2017-2018北京市东城区初三数学期末试题及答案2018.1

合集下载

2017-2018学年九年级数学期末试卷及答案

2017-2018学年九年级数学期末试卷及答案

2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。

全卷共计100分。

考试时间为90分钟。

第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。

2017-2018北京东城初三上学期期末(含答案)

2017-2018北京东城初三上学期期末(含答案)

东城区2017-2018学年度第一学期期末教学统一检测初三语文2018.1一、基础运用(共15分)为了促进青少年学生健康成长,学校的文学社团组织大家来到位于朝阳区文学馆路45号的中国现代文学馆参观学习。

现代文学馆主要展示中国现当代文学发展史以及重要作家和文学流派的文学成就,是现当代文学研究的阵地。

请你根据要求,完成1-7题。

1.阅读下面展厅里的一段话,在横线处填入正确的字形和读音。

(2分)1917年的文学革命,在中国文学史上树起了一座丰碑,标志着古典文学的终结和现代文学的发端。

郭沫若、茅盾、老舍、曹禺等一大批优秀的中国作家怀着强国富民的理想,虽饱受苦难而不悔,致力于文学的现代化与民族化,在对外来文化的吸收、融汇与对传统文化的革新创造中,不断探索和实践,为中国文学贡献了宝贵的精神财富。

改革开放以来,作家们关注现实,贴近时代,贴近生活,以敏锐的洞chá____力担当思想解放的先锋,在文学的题材、风格和手法上不断推陈出新,为推动我国社会的文明进步,为构建中国特色的文学新局面,做出了积极的贡献。

我们深信,经过一代代中国作家前赴.____后继的奋斗与努力,中国文学一定会以崭新的风貌矗立在世界文学之林。

2.集合时间就要到了,但你的好友顺顺还没到。

原来他到了下图中星号处,但不知道路该怎么走。

请你给步行的他发一条指路信息。

(2分)答:___________3.终于你等到了姗姗来迟的顺顺,他激动地说:“你的指路太暖.心了!”下列选项中加粗词语与上句中“暖.心”的“暖”含义最贴近的一项是(2分)A.北京的冬天十分寒冷,人们出门时总是习惯的带上手套暖.手。

B.2017年11月7日,因突然降温,北京市启动了提前试供暖.。

C.东城区委开展了“支援西部,情暖.人间”爱心捐赠公益活动。

D.到了10月,装修市场明显回暖.,呈现出了良好的发展态势。

4.顺顺突然指着下面的图问你:“这幅油画里的主要人物是谁呢?”你笑了笑,说:“这幅画中的主要人物就是咱们读过的名著《__①__》中的__②__和__③__。

2017-2018学年北京市东城区2018届初三第一学期期末数学试题含答案

2017-2018学年北京市东城区2018届初三第一学期期末数学试题含答案

1东城区2017-2018学年度第一学期期末教学统一检测初三数学学校 班级 姓名 考号考生须知1•本试卷共8页,共三道大题,28道小题,满分100分•考试时间120分钟. 2 •在试卷和答题卡上准确填写学校名称、姓名和准考证号 3 •试题答案一律填涂或书写在答题卡上,在试卷上作答无效 4 •在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答 •5•考试结束,将本试卷、答题卡和草稿纸一并交回、选择题(本题共16分,每小题2分) 下面各题均有四个选项,其中只有一个是符合题意的2. 边长为2的正方形内接于-M ,则二M 的半径是A . 1B . 2C . 一2D . 2 “ 22 _ 23. 若要得到函数 y = x ,1+2的图象,只需将函数 y =x 的图象A . 先向右平移 1个单位长度,再向上平移 2个单位长度B . 先向左平移 1个单位长度,再向上平移 2个单位长度C . 先向左平移 1个单位长度,再向下平移 2个单位长度D.先向右平移 1个单位长度,再向下平移2个单位长度4.点 A , B x 2,y 2都在反比例函数y =-的图象上,若 xx 1< x 2v 0,则A .y 2> %>°B .y > y 2>0C . y 2V %<0D . y < y 2<05. A , B 是上的两点,OA=1 , AB 的长是1 n ,则/ AOB 的度数是3A . 30B . 60°C . 90°D . 1202A .①③B .①④ C.②③D .②④6 .△ DEF 和厶ABC 是位似图形,点 O 是位似中心,点 D , E , F 分别是OA,OB,OC 的中点,若△ DEF 的面积是2,则厶ABC 的面积是 A . 2 B . 4 C . 6D . 827.已知函数y =-x bx c ,其中b >0, c v 0,此函数的图象可以是&小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它 的成活率如移植棵数(n )成活数(m )成活率(m/n ) 移植棵数(n ) 成活数(m ) 成活率(m/n )50470.940 15001335 0.890 2702350.870350032030.915 4003690.923 70006335 0.905 7506620.88314000126280.902下面有四个推断:① 当移植的树数是1 500时,表格记录成活数是 1 335,所以这种树苗成活的概率是0.890;② 随着移植棵数的增加,树苗成活的频率总在 0.900附近摆动,显示出一定的稳定性, 可以估计树苗成活的概率是 0.900;③ 若小张移植10 000棵这种树苗,则可能成活9 000棵;④ 若小张移植20 000棵这种树苗,则一定成活 18 000棵. 其中合理的是1 E 1/L、填空题(本题共16分,每小题2分)19 .在Rt △ ABC 中,/ C=90 ° COS A = —, AB=6,贝U AC 的长是3210.若抛物线y=x 2x c与x轴没有交点,写出一个满足条件的c的值:13.某校九年级的4位同学借助三根木棍和皮尺测量校园内旗杆的高度•为了方便操作和观察,他们用三根木棍围成直角三角形并放在高1m的桌子上,且使旗杆的顶端和直角三角形的斜边在同一直线上(如图)•经测量,木棍围成的直角三角形的两直角边AB,OA的长分别为0.7m,0.3m,观测点O到旗杆的距离OE为6 m,则旗杆MN的高度为 _____________ 11.如图,在平面直角坐标系xOy中,若点B与点A关于点O中心对称,则点B的坐标为11题图12题图12.如图,AB是、O的弦,C是AB的中点,连接OC并延长交、O于点D.若CD=1,AB=4,则、O的半径是_______________ .第13题图314.、O是四边形ABCD的外接圆,AC平分/ BAD,则正确结论的序号是.①AB=AD; ②BC=CD; ③ AB 二AD ;④/ BCA= / DCA;⑤ BC 二CD15.已知函数y =x2-2x-3,当-1< X W a时,函数的最小值是-4,则实数a的取值范围是16•如图,在平面直角坐标系xOy中,已知A 8,0 ,C 0,6 ,矩形OABC的对角线交于点P,点M在经过k点P的函数y x>0的图象上运动,k的值X为 _____ , OM长的最小值为_______________ .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27,每小题7分,第28题8分)417 •计算:2cos30 ^2sin 45 °+3tan 60°+ 1-J2 .18. 已知等腰厶ABC内接于点0, AB=AC,Z BOC=100 °求厶ABC的顶角和底角的度519. 如图,在四边形ABCD中,AD // BC, AB丄BC,点E在AB上,/ DEC =90 °(1) 求证:△ ADE BEC.(2) 若AD=1 , BC=3, AE=2,求AB 的长.20. 在△ ABC 中,/ B=135 ° AB = 2^2 , BC=1.(1)求厶ABC的面积;(2 )求AC的长.21•北京2018新中考方案规定,考试科目为语文、数学、外语、历史、地理、思想品德、物理、生化(生物和化学)、体育九门课程.语文、数学、外语、体育为必考科目•历史、地理、思想品德、物理、生化(生物和化学)五科为选考科目,考生可以从中选择三个科目参加考试,其中物理、生化须至少选择一门.(1)写出所有选考方案(只写选考科目);(2 )从(1)的结果中随机选择一种方案,求该方案同时包含物理和历史的概率6722. 如图,在Rt △ ABC 中,/ A=90° Z C=30。

2017-2018上学期九年级数学期末试卷

2017-2018上学期九年级数学期末试卷

2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。

东城区2017—2018学年度第二学期期末试卷习题含解析与包括答案

东城区2017—2018学年度第二学期期末试卷习题含解析与包括答案

北京市东城区 2017--2018 学年第二学期期末考试初一数学试卷一、选择题(此题共30 分,每题 3 分)下边各题均有四个选项,此中只有一个是切合题意的..1.9 的平方根为A.±3B.﹣ 3C.3D.2.以下实数中的无理数是A.B.0C.1.3D23.如图,为预计池塘岸边A, B 的距离,小明在池塘的一侧选用一点 O,测得 OA=15 米, OB=10 米, A, B 间的距离可能是A. 30米B. 25 米. 20米D.5米C4.以下检查方式,你以为最适合的是A.认识北京市每日的流感人口数,采纳抽样检查方式B.游客上飞机前的安检,采纳抽样检查方式C.认识北京市居民”一带一路”期间的出行方式,采纳全面检查方式D.日光灯管厂要检测一批灯管的使用寿命,采纳全面检查方式5.如图,已知直线 a//b,∠ 1=100°,则∠ 2 等于A. 60°B.80°C.100°D.70°6.象棋在中国有着三千多年的历史,因为器具简单,兴趣性强,成为流行极为宽泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为 (4 ,3) , ( - 2, 1) ,则表示棋子“炮”的点的坐标为A.( -3,3)B.(0 ,3)C.(3 , 2)D.(1 ,3)7.若一个多边形的内角和等于外角和的 2 倍,则这个多边形的边数是..C.6D.8A 4B 58.若 m>n,则以下不等式中必定建立的是A.m+2< n+3B. 2m<3n C.a﹣m<a﹣n D. ma2>na29.在大课间活动中,同学们踊跃参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制以下图的部分频数散布直方图(从左到右挨次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于 130 次的成绩为优异,全校共有 1200 名学生,依据图中供给的信息,以下说法不.A.第四小组有 10 人B.第五小组对应圆心角的度数为45°C.本次抽样检查的样本容量为50D.该校“一分钟跳绳”成绩优异的人数约为480人10.以下图,以下各三角形中的三个数之间均拥有同样的规律,依据此规律,最后一个三角形中 y 与 n 之间的关系是 ()A.y=2n+1B.y=2n+n C.y=2n+1+n D. y=2n+n+1二、填空题:(此题共16 分,每题 2 分,将答案填在题中横线上)11.如图,盖房屋时,在窗框未安装好以前,木匠师傅经常先在窗框上斜钉一根木条,这类做法的依照是12.用不等式表示:a与 2 的差大于 -113.把无理数17 ,11 , 5 , 3 表示在数轴上,在这四个无理数中,被墨迹(以下图)覆遮住的无理数是.20,则 a b=14.若(a -3) b 215. 如图,将一副三角板叠放在一同,使直角的极点重合于点O,AB//OC,DC与 OB交于点E , 则∠ DEO的度数为.16.在平面直角坐标系中,若 x 轴上的点P到 y 轴的距离为3,17.如图,ABC中,点 D 在 BC 上且 BD=2DC ,点 E 是 AC 中点,已知CDE面积为 1,那么ABC的面积为18.在数学课上,老师提出以下问题:A, B两地和公路 l B如图,需要在之间修地下管道,A请你设计一种最节俭资料的修筑方案.l小军同学的作法以下:①连结AB;l于点;②过点 A 作 AC⊥直线C则折线段 B-A-C 为所求 .B D B BA A AC l C l C l老师说:小军同学的方案是正确的 .请回答:该方案最节俭资料的依照是.三、解答题 ( 此题共 10 个小题,共54 分,解答应写出文字说明,证明过程或演算步骤 ) 19.( 5 分)计算:3-8+ 3-2 + (3)2( 3)20.( 5 分)解不等式组3x x8,并把它的解集在数轴上表示出来。

3.东城区2017-2018第一学期初三数学期末考试题答案

3.东城区2017-2018第一学期初三数学期末考试题答案

东城区2017-2018学年第一学期期末统一检测初三数学试题参考答案及评分标准 2018.1二、填空题(本题共16分,每小题 2分)9.2 10.答案不唯一,1c >即可11. (2,-1)12. 2.5 13. 15 14. ②⑤ 15. 1a ≥ 16.12,三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每小题7分,第28题8分)=2+322⨯⨯17.解:原式分分18. 解:如图1,当点A 在优弧上时, ∠A =50°,∠ABC =∠ACB =65°;--------------------3分如图2,当点A 在劣弧上时, ∠A =130°,∠ABC =∠ACB =25°. -------------------5分19.(1)证明: ∵AB ⊥BC , ∴∠B =90°. ∵AD ∥BC , ∴∠A =90°. ∴∠1+∠3=90°. ∵∠DEC =90°. ∴∠1+∠2=90°. ∴∠3=∠2.图1 图2∴△ADE ∽△BEC . --------------------3分 (2)解:由(1)可得,AD AEBE BC=, AD =1,BC =3,AE =2, ∴ 1.5BE =.∴ 3.5AB =. -------------------5分20. 解:(1)过点A 作CB 的垂线交CB 的延长线于点D ,则∠D =90°. ∵∠ABC =135°, ∴∠ABD =45°. ∴AD =BD .∵AB根据勾股定理,求得=2BD AD =.∴1=1212ABC S ⨯⨯= . -------------------3分 (2)在Rt △ADC 中,=2AD ,=+=3DC DB BC ,222=+AC AD DC ,∴AC . -------------------5分21. 解:(1)共九种选考方案,分别是:物理、历史、地理;物理、历史、思想品德;物理、地理、思想品德;生化、历史、地理;生化、历史、思想品德;生化、地理、思想品德;物理、生化、历史;物理、生化、地理;物理、生化、思想品德. -------------------3分 (2)()31=93P =包含物理和历史. -------------------5分 22.解:(1)则△A BC ''为所求作的三角形. -------------------3分 (2)由作图可知,△ABA '为等边三角形,∴60AA B '∠=︒.∵90BA C ''∠=︒,∴150AA C '∠=︒. -------------------5分23.解:()222055220h t t t =-=--+(1)当t =2时,小球最高,最大高度是20 m; ………………3分(2)令()222055220h t t t =-=--+=15,解得11t =,23t =.当13t ≤≤时,小球飞行高度不低于15 m . ………………5分 24. 解:(1)∵点()3,A a -在直线 24y x =+上,∴2a =- . ∵()3,A a -在反比例函数k y x=的图象上,∴6k =.∴反比例函数的表达式是6y x=. 由6,24y x y x ⎧=⎪⎨⎪=+⎩解得13x =-,21x =. ∴12y =-,26y =.∴()1,6B . ………………3分(2)30x -<<,或1x >.………………5分 25. (1)证明: 连接AD ,OD ,如图1. ∵AB 是 O 的直径,∴∠ADB =90°. ∵AB =AC , ∴BD =CD .∵OA =OB , ∴OD AC ∥.∵DF 是O 的切线,OD 是 O 的半径, ∴DF ⊥OD .∴DF ⊥AC . ………………3分 (2)解:连接BE .∵AB 是 O 的直径,∴∠AEB =90°. ∴DF BE ∥. ∴CD CF DB EF=.∵CD =DB , ∴CF =EF . ∴BE =2DF =6.在Rt △ABE 中,63tan 42BE A AE ===.………………6分26. 解:(1)抛物线的对称轴为直线1x =;………………2分 (2)根据抛物线的对称性,∵点A (-2,0) , ∴ ()4,0B .①抛物线过点A ,直线n m x y -4-21=过点B , 可得440,14402m m n m n ++=⎧⎪⎨⨯--=⎪⎩,解得1,24.m n ⎧=-⎪⎨⎪=⎩∴直线的表达式是122y x =-,抛物线的表达式2142y x x =-++.………………5分 ②1532t -≤≤. ………………7分 27.解:(1)Rt △ABC 中,∠ACB =90°,AC =2,BC= ∴tan ∠∴∠BAC =60°. ∵P C PC '⊥, ∴90P CP '∠=︒.∵∠ACB =90°,∴P CA '∠=∠PCB .∵AC =2,BC=:P C PC '=,∴AC :BC = :P C PC '.∴△P CA '∽△PCB .………………………………2分(2)①作图如下:②Rt △ABC 中,AC =2,BC = ∴AB =4,∠PBC=30°. ∵△P CA '∽△PCB ,∴∠P AC '=∠PBC=30°,:AP PB '=. ∵P∴∴1AP '=. ∵∠BAC =60°, ∴∠P AB '=90°.Rt △P AB '中,AP '=1,AB =4,∴BP '=………………………………5分(3)当BP '最大时∠PBC=120°; 当BP '最小时∠PBC=60°. ………………………………7分 (当A ,B ,P '共线时,BP '取到最大值和最小值,如下图所示)28. 解: (1)P 2,P 3; ………………2分 (2)由勾股定理可知,OP =5,以点O 为圆心,分别作半径为4和6的圆,分别交射线OP 于点Q ,R ,可知PQ =PR =1,此时P 是⊙O 的和睦点;若⊙O 半径r 满足0<r <4时,点OP -r >1,此时,P 不是⊙O 的和睦点; 若⊙O 半径r 满r >6时,r -OP >1,此时,P 也不是⊙O 的和睦点;若⊙O 半径r 满足4<r <6时,设⊙O 与射线OP 交于点T 即PT <1时,可在⊙O 上找一点S ,使PS =1,此时P 是⊙O 的和睦点; 综上所述,46r ≤≤. ………………4分(3)53A x --≤, 11A x ≤≤. ………………8分。

2017-2018学年度上学期期末考试九年级数学试卷(含答案)

2017-2018学年度上学期期末考试九年级数学试卷(含答案)

2017~2018学年度上学期期末考试九年级数学试卷时间:100分钟 满分:120分班级:_______考号:_______姓名:_______一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( )A .20ax bx c ++=B .212x x +=C .2221x x x +=+D .220x +=2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( )A .﹣13B .12C .14D .153.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A .14B .516C .716D .124.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( )A .4πB .9πC .16πD .25π5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( )A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤46.如图,矩形OABC 中,A (1,0),C (0,2),双曲线(02)k y k x=<<的图象分别交AB ,CB 于点E ,F ,连接OE ,OF ,EF ,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43D 7.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( )A .20 cmB .18 cmC .cmD .cm8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个第6题图第7题图第8题图9.如图,在平面直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P是直线3y x=-+上的一个动点,点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A B C D.310.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD ∽△PDB;④DP2=PH•PC,其中正确的是()A.①②③④ B.②③C.①②④D.①③④第9题图第10题图二、填空题(每小题3分,共18分)11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是____.12.若抛物线2=-++中不管p取何值时都通过定点,则定点坐标为.y x px p24113.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.14.如图,在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,∠OCB=60°,∠COB=45°,则OC=.15.如图.在等边△ABC中,AC=8,点D、E、F分别在三边AB、BC、AC上,且AF=2,FD⊥DE,∠DFE=60°,则AD的长为.第13题图第14题图第15题图16.在平面直角坐标系中,点C 沿着某条路径运动,以点C 为旋转中心,将点A (0,4)逆时针旋转90°到点B (m ,1),若﹣5≤m ≤5,则点C 运动的路径长为 .三、解答题(17-20题每题8分,21、22题每题9分,23题10分,24题12分)17.解方程:(1)5x (x +1)=2(x +1); (2)x 2﹣3x ﹣1=0.18.关于x 的方程22(21)230x k x k k --+-+=有两个不相等的实数根.(1)求实数k 的取值范围;(2)设方程的两个实数根分别为x 1、x 2,存不存在这样的实数k ,使得12x x -=求出这样的k 值;若不存在,说明理由.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少有两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案.(3)请直接写出题2的结果.20.如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M 、N 两点之间的直线距离,选择测量点A 、B 、C ,点B 、C 分别在AM 、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M 、N 两点之间的直线距离.21.如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC=∠A ,连接OE 延长与圆相交于点F ,与BC 相交于点C .(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C是商品件数x商品的销售价格(单位:元)为13510P x=-(每个周期的产销利润=P•x﹣C)(1)直接写出产销成本C与商品件数x的函数关系式(不要求写出自变量的取值范围)(2)该公司每个周期产销多少件商品时,利润达到220元?(3)求该公司每个周期的产销利润的最大值.24.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线2y x bx c=++经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.2017~2018学年度上学期期末考试九年级数学试卷参考答案与试题解析一、选择题(共10小题)1.下列方程中,关于x 的一元二次方程是( )A .20ax bx c ++=B .212x x+= C .2221x x x +=+ D .220x += 【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【解答】解:A 、当a =0时,边上一元二次方程,不符合题意;B 、为分式方程,不符合题意;C 、不是关于x 的一元二次方程,不符合题意;D 、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意; 故选D【点评】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( )A .﹣13B .12C .14D .15【分析】根据一元二次方程解的定义得到22510αα--=,即22=51αα+,则2235ααββ++可表示为531αβαβ+++(),再根据根与系数的关系得到5=2αβ+,1=2αβ-,然后利用整体代入的方法计算.【解答】解:∵α为22510x x --=的实数根,∴22510αα--=,即22=51αα+,∴2235=5135=531ααββααββαβαβ++++++++(), ∵α、β为方程22510x x --=的两个实数根, ∴5=2αβ+,1=2αβ-, ∴251235=531=1222ααββ++⨯+⨯-+(). 故选B .【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程200ax bx c a ++=≠()的两根时,12=b x x a +-,12=c x x a.也考查了一元二次方程解的定义.3.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A .14B .516C .716D .12【分析】画树状图展示所有16种等可能的结果数,再找出所成的两位数是3的倍数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5,所以成的两位数是3的倍数的概率=516. 故选B .【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.4.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( )A .4πB .9πC .16πD .25π【分析】根据题意、利用圆的面积公式计算即可.【解答】解:由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积是以5为半径的圆与以3为半径的圆组成的圆环的面积,即π×52﹣π×32=16π,故选:C .【点评】本题考查的是圆的认识、圆的面积的计算,掌握圆的面积公式是解题的关键.5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( )A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤4【分析】由于不知道函数是一次函数还是二次函数,需对k 进行讨论.当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当Δ≥0时,二次函数与x 轴都有交点,解Δ≥0,求出k 的范围.【解答】解:当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当△=22﹣4(k ﹣3)≥0,即k ≤4时,函数的图象与x 轴有交点.综上k 的取值范围是k ≤4.故选D .【点评】本题考察了二次函数、一次函数的图象与x 轴的交点、一次不等式的解法.解决本题的关键是对k 的值分类讨论.6.如图,矩形OABC 中,A (1,0),C (0,2),双曲线(02)k y k x=<<的图象分别交AB ,CB 于点E ,F ,连接OE ,OF ,EF ,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43D【分析】设E 点坐标为(1,m ),则F 点坐标为(2m ,2),根据三角形面积公式得到S △BEF =(1﹣2m )(2﹣m ),根据反比例函数k 的几何意义得到S △OFC =S △OAE =12m ,由于S △OEF =S 矩形ABCO ﹣S △OCF ﹣S △OEA ﹣S △BEF ,列方程即可得到结论.【解答】解:∵四边形OABC 是矩形,BA ⊥OA ,A (1,0),∴设E 点坐标为(1,m ),则F 点坐标为(2m ,2),则S △BEF =(1﹣2m )(2﹣m ),S △OFC =S △OAE =m , ∴S △OEF =S 矩形ABCO ﹣S △OCF ﹣S △OEA ﹣S △BEF =2﹣12m ﹣12m ﹣(1﹣2m )(2﹣m ), ∵S △OEF =2S △BEF ,∴2﹣12m ﹣12m ﹣(1﹣2m )(2﹣m )=2×(1﹣2m )(2﹣m ), 整理得232204m m -+-=(),解得m 1=2(舍去),m 2=23, ∴E 点坐标为(1,23),∴k =23. 故选A .【点评】本题考查了反比例函数k 的几何意义和矩形的性质;会利用面积的和差计算不规则图形的面积.7.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( )A .20 cmB .18 cmC .cmD .cm【分析】根据已知条件得到CP=6﹣t ,得到PQ =于是得到结论.【解答】解:∵AP=CQ=t ,∴CP=6﹣t ,∴PQ∵0≤t ≤2,∴当t =2时,PQ 的值最小,∴线段PQ 的最小值是故选C .【点评】本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个【分析】根据抛物线的对称轴可判断①,由抛物线与x 轴的交点及抛物线的对称性可判断②,由1x =-时y >0可判断③,由2x =-时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线2x =-知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线22b x a=-=-, ∴40a b -=,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴抛物线与y 轴的交点在y 轴的负半轴,即c <0,故②正确;∵由②知,1x =-时y >0,且4b a =,∴430a b c a a c a c -+=-+=-+>,所以③正确;由函数图象知当2x =-时,函数取得最大值,∴242a b c at bt c -+≥++,即242a b at bt -≥+(t 为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x =﹣2,∴抛物线上离对称轴水平距离越小,函数值越大,∴y 1<y 3<y 2,故⑤错误;故选:B .【点评】本题考查了二次函数与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.9.如图,在平面直角坐标系中,⊙A 的圆心A 的坐标为(﹣1,0),半径为1,点P 是直线3y x =-+上的一个动点,点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是( )A B C D .3【分析】连接AP ,PQ ,当AP 最小时,PQ 最小,当AP ⊥直线3y x =-+时,PQ 最小,根据相似三角形的性质得到AP ,根据勾股定理即可得到结论.【解答】解:如图,作AP ⊥直线3y x =-+,垂足为P ,作⊙A 的切线PQ ,切点为Q ,当AP ⊥BC 时,此时切线长PQ 最小,∵A 的坐标为(﹣1,0),设直线与x 轴,y 轴分别交于B ,C ,∴B (0,3),C (3,0),∴OB=3,AC=4,∴BC=,在△APC 与△BOC 中,∵∠APC=∠BOC=90°,∠ACP=∠OCB ,∴△APC ∽△OBC , ∴AP AC OB BC=,∴AP=∴PQ故选C .【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.10.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH•PC ,其中正确的是( )A .①②③④B .②③C .①②④D .①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC 是等边三角形,∴BP=PC=BC ,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD 中,∵AB=BC=CD ,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE ;故①正确;∵PC=CD ,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD ,∵∠DFP=∠BPC=60°,∴△DFP ∽△BPH ;故②正确; ∵∠FDP=∠PBD=15°,∠ADB=45°, ∴∠PDB=30°,而∠DFP=60°, ∴∠PFD ≠∠PDB ,∴△PFD 与△PDB 不会相似;故③错误; ∵∠PDH=∠PCD=30°,∠DPH=∠DPC , ∴△DPH ∽△CPD ,∴DP PHPC DP=, ∴DP 2=PH•PC ,故④正确; 故选C .【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二.填空题(共6小题)11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 50(1﹣x )2=32 .【分析】根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x ,可以列出相应的方程即可.【解答】解:由题意可得, 50(1﹣x )2=32,故答案为:50(1﹣x )2=32.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.12.若抛物线2241y x px p =-++中不管p 取何值时都通过定点,则定点坐标为(4,33). 【分析】把含p 的项合并,只有当p 的系数为0时,不管p 取何值抛物线都通过定点,可求x 、y 的对应值,确定定点坐标.【解答】解:2241y x px p =-++可化为22(4)1y x p x =--+,分析可得:当x =4时,y =33;且与p 的取值无关; 故不管p 取何值时都通过定点(4,33).【点评】本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数式,提出未知的常数,化简后再根据具体情况判断.13.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为4或254.【分析】先根据勾股定理求出AB 的长,再分△ADP ∽△ABC 与△ADP ∽△ACB 两种情况进行讨论即可.【解答】解:∵在△ABC 中,∠C=90°,AC=8,BC=6,∴AB . ∵D 是边AB 的中点, ∴AD=5.当△ADP ∽△ABC 时,AD AP AB AC =,即5108AP=,解得AP=4; 当△ADP ∽△ACB 时,AD AP AC AB =,即5810AP =,解得AP=254. 故答案为:4或254.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.14.如图,在平面直角坐标系中,△OCB 的外接圆与y 轴交于A (0,∠OCB=60°,∠COB=45°,则【分析】连接AB ,由圆周角定理知AB 必过圆心M ,Rt △ABO 中,易知∠BAO=∠OCB=60°,已知OB 的长;过B 作BD ⊥OC ,通过解直角三角形即可求得OD 、BD 、CD 的长,进而由OC=OD+CD 求出OC 的长.【解答】解:连接AB ,则AB 为⊙M 的直径. Rt △ABO 中,∠BAO=∠OCB=60°,∴OB ==过B 作BD ⊥OC 于D . Rt △OBD 中,∠COB=45°,则OD BD ==Rt △BCD 中,∠OCB=60°,则=1CD =.∴OC=CD+OD=1.故答案为:1.【点评】此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.15.如图.在等边△ABC 中,AC=8,点D 、E 、F 分别在三边AB 、BC 、AC 上,且AF=2,FD ⊥DE ,∠DFE=60°,则AD 的长为 3 .【分析】根据三角形的内角和定理列式求出∠2=∠3,再根据等边三角形的三个角都是60°求出∠A=∠C ,然后根据两组角对应相等的两个三角形相似求出△ADF 和△CFE 相似,根据相似三角形对应边成比例可得AD DF CF EF =,再根据直角三角形30°角所对的直角边等于斜边的一半可得12DF EF =,然后代入数据进行计算即可得解.【解答】解:∵∠DFE=60°, ∴∠1+∠2+60°=180°, ∴∠2=120°﹣∠1,在等边△ABC 中,∠A=∠C=60°, ∴∠A+∠1+∠3=180°,∴∠3=180°﹣∠A ﹣∠1=120°﹣∠1, ∴∠2=∠3, 又∵∠A=∠C , ∴△ADF ∽△CFE , ∴AD DFCF EF=, ∵FD ⊥DE ,∠DFE=60°, ∴∠DEF=90°﹣60°=30°, ∴12DF EF =, 又∵AF=2,AC=8, ∴CF=8﹣2=6, ∴162AD =, 解得AD=3. 故答案为:3.【点评】本题考查了相似三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,根据平角等于180°和三角形的内角和定理求出∠2=∠3是解题的关键,也是本题的难点.16.在平面直角坐标系中,点C 沿着某条路径运动,以点C 为旋转中心,将点A (0,4)逆时针旋转90°到点B (m ,1),若﹣5≤m ≤5,则点C【分析】在平面直角坐标系中,在y 轴上取点P (0,1),过P 作直线l ∥x 轴,作CM ⊥OA 于M ,作CN ⊥l 于N ,构造Rt △BCN ≌Rt △ACM ,得出CN=CM ,若连接CP ,则点C 在∠BPO 的平分线上,进而得出动点C 在直线CP 上运动;再分两种情况讨论C 的路径端点坐标:①当m =﹣5时,②当m =5时,分别求得C (﹣1,0)和C 1(4,5),而C 的运动路径长就是CC 1的长,最后由勾股定理可得CC 1的长度.【解答】解:如图1所示,在y 轴上取点P (0,1),过P 作直线l ∥x 轴, ∵B (m ,1), ∴B 在直线l 上,∵C 为旋转中心,旋转角为90°, ∴BC=AC ,∠ACB=90°, ∵∠APB=90°,∴∠1=∠2,作CM ⊥OA 于M ,作CN ⊥l 于N ,则Rt △BCN ≌Rt △ACM ,∴CN=CM ,若连接CP ,则点C 在∠BPO 的平分线上, ∴动点C 在直线CP 上运动;如图2所示,∵B (m ,1)且﹣5≤m ≤5, ∴分两种情况讨论C 的路径端点坐标,①当m=﹣5时,B (﹣5,1),PB=5, 作CM ⊥y 轴于M ,作CN ⊥l 于N , 同理可得△BCN ≌△ACM , ∴CM=CN ,BN=AM , 可设PN=PM=CN=CM=a , ∵P (0,1),A (0,4), ∴AP=3,AM=BN=3+a , ∴PB=a +3+a =5,∴a =1, ∴C (﹣1,0);②当m =5时,B (5,1),如图2中的B 1,此时的动点C 是图2中的C 1, 同理可得C 1(4,5),∴C 的运动路径长就是CC 1的长,由勾股定理可得,1CC =.【点评】本题主要考查了旋转图形的坐标、全等三角形的判定与性质以及轨迹的运用,解题时注意:图形或点旋转之后要结合旋转的角度和图形的特殊性质,求出旋转后的点的坐标.三、解答题(共8小题) 17.解方程:(1)5x (x +1)=2(x +1);(2)x 2﹣3x ﹣1=0. 【分析】(1)先移项得到5x (x +1)﹣2(x +1)=0,然后利用因式分解法解方程; (2)利用求根公式法解方程. 【解答】解:(1)5x (x +1)﹣2(x +1)=0, (x +1)(5x ﹣2)=0 x +1=0或5x ﹣2=0,所以x 1=﹣1,x 2=25;(2)△=(﹣3)2﹣4×(﹣1)=13,x =,所以1x =,2x =.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.18.关于x 的方程22(21)230x k x k k --+-+=有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程的两个实数根分别为x 1、x 2,存不存在这样的实数k ,使得12x x -求出这样的k 值;若不存在,说明理由.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k 的不等式求解可得;(2)由韦达定理知1221x x k +=-,221223(1)20x x k k k =-+=-+>,将原式两边平方后把12x x +,12x x 代入得到关于k 的方程,求解可得.【解答】解:(1)∵方程有两个不相等的实数根, ∴22=[(21)]4(23)4110k k k k ∆----+=->,解得:114k >;(2)存在,1221x x k +=-,221223(1)20x x k k k =-+=-+>∴将12x x -=22112225x x x x -+=,即21212()45x x x x +-=, 代入得:22(21)4(23)5k k k ---+=,4k ﹣11=5, 解得:k =4.【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件? (2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案. (3)请直接写出题2的结果.【分析】题1:因为此题需要三步完成,所以画出树状图求解即可,注意要做到不重不漏; 题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球; (2)写出方案;(3)直接写结果即可.【解答】解:题1:画树状图得:∴一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:727.题22种,则2163P==.问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3)13.【点评】此题考查了树状图法或列表法求概率以及利用类比法解决问题,解题的关键是根据题意画出树状图或表格,再由概率=所求情况数与总情况数之比求解.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.【分析】先根据相似三角形的判定得出△ABC∽△ANM,再利用相似三角形的性质解答即可.【解答】解:在△ABC 与△AMN 中,305549AC AB ==,1000518009AM AN ==,∴AC AMAB AN =,又∵∠A=∠A , ∴△ABC ∽△ANM ,∴BC AC MN AM =,即45301000MN =, 解得:MN=1500米,答:M 、N 两点之间的直线距离是1500米;【点评】此题考查了相似三角形的判定与性质;熟记相似三角形的判定方法是解决问题的关键.21.如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC=∠A ,连接OE 延长与圆相交于点F ,与BC 相交于点C .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6,BC=8,求弦BD 的长.【分析】(1)连接OB ,由垂径定理的推论得出BE=DE ,OE ⊥BD ,=12,由圆周角定理得出∠BOE=∠A ,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC ,由△OBC 的面积求出BE ,即可得出弦BD 的长. 【解答】(1)证明:连接OB ,如图所示: ∵E 是弦BD 的中点,∴BE=DE ,OE ⊥BD ,=12,∴∠BOE=∠A ,∠OBE+∠BOE=90°, ∵∠DBC=∠A ,∴∠BOE=∠DBC , ∴∠OBE+∠DBC=90°, ∴∠OBC=90°, 即BC ⊥OB ,∴BC 是⊙O 的切线;(2)解:∵OB=6,BC=8,BC ⊥OB ,∴10OC ,∵△OBC 的面积=12OC•BE=12OB•BC , ∴684.810OB BC BE OC ⨯===,∴BD=2BE=9.6,即弦BD 的长为9.6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?【分析】首先在Rt△ABC中利用∠A=30°、AB=12,求得BC=6、AC的长,然后根据四边形CDEF 是矩形得到EF∥AC从而得到△BEF∽△BAC,设AE=x,则BE=12﹣x.利用相似三角形成比例表示出EF、DE,然后表示出有关x的二次函数,然后求二次函数的最值即可.【解答】解:在Rt△ABC中,∠A=30°,AB=12,∴BC=6,AC=AB•cos30°=12=∵四边形CDEF是矩形,∴EF∥AC.∴△BEF∽△BAC.∴EF BE AC BA=.设AE=x,则BE=12﹣x.∴) EF x=-.在Rt△ADE中,1122DE AE x==.矩形CDEF的面积S=DE•EF=213(12)=(012)2x x x--+<<.当62bxa=-==时,S有最大值.∴点E应选在AB的中点处.【点评】本题考查了相似三角形的应用及二次函数的应用,解题的关键是从几何问题中整理出二次函数模型,并利用二次函数的知识求最值.23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C是商品件数x商品的销售价格(单位:元)为13510P x=-(每个周期的产销利润=P•x﹣C)(1)直接写出产销成本C与商品件数x的函数关系式(不要求写出自变量的取值范围)(2)该公司每个周期产销多少件商品时,利润达到220元?(3)求该公司每个周期的产销利润的最大值.【分析】(1)根据题意设出C 与x 的函数关系式,然后根据表格中的数据即可解答本题; (2)根据题意可以列出相应的方程,从而可以解答本题;(3)根据题意可以得到利润与销售价格的关系式,然后化为顶点式即可解答本题. 【解答】解:(1)设2C ax bx c =++,则 2221010=1202020=1803030=260a b c a b c a b c ⎧⨯+⨯+⎪⨯+⨯+⎨⎪⨯+⨯+⎩,解得,=0.1=3=80a b c ⎧⎪⎨⎪⎩,即产销成本C 与商品件数x 的函数关系式是:2138010C x x =++; (2)依题意,得211(35)(380)2201010x x x x --++=; 解得,x 1=10,x 2=150,∵每个周期产销商品件数控制在100以内, ∴x =10.即该公司每个周期产销10件商品时,利润达到220元; (3)设每个周期的产销利润为y 元,∵2221111(35)(380)3280(80)1200101055y x x x x x x x =--++=-+-=--+, ∴当x =80时,函数有最大值,此时y =1200,即当每个周期产销80件商品时,产销利润最大,最大值为1200 元.【点评】本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC ,OA=1,OC=4,抛物线2y x bx c =++经过A ,B 两点.(1)求抛物线的解析式;(2)点E 是直角△ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 、F 的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.【分析】(1)根据AC=BC ,求出BC 的长,进而得到点A ,B 的坐标,利用待定系数法即可求得抛物线的解析式;(2)利用待定系数法求出直线AB 的解析式,用含m 的式表示出E ,F 的坐标,求出EF 的长度最大时m 的值,即可求得E ,F 的坐标;(3)分两种情况:∠E=90°和∠F=90°,分别得到点P 的纵坐标,将纵坐标代入抛物线解析式,即可求得点P 的值.。

北京市东城区2017届九年级上期末考试数学试题含答案.doc

北京市东城区2017届九年级上期末考试数学试题含答案.doc

北京市东城区2017届九年级上期末考试数学试题含答案初三数学2017.1学校班级姓名考号【一】选择题〔此题共30分,每题3分〕下面各题均有四个选项,其中只有一个..是符合题意旳、 1、关于x 旳一元二次方程x 2+4x +k =0有两个相等旳实数根,那么k 旳值为 A 、k =4B 、k =﹣4C 、k ≥﹣4D 、k ≥42、抛物线y =x 2+2x +3旳对称轴是A 、直线x =1B 、直线x =﹣1C 、直线x =﹣2D 、直线x =23、剪纸是我国旳非物质文化遗产之一,以下剪纸作品中是中心对称图形旳是ABCD4、在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币旳方法估算正面朝上旳概率,其试验次数分别为10次、50次、100次、200次,其中试验相对科学旳是A 、甲组B 、乙组C 、丙组D 、丁组 5、在平面直角坐标系中,将抛物线221y x x =--先向上平移3个单位长度,再向左平移2个单位长度,所得旳抛物线旳【解析】式是 A 、2(1)1y x =++B 、2(3)1y x =-+ C 、2(3)5y x =--D 、2(1)2y x =++6、点A 〔2,y 1〕,B 〔4,y 2〕都在反比例函数ky x=〔k <0〕旳图象上,那么y 1,y 2旳大小关系为A 、y 1>y 2B 、y 1<y 2C 、y 1=y 2D 、无法确定7、如图,在△ABC 中,∠A =78°,AB =4,AC =6.将△ABC 沿图示中旳虚线剪开,剪下旳阴影三角形与原三角形不相似...旳是ytO 4560.430.871.18.如图,圆锥旳底面半径r 为6cm ,高h 为8cm ,那么圆锥旳侧面积为 A 、30πcm 2B 、48πcm2C 、60πcm 2D 、80πcm 29.如图,⊙O 是Rt △ABC 旳外接圆,∠ACB =90°,∠A =25°,过点C 作⊙O 旳切线,交AB 旳延长线于点D ,那么∠D 旳度数是 A 、25°B 、40° C 、50°D 、65°10.都市中“打车难”一直是人们关注旳一个社会热点问题.近几年来,“互联网+”战略与传统出租车行业深度融合,“优步”、“滴滴出行”等打车软件确实是其中典型旳应用.名为“数据包络分析”〔简称DEA 〕旳一种效率评价方法,能够专门好地优化出租车资源配置.为了解出租车资源旳“供需匹配”,北京、上海等都市对每天24个时段旳DEA 值进行调查,调查发觉,DEA 值越大,说明匹配度越好.在某一段时刻内,北京旳DEA 值y 与时刻t 旳关系近似满足函数关系c bx ax y ++=2〔a ,b ,c 是常数,且0a ≠〕,如图记录了3个时刻旳数据,依照函数模型和所给数据,当“供需匹配”程度最好时,最接近旳时刻t 是A.4.8B.5C.5.2D.5.5【二】填空题〔此题共18分,每题3分〕11、请你写出一个图象分别位于第【二】四象限旳反比例函数旳【解析】式,那个【解析】式能够是、12、m 是关于x 旳方程x 2﹣2x ﹣3=0旳一个根,那么2m 2﹣4m =、 13.二次函数242y x x =--旳最小值为、14.天坛是古代帝王祭天旳地点,其中最要紧旳建筑确实是祈年殿、老师希望同学们利用所学过旳知识测量祈年殿旳高度,数学兴趣小组旳同学们设计了如下图旳测量图形,并测出竹竿AB 长2米,在太阳光下,它旳影长BC 为1.5米,同一时刻,祈年殿旳影长EF 约为28.5米、请你依照这些数据计算出祈年殿旳高度DE 约为米、y15、如图,在Rt ABC △中,90ACB ∠=,23AC =,以点C 为圆心,CB 旳长为半径画弧,与AB 边交于点D ,将BD 绕点D 旋转°180后点B 与点A 恰好重合,那么图中阴影部分旳面积为.16、如图,菱形OABC 旳顶点O 〔0,0〕,B 〔2,2〕,菱形旳对角线旳交点D 旳坐标为;菱形OABC 绕点O 逆时针旋转,每秒旋转45°,从如下图位置起,通过60秒时,菱形旳对角线旳交点D 旳坐标为.【三】解答题〔此题共72分,第17—26题,每题5分,第27题7分,第28题7分,第29题8分〕17、解方程:22410x x --=.18.如图,在△ABC 中,AD 是中线,∠B =∠DAC ,假设BC =8,求AC 旳长. 19、如图,AB 是⊙O 旳直径,弦CD ⊥AB 于点E ,假设AB =8,CD =6,求BE 旳长、20、如图,在平面直角坐标系中,O 为坐标原点,Rt △ABO 旳边AB 垂直于x 轴,垂足为点B ,反比例函数11k y x=〔x >0〕旳图象通过AO 旳中点C ,且与AB 相交于点D ,OB =4,AB =3、 〔1〕求反比例函数11ky x=〔x >0〕旳【解析】式;〔2〕设通过C ,D 两点旳一次函数【解析】式为22y k x b =+,求出其【解析】式,并依照图象直截了当写出在第一象限内,当21y y >时,x 旳取值范围、21、列方程或方程组解应用题:公园有一块正方形旳空地,后来从这块空地上划出部分区域栽种鲜花〔如图阴影部分〕,原空地一边减少了1m ,另一边减少了2m ,剩余空地旳面积为20m 2,求原正方形空地旳边长、E F DB CADBCA xy –1–2–3123–1–2123C DBO A20m 22m1m22、按照要求画图:〔1〕如图,在平面直角坐标系中,点A ,B ,C 旳坐标分别为〔﹣1,3〕,〔﹣4,1〕,〔﹣2,1〕,将△ABC 绕原点O 顺时针旋转90°得到△A 1B 1C 1,点A ,B ,C 旳对应点为点A 1,B 1,C 1、画出旋转后旳△A 1B 1C 1;〔2〕以下3×3网格差不多上由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下旳6个空白小正方形中,选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形〔画出两种即可〕、23、甲、乙两人进行摸牌游戏、现有三张形状大小完全相同旳牌,正面分别标有数字2,3,5、将三张牌背面朝上,洗匀后放在桌子上、甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张、〔1〕请用列表法或画树状图旳方法,求两人抽取相同数字旳概率;〔2〕假设两人抽取旳数字和为2旳倍数,那么甲获胜;假设抽取旳数字和为5旳倍数,那么乙获胜、那个游戏公平吗?请用概率旳知识加以解释、24.在平面直角坐标系xOy 中,对称轴为直线x =1旳抛物线y =-x 2+bx +c 与x 轴交于点A 和点B ,与y轴交于点C ,且点B 旳坐标为〔﹣1,0〕、 〔1〕求抛物线旳【解析】式;〔2〕点D 旳坐标为〔0,1〕,点P 是抛物线上旳动点,假设△PCD是以CD 为底旳等腰三角形,求点P 旳坐标、25.如图,AB 是⊙O 旳直径,AC 是弦,∠BAC 旳平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 旳延长线于点E ,连接BD 、 〔1〕求证:DE 是⊙O 旳切线; 〔2〕假设52BD DE =,45AD =,求CE 旳长、 26.问题探究:新定义:将一个平面图形分为面积相等旳两个部分旳直线叫做该平面图形旳“等积线”,其“等积线”被该平面图形截得旳线段叫做该平面图形旳“等积线段”〔例如圆旳直径确实是圆旳“等积线段”〕、 解决问题:在Rt △ABC 中,∠BAC =90°,AB =AC =22、〔1〕如图1,假设AD ⊥BC ,垂足为D ,那么AD 是△ABC 旳一条等积线段,求AD 旳长; 〔2〕在图2和图3中,分别画出一条等积线段,并求出它们旳长度、〔要求:使得图1、图2和图3中旳等积线段旳长度各不相等〕 27、在平面直角坐标系xO y 中,抛物线224y mx mx m =-+-〔0m ≠〕与x 轴交于A ,B 两点〔点A 在点B 左侧〕,与y 轴交于点C 〔0,-3〕、〔1〕求抛物线旳【解析】式;〔2〕在抛物线旳对称轴上有一点P ,使PA+PC 旳值最小,求点P 旳坐标;〔3〕将抛物线在B ,C 之间旳部分记为图象G 〔包含B ,C 两点〕,假设直线y=5x+b 与图象G 有公共点,请直截了当写出b 旳取值范围、28.点P 是矩形ABCD 对角线AC 所在直线上旳一个动点〔点P 不与点A ,C 重合〕,分别过点A ,C 向直线BP 作垂线,垂足分别为点E ,F ,点O 为AC 旳中点、〔1〕如图1,当点P 与点O 重合时,请你推断OE 与OF 旳数量关系;〔2〕当点P 运动到如图2所示位置时,请你在图2中补全图形并通过证明推断〔1〕中旳结论是否仍然成立;〔3〕假设点P 在射线OA 上运动,恰好使得∠OEF =30°时,猜想现在线段CF ,AE ,OE 之间有如何样旳数量关系,直截了当写出结论不必证明、29、在平面直角坐标系xOy 中,有如下定义:假设直线l 和图形W 相交于两点,且这两点旳距离不小于定值k ,那么称直线l 与图形W 成“k 相关”,现在称直线与图形W 旳相关系数为k .(1)假设图形W 是由()12--,A ,()1,2-B ,()12,C ,()12-,D 顺次连线而成旳矩形: ○1l 1:y =x +2,l 2:y =x +1,l 3:y =-x -3这三条直线中,与图形W 成“2相关”旳直线有﹏﹏﹏﹏﹏﹏﹏﹏;○2画出一条通过()10,旳直线,使得这条直线与W 成“5相关”; ○3假设存在直线与图形W 成“2相关”,且该直线与直线3y x =平行,与y 轴交于点Q ,求点Q 纵坐标Q y 旳取值范围;(2)假设图形W 为一个半径为2旳圆,其圆心K 位于x 轴上.假设直线333+=x y 与图形W 成“3相关”,请直截了当写出圆心K 旳横坐标K x 旳取值范围.备用图北京市东城区2016-2017学年第一学期期末统一测试 初三数学参考【答案】及评分标准2017.1【一】选择题〔此题共30分,每题3分〕 题号 1 2 3 4 5 6 7 8 9 10 【答案】 ABADABCCBC【二】填空题〔此题共18分,每题3分〕题号11121314 1516【答案】 如:1y x =-【答案】不唯一,只要满足k<0即可6 -6383〔1,1〕;〔-1,-1〕【三】解答题〔此题共72分,第17—26题,每题5分,第27题7分,第28题7分,第29题8分〕 17、解方程:22410x x --=解:2122x x -=.…………1分 212112x x -+=+.…………2分23(1)2x -=.…………3分 612x =±. ∴12661,122x x =+=-.…………5分 18.解:∵∠B =∠DAC ,∠C =∠C ,∴△ABC ∽△DAC .…………2分∴AC BCCD AC=. ∴2AC CD BC =⋅、…………3分 ∵AD 是中线,BC =8, ∴4CD =.…………4分 ∴42AC =.…………5分19.解:连接OC .…………1分∵AB 是⊙O 旳直径,弦CD ⊥AB 于点E , ∴点E 是CD 旳中点.…………2分在Rt △OCE 中,222OE CE OC +=, ∵AB =8,CD =6, ∴可求7OE =.…………4分∴47BE =-.…………5分20.〔1〕由题意可求点C 旳坐标为〔2,32〕.…………1分 ∴反比例函数旳【解析】式为13y x=〔x >0〕.…………2分〔2〕可求出点D 旳坐标为〔4,34〕.…………3分∴可求直线CD 旳【解析】式239-84y x =+.…………4分当2<x <4时,21y y >.…………5分.21、解:设原正方形空地旳边长为x m 、…………1分依照题意,得()()1220x x --=、…………2分DBCA解方程,得126,3(x x ==-舍)…………4分 答:原正方形空地旳边长为6m 、…………5分22、解:〔1〕旋转后旳△A 1B 1C 1如下图:C 1B 1A 1…………3分〔2〕依照题意画图如下: 符合其中旳两种即可、…………5分23、解:〔1〕所有可能出现旳结果如图:从表格能够看出,总共有9种结果,每种结果出现旳可能性相同,其中两人抽取相同数字旳结果有3种,因此两人抽取相同数字旳概率为13;………3分 〔2〕不公平、从表格能够看出,两人抽取数字和为2旳倍数有5种,两人抽取数字和为5旳倍数有3种,因此甲获胜旳概率为59,乙获胜旳概率为13、 ∵59>13, ∴甲获胜旳概率大,游戏不公平、…………5分24.解:〔1〕由题意可求点A 旳坐标为〔3,0〕、将点A 〔3,0〕和点B 〔-1,0〕代入y =-x 2+bx +c ,得0=-9+3,01.b c b c +⎧⎨=--+⎩解得2,3.b c =⎧⎨=⎩∴抛物线旳【解析】式223y x x =-++、…………3分 〔2〕可求出点C 旳坐标为〔0,3〕、由题意可知满足条件旳点P 旳纵坐标为2、∴223=2x x -++、 解得1212,1 2.x x =+=-∴点P 旳坐标为(12,2)+或(12,2)-、…………5分25. 〔1〕证明:连接OD 、∵OA =OD ,∴∠BAD =∠ODA 、 ∵AD 平分∠BAC , ∴∠BAD =∠DAC 、 ∴∠ODA =∠DAC 、∴OD ∥AE 、∵DE ⊥AE , ∴OD ⊥DE 、∴DE 是⊙O 旳切线、…………2分〔2〕解:∵OB 是直径,∴∠ADB =90°、 ∴∠ADB =∠E 、又∵∠BAD =∠DAC ,∴△ABD ∽△ADE 、 ∴52AB BD AD DE ==、∴10AB =、由勾股定理可知25BD =、连接DC ,∴25BD DC ==、 ∵A ,C ,D ,B 四点共圆.∴∠DCE =∠B.∴△DCE ∽△ABD 、 ∴AB BDDC CE=. ∴CE =2.…………5分26.解:〔1〕在Rt △ADC 中,ECBA∵22AC =,=45C ∠°, ∴2AD =、…………1分〔2〕符合题意旳图形如下所示:为AC 中点,10BE =.EGH ∥BC ,22GH =.…………5分27.解:〔1〕由题意可得,43m -=-.1.m ∴=∴抛物线旳【解析】式为:223y x x =--.…………2分〔2〕点A 关于抛物线旳对称轴对称旳点是B ,连接BC 交对称轴于点P ,那么点P 确实是使得PA+PC 旳值最小旳点.可求直线BC 旳【解析】式为3y x =-.∴点P 旳坐标为〔1,-2〕.…………5分〔3〕符合题意旳b 旳取值范围是-15≤b ≤-3.…………7分28.解:〔1〕OE =OF .…………1分〔2〕补全图形如右图.…………2分OE =OF 仍然成立.…………3分 证明:延长EO 交CF 于点G . ∵AE ⊥BP ,CF ⊥BP , ∴AE ∥CF .∴∠EAO=∠GCO.又∵点O 为AC 旳中点, ∴AO =CO.∵∠AOE=∠COG , ∴△AOE ≌△COG. ∴OE =OF.…………5分〔3〕CF OE AE =+或CF OE AE =-.…………7分 29.解:〔1〕①1l 和2l .…………2分②符合题意旳直线如下图所示.…………4分夹在直线a 和b 或c 和d 之间旳〔含直线a ,b ,c ,d 〕差不多上符合题意旳. ○3设符合题意旳直线旳【解析】式为3.y x b =+由题意可知符合题意旳临界直线分别通过点〔-1,1〕,〔1,-1〕. 分别代入可求出1213,13b b =+=--. ∴131 3.Q y --≤≤+…………6分〔2〕3737.K x --≤≤-+…………8分。

东城区2017—2018学年度九年级数学第一学期期末教学目标检测(含答案)

东城区2017—2018学年度九年级数学第一学期期末教学目标检测(含答案)

东城区2017—2018学年度第一学期期末教学目标检测初二数学 2018.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的 1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司。

将0.056用科学记数法表示为 A. -15.610⨯ B. -25.610⨯ C.-35.610⨯ D .-10.5610⨯ 2.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,其中基本是轴对称图形的是3.下列式子为最简二次根式的是2()+a b 12a2124.若分式23x x -+的值为0,则x 的值等于 A .0 B .2 C .3D .-35.下列运算正确的是A. 532b b b ÷=B.527()b b =C. 248b b b = D .2-22aa b a ab =+()6.如图,在△ABC 中,∠B =∠C =60,点D 为AB 边的中点,DE ⊥BC 于E , 若BE=1,则AC 的长为A .2B .4 D .7.如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。

此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE. 则说明这两个三角形全等的依据是 A. SAS B. ASA C. AAS D. SSS8.如图,根据计算长方形ABCD 的面积,可以说明下列哪个等式成立A. 2222)(b ab a b a ++=+ B. 2222)(b ab a b a +-=-C. 22))((b a b a b a -=-+ D. 2()a a b a ab +=+9.如图,已知等腰三角形ABC AB AC =,,若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定..正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE10.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D . 40°二、填空题:(本题共16分,每小题2分)111x -x 的取值范围是 .12.在平面直角坐标系xOy 中,点P (2,1)关于y 轴对称的点的坐标是 .13.如图,点B ,F ,C ,E 在一条直线上,已知BF =CE ,AC //DF ,请你添加一个适当的条件 使得△ABC ≌△DEF .14.等腰三角形一边等于5,另一边等于8,则其周长是 .15.如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_______.16.如图,在△ABC 中,∠ACB =90°,AD 平分∠ABC ,BC =10cm ,BD :DC =3:2,则点D 到AB 的距离为_________ cm .17.如果实数,a b 满足226,8,a b ab a b +==+=那么 ;18.阅读下面材料:在数学课上,老师提出如下问题:小俊的作法如下:老师说:“小俊的作法正确.”请回答:小俊的作图依据是_________________________.三、解答题(本题共9个小题,共54分,解答应写出文字说明,证明过程或演算步骤)19.(5分)计算:101326()(21)2--++-20.(5分)因式分解:(1)24x - (2) 2244ax axy ay -+21.(5分)如图,点E ,F 在线段AB 上,且AD =BC ,∠A =∠B ,AE =BF .求证:DF =CE .22.(5分)已知2+2x x =,求()()()()22311x x x x x +-+++-的值23.(5分)解分式方程:11+2-22-xx x+=. 如图, ①分别以点A 和点B 为圆心,大于12AB的长为半径作弧,两弧相交于点C ;②再分别以点A 和点B 为圆心,大于12AB 的长为半径(不同于①中的半径)作弧,两弧相交于点D ,使点D 与点C 在直线 AB 的同侧; ③作直线CD . 所以直线CD 就是所求作的垂直平分线. 尺规作图:作一条线段的垂直平分线. 已知:线段AB .24.(5分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.25.(6分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?26.(6分)如图,在△ABC 中,AB =AC ,AD ⊥于点D ,AM 是△ABC 的外角∠CAE 的平分线. (1)求证:AM ∥BC ;(2)若DN 平分∠ADC 交AM 于点N ,判断△ADN 的形状并说明理由.27.(6分)定义:任意两个数,a b ,按规则c ab a b =++扩充得到一个新数c ,称所得的新数c 为“如意数”.(1) 若2,1,a b ==直接写出,a b 的“如意数”c ;(2) 如果4,a m b m =-=-,求,a b 的“如意数”c ,并证明“如意数” 0c ≤(3)已知2=1(0)a x x -≠,且,a b 的“如意数”3231,c x x =+-,则b = (用含x 的式子表示)28. (6分)如图,在等边三角形ABC 的外侧作直线AP ,点C 关于直线AP 的对称点为点D ,连接AD ,BD ,其中BD 交直线AP 于点E. (1)依题意补全图形;(2)若∠PAC =20°,求∠AEB 的度数;(3)连结CE ,写出AE , BE , CE 之间的数量关系,并证明你的结论.东城区2017——2018学年度第一学期期末教学目标检测初二数学评分标准及参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共16分,每小题2分)10119.326212=3+23+2-145())--+-分分 220.14=2)(2)2x x x --+()(分22222244=(44)1(2)3ax axy ay a x xy y a x y -+-+=-()分分21. 如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF .求证:△ADF ≌△BCE .证明:∵点E ,F 在线段AB 上,AE =BF ., ∴AE +E F =BF +EF , 即:AF =BE .………1分 在△ADF 与△BCE 中,,,,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩………3分 ∴△ADF ≌△BCE (SAS ) ………4分∴ DF=CE (全等三角形对应边相等)………5分2222222.=4431342=55x x x x x x x x x ++--+-=+++=解:原式分当时,原式分23.解方程:11+2-22-xx x+=解:方程两边同乘(x -2), 得1+2(x -2)=-1-x 2分 解得:2.33x =L L 分220.323x x 4x 5=-?=L L L L 检验:当时,分所以,原分式方程的解为分24. 先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-. ()()()()333223333233142x x x x x x x x x x x -+-=÷++-+=⋅++-=+解:原式分分分当32x =-时,原式33223===-+…5分 25.解:设2002年地铁每小时客运量x 万人,则2017年地铁每小时客运量4x 万人……1分由题意得240240-304x x= ……………3分 解得x =6 …………… 4分经检验x =6是分式方程的解 ……………5分4x 24=……………6分答:2017年每小时客运量24万人26.(1)∵AB =AC ,AD ⊥BC ,∴∠BAD =∠CAD =12BAC ∠.…………… 1分 ∵AM 平分∠EAC ,∴∠EAM =∠MAC=12EAC ∠.…………… 2分 ∴∠MAD =∠MAC +∠DAC =1122EAC BAC ∠+∠=1180902⨯︒=︒。

北京市东城区2018届九年级上期末考试数学试题(有答案)-名师推荐

北京市东城区2018届九年级上期末考试数学试题(有答案)-名师推荐

北京市东城区2018 届九年级上学期期末考试数学试题一、选择题(本题共16 分,每小题2 分)1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.解:A、是中心对称图形但不是轴对称图形,故正确;B、是中心对称图形,是轴对称图形,故错误;C、不是中心对称图形,是轴对称图形,故错误;D、不是中心对称图形,不是轴对称图形,故错误.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.2.边长为2的正方形内接于⊙M,则⊙M的半径是()A.1 B.2 C.D.【分析】连接OB,CO,在Rt△BOC 中,根据勾股定理即可求解.解:连接OB,OC,则OC=OB,BC=2,∠BOC=90°,在Rt△BOC中,OC=.故选:C.【点评】此题主要考查了正多边形和圆,本题需仔细分析图形,利用勾股定理即可解决问题.3.若要得到函数y=(x+1)2+2的图象,只需将函数y=x2的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度【分析】找出两抛物线的顶点坐标,由a 值不变即可找出结论.解:∵抛物线y=(x+1)2+2的顶点坐标为(﹣1,2),抛物线y=x2的顶点坐标为(0,0),∴将抛物线y=x2 先向左平移1 个单位长度,再向上平移2 个单位长度即可得出抛物线y=(x+1)2+2.故选:B.【点评】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.4.点A(x1,y1),B(x2,y2)都在反比例函数的图象上,若x1<x2<0,则()A.y2>y1>0 B.y1>y2>0 C.y2<y1<0 D.y1<y2<0【分析】由k=2>0,可得反比例函数图象在第一,三象限,根据函数图象的增减性可得结果.解:∵k=2>0,∴此函数图象的两个分支分别位于一、三象限,且在每一象限内y 随x 的增大而减小,∵x1<x2<0,∴点A(x1,y1),B(x2,y2)位于第三象限,∴y2<y1<0,故选:C.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.A,B是⊙O上的两点,OA=1,的长是,则∠AOB的度数是()A.30 B.60°C.90°D.120°【分析】直接利用已知条件通过弧长公式求出圆心角的度数即可.解:∵OA=1,的长是,∴,解得:n=60°,∴∠AOB=60°,故选:B.【点评】本题考查扇形的弧长公式的应用,关键是通过弧长公式求出圆心角的度数.6.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是()A.2 B.4 C.6 D.8【分析】根据点D,E,F分别是OA,OB,OC的中点知=,由位似图形性质得=()2,即=,据此可得答案.解:∵点D,E,F 分别是OA,OB,OC 的中点,∴=,∴△DEF 与△ABC 的相似比是1:2,∴=()2,即=,解得:S △ABC =8,故选:D .【点评】本题主要考查了三角形中位线定理、位似的定义及性质,掌握面积的比等于相似比的平方是解题的关键.7. 已知函数y=﹣x 2+bx+c ,其中b >0,c <0,此函数的图象可以是()A .B .C .D .【分析】根据已知条件“a<0、b >0、c <0”判断出该函数图象的开口方向、与x和y 轴的交点、对称轴所在的位置,然后据此来判断它的图象.解:∵a=﹣1<0,b >0,c <0,∴该函数图象的开口向下,对称轴是x=﹣>0,与y 轴的交点在y 轴的负半轴上;故选:D .【点评】本题考查了二次函数图象与系数的关系.根据二次函数y=ax 2+bx+c 系数符号判断抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数.8. 小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:下面有四个推断:①当移植的树数是1 500 时,表格记录成活数是1 335,所以这种树苗成活的概率是0.890;②随着移植棵数的增加,树苗成活的频率总在0.900 附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;③若小张移植10 000 棵这种树苗,则可能成活9 000 棵;④若小张移植20000棵这种树苗,则一定成活18000棵.其中合理的是()A.①③B.①④C.②③D.②④【分析】随着移植棵数的增加,树苗成活的频率总在0.900 附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900,据此进行判断即可.解:①当移植的树数是1 500 时,表格记录成活数是1 335,这种树苗成活的概率不一定是0.890,故错误;②随着移植棵数的增加,树苗成活的频率总在0.900 附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900,故正确;③若小张移植10 000 棵这种树苗,则可能成活9 000 棵,故正确;④若小张移植20 000 棵这种树苗,则不一定成活18 000 棵,故错误.故选:C.【点评】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.二、填空题(本题共16 分,每小题2 分)9.已知在△ABC中,∠C=90°,cosA=,AB=6,那么AC=2.【分析】根据三角函数的定义,在直角三角形ABC中,cosA=,即可求得AC的长.解:在△ABC 中,∠C=90°,∵cosA=,∵cosA=,AB=6,∴AC=AB=2,故答案为2.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.10.若抛物线y=x2+2x+c与x轴没有交点,写出一个满足条件的c的值:2 .【分析】根据抛物线y=x2+2x+c 与x 轴没有交点得出b2﹣4ac=22﹣4×1×c<0,求出不等式的解集,再取一个范围内的数即可.解:因为要使抛物线y=x2+2x+c 与x 轴没有交点,必须b2﹣4ac=22﹣4×1×c<0,解得:c>1,取c=2,故答案为:2.【点评】本题考查了抛物线与x 轴的交点,能根据已知得出关于c 的不等式是解此题的关键.11.如图,在平面直角坐标系xOy中,若点B与点A关于点O中心对称,则点B的坐标为(2,﹣1).【分析】根据中心对称定义结合坐标系确定B 点位置即可.解:∵A(﹣2,1),点B 与点A 关于点O 中心对称,∴点B的坐标为(2,﹣1),故答案为:(2,﹣1).【点评】此题主要考查了中心对称,关键是掌握把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.12.如图,AB是⊙O的弦,C是AB的中点,连接OC并延长交⊙O于点D.若CD=1,AB=4,则⊙O的半径是.【分析】连接OA,根据垂径定理求出AC 的长,由勾股定理可得出OA 的长.解:连接OA,∵C 是AB 的中点,∴AC=AB=2,OC⊥AB,∴OA2=OC2+AC2,即OA2=(OA﹣1)2+22,解得,OA=,故答案为:.【点评】本题考查的是垂径定理及勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解答此题的关键.13.某校九年级的4位同学借助三根木棍和皮尺测量校园内旗杆的高度.为了方便操作和观察,他们用三根木棍围成直角三角形并放在高1m的桌子上,且使旗杆的顶端和直角三角形的斜边在同一直线上(如图).经测量,木棍围成的直角三角形的两直角边AB,OA的长分别为0.7m,0.3m,观测点O到旗杆的距离OE为6m,则旗杆MN的高度为15m.【分析】由平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似可得△ABO∽△NEO,利用对应边成比例可得旗杆MN 的高度.解:∵AB∥NE,∴△ABO∽△NEO,∴,即,解得:NE=14,∴MN=14+1=15,故答案为:15【点评】考查相似三角形的应用;用到的知识点为:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;相似三角形的对应边成比例.14.⊙O是四边形ABCD的外接圆,AC平分∠BAD,则正确结论的序号是②⑤ .①AB=AD;②BC=CD;③ ;④∠BCA=∠DCA;⑤ .【分析】根据圆心角、弧、弦的关系对结论进行逐一判断即可.解:①∵∠ACB 与∠ACD 的大小关系不确定,∴AB 与AD 不一定相等,故本结论错误;②∵AC 平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本结论正确;③∵∠ACB 与∠ACD的大小关系不确定,∴与不一定相等,故本结论错误;④∠BCA 与∠DCA 的大小关系不确定,故本结论错误;⑤∵AC平分∠BAD,∴∠BAC=∠DAC,∴,故本结论正确.故答案为②⑤.【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.15.已知函数y=x2﹣2x﹣3,当﹣1≤x≤a时,函数的最小值是﹣4,则实数a的取值范围是a≥1.【分析】结合函数y=x2﹣2x﹣3 的图象和性质,及已知中当﹣1≤x≤a 时函数的最小值为﹣4,可得实数a 的取值范围.解:函数y=x2﹣2x﹣3=(x﹣1)2﹣4 的图象是开口朝上且以x=1 为对称轴的抛物线,当且仅当x=1 时,函数取最小值﹣4,∵函数y=x2﹣2x﹣3,当﹣1≤x≤a 时,函数的最小值是﹣4,∴a≥1,故答案为:a≥1【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.16.如图,在平面直角坐标系xOy中,已知A(8,0),C(0,6),矩形OABC的对角线交于点P,点M在经过点P的函数y= 的图象上运动,k的值为12 ,OM长的最小值为.【分析】先根据P(4,3),求得k=4×3=12,进而得出y=,再根据双曲线的对称性可得,当点M在第一象限角平分线上时,O M最短,即当x=y时,x=,解得x=±2,进而得到OM的最小值.解:∵A(8,0),C(0,6),矩形OABC的对角线交于点P,∴P(4,3),代入函数y=可得,k=4×3=12,∴y=,∵点M在经过点P的函数y=的图象上运动,∴根据双曲线的对称性可得,当点M 在第一象限角平分线上时,OM 最短,当x=y时,x=,解得x=±2,又∵x>0,∴x=2,∴M(2,2),∴OM==2 ,故答案为:12,2.【点评】本题主要考查了反比例函数图象上点的坐标特征以及矩形的性质,解题时注意:矩形是轴对称图形,又是中心对称图形.它有2 条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.三、解答题(本题共68 分,第17-24 题,每小题5 分,第25 题6 分,第26-27,每小题5 分,第28 题8 分)17.(5分)计算:2cos30°﹣2sin45°+3tan60°+|1﹣|.【分析】首先代入特殊角的三角函数值,然后再计算即可.解:原式=2×﹣2×+3+﹣1,=﹣+3+﹣1,=4﹣1.【点评】此题主要考查了实数运算,关键是掌握特殊角的三角函数值.18.(5 分)已知等腰△A BC 内接于⊙O,AB=AC,∠BOC=100°,求△A BC 的顶角和底角的度数.【分析】画出相应图形,分△ABC 为锐角三角形和钝角三角形2 种情况解答即可.解:(1)圆心O 在△A BC 外部,在优弧BC 上任选一点D,连接BD,CD.∴∠BDC=∠BOC=50°,∴∠BAC=180°﹣∠BDC=130°;∵AB=AC,∴∠ABC=(180°﹣∠BAC)÷2=25°;(2)圆心O在△ABC内部.∠BAC=∠BOC=50°,∵AB=AC,∴∠ABC=(180°﹣∠BAC)÷2=65°.【点评】本题考查的是三角形圆周角定理及等腰三角形的性质,分情况探讨是解决本题的易错点;用到的知识点为:同弧所对的圆周角等于圆心角的一半;圆内接四边形的对角互补.19.(5分)如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.(1)求证:△ADE∽△BEC.(2)若AD=1,BC=3,AE=2,求AB的长.【分析】(1)由AD∥BC、AB⊥BC 可得出∠A=∠B=90°,由等角的余角相等可得出∠ADE=∠BEC,进而即可证出△ADE∽△BEC;(2)根据相似三角形的性质即可求出BE 的长度,结合AB=AE+BE 即可求出AB的长度.(1)证明:∵AD∥BC,AB⊥BC,∴AB⊥AD,∠A=∠B=90°,∴∠ADE+∠AED=90°.∵∠DEC=90°,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,∴△ADE∽△BEC.(2)解:∵△ADE∽△BEC,∴=,即=,∴BE=,∴AB=AE+BE=.【点评】本题考查了相似三角形的判定与性质以及平行线的性质,解题的关键是:(1)利用相似三角形的判定定理找出△A D E∽△BEC;(2)利用相似三角形的性质求出BE 的长度.20.(5分)在△A BC中,∠B=135°,AB=,BC=1.(1)求△ABC的面积;(2)求AC的长.【分析】(1)延长CB,过点A作AD⊥BC,利用三角函数求出AD,根据三角形的面积公式计算即可;(2)等腰直角三角形的判定与性质得到AD=DB=2,进一步得到DC,再根据勾股定理即可求解.解:(1)延长CB,过点A作AD⊥BC,∵∠ABC=135°,∴∠ABD=45°,在Rt△ABD中,AB=,∠ABD=45°,∴AD=AB×sin45°=2,∴△ABC的面积=×BC×AD=1;(2)∵∠ABD=45°,∠D=90°,∴△ABD 是等腰直角三角形,∵AD=2,∴DB=2,DC=DB+BC=2+1=3,在Rt△ACD中,AC==.【点评】本题考查了解直角三角形,正确的作出辅助线构造直角三角形是解题的关键.21.(5 分)北京2018 新中考方案规定,考试科目为语文、数学、外语、历史、地理、思想品德、物理、生化(生物和化学)、体育九门课程.语文、数学、外语、体育为必考科目.历史、地理、思想品德、物理、生化(生物和化学)五科为选考科目,考生可以从中选择三个科目参加考试,其中物理、生化须至少选择一门.(1)写出所有选考方案(只写选考科目);(2)从(1)的结果中随机选择一种方案,求该方案同时包含物理和历史的概率.【分析】(1)根据题意可以写出所有的可能性;(2)根据(1)中的所有可能即可求得从(1)的结果中随机选择一种方案,该方案同时包含物理和历史的概率.解:(1)由题意可得,所有的可能性是:(物理、历史、地理)、(物理、历史、思想品德)、(物理、历史、生化)、(物理、地理、思想品德)、(物理、地理、生化)、(物理、思想品德、生化)、(历史、地理、生化)、(历史、思想品德、生化)、(地理、思想品德、生化);(2)从(1)的结果中随机选择一种方案,该方案同时包含物理和历史的概率是,即从(1)的结果中随机选择一种方案,该方案同时包含物理和历史的概率是.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,写出所有的可能性,求出相应的概率.22.(5 分)如图,在Rt△A BC 中,∠A=90°,∠C=30°.将△ABC 绕点B 顺时针旋转60°得到△A'BC',其中点A',C'分别是点A,C 的对应点.(1)作出△A'BC'(要求尺规作图,不写作法,保留作图痕迹);(2)连接AA',求∠C'A'A的度数.【分析】(1)直接利用等边三角形的性质得出对应点位置进而得出答案;(2)直接利用等边三角形的判定方法△ABA′为等边三角形,得出进而得出答案.解:(1)如图所示:△A'BC'即为所求;(2)在Rt△ABC 中,∵∠C=30°,∠A=90°,∴∠B=60°,∵△A′B′C′由△ABC 旋转所得,∴△A′B′C′≌△ABC,∴BA=BA′,∠BA′C′=∠BAC=90°,∴△ABA′为等腰三角形,又∵∠ABC=60°,∴△ABA′为等边三角形,∴∠BA′A=60°,∴∠C′A′A=∠BA′C′+∠BA′A=150°.【点评】此题主要考查了旋转变换以及等边三角形的判定与性质,正确得出对应点位置是解题关键.23.(5 分)如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.(1)小球飞行时间是多少时,小球最高?最大高度是多少?(2)小球飞行时间t在什么范围时,飞行高度不低于15m?【分析】(1)将函数解析式配方成顶点式可得最值;(2)画图象可得t 的取值.解:(1)∵h=﹣5t2+20t=﹣5(t﹣2)2+20,∴当t=2 时,h 取得最大值20 米;答:小球飞行时间是2s 时,小球最高为20m;(2)由题意得:15=20t﹣5t2,解得:t1=1,t2=3,由图象得:当1≤t≤3 时,h≥15,则小球飞行时间1≤t≤3 时,飞行高度不低于15m.【点评】本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.24.(5分)在平面直角坐标系xOy中,直线y=2x+4与反比例函数y=(k≠0)的图象交于点A(﹣3,a)和点B.(1)求反比例函数的表达式和点B的坐标;(2)直接写出不等式<2x+4的解集.【分析】(1)把A(﹣3,a)代入y=2x+4,可得A(﹣3,﹣2),把A(﹣3,﹣2)代入y=,可得反比例函数的表达式为y=,再联立两个函数的解析式,解方程组即可得到B的坐标;(2)在平面直角坐标系中画出两个函数的图象,反比例函数落在一次函数图象下方的部分对应的自变量的取值范围就是不等式<2x+4的解集.解:(1)把A(﹣3,a)代入y=2x+4,可得a=﹣2,∴A(﹣3,﹣2),把A(﹣3,﹣2)代入y=,可得k=6,∴反比例函数的表达式为y=.解方程组,得或,∴B(1,6);(2)在平面直角坐标系中画出直线y=2x+4与双曲线y=,如图.由图象可知,不等式<2x+4的解集为﹣3<x<0或x>1.【点评】此题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.由函数图象比较函数大小,利用数形结合是解题的关键.25.(6 分)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 与边BC,AC 分别交于点D,E.DF 是⊙O 的切线,交AC 于点F.(1)求证:DF⊥AC;(2)若AE=4,DF=3,求tanA.【分析】(1)连接OD,作OG⊥AC 于点G,推出∠ODB=∠C;然后根据DF⊥AC,∠DFC=90°,推出∠ODF=∠DFC=90°,即可证明;(2)过O 作OG⊥AC,利用垂径定理和矩形的性质解答即可.(1)证明:如图,连接OD,作OG⊥AC于点G,,∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∴DF⊥AC;(2) 过O 作OG⊥AC,由垂径定理可知:OG 垂直平分AE ,∴∠AGO=90°,AG=2,由(1)可知:四边形ODFG 为矩形,∴OG=DF=3,在Rt△AGO中,tanA=.【点评】此题主要考查了切线的性质和应用,等腰三角形的性质和应用,以及解直角三角形的应用,要熟练掌握.26.(7分)在平面直角坐标系xOy 中,抛物线y=mx 2﹣2mx+n (m≠0)与x 轴交于点A ,B ,点A 的坐标为(﹣2,0).(1) 写出抛物线的对称轴;(2) 直线y=x ﹣4m ﹣n 过点B ,且与抛物线的另一个交点为C .①分别求直线和抛物线所对应的函数表达式;②点P 为抛物线对称轴上的动点,过点P 的两条直线l 1:y=x+a 和l 2:y=﹣x+b 组成图形G .当图形G 与线段BC 有公共点时,直接写出点P 的纵坐标t 的取值范围.【分析】(1)由给定的抛物线的表达式,利用二次函数的性质即可找出抛物线的对称轴;(2)①根据抛物线的对称性可得出点B 的坐标,再利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征,即可求出m、n 的值,此问得解;②联立直线及抛物线的函数关系式成方程组,通过解方程组可求出点C 的坐标,利用一次函数图象上点的坐标特征求出直线l过点B、C 时b 的值,进而可得出点P 的坐标,再结合函数2图象即可找出当图形G 与线段BC 有公共点时,点P的纵坐标t 的取值范围.解:(1)∵抛物线所对应的函数表达式为y=mx2﹣2mx+n,∴抛物线的对称轴为直线x=﹣=1.(2)①∵抛物线是轴对称图形,∴点A、B 关于直线x=1 对称.∵点A的坐标为(﹣2,0),∴点B的坐标为(4,0).∵抛物线y=mx2﹣2mx+n过点B,直线y=x﹣4m﹣n过点B,,∴直线所对应的函数表达式为y=x﹣2,抛物线所对应的函数表达式为y=﹣x2+x+4.②联立两函数表达式成方程组, ,解得: , .∵点B 的坐标为(4,0), ∴点C 的坐标为(﹣3,﹣).当直线l 2:y=﹣x+b 1过点B 时,0=﹣4+b 1,解得:b 1=4,∴此时直线l 2所对应的函数表达式为y=﹣x+4,当x=1 时,y=﹣x+4=3, ∴点P 1的坐标为(1,3);当直线l 2:y=﹣x+b 2过点C 时,﹣=3+b 2,解得:b 2=﹣,∴此时直线l 2所对应的函数表达式为y=﹣x ﹣,当x=1时,y=﹣x ﹣=﹣,∴点P 2的坐标为(1,﹣).∴当图形G 与线段BC 有公共点时,点P 的纵坐标t 的取值范围为﹣≤t≤3.【点评】本题考查了二次函数的性质、一次(二次)函数图象上点的坐标特征以及抛物线与x 轴的交点,解题的关键是:(1)利用二次函数的性质找出抛物线的对称轴;(2)①利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征,找出关于m、n 的二元一次方程组;②利用一次函数图象上点的坐标特征求出直线l过点B、C 时点P 的坐标.227.(7分)如图1,在△A BC中,∠ACB=90°,AC=2,BC=2,以点B为圆心,为半径作圆.点P为⊙B上的动点,连接PC,作P'C⊥PC,使点P'落在直线BC的上方,且满足P'C:PC=1:,连接BP,AP'.(1)求∠BAC的度数,并证明△AP'C∽△BPC;(2)若点P在AB上时,①在图2 中画出△AP′C;②连接BP',求BP'的长;(3)点P在运动过程中,BP'是否有最大值或最小值?若有,请直接写出BP'取得最大值或最小值时∠PBC的度数;若没有,请说明理由.【分析】(1)①利用锐角三角函数求出∠BAC,②先判断出= ,再判断出∠P'CA=PCB,即可得出结论;(2)①利用垂直和线段的关系即可画出图形;②先求出∠P'AC,进而得出∠P'AB=90°,再利用相似求出AP',即可得出结论;(3)先求出AP'=1是定值,判断出点P'在以点A为圆心,1为半径的圆上,即可得出结论.解:(1)①在Rt△A BC中,AC=2,BC=2,∴tan∠BAC==,∴∠BAC=60°;②∵∴,==,,∵P'C⊥PC,∴∠PCP'=∠ACB=90°,∴∠P'CA=PCB,∴△AP'C∽△BPC;(2)①如图1 所示;②如图2,由(1)知,∠BAC=60°,∴∠ABC=90°﹣∠BAC=30°,∴AB=2AC=4,∵△AP'C∽△BPC,∴∠P'AC=∠PBC=30°,,∵点P 在AB 上,∴BP=,∴AP'=1;连接P'B,∠P'AB=∠CAP'+∠BAC=30°+60°=90°,在Rt△P'AB中,AP'=1,AB=4,根据勾股定理得,BP'= =;(3)由(1)知,△AP'C∽△BPC,∴,∴∴AP'=1 是定值,∴点P'是在以点A 为圆心,半径为AP'=1 的圆上,①如图3,点P'在BA 的延长线上,此时,BP'取得最大值,∴∠P'AC=180°﹣∠BAC=60°,∵△AP'C∽△BPC,∴∠P'AC=PBC=120°,∴BP'取得最大值时,∠PBC=120°;②如图4,点P'在线段AB 上时,BP'取得最小值,∵△AP'C∽△BPC,∴∠PBC=∠BAC=60°,∴BP'取得最小值时,∠PBC=60°.【点评】此题是圆的综合题,主要考查了相似三角形的判定和性质,锐角三角函数,直角三角形的判定和性质,圆的性质,判断出△AP'C∽△BPC 是解本题的关键.28.(8 分)对于平面直角坐标系xOy 中的点M 和图形G,若在图形G 上存在一点N,使M,N 两点间的距离等于1,则称M 为图形G 的和睦点.(1)当⊙O的半径为3时,在点P1(1,0),P2(,1),P3(,0),P4(5,0)中,⊙O的和睦点是P2、P3;(2)若点P(4,3)为⊙O的和睦点,求⊙O的半径r的取值范围;(3)点A在直线y=﹣1上,将点A向上平移4个单位长度得到点B,以AB为边构造正方形ABCD,且C,D两点都在AB右侧.已知点E(,),若线段OE上的所有点都是正方形ABCD的和睦点,直接写出点A的横坐标xA的取值范围.【分析】(1)分别以点P1,P2,P3,P4为圆心,1 为半径画圆,若与⊙O 有交点,则P 是,⊙O的和睦点;(2)如图2中,连接OP.直线OP交以P为圆心半径为1的圆于A、B.满足条件的⊙O必须与以P为圆心半径为1的圆相交或相切,当OA=4时,得到r 的最小值为4,当OB=6时,得到r的最大值为6;(3)分两种情形画出图形分别求解即可解决问题;解:(1)如图1 中,分别以点P1,P2,P3,P4为圆心,1 为半径画圆,若与⊙O有交点,则P 是,⊙O 的和睦点,观察图象可知,⊙O 的和睦点是P2、P3.故答案为:P2、P3.(2)如图2中,连接OP.直线OP交以P为圆心半径为1的圆于A、B.∵P(4,3),∴OP=5,满足条件的⊙O必须与以P为圆心半径为1的圆相交或相切,当OA=4时,得到r的最小值为4,当OB=6时,得到r的最大值为6,∴4≤r≤6.(3)①如图3中,当点O到C′D′的距离OM=1时,此时点A′的横坐标为﹣3.当点E到CD的距离EN=1时,此时点A的横坐标为﹣5,≤﹣3时,满足条件;∴﹣5≤xA②)①如图3 中,当点O 到A′B′的距离OM=1 时,此时点A′的横坐标为1当点E到AB的距离EN=1时,点A的横坐标为﹣1,≤1时,满足条件;∴﹣1≤xA≤﹣3或﹣1综上所述,满足条件的当A的横坐标的取值范围为:﹣5≤xA≤1.≤xA【点评】本题考查一次函数综合题、圆、正方形的有关性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

2017-2018北京市各区初三数学期末考试分类汇编-基础题答案

2017-2018北京市各区初三数学期末考试分类汇编-基础题答案

2018.1北京市各区期末考试数学试题基础题部分答案2018.1石景山区C B 13.14.15.先以点C为中心顺时针旋转90º,再以y轴为对称轴翻折(答案不唯一)22.(本小题满分5分)解:(1)一次函数的图象与x轴交于点A(2,0),∴.可得,.∴.…………………………………………………………1分当时,,∴点B(3,1).代入中,可得,∴反比例函数的表达式为.……………………………………3分(2)点P的坐标是(6,0)或(-2,0).……….……………………………5分23.(本小题满分5分)(1)证明:∵四边形是平行四边形,∴∥,∴∠=∠,……………………………………………… 1分∵⊥,⊥,∴∠∠90°,……………………………………………… 2分∴△∽△;………………………………………………3分(2)解:∵△∽△,∴∴,∴9.∵四边形是平行四边形,∴∴9.…………………………………………………………5分24.(本小题满分5分)解:(1)∵二次函数的图象经过点(12).∴解得.………………………………………………………1分∴二次函数的表达式∴二次函数的对称轴为:直线.………………………2分(2)二次函数的表达式.当时,,…………………………………………3分当时,,当时,,∴时,的取值范围是. …………………5分2018门头沟区2 4 先将以点B为旋转中心顺时针旋转90°,在向左平移7个单位长度(不唯一)22.(本小题满分5分)解:根据题意补全图形如下:(1)可知,,∠30°,∠60°…1分(2)在△中,由60,∠30°,根据三角函数可得………………………………………2分(3)过点A作⊥于K,可得四边形是矩形,进而得出30,………………………………………3分(4)在△中,由90,∠60°,根据三角函数可得,进而可求出………………………………………4分(5)在△中,根据勾股定理可以求出的长度. …………………………5分23.(本小题满分5分)(1)证明:令0,可得∵∴△=……………………………………………………………………………1分=…………………………………………………………………………………2分∵∴此二次函数的图象与x轴总有交点.………………………………………………………3分(2)解:令0,得解得x1= ,x2=………………………………4分∵k为整数,解为整数∴. ………………………………………………………………………………5分24.(本小题满分5分)(1)证明:连接,∵与圆O相切,∴⊥,…………….1分∵⊥,∴∥,又∵O为的中点,∴E为的中点,即为△的中位线,∴,又∵,∴;……………………………………….2分(2)设3x,可得:5x,又∵2,∴32,由(1)得:,∴32,∴,﹣∵∥,∴∠∠B,……………………………………………………………………………………4分∴∠,即,解得:则圆O 的半径为………………………………………………………………………5分2018丰台区14.(2,0);15.(可不化为一般式),2;23.解:建立平面直角坐标系,如图.于是抛物线的表达式可以设为根据题意,得出A,P两点的坐标分别为A(0,2),P(1,3.6). ……2分∵点P为抛物线顶点,∴ .∵点A在抛物线上,∴,.…3分∴它的表达式为. ……4分当点C的纵坐标0时,有OyxPCA.(舍去),.∴2.5.∴水流的落地点C到水枪底部B的距离为2.5m. ……5分2018顺义区B 13.;14.略;15.22.证明:∵是角平分线,∴∠1=∠2,……………………………………….1分又∵=,……………………….2分∴△∽△,………………………………………..…….3分∴∠3=∠4,……………………………………………………….4分∴∠∠,∴.………………………………………………………..5分23.解:过点D作⊥于点E,在△中,∠90°,∠1=,∠1=30°,………………………….…..1分∴×∠1=40×30°=40×≈40×1.73×≈23.1……………………..2分在△中,∠90°,∠2=,∠2=10°,……………………………...3分∴×∠2=40×10°≈40×0.18=7.2………………………………..………..4分∴≈23.1+7.2=30.3米.………………………………………………………..5分24.证明:延长交⊙O于点G.∵为⊙O的直径,⊥于E,∴,∴∠∠2,……………………………………………..2分∵∥,∴∠1=∠F,………………………………………………3分又∵∠∠F,………………………………………..….5分∴∠1=∠2.…………………………………………….…6分2018密云区22.(1)解:点P(1,4),Q(2,)是双曲线图象上一点.,,………………………………………………………………………3分(2)或………………………………………………………………………5分23. 解:(1)过C作交于E.由已知,…………………………………………………………………………………………2分(2)在中,,20,8 …………………………………………………………………………………………3分在中,,20,513国旗杆的高度约为13米.……………………………………………………………………5分24.(1)证明:连结.是的直径,C 在上是的直径,切于点BD C O……………………………………………2分(2)在中,,,………………………..3分在中,8,解得:………………………..4分连结,则,,…………………5分2018大兴区22.解:由题意可知:⊥于D,∠∠=,∠∠=,=9.设,∵ 在中,∠=90°,∠=45°,∴ . ……………………………… 2分∵ 在中,∠=90°,∠=35°,∴ ,∴ …………………………… 4分∵ 9,,∴ .解得答:的长为21米.……………………… 5分23. 解:设的长为米, 则的长为米,以和为边的两个正方形面积之和为y平方米.根据题意,y与x之间的函数表达式为因为2>0于是,当时,y有最小值………………………..4分所以,当的长为1米时截取两块相邻的正方形板料的总面积最小.……5分24.(1)证明:∵是半圆直径,∴∠90°. .………………………………………………………1分∴又∴ (2)分即∠90°∴是半圆O的切线.(2)解:由题意知,∴∠D =∠=∠= 90°∴.……………………………………………………3分又∵6∴3.又∴△∽△ ……………………………………………4分。

2017东城九上数学期末答案

2017东城九上数学期末答案

北京市东城区2017-2018学年第一学期期末统一测试 初三数学参考答案及评分标准 2017.1二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解方程:22410x x --=解: 2122x x -=.…………1分 212112x x -+=+ . …………2分23(1)2x -= . …………3分12x =±. ∴ 121122x x =+=-.…………5分 18. 解:∵ ∠B =∠DAC ,∠C =∠C ,∴ △ABC ∽△DAC . …………2分 ∴AC BC CD AC=. ∴ 2AC CD BC =⋅.…………3分 ∵ AD 是中线, BC =8,∴ 4CD =. …………4分 ∴ AC = …………5分 19. 解:连接OC . …………1分∵ AB 是⊙O 的直径,弦CD ⊥AB 于点E , ∴ 点E 是CD 的中点. …………2分BC在Rt △OCE 中,222OE CE OC +=, ∵ AB =8,CD =6,∴可求OE = …………4分 ∴4BE = …………5分20.(1)由题意可求点C 的坐标为(2,32). …………1分 ∴ 反比例函数的解析式为13y x =(x >0). …………2分(2)可求出点D 的坐标为(4,34). …………3分∴ 可求直线CD 的解析式 239-84y x =+. …………4分当2<x <4时, 21y y >. …………5分 .21.解:设原正方形空地的边长为x m . …………1分根据题意, 得 ()()1220x x --=. …………2分 解方程, 得 126,3(x x ==-舍)…………4分 答:原正方形空地的边长为6m . …………5分22. 解:(1)旋转后的△A 1B 1C 1如下图:C 1B 1A 1…………3分(2)根据题意画图如下:符合其中的两种即可.…………5分23.解:(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;………3分 (2)不公平.从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13. ∵59>13, ∴ 甲获胜的概率大,游戏不公平.…………5分24. 解:(1)由题意可求点A 的坐标为(3,0).将点A (3,0)和点B (-1,0)代入y = -x 2+bx +c , 得 0=-9+3,01.b c b c +⎧⎨=--+⎩解得 2,3.b c =⎧⎨=⎩∴ 抛物线的解析式223y x x =-++. …………3分 (2)可求出点C 的坐标为(0,3).由题意可知 满足条件的点P 的纵坐标为2.∴ 223=2x x -++.解得 1211x x ==∴ 点P 的坐标为(1或(1. …………5分25. (1)证明:连接OD .∵ OA =OD , ∴ ∠BAD =∠ODA . ∵ AD 平分∠BAC , ∴ ∠BAD =∠DAC . ∴ ∠ODA =∠DAC .∴ OD ∥AE . ∵ DE ⊥AE , ∴ OD ⊥DE .∴ DE 是⊙O 的切线.…………2分(2)解:∵ OB 是直径,∴ ∠ADB =90°. ∴ ∠ADB =∠E .又∵ ∠BAD =∠DAC ,∴ △ABD ∽△ADE .∴AB BD AD DE ==∴ 10AB =.由勾股定理可知 BD =连接DC ,∴ BD DC == ∵ A ,C ,D ,B 四点共圆. ∴ ∠DCE =∠B. ∴ △DCE ∽△ABD .ECBAHG CBA∴AB BDDC CE=. ∴ CE =2.…………5分26. 解:(1)在Rt △ADC 中,∵AC ==45C ∠°,∴ 2AD =. …………1分(2)符合题意的图形如下所示:E 为AC 中点,BE =GH ∥BC ,GH =.…………5分27.解:(1)由题意可得,43m -=- .1.m ∴=∴ 抛物线的解析式为:223y x x =--.…………2分(2)点A 关于抛物线的对称轴对称的点是B ,连接BC 交对称轴于点P ,则点P 就是使得PA+PC 的值最小的点. 可求直线BC 的解析式为3y x =-.∴ 点P 的坐标为(1,-2). …………5分(3)符合题意的b 的取值范围是-15≤b ≤-3. …………7分28.解:(1)OE =OF . …………1分(2)补全图形如右图. …………2分OE =OF 仍然成立. …………证明:延长EO 交CF 于点G . ∵ AE ⊥BP , CF ⊥BP , ∴ AE ∥CF . ∴ ∠EAO =∠GCO.又∵ 点O 为AC 的中点,∴ AO =CO. ∵ ∠AOE=∠COG , ∴ △AOE ≌△COG.∴ OE =OF.…………5分(3)CF OE AE =+或CF OE AE =-. …………7分 29.解:(1)① 1l 和2l . …………2分② 符合题意的直线如下图所示. …………4分夹在直线a 和b 或c 和d 之间的(含直线a ,b ,c ,d )都是符合题意的.○3设符合题意的直线的解析式为 .y b =+ 由题意可知符合题意的临界直线分别经过点(-1,1),(1,-1).分别代入可求出1211b b ==-.∴ 11Q y -≤ …………6分(2)33K x -≤- …………8分。

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。

2017-2018北京市各区初三数学期末考试分类汇编-基础题

2017-2018北京市各区初三数学期末考试分类汇编-基础题

2018.1北京市各区期末考试 数学试题 基础题部分 2018.1石景山区3.如图,是⊙O 的直径,点C 、D 在⊙O 上.若,则的度数为 (A )(B )(C )(D )4.如图,在⊙O 中,弦垂直平分半径.若⊙O 的半径为4,则弦的长为 (A ) (B )(C ) (D )13.如图,一次函数的图象与反比例函数的图象相交于点A 和点B .当时,的取值范围是.14.如图,在△中,,10.若以点C 为圆心,为半径的圆恰好经过的中点D ,则.15.如图,在平面直角坐标系中,△经过若干次图形的变化(平移、轴对称、旋转)得到△,写出一种由△得到△的过程:.第3题 第4题第13题第14题第15题22.在平面直角坐标系中,一次函数的图象与x轴交于点,与反比例函数的图象交于点.(1)求一次函数与反比例函数的表达式;(2)若点P为x轴上的点,且△的面积是2,则点P的坐标是.23.如图,四边形是平行四边形,⊥于点E,⊥交的延长线于点F.(1)求证:△∽△;(2)当2,6,且点E恰为中点时,求的长.24.二次函数的图象经过点.(1)求二次函数图象的对称轴;(2)当时,求y的取值范围.2018门头沟区6.已知,3,4,以点C为圆心r为半径作圆,如果点A、点B只有一个点在圆内,那么半径r的取值范围是A.B.C.D.7. 一个不透明的盒子中装有20张卡片,其中有5张卡片上写着“三等奖”;3张卡片上写着“二等奖”,2张卡片上写着“一等奖”,其余卡片写着“谢谢参与”,这些卡片除写的字以外,没有其他差别,从这个盒子中随机摸出一张卡片,能中奖的概率为A.B.C.D.13. 如图,在△中,∠60°,⊙O为△的外接圆.如果,那么⊙O的半径为.14. 如图,是某商场一楼与二楼之间的手扶电梯示意图.其中、分别表示一楼、二楼地面的水平线,∠150°,的长是8 m,则乘电梯从点B到点C上升的高度h是.15. 如图,在平面直角坐标系中,图形L2可以看作是由图形L1经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由图形L1得到图形L2的过程.22. 如图,小明想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道上某一观测点M处,测得亭A在点M的北偏东60°, 亭B在点M的北偏东30°,当小明由点M沿小道向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向.根据以上数据,请你帮助小明写出湖中两个小亭A、B之间距离的思路.23. 已知二次函数.(1)求证:无论k取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与轴交点的横坐标均为整数,且k为整数,求k值.24. 如图,在△中,∠90°,点D是边上一点,以为直径的⊙O与边相切于点E,连接并延长交的延长线于点F.(1)求证:;(2)若2,,求⊙O的半径.2018丰台区7.如图,A,B是⊙O上的两点,C是⊙O上不与A,B重合的任意一点. 如果∠140°,那么∠的度数为A.70°B.110°C.140°D.70°或110°8.已知抛物线上部分点的横坐标x与纵坐标y的对应值如下表:x…0123…y…30m3…①抛物线的开口向下;②抛物线的对称轴为直线;③方程的根为0和2;④当y>0时,x的取值范围是x<0或x>2.其中正确的是A.①④B.②④C.②③D.③④14.在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为 .15.在北京市治理违建的过程中,某小区拆除了自建房,改建绿地. 如图,自建房占地是边长为8m的正方形,改建的绿地是矩形,其中点E在上,点G在的延长线上,且= 2. 如果设的长为x(单位:m),绿地的面积为y(单位:m2),那么y与x的函数的表达式为;当= m时,绿地的面积最大.23.如图,人工喷泉有一个竖直的喷水枪,喷水口A距地面2m,喷出水流的运动路线是抛物线. 如果水流的最高点P到喷水枪所在直线的距离为1m,且到地面的距离为3.6m,求水流的落地点C到水枪底部B的距离.24.如图,是⊙O的直径,点是的中点,连接并延长至点,使,点是上一点,且,的延长线交的延长线于点,交⊙O于点,连接.(1)求证:是⊙O的切线;(2)当时,求的长.2018顺义区8.如图1,点P从△的顶点A出发,沿匀速运动,到点C停止运动.点P运动时,线段的长度与运动时间的函数关系如图2所示,其中D为曲线部分的最低点,则△的面积是A.10 B.12 C.20 D.2413.已知矩形中,4,3,以点B为圆心r为半径作圆,且⊙B与边有唯一公共点,则r的取值范围是.14.已知y与x的函数满足下列条件:①它的图象经过(1,1)点;②当时,y随x的增大而减小.写出一个符合条件的函数:.15.在中,,,,则的长为.22.已知:如图,在△的中,是角平分线,E是上一点,且:=:.求证:.23.如图所示,某小组同学为了测量对面楼的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼的高度.(精确到0.1米)(参考数据:10°≈0.17,10°≈0.98,10°≈0.18,≈1.41,≈1.73)24.已知:如图, 为⊙O 的直径,⊥于E ,∥,连接,.求证:∠∠.2018密云区22. 点P(1,4),Q (2, )是双曲线图象上一点. (1)求k 值和值.(2)O 为坐标原点.过轴上的动点R 作轴的垂线,交双曲线于点S ,交直线于点T ,且点S 在点T 的上方.结合函数图象,直接写出R 的横坐标的取值范围.y x-5-4-3-154321-5-4-3-2-15432-2O123. 小明同学要测量学校的国旗杆的高度.如图,学校的国旗杆与教学楼之间的距20m.小明在教学楼三层的窗口C测得国旗杆顶点D 的仰角为,旗杆底部B 的俯角为.(1)求的大小.(2)求国旗杆的高度(结果精确到1m.参考数据22°≈0.37,22°≈0.93,22°≈0.40,14°≈0.24,14°≈0.97,14°≈0.25)DCAB24. 如图,是的直径,C、D是上两点,.过点B作的切线,连接并延长交于点E,连接并延长交于点F.(1)求证:.(2)若,求长.2018大兴区22. 在一次社会大课堂的数学实践活动中,王老师要求同学们测量教室窗户边框上的点C到地面的距离即的长,小英测量的步骤与测量的数据如下:(1)在地面上选定点A, B,使点A,B,D在同一条直线上,测量出、两点间的距离为9米;(2)在教室窗户边框上的点C点处,分别测得点,的俯角∠35°,∠45°.请你根据以上数据计算出的长.(可能用到的参考数据:35°≈0.57 35°≈0.82 35°≈0.70)23.已知:如图,是一块边长为2米的正方形铁板,在边上选取一点M,分别以和为边截取两块相邻的正方形板料. 当的长为何值时,截取两块相邻的正方形板料的总面积最小?24. 已知:如图,是半圆的直径,D是半圆上的一个动点(点D不与点A,B 重合),(1)求证:是半圆的切线(2)过点O作的平行线,交于点E,交于点F,且4, 6, 求的长.。

2017-2018北京初三(上)期末数学各区试题汇总-圆部分

2017-2018北京初三(上)期末数学各区试题汇总-圆部分

●知识模块1:圆基础(选填) (2)★与圆的位置关系 (2)★圆周角、圆心角 (2)★垂径定理 (4)★正多边形 (6)★弧长、扇形面积 (7)●知识模块2:尺规作图 (8)●知识模块3:圆解答题(计算) (13)●知识模块4:圆解答题(综合) (16)●知识模块5:新定义问题 (24)●知识模块1:圆基础(选填)★与圆的位置关系1.(密云18期末5)如图,Rt ABC ∆中,90C ∠=︒,AC=4,BC=3.以点A 为圆心,AC 长为半径作圆.则下列结论正确的是( )A.点B 在圆内B.点B 在圆上C.点B 在圆外D.点B 和圆的位置关系不确定2.(门头沟18期末6)已知ABC △,AC =3,CB =4,以点C 为圆心r 为半径作圆,如果点A 、点B 只有一个点在圆内,那么半径r 的取值范围是A .3r >B .4r ≥C .34r <≤D .34r ≤≤3.(顺义18期末13)已知矩形ABCD 中, AB =4,BC =3,以点B 为圆心r 为半径作圆,且⊙B 与边CD 有唯一公共点,则r 的取值范围是 .4.(石景山18期末14)14.如图,在Rt △ABC 中,︒=∠90C ,AB =10.若以点C 为圆心,CB 为半径的圆恰好经过AB 的中点D ,则AC =________.★圆周角、圆心角 5.(密云18期末6)如图,ABC ∆内接于O ,80AOB ∠=︒,则ACB∠的大小为( )A.20︒B.40︒C.80︒D.90︒6.(大兴18期末2)如图,点A ,B ,P 是⊙O 上的三点,若︒=∠40AOB ,则APB ∠的度数为( )A. ︒80B. ︒140C. ︒20D. ︒507.(平谷18期末6)如图,△ABC 内接于⊙O ,连结OA ,OB ,∠ABO =40°,则∠C 的度数是( )A .100°B .80°C .50° D40°8.(昌平18期末4)如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC的大小为( )A .40°B .30°C .80°D .100°B CA DABCDBAC9.(门头沟18期末3)如图,DCE ∠是圆内接四边形ABCD 的一个外角,如果75DCE ∠=︒,那么BAD ∠的度数是( ) A .65︒ B .75︒ C .85︒ D .105︒ 10.(朝阳18期末6)如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =7.则∠BDC 的度数是( )A .15°B .30°C . 45°D .60°11.(石景山18期末3)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若︒=∠25ACD ,则BOD ∠的度数为( )A .︒100B .︒120C .︒130D .︒15012.(西城18期末5)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,如果∠ACD =34°,那么∠BAD 等于( ).A .34°B .46°C .56°D .66°13.(丰台18期末7)如图,A ,B 是⊙O 上的两点,C 是⊙O 上不与A ,B 重合的任意一点. 如果∠AOB =140°,那么∠ACB 的度数为( )A .70°B .110°C .140°D .70°或110°14.(怀柔18期末5)如图,⊙O 是△ABC 的外接圆,∠BOC =100°,则∠A 的大小为 ( )A .B .C .D .15.(通州18期末4)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若︒=∠55ABD ,则BCD ∠的度数为( )A .︒25B .︒30C .︒35D .︒4016.(燕山18期末3)3.如图,圆心角 ∠ AOB=25°,将 AB 旋转 n°得到 CD ,则∠ COD 等于( )A .25°B .25°+ n°C .50°D .50°+ n°40︒50︒80︒100︒AA B DCBAO17.(燕山18期末13)如图,量角器的直径与直角三角尺 ABC的斜边 AB 重合,其中量角器 0 刻度线的端点 N 与点 A 重合,射线 CP 从 CA 处出发沿顺时针方向以每秒 3°的速度旋转,CP 与量角器的半圆弧交于点 E ,则第 20 秒点 E 在量角器上对应的读数是 °18.(通州18期末15)⊙O 的半径为1,其内接ABC △的边2=AB ,则C ∠的度数为________. 19.(东城18期末14)⊙O 是四边形ABCD 的外接圆,AC 平分∠BAD ,则正确结论的序号是 . ①AB=AD ;②BC=CD ;③ AB AD =;④∠BCA=∠DCA ;⑤ BCCD =. 20.(丰台18期末14)在平面直角坐标系中,过三点A (0,0),B (2,2),C (4,0)的圆的圆心坐标为 .21.(西城18期末16)如图,⊙O 的半径为3,A ,P 两点在⊙O 上,点B在⊙O 内,4tan 3APB ∠=,AB AP⊥.如果OB ⊥OP ,那么OB 的长为.★垂径定理 22.(顺义18期末6)如图,已知⊙O 的半径为6,弦AB 的长为8,则圆心O 到AB 的距离为( )A .B .C .D .1023.(石景山18期末4)如图,在⊙O 中,弦AB 垂直平分半径OC .若⊙O的半径为4,则弦AB 的长为( )A .32B .34C .52D .5424.(通州18期末6)如图,⊙O 的半径为4.将⊙O 的一部分沿着弦AB翻折,劣弧恰好经过圆心O .则折痕AB 的长为( )A. 3B. 32C. 6D. 34CBAO25.(怀柔18期末7)某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O ,再任意找出圆O 的一条直径标记为AB (如图1),测量出AB =4分米;②将圆环进行翻折使点B 落在圆心O 的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C 、D (如图2);③用一细橡胶棒连接C 、D 两点(如图3); ④计算出橡胶棒CD 的长度.小明计算橡胶棒CD 的长度为( )A .22分米B .23分米C .32分米D .33分米26.(门头沟18期末13)如图,在△ABC 中,∠A =60°,⊙O 为△ABC的外接圆.如果BC=,那么⊙O 的半径为________.27.(西城18期末13)如图,⊙O 的半径等于4,如果弦AB 所对的圆心角等于120 ,那么圆心O 到弦AB 的距离等于 . 28.(大兴18期末13)如图,在半径为5cm 的⊙O 中,如果弦AB 的长为8cm ,OC ⊥AB ,垂足为C ,那么OC 的长为 cm . 29.(东城18期末12)如图,AB 是⊙O 的弦,C 是AB 的中点,连接OC并延长交⊙O 于点D .若CD =1,AB =4,则⊙O 的半径是_______. 30.(燕山18期末11)如图,AB 、AC 是⊙O 的弦,OM ⊥ AB ,ON ⊥ AC ,垂足分别为 M 、N .如果 MN =2.5,那么BC =_______★正多边形 31.(东城18期末2)边长为2的正方形内接于M ,则M 的半径是( )A .1B .2CD. 32.(丰台18期末12)如图,等边三角形ABC 的外接圆⊙O 的半径OA 的长为2,则其内切圆半径的长为 .33.(通州18期末13)如图,AD ,AE 是正六边形的两条对角线.在不添加任何其他线段的情况下,请写出两个关于图中角度的正确结论: (1)__________________________; (2)______________________. 34.(昌平18期末13)如图,⊙O 的半径为3,正六边形ABCDEF内接于⊙O ,则劣弧AB 的长为 .35.(朝阳18期末9)如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为3,则正六边形ABCDEF 的边长为 .36.(平谷18期末13)“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是我国古代著名数学家刘徽在《九章算术注》中提到的“如何求圆的周长和面积”的方法,即“割圆术”.“割圆术”的主要意思是用圆内接正多边形去逐步逼近圆.刘徽从圆内接正六边形出发,将边数逐次加倍,并逐次得到正多边形的周长和面积.如图,AB 是圆内接正六边形的一条边,半径OB =1,OC ⊥AB 于点D ,则圆内接正十二边形的边BC 的长是 (结果不取近似值).F C★弧长、扇形面积 37.(西城18期末4)圆心角为60︒,且半径为12的扇形的面积等于( ).A.48πB.24πC.4πD.2π38.(东城18期末5)A ,B 是O 上的两点,OA =1, AB 的长是1π3,则∠AOB 的度数是( ) A .30° B .60° C .90° D .120° 39.(大兴18期末4)在半径为12cm 的圆中,长为4πcm 的弧所对的圆心角的度数为( )A. ︒10B. ︒60C. ︒90D. ︒12040.(通州18期末2)已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( )A .6πB .πC .3π D . 32π41.(海淀18期末13)若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为_______. 42.(丰台18期末10)半径为2的圆中,60°的圆心角所对的弧的弧长为_______. 43.(大兴18期末14)圆心角为160°的扇形的半径为9cm ,则这个扇形的面积是_______cm 2. 44.(密云18期末12)扇形半径为3cm ,弧长为πcm ,则扇形圆心角的度数为__________. 45.(平谷18期末10)圆心角为120°,半径为6cm 的扇形的弧长是 cm (结果不取近似值). 46.(朝阳18期末7)如图,在△ABC 中,∠BAC =90°,AB =AC =4,以点C 为中心,把△ABC 逆时针旋转45°,得到△A’B’C ,则图中阴影部分的面积为( ) A .2 B .2πC .4D .4π47.(石景山18期末11)如图,扇形的圆心角︒=∠60AOB ,半径为3cm .若点C 、D 是 的三等分点,则图中所有阴影部分的面积之和是________cm 2.48.(怀柔18期末15)在学校的花园里有一如图所示的花坛,它是由一个正三角形和圆心分别在正三角形顶点、半径为1米的三个等圆组成,现在要在花坛正三角形以外的区域(图中阴影部分)种植草皮.草皮种植面积为 米2. 49.(顺义18期末20)制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB 的长为3 000mm ,弯形管道部分BC ,CD 弧的半径都是1 000mm ,∠O =∠O ’=90°,计算图中中心虚线的长度.BO '●知识模块2:尺规作图1.(昌平18期末16)阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆;第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为________.2.(门头沟18期末16)下面是“作已知圆的内接正方形”的尺规作图过程.请回答:该尺规作图的依据是______________________________________________.3.(朝阳18期末16)下面是“作顶角为120°的等腰三角形的外接圆”的尺规作图过程.请回答:该尺规作图的依据是_____________________________________________.4.(石景山18期末16)石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).请回答,CACCACABCSSS2211∆∆∆==成立的理由是:①;②.5.(燕山18期末16)在数学课上,老师提出利用尺规作图完成下面问题:作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则CACCACABCSSS2211∆∆∆==.图2B3B1B2MC2C1AB C图1CBA6.(怀柔18期末16)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:请回答:这样做的依据是.7.(丰台18期末16、密云18期末16)下面是“过圆外一点作圆的切线”的尺规作图过程.请回答以下问题:(1)连接OA,OB,可证∠OAP =∠OBP = 90°,理由是;(2)直线P A,PB是⊙O的切线,依据是.8.(大兴18期末16)下面是“作出所在的圆”的尺规作图过程.请回答:该尺规作图的依据是 . 9.(通州18期末16)16. 阅读下面材料:在数学课上,老师提出如下问题:小霞的作法如下:老师说:“小霞的作法正确.”请回答:小霞的作图依据是 .(1)如图,在平面内任取一点O ; (2)以点O 为圆心,AO 为半径作圆,交射线AB 于点D ,交射线AC 于点E ; (3)连接DE ,过点O 作射线OP 垂直线段DE ,交⊙O 于点P ; (4)连接AP .所以射线AP 为所求.尺规作图:作已知角的角平分线. 已知:如图,已知BAC ∠.求作: BAC ∠的角平分线AP .已知:.求作:所在的圆.(1)在上任取三个点D ,C ,E ;所以⊙O 即为所求作的所在的圆..10.(海淀18期末16、平谷18期末16)下面是“作一个30°角”的尺规作图过程.请回答:该尺规作图的依据是.11.(昌平18期末21)尺规作图:如图,AC为⊙O的直径.(1)求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹);(2)当直径AC=4时,求这个正方形的边长.C A ●知识模块3:圆解答题(计算)1.(昌平18期末20)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接AC ,BC .(1)求证:A BCD ∠=∠;(2)若AB =10,CD =8,求BE 的长. 2.(朝阳18期末18)如图,四边形ABCD 是⊙O 的内接四边形,对角线AC 是⊙O 的直径,AB=2,∠ADB =45°. 求⊙O 半径的长.3.(东城18期末18)已知等腰△ABC 内接于O , AB =AC ,∠BOC =100°,求△ABC 的顶角和底角的度数.4.(密云18期末21)如图,AB 是O 的弦,O 的半径OD AB ⊥垂足为C.若AB =,CD=1 ,求O的半径长.5.(丰台18期末20)在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE = 1寸,CD = 10寸,求直径AB 的长.请你解答这个问题.6.(平谷18期末20)如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,∠A =15°,AB =4.求弦CD 的长.7.(大兴18期末21)已知: 如图,⊙O 的直径AB 的长为5cm ,C 为⊙O 上的一个点,∠ACB的平分线交⊙O 于点D ,求BD 的长.8.(通州18期末19)如图,ABC △内接于⊙O .若⊙O 的半径为6,︒=∠60B ,求AC 的长.A9.(顺义18期末24)已知:如图,AB 为⊙O 直径,CE ⊥AB 于E ,BF ∥OC ,连接BC ,CF .求证:∠OCF =∠ECB .10.(燕山18期末19)如图,AB 为⊙ O 的直径,弦 CD ⊥ AB 于点E ,连 接BC .若AB =6,∠ B =30°,求:弦CD 的长.E FO C BA●知识模块4:圆解答题(综合)1.(大兴18期末24)已知:如图,AB 是半圆O 的直径,D 是半圆上的一个动点(点D 不与点A ,B 重合), .∠=∠CAD B (1)求证:AC 是半圆O 的切线;(2)过点O 作BD 的平行线,交AC 于点E ,交AD 于点F ,且EF=4,AD=6,求BD 的长. 2.(昌平18期末24)如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为弧BF 的中点,过点C 作AF 的垂线,交AF 的延长线于点E ,交AB 的延长线于点D . (1)求证:DE 是⊙O 的切线;(2)如果半径的长为3,tan D=34,求AE 的长.3.(朝阳18期末24)如图,在△ABC 中,∠C =90°,以BC 为直径的⊙O 交AB 于点D ,⊙O的切线DE 交AC 于点E . (1)求证:E 是AC 中点;(2)若AB =10,BC =6,连接CD ,OE ,交点为F ,求OF 的长.4.(东城18期末25)如图,在△ABC 中,AB =AC ,以AB 为直径的O 与边BC ,AC 分别交于点D ,E .DF 是O 的切线,交AC 于点F . (1)求证:DF ⊥AC ;(2)若AE =4,DF =3,求tan A .EBC5.(海淀18期末24)如图,A ,B ,C 三点在⊙O 上,直径BD 平分∠ABC ,过点D 作DE ∥AB交弦BC 于点E ,在BC 的延长线上取一点F ,使得EF =DE . (1)求证:DF 是⊙O 的切线;(2)连接AF 交DE 于点M ,若 AD =4,DE =5,求DM 的长.6.(石景山18期末25)如图,AC 是⊙O 的直径,点D 是⊙O 上一点,⊙O 的切线CB 与AD 的延长线交于点B ,点F 是直径AC 上一点,连接DF 并延长交⊙O 于点E ,连接AE . (1)求证:∠ABC =∠AED ;(2)连接BF ,若AD 532=,AF =6,tan 34=∠AED ,求BF 的长.CA7.(西城18期末24)如图,AB是半圆的直径,过圆心O作AB的垂线,与弦AC的延长线交于点D,点E在OD上,=DCE B∠∠.(1)求证:CE是半圆的切线;(2)若CD=10,2tan3B=,求半圆的半径.8.(丰台18期末24)如图,AB是⊙O的直径,点C是»AB的中点,连接AC并延长至点D,使CD AC=,点E是OB上一点,且23OEEB=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当2OB=时,求BH的长.9.(怀柔18期末22)22. 如图,已知AB 是⊙O 的直径,点M 在BA 的延长线上,MD 切⊙O于点D ,过点B 作BN ⊥MD 于点C ,连接AD 并延长,交BN 于点N . (1)求证:AB =BN ;(2)若⊙O 半径的长为3,cosB =52,求MA 的长.10.(平谷18期末25)25.如图,在Rt △ABC 中,∠ACB =90°,AD 平分∠BAC 交BC 于点D ,点O 是AB 边上一点,以O 为圆心作⊙O 且经过A ,D 两点,交AB 于点E . (1)求证:BC 是⊙O 的切线; (2)AC =2,AB =6,求BE 的长.A11.(密云18期末24)如图,AB 是O 的直径,C 、D 是O 上两点, AC BC=.过点B 作O 的切线l ,连接AC 并延长交l 于点E ,连接AD 并延长交l 于点F .(1)求证:AC =CE .(2)若AE =3sin 5BAF ∠= 求DF 长.12.(顺义18期末26)已知:如图,在△ABC 中,AB =AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 于点E ,交AC 的延长线于点F . (1)求证:DE ⊥AB ;(2)若tan ∠BDE =12, CF =3,求DF 的长.B13.(大兴18期末27)已知:如图,AB 为半圆O 的直径,C 是半圆O 上一点,过点C 作AB的平行线交⊙O 于点E ,连接AC 、BC 、AE ,EB . 过点C 作CG ⊥AB 于点G ,交EB 于点H.(1)求证:∠BCG=∠E BG ;(2)若55sin =∠CAB ,求GB EC 的值.14.(门头沟18期末24)如图,在Rt △ABC 中,∠ACB =90°,点D 是AB 边上一点,以BD为直径的⊙O 与边AC 相切于点 E ,连接DE 并延长DE 交BC 的延长线于点F . (1)求证:BD =BF ;(2)若CF =2,4tan 3B =,求⊙O 的半径.15.(通州18期末22)如图,ABC △是等腰三角形,AC AB =,以AC 为直径的⊙O 与BC 交于点D ,DE AB ⊥,垂足为E ,ED 的延长线与AC 的延长线交于点F . (1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为2,1BE =,求cos A 的值.16.(燕山18期末24)如图,在△ABC 中,AB =AC ,以AB 为直径作半圆O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F . (1)求证:EF 是⊙O 的切线;(2)如果⊙O 的半径为5,sin ∠ADE =45,求BF 的长.●知识模块5:新定义问题1.(大兴18期末28)一般地,我们把半径为1的圆叫做单位圆,在平面直角坐标系xOy 中,设单位圆的圆心与坐标原点O 重合,则单位圆与x 轴的交点分别为(1,0),(-1,0),与y 轴的交点分别为(0,1),(0,-1).在平面直角坐标系xOy 中,设锐角α的顶点与坐标原点O α的一边与x 轴的正半轴重合,另一边与单位圆交于点P 11(,)x y ,且点P 在第一象限.(1)1x =_ __ (用含α的式子表示);1y =____ _ (用含α的式子表示); (2)将射线OP 绕坐标原点O 按逆时针方向旋转90︒后与单位圆交于点22(,)Q x y .①判断1y 2与的数量关系,并证明;x②12y y +的取值范围是:_ ___.2.(东城18期末28)对于平面直角坐标系xOy 中的点M 和图形G ,若在图形G 上存在一点N ,使M ,N 两点间的距离等于1,则称M 为图形G 的和睦点.(1)当⊙O 的半径为3时, 在点P 1(1,0),P 21),P 3(72,0),P 4(5,0)中,⊙O的和睦点是________;(2)若点P (4,3)为⊙O 的和睦点,求⊙O 的半径r 的取值范围;(3)点A 在直线y =﹣1上,将点A 向上平移4个单位长度得到点B ,以AB 为边构造正方形ABCD ,且C ,D 两点都在AB 右侧.已知点E ,若线段OE 上的所有点都是正方形ABCD 的和睦点,直接写出点A 的横坐标A x 的取值范围.3.(昌平18期末28)对于平面直角坐标系xOy 中的点P ,给出如下定义:记点P 到x 轴的距离为1d ,到y 轴的距离为2d ,若12d d ≥,则称1d 为点P 的最大距离;若12d d <,则称2d 为点P 的最大距离.例如:点P (3-,4)到到x 轴的距离为4,到y 轴的距离为3,因为3 < 4,所以点P 的最大距离为4.(1)①点A (2,5-)的最大距离为 ;②若点B (a ,2)的最大距离为5,则a 的值为 ;(2)若点C 在直线2y x =--上,且点C 的最大距离为5,求点C 的坐标;(3)若⊙O 上存在..点M ,使点M 的最大距离为5,直接写出⊙O 的半径r 的取值范围.4.(朝阳18期末28)在平面直角坐标系xOy中,点A (0, 6),点B在x轴的正半轴上. 若点P,Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P,Q的“X矩形”. 下图为点P,Q的“X矩形”的示意图.(1)若点B(4,0),点C的横坐标为2,则点B,C的“X矩形”的面积为.(2)点M,N的“X矩形”是正方形,①当此正方形面积为4,且点M到y轴的距离为3时,写出点B的坐标,点N的坐标及经过点N的反比例函数的表达式;②当此正方形的对角线长度为3,且半径为r的⊙O与它没有交点,直接写出r的取值范围.备用图5.(海淀18期末27)对于⊙C 与⊙C 上的一点A ,若平面内的点P 满足:射线..AP 与⊙C 交于点Q (点Q 可以与点P 重合),且12PAQA≤≤,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P的坐标________; (2)若点B 是点A 关于⊙O 的“生长点”,且满足1tan 2BAO ∠=,求点B 的纵坐标t 的取值范围;(3)直线y b =+与x 轴交于点M ,与y 轴交于点N ,若线段MN 上存在点A 关于⊙O的“生长点”,直接写出b 的取值范围是_____________________________.6.(石景山18期末28)在平面直角坐标系xOy 中,点P 的坐标为),(11y x ,点Q 的坐标为),(22y x ,且21x x ≠,21y y ≠,若PQ 为某个等腰三角形的腰,且该等腰三角形的底边与x 轴平行,则称该等腰三角形为点P ,Q 的“相关等腰三角形”.下图为点P ,Q 的“相关等腰三角形”的示意图....(1)已知点A 的坐标为)1,0(,点B 的坐标为)0,3(-,则点A ,B 的“相关等腰三角形”的顶角为_________°;(2)若点C 的坐标为)3,0(,点D 在直线34=y 上,且C ,D 的“相关等腰三角形”为等边三角形,求直线CD 的表达式;(3)⊙O 的半径为2,点N 在双曲线xy 3-=上.若在⊙O 上存在一点M ,使得点M 、N 的“相关等腰三角形”为直角三角形,直接写出点N 的横坐标N x 的取值范围.7.(西城18期末28)在平面直角坐标系xOy中,A,B两点的坐标分别为(2,2)A,(2,2)B-.对于给定的线段AB及点P,Q,给出如下定义:若点Q关于AB所在直线的对称点Q'落在△ABP的内部(不含边界),则称点Q是点P关于线段AB的内称点.(1)已知点(4,1)P-.①在1(1,1)Q-,2(1,1)Q两点中,是点P关于线段AB的内称点的是____________;②若点M在直线1y x=-上,且点M是点P关于线段AB的内称点,求点M的横坐标Mx的取值范围;(2)已知点(3,3)C,⊙C的半径为r,点(4,0)D,若点E是点D关于线段AB的内称点,且满足直线DE与⊙C相切,求半径r的取值范围.8.(丰台18期末28)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:如果⊙C 的半径为r ,⊙C 外一点P 到⊙C 的切线长小于或等于2r ,那么点P 叫做⊙C 的“离心点”. (1)当⊙O 的半径为1时,①在点P 1(12,P 2(0,-2),P 30)中,⊙O 的“离心点”是 ;②点P (m ,n )在直线3y x =-+上,且点P 是⊙O 的“离心点”,求点P 横坐标m 的取值范围;(2)⊙C 的圆心C 在y 轴上,半径为2,直线121+-=x y 与x 轴、y 轴分别交于点A ,B .如果线段AB 上的所有点都是⊙C 的“离心点”,请直接写出圆心C 纵坐标的取值范围.9.(怀柔18期末28)在平面直角坐标系xOy 中,点P 的横坐标为x ,纵坐标为2x ,满足这样条件的点称为“关系点”.(1)在点A (1,2)、B (2,1)、M (21,1)、N (1,21)中,是“关系点”的 ;(2)⊙O 的半径为1,若在⊙O 上存在“关系点”P ,求点P 坐标; (3)点C 的坐标为(3,0),若在⊙C 上有且只有一个......“关系点”P ,且“关系点”P 的横坐标满足-2≤x≤2.请直接写出⊙C 的半径r 的取值范围.10.(平谷18期末28)在平面直角坐标系中,将某点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这个点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”.(1)以O为圆心,半径为5的圆上有无数对“互换点”,请写出一对符合条件的“互换点”;(2)点M,N是一对“互换点”,点M的坐标为(m,n),且(m>n),⊙P经过点M,N.①点M的坐标为(4,0),求圆心P所在直线的表达式;②⊙P的半径为5,求m-n的取值范围.11.(密云18期末28)已知在平面直角坐标系xOy 中的点P 和图形G,给出如下的定义:若在图形G 上存在一点Q ,使得Q P 、之间的距离等于1,则称P 为图形G 的关联点. (1)当O 的半径为1时,①点11(,0)2P,2P ,3(0,3)P 中,O 的关联点有_____________________. ②直线l 经过(0,1)点,且与y 轴垂直,点P 在直线l 上.若P 是O 的关联点,求点P 的横坐标x 的取值范围.(2)已知正方形ABCD 的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r 的取值范围.备用图 备用图12.(门头沟18期末28)以点P 为端点竖直向下的一条射线PN ,以它为对称轴向左右对称摆动形成了射线1PN ,2PN ,我们规定:12N PN ∠为点P 的“摇摆角”, 射线PN 摇摆扫过的区域叫作点P 的“摇摆区域”(含1PN ,2PN ). 在平面直角坐标系xOy 中,点(2,3)P .(1)当点P 的摇摆角为60︒时,请判断(0,0)O 、(1,2)A 、(2,1)B、(20)C 属于点P 的摇摆区域内的点是______________________(填写字母即可);(2)如果过点(1,0)D ,点(5,0)E 的线段完全在点P 的摇摆区域内,那么点P 的摇摆角至少为_________°; (3)⊙W 的圆心坐标为(,0)a ,半径为1,如果⊙W 上的所有点都在点P 的摇摆角为60︒ 时的摇摆区域内,求a 的取值范围.备用图13.(通州18期末25)点P 的“d 值”定义如下:若点Q 为圆上任意一点,线段PQ 长度的最大值与最小值之差即为点P 的“d 值”,记为P d .特别的,当点P ,Q 重合时,线段PQ 的长度为0.当⊙O 的半径为2时:(1)若点⎪⎭⎫⎝⎛-0,21C ,()4,3D ,则=C d _________,=D d _________;(2)若在直线22+=x y 上存在点P ,使得2=P d ,求出点P 的横坐标;(3)直线()033>+-=b b x y 与x 轴,y 轴分别交于点A ,B .若线段AB 上存在点P ,使得32<≤P d ,请你直接写出b 的取值范围.14.(燕山18期末28)在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l 的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018北京市东城区初三数学期末试题及答案2018.1东城区2017-2018学年度第一学期期末教学统一检测初三数学学校班级姓名考号2018.1考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的1.下列图形中,是中心对称图形但不是轴对称图形的是A B CD数学试卷第2页(共23页)数学试卷 第3页(共23页)2. 边长为2的正方形内接于M,则M的半径是A .1B .2C 2D .223.若要得到函数()21+2y x =+的图象,只需将函数2y x =的图象A .先向右平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向上平移2个单位长度C .先向左平移1个单位长度,再向下平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度4. 点()11,y A x ,()22,y B x 都在反比例函数2y x=的图象上,若120x x <<,则A .210y y >> B .120y y >> C .210y y << D .120y y <<5.A ,B 是O上的两点,OA =1,AB的长是1π3,则∠AOB 的度数是A .30B . 60°C .90°D .120°6.△DEF 和△ABC 是位似图形,点O 是位似中心,点D ,E ,F 分别是OA ,OB ,OC 的中点,若△DEF 的面积是2,则△ABC 的面积是A .2B .4数学试卷第4页(共23页)数学试卷 第5页(共23页)以这种树苗成活的概率是0.890;②随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;③若小张移植10 000棵这种树苗,则可能成活9 000棵; ④若小张移植20 000棵这种树苗,则一定成活18 000棵. 其中合理的是A .①③B .①④ C. ②③ D .②④ 二、填空题(本题共16分,每小题2分)9.在R t △ABC 中,∠C =90°,1cos 3A =,AB =6,则AC 的长是 .10.若抛物线22y x x c =++与x 轴没有交点,写出一个满足条件的c的值: .11.如图,在平面直角坐标系xOy 中,若点B 与点A 关于点O 中心对称,则点B 的坐标为 .数学试卷 第6页(共23页)11题图12题图12. 如图,AB 是O 的弦,C 是AB 的中点,连接OC 并延长交O 于点D .若CD =1,AB =4,则O 的半径是 .13. 某校九年级的4位同学借助三根木棍和皮尺测量校园内旗杆的高度. 为了方便操作和观察,他们用三根木棍围成直角三角形并放在高1m 的桌子上,且使旗杆的顶端和直角三角形的斜边在同一直线上(如图). 经测量,木棍围成的直角三角形的两直角边AB,OA 的长分别为0.7m,0.3m ,观测点O 到旗杆的距离OE 为6 m ,则旗杆MN 的高度为 m .第13题图 第14题图数学试卷 第7页(共23页)14.O是四边形ABCD 的外接圆,AC 平分∠BAD ,则正确结论的序号是 .①AB =AD ; ②BC =CD ; ③AB AD =; ④∠BCA =∠DCA ; ⑤BC CD =15. 已知函数2-2-3y x x =,当-1x a ≤≤时,函数的最小值是-4,则实数a 的取值范围 是 . 16.如图,在平面直角坐标系xOy 中,已的对角线交知()8,0A ,()0,6C ,矩形OABC 函数()0k y x x=>于点P ,点M 在经过点P 的的图象上运动,k 的值为 ,OM 长的最小值为 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27,每小题7分,第28题8分)17.计算:2cos30-2sin45+3tan60+1-2︒︒︒.18.已知等腰△ABC内接于O,AB=AC,∠BOC=100°,求△ABC的顶角和底角的度数.19. 如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°. (1)求证:△ADE∽△BEC.(2)若AD=1,BC=3,AE=2, 求AB的长.数学试卷第8页(共23页)数学试卷 第9页(共23页)20.在△ABC 中,∠B =135°,AB =,BC =1. (1)求△ABC 的面积;21.北京2018新中考方案规定,考试科目为语文、数学、外语、历史、地理、思想品德、物理、生化(生物和化学)、体育九门课程.语文、数学、外语、体育为必考科目.历史、地理、思想品德、物理、生化(生物和化学)五科为选考科目,考生可以从中选择三个科目参加考试,其中物理、生化须至少选择一门.(1)写出所有选考方案(只写选考科目);(2)从(1)的结果中随机选择一种方案,求该方案同时包含物理和历史的概率.22.如图,在Rt△ABC中,∠A=90°,∠C=30°.将△ABC绕点B顺时针旋转60°得到△A BC'', 其中点A', C'分别是点A,C的对应点.(1) 作出△A BC''(要求尺规作图,不写作法,保留作图痕迹);(2)连接AA',求∠C A A''的度数.23.如图,以40 m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系2=-.h t t205(1)小球飞行时间是多少时,小数学试卷第10页(共23页)数学试卷 第11页(共23页)球最高?最大高度是多少?(2)小球飞行时间t 在什么范围时, 飞行高度不低于15 m?24.在平面直角坐标系xOy 中,直线24y x =+与反比例函数ky x=(k ≠0)的图象交于点()3,A a -和点B . (1)求反比例函数的表达式和点B 的坐标; (2)直接写出不等式24k x x +<的解集.25.如图,在△ABC 中,AB =AC ,以AB 为直径的O与边BC ,AC 分别交于点D ,数学试卷 第12页(共23页)E .DF 是O的切线,交AC 于点F .(1)求证:DF ⊥AC ; (2)若AE =4,DF =3,求tan A .26.在平面直角坐标系xOy 中,抛物线y=mx 2﹣2mx+n (m ≠0)与x 轴交于点A, B ,点A 的坐标为(02-,). (1)写出抛物线的对称轴;(2)直线n m x y -4-21=过点B ,且与抛物线的另一个交点为C . ①分别求直线和抛物线所对应的函数表达式;②点P 为抛物线对称轴上的动点,过点P 的两条直线l 1: y=x+a 和l 2 : y=-x+ b 组成图形G .当图形G 与线段BC 有公共点时,直接写出点P 的纵坐标t 的取值范围.27. 如图1,在△ABC 中,∠ACB =90°,AC =2,BC =23B 3为半径作圆.点P 为B 上的动点,连接PC ,作P C PC'⊥,使点P '落在直线BC 的上方,且满足:3P C PC '=BP ,AP '.(1)求∠BAC 的度数,并证明△AP C '∽△BPC ; (2)若点P 在AB 上时,①在图2中画出△AP’C ; ②连接BP ',求BP '的长;图1 图2 (3)点P在运动过程中,BP'是否有最大值或最小值?若有,请直接写出BP'取得最大值或最小值时∠PBC的度数;若没有,请说明理由.用图28.对于平面直角坐标系xOy中的点M和图形G,若在图形G上存在一点N,使M,N两点间的距离等于1,则称M为图形G的和睦点.(1)当⊙O的半径为3时,在点P1(1,0),P2,1),P3(72(2)若点P(4,3)为⊙O的和睦点,求⊙O 的半径r的取值范围;数学试卷第13页(共23页)(3)点A在直线y=﹣1上,将点A向上平移4个单位长度得到点B,以AB为边构造正方形ABCD,且C,D两点都在AB右侧.已知点E(2,2),若线段OE上的所有点都是正方形ABCD的和睦点,直接写出点A的横坐标Ax的取值范围.北京市东城区2017-2018学年第一学期期末统一检测初三数学试题参考答案及评分标准 2018.11-5:ACBCB6-8:DDC9、210、211、(2,-1)12、5213、1514、15、16、17、18、数学试卷第14页(共23页)19、数学试卷第15页(共23页)20、21、数学试卷第16页(共23页)22、23、24、数学试卷第17页(共23页)25、数学试卷第18页(共23页)26、数学试卷第19页(共23页)数学试卷第20页(共23页)27、数学试卷第21页(共23页)28、数学试卷第22页(共23页)数学试卷第23页(共23页)。

相关文档
最新文档