十字交叉法在化学中的应用.

合集下载

化学计算方法-十字交叉法

化学计算方法-十字交叉法

十字交叉法“十字交叉法”在化学计算中的应用在现在的考试中,对于知识的掌握很重要,对于能力的掌握也同样很重要。

而掌握一种比较好的计算方法,不仅可以提高自己的计算能力,还可以为自己节省许多的时间,达到事半功倍的效果。

“十字交叉法”是化学计算中常用的一种方法。

十字交叉法常用于求算:混和气体平均分子量及组成、混和烃平均分子式及组成、同位素原子百分含量、溶液的配制、混和物的反应等。

一、“十字交叉法”的使用有一定的要求:1、只适用于2种物质组成的混合物2、符合关系式:M1n1 + M2n2 =__M(n1 + n2)二、“十字交叉法”经常出现的情况:有关平均摩尔质量M的计算M1 n1=(M2-__ M)__ MM2 n2=(__M-M1)式中,__M表示混和物的某平均量,M1、M2则表示两组分对应的量。

如__M表示平均分子量,M1、M2则表示两组分各自的分子量,n1、n2表示两组分在混和物中所占的份额,n1:n2在大多数情况下表示两组分物质的量之比,有时也可以是两组分的质量比,如在进行有关溶液质量百分比浓度的计算。

例题1、已知N2、O2混合气体的平均摩尔质量为28.8g/mol,求:混合气体中N2、O2的物质的量之比?解析:N2 28 \ /3.228.8O2 32 / \0.8n(N2):n(O2) = 3.2:0.8 = 4:1例题2、在标准状况下,由H2和O2组成的混合气体的密度等于0.536g/L,求该混合气体中H2和O2的体积比等于多少?解析: = ρ·V m =0.536g/L·22.4L/mol = 12g/molH2 2 \ /2012O2 32/ \ 10V(H2):V(O2) = n(H2):n(O2) = 20:10 = 2:1(一)混和气体计算中的十字交叉法【例题】在常温下,将1体积乙烯和一定量的某气态未知烃混和,测得混和气体对氢气的相对密度为12,求这种烃所占的体积。

十字交叉法的原理及其在化学计算中的应用

十字交叉法的原理及其在化学计算中的应用

十字交叉法的原理及其在化学计算中的应用十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义在使用该方法时将没有真正达到简化思路、快速准确求解的目的从而限制了该方法的推广和应用“十字交叉法”是通常中学化学计算必需掌握的一种计算方法因为用此法解题实用性强、速度快学生若能掌握此方法解题将会起到事半功倍的效果以下是笔者几年来对“十字交叉法”理解及体会. 1 十字交叉法的原理A×a%+B×b%=(A+B)×c%整理变形得: A/B=(c-b)/(a-c )①如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系可得如下十字交叉形式对比①,②两式不难看出:十字交叉关系中(c-b)/(a-c)为组分A和组分B混合时的质量比推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如,质量分数是以质量为基准);若有c-b比a-c的化学意义由平均值,c决定则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c 为质量或质量分数,则(c-b)/(a-c)表示组分A和组分B溶液的质量之比.若c为密度,则(c-b)/(a-c)就表示组分A和组分B的溶液体积之比若c为摩尔质量,则(c-b)/(a-c) 就表示组分A和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.2 .十字交叉法的应用例析:2.1 用于混合物中质量比的计算例1:将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?解:在标准状况下,求出氢气的质量M=1g以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:求得铝与铁质量的比是9/28例2.镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:求得镁与铝的质量比是2/3例3: KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑CaCO3+2HCl=CaCl2+H2O+CO2↑以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g 与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下:因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8 为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).2.2 用于混合物中物质的量比的计算例4 .在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物则十字交叉法如下:求出空气与HCl气体的物质的量比是1/2例5、某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比)?解:由平均质量分数25%,列出十字交叉法如下:Na2SO3中 S % 25.397 % 2.465 %25%Na2SO4中 S % 22.535 % 0.397 %求得Na2SO3与Na2SO4的物质的量比是6/12.3 用于混合物中体积比的计算例6.已知CH4, C2H4及其混合气体在同温同压下分别为 0.71 g / L 、1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?解:以1mol 混合气体密度1.16 g / L作为基准物则十字交叉法如下:CH40.71 0.091.16C2H4 1.25 0.45求得CH4与C2H4的体积比是1/3例7.已经2H2(g)+O2(g)=2H2O(g);△H=-571.6KJ/molC3H8 (g)+5 O2(g)=3CO2(g)+4H2O(1); △H=-2220KJ/mol。

十字交叉法在化学中的应用及总结

十字交叉法在化学中的应用及总结

十字交叉法的原理及其在化学计算中的应用十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义,在使用该方法时将没有真正达到简化思路、快速准确求解的目的,从而限制了该方法的推广和应用.“十字交叉法”是通常中学化学计算必需掌握的一种计算方法,因为用此法解题实用性强、速度快.学生若能掌握此方法解题,将会起到事半功倍的效果.以下是笔者几年来对“十字交叉法”理解及体会.1 十字交叉法的原理:A×a%+B×b%=(A+B)×c%整理变形得:A/B=(c-b)/(a-c )①如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系.可得如下十字交叉形式a c-bc ②b a-c对比①,②两式不难看出:十字交叉关系中(c-b)/(a-c)为组分A和组分B混合时的质量比.推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如,质量分数是以质量为基准);若有c-b比a-c的化学意义由平均值c决定,则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c为质量或质量分数,则(c-b)/(a-c)表示组分A和组分B溶液的质量之比.若c为密度,则(c-b)/(a-c)就表示组分A和组分B的溶液体积之比.若c为摩尔质量,则(c-b)/(a-c)就表示组分A和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.2 十字交叉法的应用例析:2.1 用于混合物中质量比的计算例1将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?解:在标准状况下,求出氢气的质量M=1g,以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:Al 37 / 18 19/561Fe 37/56 19/18求得铝与铁质量的比是9/28例2镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:Mg 5/6 1/91Al 10/9 1/6求得镁与铝的质量比是2/3例3KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑CaCO3+2HCl=CaCl2+H2O+CO2↑以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下: KHCO3100 3484CaCO3 50 16因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).2.2 用于混合物中物质的量比的计算例4在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物则十字交叉法如下:空气29 2.534HCl 36.5 5求出空气与HCl气体的物质的量比是1/2例5某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比)?解:由平均质量分数25%,列出十字交叉法如下:Na2SO3中S % 25.397 % 2.465 %25%Na2SO4 中S % 22.535 % 0.397 %求得Na2SO3与Na2SO4的物质的量比是6/12.3 用于混合物中体积比的计算例6已知CH4, C2H4及其混合气体在同温同压下分别为0.71 g / L 、1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?解:以1mol混合气体密度1.16 g / L作为基准物则十字交叉法如下:CH40.71 0.091.16C2H4 1.25 0.45求得CH4与C2H4的体积比是1/3例7已经2H2(g)+O2(g)=2H2O(g);△H=-571.6千焦C3H8 (g)+5 O2(g)=3CO2(g)+4H2O(1); △H=-2220千焦求H2和C3H8的体积比.解析:lmol C3H8完全燃烧放热为:571.6/2=285.8千焦lmol C3H8完全燃烧放热为:2220千焦lmol混合气体完全燃烧放热为:3847/5=769.4千焦列出十字交叉法如下:H2 285.5 1460.6769.4C3H8 2220 483.6求得H2和C3H8的体积比为3/1例8一种气态烷烃和一种气态烯烃,它们的分子式中所含碳原子数相同,若l体积这种混合烃在O2中充分燃烧,能生成2体积的和2.4体积的水蒸气,则混合中烷烃和烯烃的体积比是多少?解:设混合烃分子式为CxHy、烷烃与烯烃的体积比为CxHy + 3.2 O2= 2 CO2+ 2.4 H2O1 3.2 2 2.4根据原子守衡定理得混合烃分子式为C2H4.8即氢的原子数是4.8.十字交叉法如下:C2H6 6 0.84.8C2H4 4 1.2求得混合物中C2H6和C2H4的体积比是2/32.4 用于混合物中原子个数比的计算例9已知自然界中铱有两种质量数分别为191和193的同位素,而铱的相对分子质量为192.22,求这两种同位素原子个数比.解:以1 mol铱的相对分子质量为192.22为基准则十字交叉法如下:191Ir 1910.78199.2 191Ir / 193Ir = 0.78 / 1.22193Ir 193 1.22求得191Ir 与193Ir 物质的量比39/61 也是它们原子个数比.2.5 用于混合物中质量分数和体积分数的计算例10 把0.200gNaCl和KI混和物溶于水后加入过量AgN03溶液析出0.449 g,求原混和物中NaCl和KI的质量百分数.解:分别计算产生沉淀物的质量,根据化学方程式得:0.200 g NaCl生成0.490 g AgCl0.200 g NaI生成0.283 g AgI则十字交叉法如下:NaCl 0.490 / 0.200 0.1660.449/0.200 m( NaCl ) / m(KI) =0.166/ 0.041KI 0.283 / 0.200 0.041求得NaCl 和 KI 的质量比是4/1,即他们的质量分数分别为80% ,20%例11在标准状况下氢气和一氧化碳的混合气体7L,质量为2.25g,求H2和CO的体积分数?解:设混合气体的摩尔质量为M2.25 / M = 7 / 22.4 L / mol M=7.29列出十字交叉法如下:CO 28 5.27.2 V( CO ) / V( H2 )=5.2 / 20.8H2 2 20.8求得CO与H2体积比是1/4即它们体积分数分别是25% ,75%例12 已知Fe2O3在高炉中发生反应Fe2O3+CO = 2FeO+CO2,反应形成的固体混合物Fe2O3、FeO 中,元素铁和氧的质量之比用m(Fe)∶m(O)表示.若m(Fe)∶m(O)=21∶8,计算Fe2O3被CO还原的质量分数.解析:此题用方程式法甚为烦琐,用十字交叉法则非常简单.即:若Fe2O3全部被还原,则m(Fe)∶m(O)=21∶6;若Fe2O3未被还原,则m(Fe)∶m(O)=21∶9.列出十字交叉法如下:未被还原Fe2O39 / 21 2 / 218/21被还原Fe2O3 6 / 21 1 / 21则未被还原的氧化铁与被还原的氧化铁的物质的量之比为2∶1,所以被还原的氧化铁的质量分数为13×100%=33.3%.例13将20%NaCl溶液与60%NaCl溶液按质量比1:3混合,计算NaCl溶液的质量分数. 解:设20%NaCl溶液为mg,则60%NaCl溶液质量就为3mg,所得NaCl溶液的质量为x%列出十字交叉法如下:m 20% x%-60%x%3m 60 % 20%-x%则m / 3m = ( x % - 60% ) / ( 20% - x % )求出x=50既NaCl质量分数50% 通过上面的论述,我们可以看出,十字交叉法确实简单、方便、容易操作,但值得一提的是,在应用十字交叉法进行运算时,必须满足它的运算基础.十字交叉法应用于处理两组分(或相当于两组分)的混合物的组成计算十分方便.不断积累、总结、发掘新的解题方法,可促进知识的有效迁移、同化和深化对问题的理解,提高解题的效率与正确率.。

“十字交叉法”的原理及应用

“十字交叉法”的原理及应用

“十字交叉法”的原理及应用摘要:本文分析了学生不易掌握“十字交叉法”的原因。

应用平均值概念推导出“十字交叉法”原理,从平均值概念分析“十字交叉法”应用的条件和范围,给出了一种适用解答格式,并从三类二元混合体系和平均值角度对常见题型进行了归纳。

关键词:十字交叉法、平均值“十字交叉法”是平均值法的技巧方法,即利用平均值求解二元混合体系的混合比的一种图解方法。

利用此法求解二元混合体系的混合比具有准确、简便、快速的特点。

因此,它是高考化学计算重要方法之一。

教学实际中,许多同学对此法掌握得不好。

学生出现的问题主要有两种情况:一种情况是遇到可用“十字交叉法”求解的问题,却不知道怎样用“十字交叉法”来求解;第二种情况是虽然知道用“十字交叉法”求解,但却不明确所得到的比值的化学意义,得出错误的计算结果。

我们认为主要原因是在教学中没有抓住平均值概念去推导“十字交叉法”原理、分析应用范围和应用条件,没有给出解题的规范格式,也没从二元混合体系及其平均值角度来归纳常见题型。

本文应用平均值概念推导“十字交叉法”原理、分析其应用条件和范围、归纳主要应用题型,并给出一种较适用的解题规式。

一、“十字交叉法”原理1.用平均值概念推导“十字交叉法”原理以A、B二组分混合物的平均摩尔质量为例推导“十字交叉法”原理。

设混合物平均摩尔质量为M,A、B的物质的质量分别为n(A)和n(B),摩尔质量分别为M(A)和M(B)混合物的总质量为:m(混)= n(A)×M(A) + n(B)×M(B)混合物的总物质的量为:n(混)= n(A) + n(B)根据摩尔质量定义可知混合物的平均摩尔质量为:)()(混混n m M = …… ①将A 和B 混合物的总物质的量n(混)和总质量m(混)代入①式得:)B (n )A (n )B (M )B (n )A (M )A (n M +⨯+⨯= …… ②将②式变形得混合物中两种成分的物质的量之比的数学表达式:M)A (M )B (M M )B (n )A (n --= …… ③ 将③式写成直观的图解形式,即“十字交叉法”的形式:A :M(A) |M - M(B)|╲ ╱ …… ④╱ ╲B :M(B) |M(A) - M |2.“十字交叉法”的应用条件从上述二组分混合物平均摩尔质量推导“十字交叉法”原理得出其应用条件为: ⑴n(A)和n(B)具有加合性,即n(混)= n(A) + n(B)。

十字交叉法的应用

十字交叉法的应用

“十字交叉法”在计算中的应用十字交叉法也称图象法,在化学计算中因具有实用性强,能准确、简单、迅速求解的特点,而被广泛应用。

此法的关键在于能否找到一个中间量(也称平均量)。

数学推导:A×a + B×b = (A+B)×c整理得出:A/B=(c-b)/(a-c)即:a c-bc (a>c>b)b a-c在化学计算中,十字交叉法主要应用在下列五个方面。

一、有关溶液稀释、加浓的计算;(若a、b、c为溶液里溶质的质量分数,则A:B为溶液的质量比)例1、把100g质量分数为10%的KNO3溶液增加到质量分数为20%的KNO3溶液,可采用的方法是()A、蒸发掉45g水B、蒸发掉50g水C、加10g KNO3晶体D、加12.5g KNO3晶体解析:纯水中溶质的质量分数认为0%,纯KNO3晶体的溶质质量分数认为100%,运用“十字交叉法”便可迅速求解。

①设蒸发x g水(原溶液中溶质的质量分数)10 20(取原溶液的质量)20(纯水中溶质的质量分数)0 10 (需蒸发水的质量)100:x=2:1 x=50②设加y g KNO3晶体(原溶液中溶质的质量分数)10 80(取原溶液的质量)20(KNO3晶体中溶质的质量分数)100 10(取KNO3晶体的质量)100:y=8:1 y=12.5所以正确答案为B、D例2、某温度下22% NaNO3溶液150mL加100g水稀释后,其浓度变为14%,求原溶液的物质的量浓度。

解析:设原溶液的质量为x g,利用“十字交叉法”计算,则22141408100:x=8:14 x=175gM(NaNO3)=85g/mol则原溶液物质的量浓度=n/v=(22%×175)/85/0.15=3.0 mol/L二、根据元素的相对原子量和同位素的质量数,求同位素原子百分比(a、b、c为相对原子质量或原子量,则A:B为原子个数比或原子的物质的量之比)例1、硼元素的平均原子量10.8,则自然界中10B和11B的原子个数比为()A、1:1B、1:2C、1:3D、1:4解析:利用“十字交叉法”进行计算10B 10 0.210.8 即10B与11B原子个数之比为1/4 ,选D11B 11 0.8例2、已知35Cl和37Cl平均原子量为35.5,由23Na、35Cl、37Cl三种微粒构成的10g氯化钠中,含37Cl的质量是()解析:①先用“十字交叉法”求35Cl与37Cl的物质的量之比。

解析十字交叉法及在有机化学计算中的应用。

解析十字交叉法及在有机化学计算中的应用。

解析:十字交叉法及在有机化学计算中的应用。

(1)“十字交叉法”的数学理论基础(2)“十字交叉法”在有机化学计算中的应用①若a 、b 为两气体的相对分子质量,C 为混合气体的平均相对分子质量,则x∶y 为混合气体中两组成气体的体积比(或物质的量之比)②若a 、b 为气体分子式中某原子的数目,c 为混合气体平均分子式中某原子数目,则x∶y 为混合气体中两组分气体的体积比(或物质的量之比)。

例1 某烷烃和烯烃的混合气体的密度是1.07g·L -1(标准状况),该烷烃和烯烃的体积比是4∶1。

这两种烃是( )A.CH 4、C 2H 4B.C 2H 6、C 2H 4C.CH 4、C 4H 8D.CH 4、C 3H 6解析 混合气体的平均相对分子质量为1.07×22.4=24,设烷烃和烯烃的相对分子质量分别为M 1、M 2。

12M -2424-M =14,解得4M 1+M 2=120,经检验仅C 符合。

另解:混合气体的平均相对分子质量为1.07×22.4=24,说明肯定有CH 4,设烯烃相对分子质量为M 。

则16×80%+M·20%=24 M =56 C n H 2n =56 14n =56 n =4,故此烯烃为C 4H 8。

答案:C例2 一种气态烷烃和一种气态烯烃,它们分子里的碳原子数相同,将1.0体积这种混合气体在氧气中充分燃烧,生成2.0体积的CO 2和2.4体积的水蒸气(相同条件下测定)。

则混合物中烷烃和烯烃的体积比为( )A.3∶1B.1∶3C.3∶2D.2∶3解析 根据阿伏加德罗定律,依题意可知此混合烃的平均组成式为C 2H 4.8。

又知烷烃和烯烃分子里的碳原子数相同,所以可以断定它们分别是C 2H 6和C 2H 4。

可见无论以怎样的体积比混合,它们的平均碳原子数都是2。

因此,满足题意的烷烃和烯烃的体积比将由它们分子里所含的H 原子数决定。

用十字交叉法求解:答案:D。

十字交叉法及在有机化学计算中的应用

十字交叉法及在有机化学计算中的应用

十字交叉法及在有机化学计算中的应用(1)“十字交叉法”的数学理论基础的数学理论基础(2)“十字交叉法”在有机化学计算中的应用在有机化学计算中的应用①若a、b为两气体的相对分子质量,C为混合气体的平均相对分子质量,则x∶y为混合气体中两组成气体的体积比(或物质的量之比) ②若a、b为气体分子式中某原子的数目,c为混合气体平均分子式中某原子数目,则x∶y 为混合气体中两组分气体的体积比(或物质的量之比)。

(3)在有机化学的计算中,除“十字交叉法”外,还有代数法、差值数、守恒法、讨论法等等,必须灵活运用,具体问题具体解决。

必须灵活运用,具体问题具体解决。

2.确定有机物分子式的基本方法确定有机物分子式的基本方法确定烃及烃的衍生物的分子式的基本途径为:确定烃及烃的衍生物的分子式的基本途径为:【命题趋势分析】【命题趋势分析】求各类有机物分子式及判断它们的结构在有机化学中占有举足轻重的地位,贯穿在有机化学的各章节中,应通过练习熟练掌握。

的各章节中,应通过练习熟练掌握。

核心知识核心知识【基础知识精讲】【基础知识精讲】1.有机物分子式和结构式的确定有机物分子式和结构式的确定(1)利用上述关系解题的主要思路是:首先要判断有机物中所含元素的种类,然后依据题目所给条件确定有机物分子中各元素的原子数目,从而得到分子式,最后由有机物的性质分析判断其结构式。

(2)实验式是表示化合物分子所含各元素的原子数目最简单整数比的式子。

求化合物的实验式即是求该化合物分子中各元素原子的数目(N)之比。

(3)烃的含氧衍生物完全燃烧的化学方程式为:烃的含氧衍生物完全燃烧的化学方程式为:燃烧规律如下:燃烧规律如下:y>4-2z 时,燃烧后,气体体积增大(100℃以上,下同);y =4-2z 时,燃烧前后气体体积不变;时,燃烧前后气体体积不变;y<4-2z 时,燃烧后气体体积减少(不合理)。

上式中若z =0,即为烃燃烧的规律。

2.由实验式确定分子式的方法由实验式确定分子式的方法(1)通常方法:必须已知化合物的相对分子质量[Mr(A)],根据实验式的相对分子质量[Mr(实)],求得含n 个实验式:n = ,即得分子式。

巧用数学作嫁衣十字交叉速解题———例谈十字交叉法在化学解题中的应用

巧用数学作嫁衣十字交叉速解题———例谈十字交叉法在化学解题中的应用

课程篇十字交叉法是进行二组分混合物平均量与组分计算的一种简便方法,在高考中用于解决混合气体的平均相对分子质量及组成、同位素原子百分含量、混合烃的平均分子式及组成等问题。

凡符合关系式M 1×a +M 2×b =M (a+b ),均可运用十字交叉法,从而得到a b =M-M 2M 1-M(M >M 2,M 1>M )。

十字交叉法可表示为a b 。

式中,M 表示混合物的平均量,M 1、M 2则表示两组分对应的量;a 、b 表示两组分在混合物中所占的份额。

一、速解同位素原子(或离子)的百分含量典例1某氯化钠由Na +、35Cl -和37Cl -构成,在熔融条件下,用惰性电极使1mol 这种氯化钠电解,阳极产生的气体对甲烷的相对密度为4.525,则这种氯化钠晶体中35Cl -的数目占氯离子总数的()A.25%B.40%C.60%D.75%【思维分析】本题乍一看,难以下手。

但若注意到氯化钠是由氯的两种同位素离子构成,就可以想到先求出氯元素的平均相对原子质量,再用十字交叉法计算两种离子的个数比。

【解析】用惰性电极电解NaCl ,阳极产生氯气,其相对分子质量为4.525×16=72.4,则氯元素的平均相对原子质量为36.2,根据十字交叉法可得:35Cl -36Cl -所以35Cl -的数目占氯离子总数的百分比为0.80.8+1.2×100%=40%。

答案:B【解法点睛】计算同位素原子(或离子)的个数之比或物质的量之比时,一般都可运用十字交叉法。

该方法运用于二组分混合物的计算时,在代表二组分的两个量和它们的平均值之间的十字交叉图中要对角线找差值,横向看结果。

二、速解混合气体中的体积比问题典例2乙烷和丙烷的混合气体在氧气中完全燃烧后,将产物通过浓硫酸,浓硫酸增重3.06g ,然后通过过氧化钠,过氧化钠的质量增重3.36g ,则原混合气体中乙烷和丙烷的体积之比为()A.2:3B.3:2C.1:1D.1:2【思维分析】本题的常规解法是设未知数,然后根据反应方程式及差量法,列出有关CO 2和H 2O 的量的方程组,最后求解。

十字交叉法在化学中的应用及总结

十字交叉法在化学中的应用及总结

十字交叉法的原理及其在化学计算中的应用十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义,在使用该方法时将没有真正达到简化思路、快速准确求解的目的,从而限制了该方法的推广和应用.“十字交叉法”是通常中学化学计算必需掌握的一种计算方法,因为用此法解题实用性强、速度快.学生若能掌握此方法解题,将会起到事半功倍的效果.以下是笔者几年来对“十字交叉法”理解及体会.1 十字交叉法的原理:A×a%+B×b%=(A+B)×c%整理变形得:A/B=(c-b)/(a-c )①如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系.可得如下十字交叉形式a c-bc ②b a-c对比①,②两式不难看出:十字交叉关系中(c-b)/(a-c)为组分A和组分B混合时的质量比.推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如,质量分数是以质量为基准);若有c-b比a-c的化学意义由平均值c决定,则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c为质量或质量分数,则(c-b)/(a-c)表示组分A和组分B溶液的质量之比.若c为密度,则(c-b)/(a-c)就表示组分A和组分B的溶液体积之比.若c为摩尔质量,则(c-b)/(a-c)就表示组分A和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.2 十字交叉法的应用例析:2.1 用于混合物中质量比的计算例1将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?解:在标准状况下,求出氢气的质量M=1g,以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:Al 37 / 18 19/561Fe 37/56 19/18求得铝与铁质量的比是9/28例2镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:Mg 5/6 1/91Al 10/9 1/6求得镁与铝的质量比是2/3例3KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑CaCO3+2HCl=CaCl2+H2O+CO2↑以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下: KHCO3100 3484CaCO3 50 16因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).2.2 用于混合物中物质的量比的计算例4在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物则十字交叉法如下:空气29 2.534HCl 36.5 5求出空气与HCl气体的物质的量比是1/2例5某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比)?解:由平均质量分数25%,列出十字交叉法如下:Na2SO3中S % 25.397 % 2.465 %25%Na2SO4 中S % 22.535 % 0.397 %求得Na2SO3与Na2SO4的物质的量比是6/12.3 用于混合物中体积比的计算例6已知CH4, C2H4及其混合气体在同温同压下分别为0.71 g / L 、1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?解:以1mol混合气体密度1.16 g / L作为基准物则十字交叉法如下:CH40.71 0.091.16C2H4 1.25 0.45求得CH4与C2H4的体积比是1/3例7已经2H2(g)+O2(g)=2H2O(g);△H=-571.6千焦C3H8 (g)+5 O2(g)=3CO2(g)+4H2O(1); △H=-2220千焦求H2和C3H8的体积比.解析:lmol C3H8完全燃烧放热为:571.6/2=285.8千焦lmol C3H8完全燃烧放热为:2220千焦lmol混合气体完全燃烧放热为:3847/5=769.4千焦列出十字交叉法如下:H2 285.5 1460.6769.4C3H8 2220 483.6求得H2和C3H8的体积比为3/1例8一种气态烷烃和一种气态烯烃,它们的分子式中所含碳原子数相同,若l体积这种混合烃在O2中充分燃烧,能生成2体积的和2.4体积的水蒸气,则混合中烷烃和烯烃的体积比是多少?解:设混合烃分子式为CxHy、烷烃与烯烃的体积比为CxHy + 3.2 O2= 2 CO2+ 2.4 H2O1 3.2 2 2.4根据原子守衡定理得混合烃分子式为C2H4.8即氢的原子数是4.8.十字交叉法如下:C2H6 6 0.84.8C2H4 4 1.2求得混合物中C2H6和C2H4的体积比是2/32.4 用于混合物中原子个数比的计算例9已知自然界中铱有两种质量数分别为191和193的同位素,而铱的相对分子质量为192.22,求这两种同位素原子个数比.解:以1 mol铱的相对分子质量为192.22为基准则十字交叉法如下:191Ir 1910.78199.2 191Ir / 193Ir = 0.78 / 1.22193Ir 193 1.22求得191Ir 与193Ir 物质的量比39/61 也是它们原子个数比.2.5 用于混合物中质量分数和体积分数的计算例10 把0.200gNaCl和KI混和物溶于水后加入过量AgN03溶液析出0.449 g,求原混和物中NaCl和KI的质量百分数.解:分别计算产生沉淀物的质量,根据化学方程式得:0.200 g NaCl生成0.490 g AgCl0.200 g NaI生成0.283 g AgI则十字交叉法如下:NaCl 0.490 / 0.200 0.1660.449/0.200 m( NaCl ) / m(KI) =0.166/ 0.041KI 0.283 / 0.200 0.041求得NaCl 和 KI 的质量比是4/1,即他们的质量分数分别为80% ,20%例11在标准状况下氢气和一氧化碳的混合气体7L,质量为2.25g,求H2和CO的体积分数?解:设混合气体的摩尔质量为M2.25 / M = 7 / 22.4 L / mol M=7.29列出十字交叉法如下:CO 28 5.27.2 V( CO ) / V( H2 )=5.2 / 20.8H2 2 20.8求得CO与H2体积比是1/4即它们体积分数分别是25% ,75%例12 已知Fe2O3在高炉中发生反应Fe2O3+CO = 2FeO+CO2,反应形成的固体混合物Fe2O3、FeO 中,元素铁和氧的质量之比用m(Fe)∶m(O)表示.若m(Fe)∶m(O)=21∶8,计算Fe2O3被CO还原的质量分数.解析:此题用方程式法甚为烦琐,用十字交叉法则非常简单.即:若Fe2O3全部被还原,则m(Fe)∶m(O)=21∶6;若Fe2O3未被还原,则m(Fe)∶m(O)=21∶9.列出十字交叉法如下:未被还原Fe2O39 / 21 2 / 218/21被还原Fe2O3 6 / 21 1 / 21则未被还原的氧化铁与被还原的氧化铁的物质的量之比为2∶1,所以被还原的氧化铁的质量分数为13×100%=33.3%.例13将20%NaCl溶液与60%NaCl溶液按质量比1:3混合,计算NaCl溶液的质量分数. 解:设20%NaCl溶液为mg,则60%NaCl溶液质量就为3mg,所得NaCl溶液的质量为x%列出十字交叉法如下:m 20% x%-60%x%3m 60 % 20%-x%则m / 3m = ( x % - 60% ) / ( 20% - x % )求出x=50既NaCl质量分数50% 通过上面的论述,我们可以看出,十字交叉法确实简单、方便、容易操作,但值得一提的是,在应用十字交叉法进行运算时,必须满足它的运算基础.十字交叉法应用于处理两组分(或相当于两组分)的混合物的组成计算十分方便.不断积累、总结、发掘新的解题方法,可促进知识的有效迁移、同化和深化对问题的理解,提高解题的效率与正确率.。

十字交叉法在化学计算中的应用

十字交叉法在化学计算中的应用

教学研究2013-12一、十字交叉法应用范围说明十字交叉法是一种适用于二元混合体系的计算方法。

简单说,十字交叉法是利用两种或两类物质的某一平均值,求混合物间的某个比值。

二、十字交叉法的解题模式混合成分之一已1物已知平均混合成分之二已2得:混合成分之一差值1混合成分之二差值2=三、应用十字交叉法要注意1.十字交叉法求出的结果是一个比值。

2.比值的单位是进行交叉的两个量的两个分母所代表的量的单位。

3.当应用十字交叉法于平均相对分子质量时,视相对分子质量为有单位,是摩尔mol。

四、应用举例例1.把质量分数为60%的硫酸铜溶液与质量分数为20%的硫酸铜溶液混合配制质量分数为30%的硫酸铜溶液,混合时的质量比为多少?解:用十字交叉法得:质量比即:160%硫酸铜溶液质量10%1==320%硫酸铜溶液质量30%3答:混合时60%与20%的质量比为1:3。

例2.已知CH4与C2H4的混合气体平均相对分子质量为20,求CH4与C2H4混合时的物质的量之比。

解:据十字交叉法得:物质的量之比CH42C2H4281答:甲烷和乙烯的物质的量之比为2:1。

例3.同温同压下CH4和C2H4的混合气体的密度是氢气密度的10倍,此混合气体中CH4和C2H4的体积比为多少?解法一:(可把密度看成标况密度)据十字交叉法得:体积比CH4密度8210×222.422.44C2H4密度22.41答:甲烷与乙烯的体积比为2:1。

解法二:(气体密度之比等于相对分子质量之比)摩尔数之比体积之比CH41622×C2H411答:甲烷与乙烯的体积比为2:1。

例4.CH4和C2H6混合气体充分燃烧,所得CO2和H2O物质的量比为4:7。

求原来混合气体中CH4和C2H6的物质的量之比。

解:据十字交叉法得:H原子个数比CH4和C2H6物质的量之比C个数1142H个数42127C个数1131H个数328CH4C2H6答:原混合气体中CH4和C2H6的物质的量之比为2:1。

化学解题之“十字交叉法”的妙用

化学解题之“十字交叉法”的妙用

化学解题之“十字交叉法”的妙用
在化学中凡可按a1x1+a2x2=ā(x1+x2)或(a1-ā)/(ā-a2)=x2/x1计算的问题,都可以应用”十字交叉法计算。

“十字交叉法是化学计算中广泛使用的解题之一,它具有形象,直观的特点。

如何计算呢?首先应先写出混合两组分对应的量a1 、a2 和交叉点的平均值ā,然后按斜线作差取绝对值即得出相应物质的配比关系,其”十字交叉法为组分1 a1 ā-a2 x1 x1为组分分数
ā ―=
组分2 a2 a1-ā x2 x2为组分分数
“十字交叉法适用的范围是凡是具有均一性、加和性的混合物,都可运用这种进行计算,但须注意,计算所得比值是质量比还是物质的量比,下面介绍几种常见”十字交叉法的计算
一、相对原子质量”十字交叉法
元素的相对原子质量是元素的各天然同位素相对原子质量和所占的含量算出来的平均值,当仅有两种天然同位素时有等式A1W1+A2W2=&#256;W,用十字交*法易于求解两种同位素的原子个数比,这种叫做相对原子质量”十字交叉法。

例1已知氯在自然界中有两种稳定的同位素35Cl和37Cl,其相对原子质量为35、37,求自然界中35Cl所占的原子百分数( )
A、31.5%
B、 77.5%
C、22.5%
D、69.5%
解析若设自然界中35Cl所占的百分数为x1,37Cl占x2,则有35x1+37x2=35.45(x1+x2)所以可以用”十字交叉法
Cl35。

“十字交叉”法的妙用

“十字交叉”法的妙用

“十字交叉”法的妙用化学计算是从数量的角度研究物质的组成、结构、性质变化,涉及到的化学基本概念多,解法灵活多变,且需要跨学科的知识和思维方法,所以该知识点一直是中学化学教与学的难点,但因能较好地训练学生的逻辑思维能力和思维的敏捷性,又能考察学生的双基知识,所以是教学重点,也是各种考试的热点。

如何进行这方面知识的教学,使学生理解和掌握这些知识、发展学力,一直是各位老师研究的热门话题。

本文拟就教学中所得,粗浅地谈一谈“十字交叉法”在化学计算中的应用。

一、适用范围:“十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。

例1:实验测得乙烯与氧气的混合气体的密度是氢气的14.5倍。

可知其中乙烯的质量分数为( )A.25.0%B.27.6%C.72.4%D.75.0%解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比(当然也可以求两组分的质量比,但较繁,不可取),再进一步求出质量分数。

这样,乙烯的质量分数是:ω(C 2H 4)=321283283⨯+⨯⨯×100 %=72.4% 答案:C 。

(解毕)二、十字交叉法的解法探讨:1.十字交叉法的依据:对一个二元混合体系,可建立一个特性方程: ax+b(1-x)=c(a 、b 、c 为常数,分别表示A 组分、B 组分和混合体系的某种平均化学量,如:单位为g/mol 的摩尔质量、单位为g/g 的质量分数等) ;x 为组分A 在混合体系中某化学量的百分数(下同)。

如欲求x/(1-x)之比值,可展开上述关系式,并整理得: ax -bx=c -b 解之,得: b a c a x b a b c x --=---=1, 即:ca b c x x --=-1 2.十字交叉法的常见形式:为方便操作和应用,采用模仿数学因式分解中的十字交叉法,记为:c C 2H 4 28 O 2 32 29 3 1组分1 a c -b 混合物组分2 b a -c C3.解法关健和难点所在:十字交叉法应用于解题快速简捷,一旦教给了学生,学生往往爱用,但是也往往出错。

化学计算中十字交叉应用技巧举例

化学计算中十字交叉应用技巧举例
-c
例 1: 实验测得乙烯与氧气的混合气体的密度是氢气的 14.5 倍。 可知其中乙烯的质量分数为 ( ) A.25.0% B.27.6% 解法一:数学法 解析:物质的相对分子质量(简称:式量)Mr=m(质量)/n(物质的量); 混合物的平均式量 Mr=m(混合物总质量)/n(混合物总物质的量) =(������������1 × ������1 + ������������2 × ������2 + ⋯ )/(������1 + ������2 + ⋯ ) =Mr1×组分 1 的物质的量百分数+Mr2×组分 2 的物质的量百分数+„„„ 解:设乙烯与氧气物质的量百分数分别为 x、y 有已知的:混合气体的平均式量=14.5×2=29 Mr(C2H4)=28 Mr(O2)=32 则有:28x+32y=29 且 x+y=1 解方程组得:x=0.75 y=0.25 或
有氢原子的平均值 5 得: CH4: 4 5 C2H6 2828 6 1 1 1 = 1
所以假设成立;故选:D 同理;可讨论 CH4 和 C3H8 故选:D CH4 和 C4H10; (略)都不成立
故答案选:C 。
例 2.在一定条件下, 将 22.4LCH4 和某气态烷烃的混合气体,充分燃烧, 测知生成 CO2 共 33.6L,
平均分子式:C1.5H5。所以另一种气态烷烃可能为:C2H6 、C3H8 、C4H10 讨论:若为 CH4 和 C2H6 有碳原子的平均值 1.5 得: CH4: 1 1.5 C2H6 2828 2 0.5 0.5 1 = 1
x y
C.72.4%
D.75.0%
= 3: 1(则认为:混合
组分中乙烯有 0.75mol 或 3mol 甲烷有 0.25mol 或 1mol) 则乙烯的质量分数=

化学十字交叉法的原理及应用

化学十字交叉法的原理及应用

化学十字交叉法的原理及应用十字交叉法的介绍十字交叉法可用于溶液浓度的计算,例如溶液的稀释、浓缩或混合等计算题。

使用此法,使解题过程简便、快速、正确。

下面通过例题介绍十字交叉法的原理。

同一物质的甲、乙两溶液的百分比浓度分别为a%、b%(a%>b%),现用这两种溶液配制百分比浓度为c%的溶液。

问取这两种溶液的质量比应是多少?同一物质的溶液,配制前后溶质的质量相等,利用这一原理可列式求解。

设甲、乙两溶液各取m1、m2克,两溶液混合后的溶液质量是(m1+m2)。

列式m1a%+m2b%=(m1+m2)c%把此式整理得:m1m2=c-ba-c,m1m2就是所取甲、乙两溶液的质量比。

为了便于记忆和运算,若用C浓代替a,C稀代替b,C混代替C,m浓代替m1,m稀代替m2,把上式写成十字交叉法的一般形式,图示如下:图示中m浓m稀就是所求的甲、乙两溶液的质量比。

这种运算方法,叫十字交叉法。

在运用十字交叉法进行计算时要注意,斜找差数,横看结果。

十字交叉法的应用1.有关混合溶液的计算例1.现有20%和5%的两种盐酸溶液,若要配制600克15%的盐酸溶液,各需20%和5%的盐酸溶液多少克?分析与解:本题是用两种已知浓度的溶液来配制所需浓度的溶液,看似是求溶液的质量,实质是先求出两种浓度溶液的质量比,然后问题就迎刃而解。

用十字交叉法由图示可知,20%盐酸溶液与5%盐酸溶液的质量比应为2∶1∴20%盐酸溶液的质量600ⅹ23=400克5%盐酸溶液的质量600ⅹ13=200克2.有关改变溶剂质量的溶液浓度的计算例2.把20%的氯化钠溶液100克,加水稀释成浓度为4%的溶液,问需加水多少克?分析与解:本题是用水稀释改变溶液浓度的计算题,将水视为浓度为0%的溶液。

用十字交叉法由图示可知,20%氯化钠溶液与加入水的质量比应为m浓∶m水=4∶16=1∶4∴需加水的质量4ⅹ100=400克例3.现有200克浓度为10%的硝酸钾溶液,若要使其浓度变为20%,则需蒸发掉多少克水?分析与解:本题是蒸发水改变溶液浓度的计算题,将水视为浓度为0%的溶液。

十字交叉法在化学计算中的应用

十字交叉法在化学计算中的应用

十字交叉法在化学计算中的应用化学计算是高考每年必考的题目,而计算中的巧解巧算又是高考命题的热点,特别是在选择、填空题中体现尤为突出。

那么如何来对付这类题型呢?这就要求我们教师在平时的教学中,经常给学生介绍一下这方面的知识;今天咱们就来讨论“十字交叉法”在化学计算中的应用,十字交叉法这个名词大家很熟悉,在许多的资料中也都有论述,但学生在实际应用中还存在许多问题,按十字交叉法求出的结果往往有出入。

那么这是怎么回事呢?如何来解决这个问题呢?下面就我在教学中的做法和大家共同商讨一下。

一、 十字交叉法公式(大家很熟悉)二、 十字交叉法适用范围凡是能用二元一次方程组求解的题,均可用十字交叉法。

三、 防止滥用防止滥用是十字交叉法教学的重点和难点,如何突破这个难点呢?我在教学中是先给学生写出两句话:1、用十字交叉法求出的比值该是什么比就是什么比,不是想是什么比就是上什么比。

换句话说不是题中求什么比就是什么比。

2、每几份(始终不变的物理量)是多少(不断变化的物理量),用十字交叉法求出的比值是不变的物理量之比。

然后通过实例加以分析理解:例1:若Na 2CO 3和NaHCO 3的混合物的平均摩尔质量为:M =100g ·mol -1 则用十字交叉法求出的比值该是什么比呢?如果我们把摩尔质量拆开来理解的话,就是:其中的物质的量是始终不变的,即都是1 mol ,而质量是在不断变化者,分别是106 g 、84 g 和100 g ,所以按十字交叉法公式求出的比值应该是始终不变的物质的量之比,当然可以是以物质的量成正比例的物理量之比,如相同条件下气体的体积之比等。

练习1:已知空气的相对分子质量为28.8,则空气中N 2和O 2质量比为 , 体积比为 ,物质的量之比为 (忽略空气中的其他气体)。

X 2 X 1—XXX 1 X —X 2 ( )注:推断号,不是等号摩尔质量 :106 g ·mol -1 84 g ·mol -1 100 g ·mol -1 物质的量: 1 mol 1 mol 1 mol (始终不变) 质量: 106 g 84 g 100 g (不断变化) { 物质 Na 2CO 3 NaHCO 3 混合物[分析(分析上述数量及其单位)21X X →X X X X --12我常写成分析:相对分子质量在数值上等于摩尔质量,所以按十字交叉法公式求出的比值也应为物质的量之比,且物质的量之比等于体积之比,而质量等于物质的量乘以摩尔质量。

(完整版)化学十字交叉法

(完整版)化学十字交叉法

“十字交叉”法的妙用化学计算是从数量的角度研究物质的组成、结构、性质变化,涉及到的化学基本概念多,解法灵活多变,且需要跨学科的知识和思维方法,所以该知识点一直是中学化学教与学的难点,但因能较好地训练学生的逻辑思维能力和思维的敏捷性,又能考察学生的双基知识,所以是教学重点,也是各种考试的热点。

如何进行这方面知识的教学,使学生理解和掌握这些知识、发展学力,一直是各位老师研究的热门话题。

本文拟就教学中所得,粗浅地谈一谈“十字交叉法”在化学计算中的应用。

一、适用范围:“十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。

例1:实验测得乙烯与氧气的混合气体的密度是氢气的14.5倍。

可知其中乙烯的质量分数为( )A.25.0%B.27.6%C.72.4%D.75.0%解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比(当然也可以求两组分的质量比,但较繁,不可取),再进一步求出质量分数。

这样,乙烯的质量分数是:ω(C 2H 4)=321283283⨯+⨯⨯×100 %=72.4% 答案:C 。

(解毕)二、十字交叉法的解法探讨:1.十字交叉法的依据:对一个二元混合体系,可建立一个特性方程: ax+b(1-x)=c(a 、b 、c 为常数,分别表示A 组分、B 组分和混合体系的某种平均化学量,如:单位为g/mol 的摩尔质量、单位为g/g 的质量分数等) ;x 为组分A 在混合体系中某化学量的百分数(下同)。

如欲求x/(1-x)之比值,可展开上述关系式,并整理得: ax -bx=c -b 解之,得:b ac a x b a b c x --=---=1, 即:ca b c x x --=-1 2.十字交叉法的常见形式:为方便操作和应用,采用模仿数学因式分解中的十字交叉法,记为:3.解法关健和难点所在:c C 2H 4 28 O 2 32 29 3 1组分1 a c -b 混合物 组分2 b a -c C十字交叉法应用于解题快速简捷,一旦教给了学生,学生往往爱用,但是也往往出错。

十字交叉法在化学计算中的运用

十字交叉法在化学计算中的运用

十字交叉法在化学计算中的运用十字交叉法是一种常见的化学计算方法,通常用于计算化学式、反应式、反应物质量、产物物质量等。

该方法的原理简单,适用性广泛,因此被广泛应用于化学教育和科学研究中。

一、十字交叉法的基本原理十字交叉法是一种基于化学化学计算的原则,其基本思想是利用反应的化学方程式中各个物质的摩尔比例关系来计算物质的质量和化学式。

对于化学方程式中涉及的各种物质,我们需要分别计算其摩尔数,然后根据摩尔比例关系求出所需的其他物质的摩尔数和质量。

具体地说,我们需要先根据化学方程式来确定各个反应物的摩尔数,然后根据摩尔比例关系来计算所得物质的摩尔数,最后根据摩尔质量关系来计算所需的质量。

二、十字交叉法的应用示例下面我们来看一个具体的计算示例:题目:有9.5克的硫酸和20g的铁,它们反应生成硫化氢和铁(Ⅱ)离子。

请计算反应的化学式和干燥的硫化氢的体积,温度为25℃,压力为常压。

解答:步骤一:根据题目中的描述,我们可以写出以下化学方程式:H2SO4 + Fe → FeSO4 + H2S步骤二:计算反应中硫酸和铁的摩尔数。

硫酸的摩尔数 = 质量÷ 摩尔质量= 9.5 ÷ 98 =0.0969 mol铁的摩尔数 = 质量÷ 摩尔质量= 20 ÷ 56 = 0.3571 mol 步骤三:根据化学方程式和摩尔比例关系计算产物的摩尔数和质量。

根据方程式,化合物中硫酸与铁的摩尔比为1:1,因此硫化氢的摩尔数和铁的摩尔数相同。

硫化氢的摩尔数 = 铁的摩尔数 = 0.3571 mol硫化氢的质量 = 摩尔数× 摩尔质量= 0.3571 × 34.08 = 12.17 g步骤四:计算干燥的硫化氢的体积。

根据摩尔体积关系,1摩尔气体在标准状态下的体积为22.4升,因此:干燥的硫化氢体积 = 摩尔数× 22.4 L/mol = 0.3571 × 22.4 = 8 L步骤五:考虑温度和压力的影响。

十字交叉法在中学化学计算中的常见应用

十字交叉法在中学化学计算中的常见应用

十字交叉法在中学化学计算中的常见应用摘要:十字交叉法是一种数学运算技巧,也是有关混合物的计算中一种常用的解题方法,它能将某些本来需要通过一元二次方程或二元一次方程组求解的计算转化为简单的算术运算,因而具有快速、准确的特点,灵活运用十字交叉法解答题目,不仅可提高解题的准确度和速度,而且也可打破常规思维,培养思维的广阔性。

关键词:十字交叉法;数学原理;混合物;应用十字交叉法的数学原理:1.已知甲气体的摩尔质量为A克/mol,乙气体的摩尔质量为B克/mol,甲、乙组成的混合气体的平均摩尔质量为C克/mol,且有A>C>B,试求混合气体中甲、乙两种气体的物质的量的比。

解析:根据公式:2.将含KNO3质量分数分别为α1和α2的两种溶液混合后,混合溶液中KNO3的质量分数为α3,且α2>α3>α1,求两种KNO3溶液的质量比。

总结:以上是十字交叉法的数学推导,有关十字交叉法的运算,实质是求二元混合物平均值的逆运算。

下面从五个方面介绍十字交叉法在中学化学计算中的常见应用。

一、求同位素的原子个数比A.1:2B.1:3C.1:4D.1:1解析:本题应先求硼的原子量,再根据两种同位素的质量数用十字交叉法求出两种同位素的物质的量之比。

设硼的相对原子质量为x,根据B原子守恒可得关系式:2B————B2H62x g 22.4L5.4g 5.6L2x:5.4 = 22.4:5.6x=10.8二、求混合物中各组分物质的量的比或质量比例2:某铁锌合金30.25克溶于足量盐酸后,产生标准状况下的气体11.2升,求合金中铁和锌两金属的物质的量的比是多少?解析:Zn、Fe在与HCl反应时均是+2价,故合金R必也是+2价。

R与HCl反应时方程式的系数必与Zn、Fe各自与HCl反应时方程式的系数一致。

设:Zn、Fe合金是R,令其平均摩尔质量是M克/mol,R + 2HCl = RCl2+ H2↑1mol 22.4Ln 11.2L则合金中Zn、Fe两金属的物质的量之比是1:1。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十字交叉法的原理及其在化学计算中的应用
十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义,在使用该方法时将没有真正达到简化思路、快速准确求解的目的,从而限制了该方法的推广和应用.“十字交叉法”是通常中学化学计算必需掌握的一种计算方法,因为用此法解题实用性强、速度快.学生若能掌握此方法解题,将会起到事半功倍的效果.以下是笔者几年来对“十字交叉法”理解及体会.
1 十字交叉法的原理:A×a%+B×b%=(A+B×c% 整理变形得:
A/B=(c-b/(a-c ①
如果我们以100 g溶液所含的溶质为基准
上式表示溶液混合时它们的质量比与有关质量分数比的关系.
可得如下十字交叉形式
a c-b
c ②
b a-c
对比①,②两式不难看出:十字交叉关系中(c-b/(a-c为组分A和组分B混合时的质量比.推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如,质量分数是以质量为基准;若有c-b比a-c的化学意义由平均值c
决定,则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c为质量或质量分数,则(c-b/(a-c表示组分A和组分B溶液的质量之比.若c为密度,则(c-b/(a-c 就表示组分A和组分B的溶液体积之比.若c为摩尔质量,则(c-b/(a-c 就表示组分A 和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.
2 十字交叉法的应用例析:
2.1 用于混合物中质量比的计算
例1 将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?
解:在标准状况下,求出氢气的质量M=1g,以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:
Al 37 / 18 19/56
1
Fe 37/56 19/18
求得铝与铁质量的比是9/28
例2 镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?
解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:
Mg 5/6 1/9
1
Al 10/9 1/6
求得镁与铝的质量比是2/3
例3 KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?
解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑
CaCO3+2HCl=CaCl2+H2O+CO2↑
以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3 、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下:
KHCO3 100 34
84
CaCO3 50 16
因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8 为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).
2.2 用于混合物中物质的量比的计算
例4 在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比
解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物则十字交叉法如下:空气 29 2.5
34
HCl 36.5 5
求出空气与HCl气体的物质的量比是1/2
例5某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比?
解:由平均质量分数25%,列出十字交叉法如下:
Na2SO3 中 S % 25.397 % 2.465 %
25%
Na2SO4 中 S % 22.535 % 0.397 %
求得Na2SO3与Na2SO4 的物质的量比是6/1
2.3 用于混合物中体积比的计算
例6已知CH4, C2H4及其混合气体在同温同压下分别为0.71 g / L 、1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?
解:以1mol 混合气体密度1.16 g / L作为基准物则十字交叉法如下:
CH4 0.71 0.09
1.16
C2H4 1.25 0.45
求得CH4与C2H4 的体积比是1/3
例7 已经 2H2(g+O2(g=2H2O(g;△H=-571.6千焦
C3H8 (g+5 O2(g=3CO2(g+4H2O(1; △H=-2220千焦
求H2和C3H8的体积比.
解析:lmol C3H8完全燃烧放热为:571.6/2=285.8千焦
lmol C3H8完全燃烧放热为:2220千焦
lmol混合气体完全燃烧放热为:3847/5=769.4千焦
列出十字交叉法如下:
H2 285.5 1460.6
769.4
C3H8 2220 483.6
求得H2和C3H8 的体积比为3/1
例8一种气态烷烃和一种气态烯烃,它们的分子式中所含碳原子数相同,若l体积这种混合烃在O2中充分燃烧,能生成2体积的和2.4体积的水蒸气,则混合中烷烃和烯烃的体积比是多少?
解:设混合烃分子式为CxHy、烷烃与烯烃的体积比为
CxHy + 3.2 O2 = 2 CO2+ 2.4 H2O
1 3.
2 2 2.4
根据原子守衡定理得混合烃分子式为C2H4.8 即氢的原子数是 4.8.十字交叉法如下:
C2H6 6 0.8
4.8
C2H4 4 1.2
求得混合物中C2H6和C2H4 的体积比是2/3
2.4 用于混合物中原子个数比的计算
例9已知自然界中铱有两种质量数分别为191和193的同位素,而铱的相对分子质量为192.22,求这两种同位素原子个数比.
解:以1 mol铱的相对分子质量为192.22为基准则十字交叉法如下:
191Ir 1910.78
199.2 191Ir / 193Ir = 0.78 / 1.22
193Ir 1931.22
求得191Ir 与193Ir 物质的量比39/61 也是它们原子个数比.
2.5 用于混合物中质量分数和体积分数的计算
例10 把0.200gNaCl和KI混和物溶于水后加入过量AgN03溶液析出0.449 g,求原混和物中NaCl和KI的质量百分数.
解:分别计算产生沉淀物的质量,根据化学方程式得:
0.200 g NaCl生成0.490 g AgCl
0.200 g NaI生成0.283 g AgI
则十字交叉法如下:
NaCl 0.490 / 0.200 0.166
0.449/0.200 m( NaCl / m(KI =0.166/ 0.041
KI 0.283 / 0.200 0.041
求得NaCl 和 KI 的质量比是4/1,即他们的质量分数分别为80% ,20%
例11在标准状况下氢气和一氧化碳的混合气体7L,质量为2.25g,求H2和CO的体积分数?
解:设混合气体的摩尔质量为M
2.25 / M = 7 / 22.4 L / mol M=7.29
列出十字交叉法如下:
CO 28 5.2
7.2 V( CO / V( H2 =5.2 / 20.8
H22 20.8
求得CO与H2体积比是1/4即它们体积分数分别是25% ,75%
例12 已知Fe2O3在高炉中发生反应Fe2O3+CO = 2FeO+CO2,反应形成的固体混合物Fe2O3、FeO中,元素铁和氧的质量之比用m(Fe∶m(O表示.若m(Fe∶m(O=21∶8,计算Fe2O3被CO还原的质量分数.
解析:此题用方程式法甚为烦琐,用十字交叉法则非常简单.即:若Fe2O3全部被还原,则m(Fe∶m(O=21∶6;若Fe2O3未被还原,则m(Fe∶m(O=21∶9.列出十字交叉法如下:
未被还原Fe2O39 / 21 2 / 21
8/21
被还原Fe2O3 6 / 21 1 / 21
则未被还原的氧化铁与被还原的氧化铁的物质的量之比为2∶1,所以被还原的氧化铁的质量分数为13×100%=33.3%.
例13将20%NaCl溶液与60%NaCl溶液按质量比1:3混合,计算NaCl溶液的质量分数.
解:设20%NaCl溶液为mg,则60%NaCl溶液质量就为3mg,所得NaCl溶液的质量为x%
列出十字交叉法如下:
m 20% x%-60%
x%
3m 60 % 20%-x%
则 m / 3m = ( x % - 60% / ( 20% - x % 求出x=50既NaCl质量分数50%通过上面的论述,我们可以看出,十字交叉法确实简单、方便、容易操作,但值得一提的是,在应用十字交叉法进行运算时,必须满足它的运算基础.十字交叉法应用于处理两组分(或相当于两组分的混合物的组成计算十分方便.不断积累、总结、发掘新的解题方法,可促进知识的有效迁移、同化和深化对问题的理解,提高解题的效率与正确率.。

相关文档
最新文档