基本可行解,并称B为 一组非退化的可行基。由于基矩阵最多只有Cnm 种不同的取 法,即使A的任意m列均线性无关,且对应的基本解均可行, (**)最多也只有C nm个不同的基本可行解。
污水的含量应不大于0.2%。而工 Min z=1000x1+800x2
厂1和工厂2处理污水的成本分别为 (2-x1)/500 ≤0.002
1000元/万m3和800元/万m3。问两 工厂各应处理多少污水才能使处理 污水的总费用最低?
[0.8(2-x1)+1.4-x2]/700 ≤0.002
x1≤2, x2≤1.4
已知生产单位产品所需的设备台时和原料A、B的消
耗量如下表。 该工厂每生产一件
ⅠⅡ
产品Ⅰ可获利2元,每生产一件产 品Ⅱ可获利3元,问应如何安排生 产计划能使该厂获利最多?
设备 1 原料 A 4 原料 B 0
2 8 台时 0 16kg 4 12kg
这个问题可以用下面的数
学模型来描述,设计划期内产 品Ⅰ、Ⅱ的产量分别为x1,x2, 可获利润用z表示,则有:
x1, x2≥0
1.1.1 问题的提出(三)
以上两例都有一些共 同的特征:
⑴用一组变量表示某个 方案,一般这些变量取
值是非负的。
⑵存在一定的约束条件, 可以用线性等式或线性
不等式来表示。
⑶都有一个要达到的目 标,可以用决策变量的
线性函数来表示。
满足以上条件的数学 模型称为线性规划模型。 线性规划模型的一般形式 如下:
基本可行解 满足非负条件的基本解称为基本 可行解。
基本可行解既是基本解、又是可行解,它对 应于线性规划问题可行域的顶点。
考察(**), 取出A的m个线性无关的列,这些列构成A的
一个m阶非奇异子矩阵B, 称B为A的一个基矩阵。 A的其
余n-m列构成一个m× (n-m)矩阵N。称对应于B的列的变量
为基变量(共m个), 记它们为xB。 其余变量称为非基变
线性规划
1.1 线性规划问题及其数学模型 1.1.1 问题的提出 1.1.2 图解法 1.1.3 线性规划问题的标准型
1.2 线性规划问题的求解——单纯形法 1.2.1 基本概念 1.2.2 单纯形法
1.1 线性规划问题及其数学模型
1.1.1 问题的提出(一)
例 某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,
⑶约束条件为 a11x1+a12x2++a1nxn≥b1 减去非a1负1x1变+a量12xx2n++1,+称a为1nx剩n -余xn变+1=量b1,有
⑷变量xj无约束。
令xj= xj - xj,对模型中的进行变量代换。
1.2 线性规划问题的求解——单纯形法 1.2.1 基本概念
可行解 满足约束条件(包括非负条 件)的一组变量值,称可行解。
两个定理
定理1 (基本可行解与极点的等价定理)设A为一个秩为m的 m×n矩阵(n>m),b为m维列向量,b≥0,记R为可行域。 则x为R的极点的充分必要条件为
x是
Ax b
不符合标准型的几种情况:
⑴目标函数为 min z=c1x1+c2x2++cnxn 令z=-z ,变为 max z= -c1x1- c2x2- -cnxn
⑵约束条件为 a11x1+a12x2++a1nxn≤b1 加入非a1负1x1变+a量12xx2n++1,+称a为1nx松n+弛xn+变1=量b1,有
Max Z=2x1+3x2 x1+2x2≤8 4x1 ≤16
4x2≤12 x1, x2≥0
1.1.1 问题的提出(二)
例 靠近某河流有两个化工厂,
流经第一化工厂的河流流量为每天
500万m3,两工厂之间有一条流量
为每天200万m3的支流(见图)。
第污自二水然第化从净一工工化化厂厂 。工每根1厂流天据每到排环天工放保排厂污要放2水求前污,会水1.河有42万万水20mm%中33。,每和天x2万设分m工别3厂,处1则理和有污工:水厂x21
a11x1+a12x2++a1nxn=b1
a21x1+a22x2++a2nxn=b2
(*)
am1x1+am2x2++amnxn=bm
x1, x2, , xn≥0
其中,bi≥0 (i=1,2,,m)
或者更简洁的,利用矩阵与向量记为
max z CT x
s.t. Ax b
(**)
x0
其中C和x为n维列向量,b为m维列向量, b≥0,A为m×n矩阵,m<n且rank(A)=m
s.t. x1 2 x2 8
x2
x2
4 x1 16
4 x2 12
x1, x2 0
线性规划问题 如果有最优解,则最 优解一定在可行域 的边界上取得,特别 地,一定可在可行域 的顶点上取得.
x1
x1
唯一最优解
无穷多最优解
解Байду номын сангаас界
无可行解
1.1.3 线性规划问题的标准型
线性规划问题的标准型
max z=c1x1+c2x2++cnxn
max(min)z c1x1 c2 x2 cn xn a11x1 a12 x2 a1n xn (, )b1 a21x1 a22 x2 a2n xn (, )b2 am1x1 am2 x2 amn xn (, )bm x1, x2 , xn 0
1.1.2图解法
max z 2x1 3x2