换元法计算三重积分

合集下载

高等数学 重积分的换元法及含参变量的积分

高等数学  重积分的换元法及含参变量的积分
则由积分(3)确定的函数 ( x )在 [a , b]上可微,并且
( x ) f ( x , y ) d ( x) ( x ) ( x ) f ( x , y )dy ( x ) dy dx x f [ x , ( x )] ( x ) f [ x , ( x )] ( x ). (7)
v
柱面坐标 4. 三重积分换元法 球面坐标
(1) 柱面坐标的体积元素
dxdydz rdrd dz
x r cos , y r sin , z z.
x r sin cos , (2) 球面坐标的体积元素 2 dxdydz r sindrdd y r sin sin , z r cos . (3) 广义球面坐标的体积元素 x ar sin cos , 2 dxdydz abcr sindrdd y br sin sin , z cr cos .
当 x 0 时,上式右端最后一个积分的积分限不变,
根据证明定理1时同样的理由,这个积分趋于 零. ( x ) 又 ( x x ) f ( x x , y )dy M ( x x ) ( x ) ,

( x)
( x x )
f ( x x , y )dy M ( x x ) ( x ) .
f ( x , y )dxdy f [ x(u, v ), y(u, v )] J ( u, v ) dudv.
D D
注意:
同时也兼顾被积函数 f ( x , y ) 的形式.
基本要求:变换后定限简便,求积容易.
1.作什么变换主要取决 于积分区域 D 的形状,

高等数学§9.3.2三重积分的计算2

高等数学§9.3.2三重积分的计算2

x c os z
显 然 : y s 。 in
z z
M(x,y,z)
c o s 0 i s n
y J ( ( x , , y , , z z ) ) s i c n 0 o , s O
00 1 x
P(,)
∴ f (x, y, z)dxdydz f ( cos, sin, z) dddz.
z cr cos .
x2 a2
by22
cz22
r2.
r1
I (a x 2 2 b y2 2c z2 2)dx d y r2 d Jd z rd d
Jabcr2sin
I a b c 0 2 d0 s in d0 1 r 4 d r 54abc.
例 1 1 . 求 I ( a x 2 2 b y 2 2 c z 2 2 ) d x d y d z , :a x 2 2 b y 2 2 c z 2 2 1 .
f (rs ic n o ,rss isn i,r n c o )r2 s id n r d d
例 1 1 . 求 I ( a x 2 2 b y 2 2 c z 2 2 ) d x d y d z , :a x 2 2 b y 2 2 c z 2 2 1 .
x ar sin cos , 解: y br sin sin ,
zzu,v,w
( 2 ) 上 面 变 换 中 的 函 数 在 区 域 具 连 续 偏 导 有 数 ;
( 3 ) J u x , , v y , , w z 0 , u , v , w , 则
f (x, y,z)dxdydz
f(xu ,v,w ,yu ,v,w ,z(u ,v,w )Jdudv
z
d
d
dz

重积分的换元法

重积分的换元法
(u,v) (3) 变换 T : D D 是一对一的,则有
f ( x , y )dxdy f [ x ( u , v ), y ( u , v )] J ( u , v ) dudv .
D
D
.
说明: (1) 如果Jacobi行列式J(u,v)只在D内个别 点上或一条曲线上为零,而在其他点上不为零, 则上述换元公式仍成立. (2) 换 元 形 式 的 选 择 ,可 根 据 积 分 区 域 D或 被 积 函 数 f(x,y)选 择 ,使 换 元 后 的 积 分 区 域 D 不 分 块 ,换 元 后 的 被 积 函 数 f(x,y)易 于 积 出 .
一、二重积分的换元法
平面上同一个点 坐, 标直 与角 极坐标
间的关系 xy为 rrscions.,
上式可看成是从 平极 面 r坐 o到 标直角
坐标平x面 oy的一种变即换 对, 于ro平 面上的一M 点(r,),通过上式变换,变 成xoy平面上的一M点(x, y),且这种变 换是一对一的.
.
定理 设 f ( x , y ) 在 xoy 平面上的闭区域 D 上 连续,变换 T : x x ( u , v ), y y ( u , v ) 将 uov 平面上的闭区域 D 变为 xoy 平面上的 D , 且满足 (1) x ( u , v ), y ( u , v ) 在 D 上具有一阶连续偏导数 ; (2) 在 D 上雅可比式 J (u,v ) ( x , y ) 0;
.
例 1计 算 二 重 积 分 x2y2dxdy,其 中 D是 由 双 曲 线 D
xy1和 xy2,直 线 yx和 y4x所 围 成 的 第 一 象
解 限 内 根 的 据 区 积 域 分 . 区 域 D的 特 点 , 令 uxy,vy, x

三重积分换元法

三重积分换元法

三重积分换元法三重积分是数学中的一个重要概念,它与物理、工程等领域密切相关。

三重积分中的换元法是其中一个非常重要的技巧,能够帮助我们更加高效地求解三重积分问题。

下面,我们将详细介绍三重积分换元法的相关知识。

1. 三重积分介绍三重积分是指对三维立体空间中的某一区域进行积分,其结果通常为一个实数或者也可能是一个向量值函数。

在三重积分中,我们通常会用到三个自变量,这三个自变量通常被称为 $x, y, z$。

对于三重积分问题,我们通常需要先确定被积函数和积分区域,然后再进行求解。

在实际应用中,三重积分通常被用来求解物理、工程等领域的问题。

2. 三重积分换元法的基本原理在求解三重积分时,有时候我们会发现积分区域的形状比较复杂,这时候我们可以使用换元法来简化计算。

三重积分换元法的基本原理是将三重积分中的自变量替换为新的自变量,使得积分区域转化为简单的坐标轴画图形式,从而将原积分区域直接变换为新的积分区域。

具体来说,我们通常会选取满足一定条件的替换,使得其中至少一个自变量的下限和上限随着新的自变量而发生变化,从而简化原有的计算问题。

3. 三重积分换元法的常用技巧在实际计算中,三重积分换元法有多种常用技巧。

下面我们就来分别介绍一下。

(1)圆柱换元法当积分区域为旋转体时,我们可以使用圆柱换元法。

具体而言,我们可以将三重积分中的自变量替换为极坐标系中的角度和半径,从而将积分区域转化为一个简单得多的圆柱体积分。

(2)球面换元法当积分区域为球体时,我们可以使用球面换元法。

具体而言,我们可以将三重积分中的自变量替换为球面坐标系中的极角、方位角和距离,从而将积分区域转化为一个简单得多的球体积分。

(3)柱坐标换元法当积分区域为柱体时,我们可以使用柱坐标换元法。

具体而言,我们可以将三重积分中的自变量替换为柱坐标系中的高度、极径和极角,从而将积分区域转化为一个简单得多的柱体积分。

4. 总结三重积分是数学中的一个重要概念,而三重积分换元法则是其中的一个重要技巧。

数学分析21.5三重积分(含习题及参考答案)

数学分析21.5三重积分(含习题及参考答案)

第二十一章 重积分5三重积分一、三重积分的概念引例:设一空间立体V 的密度函数为f(x,y,z),为求V 的质量M , 将V 分割成n 个小块V 1,V 2,…,V n . 每个小块V i 上任取一点(ξi ,ηi ,ζi ), 则 M=i ni i i i T V f ∆∑=→10),,(lim ζηξ, 其中△V i 是小块V i 的体积, T =}{max 1的直径i ni V ≤≤.概念:设f(x,y,z)是定义在三维空间可求体积有界区域V 上的有界函数. 用若干光滑曲面所组成的曲面网T 来分割V ,把V 分成n 个小区域 V 1,V 2,…,V n .记V i 的体积为△V i (i=1,2,…,n),T =}{max 1的直径i ni V ≤≤.在每个V i 中任取一点(ξi ,ηi ,ζi ), 作积分和i ni i i i V f ∆∑=1),,(ζηξ.定义1:设f(x,y,z)为定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数. 若对任给的正数ε,总存在某一正数δ,使得对于V 的任何分割T ,只要T <δ,属于分割T 的所有积分和都有J V f i ni iii-∆∑=1),,(ζηξ<ε,则称f(x,y,z)在V 上可积,数J 称为函数f(x,y,z)在V 上的三重积分,记作J=⎰⎰⎰VdV z y x f ),,(或J=⎰⎰⎰Vdxdydz z y x f ),,(,其中f(x,y,z)称为被积函数,x, y, z 称为积分变量,V 称为积分区域.注:当f(x,y,z)=1时,⎰⎰⎰VdV 在几何上表示V 的体积.三积重分的条件与性质:1、有界闭域V 上的连续函数必可积;2、如界有界闭区域V 上的有界函数f(x,y,z)的间断点集中在有限多个零体积的曲面上,则f(x,y,z)在V 上必可积.二、化三重积分为累次积分定理21.15:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意(x,y)∈D=[a,b]×[c,d], g(x,y)=⎰he dz z y xf ),,(存在,则积分⎰⎰Ddxdy y x g ),(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰Dhedz z y x f dxdy ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ].设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界,对任意(ξi ,ηj )∈[x i-1,x i ]×[y j-1,y j ], 有m ijk △z k ≤⎰-kk z z j i dz z f 1),,(ηξ≤M ijk △z k .现按下标k 相加,有∑⎰-kz z j i kk dz z f 1),,(ηξ=⎰he j i dz zf ),,(ηξ=g(ξi ,ηj ),以及∑∆∆∆kj i k j i ijkz y x m,,≤j i ji j i y x g ∆∆∑,),(ηξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴g(x,y)在D 上可积,且⎰⎰⎰Dhedz z y x f dxdy ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:若V={(x,y,z)|(x,y)∈D, z 1(x,y)≤z ≤z 2(x,y)} ⊂[a,b]×[c,d]×[e,h]时,其中D 为V 在Oxy 平面上的投影,z 1(x,y), z 2(x,y)是D 上的连续函数,函数f(x,y,z)在V 上的三重积分存在,且对任意(x,y)∈D, G(x,y)=⎰),(),(21),,(y x z y x z dz z y x f 亦存在,则积分⎰⎰Ddxdy y x G ),(存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰D dxdy y x G ),(=⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.证:记F(x,y,z)=⎩⎨⎧∈∈V V z y x ,Vz y x ,z y x f \),,(0),,(),,(0 , 其中V 0=[a,b]×[c,d]×[e,h].对F(x,y,z)应用定理21.15,(如图)则有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰0),,(V dxdydzz y x F=⎰⎰⎰⨯d][c,b][a,),,(hedz z y x F dxdy =⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.例1:计算⎰⎰⎰+Vy x dxdydz22,其中V 为由平面x=1, x=2, z=0, y=x 与z=y 所围区域(如图).解:设V 在xy 平面上投影为D ,则 V={(x,y,z)|z 1(x,y)≤z ≤z 2(x,y),(x,y)∈D},其中D={(x,y)|0≤y ≤x,1≤x ≤2}, z 1(x,y)=0, z 2(x,y)=y, 于是⎰⎰⎰+V y x dxdydz 22=⎰⎰⎰+D y y x dz dxdy 022=⎰⎰+D dxdy y x y 22=⎰⎰+21022x dy y x y dx=⎰212ln 21dx =2ln 21.例2:计算⎰⎰⎰++Vdxdydz z y x )(22,其中V 是由⎩⎨⎧==0x y z 绕z 轴旋转一周而成的曲面与z=1所围的区域.解:V={(x,y,z)|22y x +≤z ≤1,(x,y)∈D}, 其中D={(x,y)|x 2+y 2≤1},⎰⎰⎰++Vdxdydz z y x )(22=⎰⎰⎰+++Dyx dz z y x dxdy 12222)(=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-+Ddxdy y x y x 2121)(2222=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-πθ201022121rdrr r d=⎰πθ20407d =207π.定理21.16:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意x ∈[a,b], 二重积分I(x)=⎰⎰Ddydz z y x f ),,(存在,则积分⎰⎰⎰baDdydz z y x f dx ),,(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰baDdydz z y x f dx ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ], 记D jk =[y j-1,y j ]×[z k-1,z k ], 设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界, 对任意ξi ∈[x i-1,x i ], 有m ijk △D jk ≤⎰⎰jkD i dydz z y f ),,(ξ≤M ijk △D jk .现按下标j,k 相加,有∑⎰⎰k j D i jkdydz z y f ,),,(ξ=⎰⎰Di dydz z y f ),,(ξ=I(ξi ),以及∑∆∆∆kj i k j i ijkz y x m,,≤i ii x I ∆∑)(ξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴I(x)在D 上可积,且⎰⎰⎰baDdydz z y x f dx ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:(如图)若V ⊂[a,b]×[c,d]×[e,h], 函数f(x,y,z)在V 上的三重积分存在,且对任意固定的z ∈[e,h], 积分φ(z)=⎰⎰zD dxdy z y x f ),,(存在,其中D z是截面{(x,y)|(x,y,z)∈V}, 则⎰he dz z )(ϕ存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰h edz z )(ϕ=⎰⎰⎰heD zdxdy z y x f dz ),,(.证:证法与定理21.16证明过程同理.例3:计算I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222, 其中V 是椭球体222222c z b y a x ++≤1.解:I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222=⎰⎰⎰V dxdydz a x 22+⎰⎰⎰V dxdydz b y 22+⎰⎰⎰Vdxdydz c z 22.其中⎰⎰⎰V dxdydz a x 22=⎰⎰⎰-a a V xdydz dx a x 22,V x 表示椭圆面2222c z b y +≤1-22ax 或⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-2222222211a x c z a xb y ≤1. 它的面积为π⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-222211a x c a x b =πbc ⎪⎪⎭⎫⎝⎛-221a x. ∴⎰⎰⎰V dxdydz a x 22=⎰-⎪⎪⎭⎫ ⎝⎛-a a dx a x a bcx 22221π=154πabc. 同理可得:⎰⎰⎰V dxdydz b y 22=⎰⎰⎰V dxdydz cz 22=154πabc.∴I=3(154πabc)=54πabc.三、三重积分换元法规则:设变换T :x=x(u,v,w), y=y(u,v,w), z=z(u,v,w),把uvw 空间中的区域V ’一对一地映成xyz 空间中的区域V ,并设函数x=x(u,v,w), y=y(u,v,w), z=z(u,v,w)及它们的一阶偏导数在V ’内连续且函数行列式J(u,v,w)=wz v z uz w yv y u yw x v x u x ∂∂∂∂∂∂∂∂∂≠0, (u,v,w)∈V ’. 则当f(x,y,z)在V 上可积时,有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dudvdw w v u J w v u z w v u y w v u x f |),,(|)),,(),,,(),,,((.常用变换公式: 1、柱面坐标变换:T :⎪⎩⎪⎨⎧+∞<<∞-=≤≤=+∞<≤=z z ,z ,r y r ,r x πθθθ20sin 0cos , J(r,θ,z)=100cos sin 0sin cos θθθθr r -=r, 即有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dz rdrd z r r f θθθ),sin , cos (.V ’为V 在柱面坐标变换下的原象.注:(1)虽然柱面坐标变换并非是一对一的,且当r=0时,J(r,θ,z)=0,但结论仍成立.(2)柱面坐标系中r=常数, θ=常数, z=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以z 轴为中心轴的圆柱面,θ=常数是过z 轴的半平面,z 的常数是垂直于z 轴的平面(如图).例4:计算⎰⎰⎰+Vdxdydz y x )(22, 其中V 是曲面2(x 2+y 2)=z 与z=4为界面的区域.解法一:V={(x,y,z)|2(x 2+y 2)≤z ≤4, (x,y)∈D}, D={(x,y)|x 2+y 2≤2}.⎰⎰⎰+Vdxdydz y x )(22=⎰⎰⎰++4)(22222)(y x Ddzy x dxdy=⎰⎰+-+Ddxdy y x y x )](24)[(2222=⎰⎰-202220)24(rdrr r d πθ=⎰-2053)2(4dr r r π=⎰-2053)2(4dr r r π=38π.解法二:V 在xy 平面上的投影区域D=x 2+y 2≤2. 按柱坐标变换得 V ’={(r,θ,z)|2r 2≤z ≤4, 0≤r ≤2, 0≤θ≤2π}.∴⎰⎰⎰+V dxdydz y x )(22=⎰⎰⎰'V dz drd r θ2=⎰⎰⎰42320202r dz r dr d πθ=38π.2、球坐标变换:T :⎪⎩⎪⎨⎧≤≤=≤≤=+∞<≤=πθϕπϕθϕθϕ20cos 0sin sin 0cos sin ,r z ,r y r ,r x ,J(r,φ,θ)=0sin cos sin sin cos sin sin sin sin cos cos cos sin ϕϕθϕθϕθϕθϕθϕθϕr co r r r r --=r 2sin φ≥0, 即有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V d drd rr r r f θϕϕϕθϕθϕsin )cos ,sin sin , cos sin (2,V ’为V 在球坐标变换T 下的原象.注:(1)球坐标变换并不是一对一的,并且当r=0或φ=0或π时,J=0. 但结论仍成立.(2)球坐标系中r=常数, φ=常数, θ=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以原点为中心的球面, φ=常数是以原点为顶点, z 轴为中心轴的 圆锥面,θ=常数是过z 轴的半平面(如图).例5:求由圆锥体z ≥22y x +cot β和球体x 2+y 2+(z-a)2≤a 2所确定的立体体积,其中β∈⎪⎭⎫⎝⎛2,0π和a(>0)为常数.解:球面方程x 2+y 2+(z-a)2=a 2可表示为r=2acos φ, 锥面方程z=22y x +cot β可表示为φ=β. ∴V ’={(r,φ,θ)|0≤r ≤2acos φ, 0≤φ≤β, 0≤θ≤2π}. ∴⎰⎰⎰VdV =⎰⎰⎰ϕβπϕϕθcos 202020sin a dr r d d =⎰βϕϕϕπ033sin cos 316d a =343a π(1-cos 4β).例6:求I=⎰⎰⎰Vzdxdydz , 其中V 为由222222c z b y a x ++≤1与z ≥0所围区域.解:作广义球坐标变换:T :⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin cr z br y ar x , 则J=abcr 2sin φ. V 的原象为V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π} ∴⎰⎰⎰Vzdxdydz =⎰⎰⎰⋅1022020sin cos dr abcr cr d d ϕϕϕθππ=⎰2022sin 4πϕϕπd abc =42abc π.习题1、计算下列积分:(1)⎰⎰⎰+Vdxdydz z xy )(2, 其中V=[-2,5]×[-3,3]×[0,1];(2)⎰⎰⎰Vzdxdydz y x cos cos , 其中V=[0,1]×[0,2π]×[0,2π];(3)⎰⎰⎰+++Vz y x dxdydz3)1(, 其中V 是由x+y+z=1与三个坐标面所围成的区域; (4)⎰⎰⎰+Vdxdydz z x y )cos(, 其中V 由y=x , y=0, z=0及x+z=2π所围成.解:(1)⎰⎰⎰+VdV z xy )(2=⎰⎰⎰+--1023352)(dz z xy dy dx =⎰⎰--⎪⎭⎫⎝⎛+335231dy xy dx =⎰-522dx =14.(2)⎰⎰⎰VzdV y x cos cos =⎰⎰⎰202010cos cos ππzdz ydy xdx =21.(3)⎰⎰⎰+++Vz y x dxdydz 3)1(=⎰⎰⎰---+++y x x z y x dz dy dx 1031010)1(=⎰⎰-⎥⎦⎤⎢⎣⎡-++x dy y x dx 1021041)1(121=⎰⎪⎭⎫ ⎝⎛-+-+1041211121dx x x =1652ln 21-. (4)⎰⎰⎰+VdV z x y )cos(=⎰⎰⎰-+xxdz z x y dy dx 20020)cos(ππ=⎰⎰-xydydx x 020)sin 1(π=⎰-20)sin 1(21πdx x x =21162-π.2、试改变下列累次积分的顺序: (1)⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(;(2)⎰⎰⎰+220110),,(y x dz z y x f dy dx .解:(1)积分区域V={(x,y,z)|0≤z ≤x+y, 0≤y ≤1-x, 0≤x ≤1}; ∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1-x, 0≤x ≤1} ∴I=⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(=⎰⎰⎰+-yx ydz z y x f dx dy 01010),,(.∵V 在yz 平面上的投影区域D yz ={(y,z)|0≤y ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-yydx z y x f dz dy 10010),,(+⎰⎰⎰--yy z y dx z y x f dz dy 1110),,(=⎰⎰⎰--yy z zdx z y x f dy dz 1010),,(+⎰⎰⎰-yz dx z y x f dy dz 10110),,(.∵V 在xz 平面上的投影区域D yz ={(x,z)|0≤x ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-xxdy z y x f dz dx 10010),,(+⎰⎰⎰--xx z x dy z y x f dz dx 1110),,(=⎰⎰⎰--xx z zdy z y x f dx dz 1010),,(+⎰⎰⎰-xz dy z y x f dx dz 10110),,(.(2)积分区域V={(x,y,z)|0≤z ≤x 2+y 2, 0≤y ≤1, 0≤x ≤1};∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1, 0≤x ≤1}; 在yz 平面上的投影区域D yz ={(x,y)|0≤y ≤1, 0≤z ≤1+y 2}; 在xz 平面上的投影区域D yz ={(x,y)|0≤x ≤1, 0≤z ≤1+x 2}; ∴I=⎰⎰⎰+2201010),,(y x dz z y x f dy dx =⎰⎰⎰+220110),,(y x dz z y x f dx dy=⎰⎰⎰10010),,(2dx z y x f dz dy y +⎰⎰⎰-+1110222),,(y z y ydxz y x f dz dy=⎰⎰⎰10110),,(dx z y x f dy dz z +⎰⎰⎰--111212),,(yz z dx z y x f dy dz .=⎰⎰⎰10010),,(2dy z y x f dz dx x +⎰⎰⎰-+1110222),,(x z x x dyz y x f dz dx=⎰⎰⎰10110),,(dy z y x f dx dz z +⎰⎰⎰--111212),,(x z z dy z y x f dx dz .3、计算下列三重积分与累次积分:(1)⎰⎰⎰Vdxdydz z 2, 其中V 由x 2+y 2+z 2≤r 2和x 2+y 2+z 2≤2rz 所确定;(2)⎰⎰⎰--+-22222221010y x yx x dz z dy dx .解:(1) 由x 2+y 2+z 2≤2rz, 得S: x 2+y 2≤2rz-z 2, 0≤z ≤2r , 又由x 2+y 2+z 2≤r 2, 得Q: x 2+y 2≤r 2-z 2,2r≤z ≤r ∴⎰⎰⎰Vdxdydz z 2=⎰⎰⎰Sr dxdy z dz 220+⎰⎰⎰Qrr dxdyz dz 22=⎰-2022)2(r dz z rz z π+⎰-rr dz z r z 2222)(π=480595r π. (2)应用柱坐标变换:V ’={(r,θ,z)|r ≤z ≤22r -, 0≤r ≤1, 0≤θ≤2π}, ∴⎰⎰⎰--+-22222221010y x yx x dz z dy dx =⎰⎰⎰-2221020r rdz z rdr d πθ=⎰---1322]2)2[(6dr r r r r π.=⎰---10322]2)2[(6dr r r r r π=)122(15-π.4、利用适当的坐标变换,计算下列各曲面所围成的体积. (1)z=x 2+y 2, z=2(x 2+y 2), y=x, y=x 2;(2)2⎪⎭⎫ ⎝⎛+b y a x +2⎪⎭⎫ ⎝⎛c z =1 (x ≥0, y ≥0, z ≥0, a>0, b>0, c>0). 解:(1)V={(x,y,z)|x 2+y 2≤z ≤2(x 2+y 2), (x,y)∈D}, 其中D={(x,y)|0≤x ≤1, x 2≤y ≤x }. ∴⎰⎰⎰V dxdydz =⎰⎰+Ddxdy y x )(22=⎰⎰+xx dyy x dx 2)(2210=⎰⎥⎦⎤⎢⎣⎡-+-1063223)()(dx x x x x x =353. (2)令x=arsin 2φcos θ, y=brcos 2φcos θ, z=crsin θ, 则J=0cos sin cos cos sin 2sin cos cos cos cos cos sin 2sin sin cos sin 2222θθθϕϕθϕθϕθϕϕθϕθϕcr c br br b ar ar a ---=2abcr 2cos φsin φcos θ,又V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π}. ∴⎰⎰⎰Vdxdydz =⎰⎰⎰1022020sin cos cos 2dr r d d abc ππϕϕϕθθ=3abc.5、设球体x 2+y 2+z 2≤2x 上各点的密度等于该点到坐标原点的距离,求这球体的质量.解:依题意,球体的质量M=⎰⎰⎰≤++++xz y x dV z y x 2222222,应用球面变换得V ’={(r,θ,φ)|-2π≤θ≤2π, 0≤φ≤π, 0≤r ≤2sin φcos θ}. ∴M=⎰⎰⎰-θϕπππϕϕθcos sin 203022sin dr r d d =⎰⎰-πππϕϕθθ05224sin cos 4d d =58π.6、证明定理21.16及其推论. 证:证明过程见定理21.16及其推论.7、设V=⎭⎬⎫⎩⎨⎧≤++1),,(222222c z b y a x z y x , 计算下列积分:(1)⎰⎰⎰---Vdxdydz c z b y a x 2222221;(2)⎰⎰⎰++Vc z by ax dxdydz e 222222.解:应用球面变换得V ’={(r,θ,φ)| 0≤θ≤2π, 0≤φ≤π, 0≤r ≤1}. (1)⎰⎰⎰---VdV cz b y a x 2222221=⎰⎰⎰-10220201sin dr r abcr d d ϕϕθππ =42πabc . (2)⎰⎰⎰++Vc z b y ax dV e222222=⎰⎰⎰12020sin dr e abcr d d r ϕϕθππ=)2(4-e abc π.。

三重积分的计算

三重积分的计算

方法2. 切片法 (“先二后一”)
设空间闭区域 ( x, y, z ) ( x, y ) D( z ), c1 z c2 ,
z
其中 D ( z ) 是用平面 z=z 截闭区域
所得的平面闭区域,则有
c2 dz c1
c2

z
c1
Dz
c1
f ( x, y, z)dv

D( z )
f ( x, y, z)dxdy.
o
x
y
(先二后一法) (切片法)
例1.计算 xdxdydz , 其中为三个坐标面

及平面x y z 1所围成的闭区域。
z
1
o
1
1
y
x
2 2 2 2 求由两个旋转抛物面 z 3 x y 和 z 5 x y 例2 的 x 0, y 0 部分所围成的立体区域 的体积.
2 2
点到 z 轴的距离 成正比,求其 质量 m 。
解:密度函数 ( x, y, z ) k x 2 y 2 (k 0) ,则
m k x 2 y 2 dxdydz 。

z
y z 4
x y 16
在 xoy 平面上的投影区域为
2
2
4
o x
Dxy {( x, y) x 2 y 2 16} ,
z1 ( x, y ) z z 2 ( x, y ) : ( x, y ) D 细长柱体微元的质量为
z2 ( x, y ) z ( x, y ) f ( x, y, z )d z d xd y 1 该物体的质量为
z z2 ( x, y )

三重积分的换元法(北工大)

三重积分的换元法(北工大)
2 2 V
23
例6
计算密度函数 ( x, y, z ) 1 的均匀上
V : x 2 y 2 z 2 a 2 ( z 0) 的重心. 半球体
例7
计算密度函数 ( x, y, z ) 1 的均匀上 半球体 V : x y z 1
2 2 2
关于三个坐标轴的转动惯量.
4
2.柱面坐标变换 x r cos , 设 y r sin , z z,
cos ( x, y, z ) sin ( r , , z ) 0
其中 0
r , 0 2 , z .
0 0 r, 1
r sin r cos 0
f ( x , y , z )dxdydz
V
f ( r cos , r sin , z ) ቤተ መጻሕፍቲ ባይዱ dr d dz .
V
5
dV = dxdydz
z
rdrddz
f ( x , y, z )dxdydz

dV
dz
f ( r cos , r sin , z )
dv r 2 sin drdd
14
例 4 求区域 x y z 2a 与 z 的公共部分的体积.
2 2 2 2
x y
2
2
解 由锥面和球面围成,采用球面坐标,
由x
2
y z 2a
2 2
2
r 2a,
z x y
2 2
, 4
: 0 r 2a ,
2 2
2. 积分区域Ω是由柱面、锥面、旋转 抛物面、平面或球面所围成. 常用柱面坐标计算. 例1 计算抛物面 x 2 y 2 az(a 0), 柱面 x y 2ax(a 0) 与平面

三重积分

三重积分
中值定理. 3) 中值定理. 上连续, 在有界闭域 上连续,V 为 的 体积, 体积, 则存在 (ξ,η,ζ ) ∈, 使得
∫∫∫ f (x, y, z)dv = f (ξ,η,ζ )V
二、利用直角坐标系计算三重积分
定理21. 定理21.15 设f ( x, y, z )在长方体 = [ a, b] × [c, d ] × [e, h]上 21 三重积分存在, 且对每个x ∈ [a, b], 二重积分 I ( x) = ∫∫D f ( x, y, z )dydz
2 2
x 2 ≤ y ≤ 1, 1 ≤ x ≤ 1.
I = ∫1 dx ∫x 2 dy ∫0
1
1
x2 + y2
f ( x , y , z )dz .
练习1 练习 将 I = ∫∫∫ f (x, y, z) d v用三次积分表示,其中由
六个平面 x = 0, x = 2, y =1, x + 2y = 4, z = x, z = 2 所 围成 , f (x, y, z) ∈C().
微元线密度≈
记作
∫∫Ddxdy∫z (x, y)
1
z2 ( x, y)
f (x, y, z) dxdy
f (x, y, z)dz
方法3. 方法 三次积分法 设区域 :
z
z = z2 ( x , y )
z2 S 2
z1(x, y) ≤ z ≤ z2 (x, y)
y1(x) ≤ y ≤ y2 (x) (x, y) ∈D: o a ≤ x ≤b a
0 ≤ z ≤ 1 x 2y
z
1
1 2
解: V :
1 0 ≤ y ≤ 2 (1 x)
0 ≤ x ≤1

三 重 积 分

三 重 积 分

数学分析 第二十一章 重积分
高等教育出版社
§1三重积分
三重积分的概念
化三重积分为累次积分
三重积分换元法
(0,0, z) 作垂直于 z 轴的平面在 V 上的截面. 此时
f
f ( x, y, z)dxdydz e dz f ( x, y, z)dxdy. (4)
V
D( z )
同样有
b
f ( x, y, z)dxdydz a dx f ( x, y, z)dydz. (4)
V ( x, y, z) z1( x, y) z z2( x, y), ( x, y) D( xy) ,
其中 D( xy) 是 V 在 x y 平面上的投影, zi ( x, y), i 1, 2 是 D( x y) 上的连续函数. 此时有
f ( x, y, z)dxdydz dxdy z2( x,y) f ( x, y, z)dz.
数学分析 第二十一章 重积分
§5
三重积分
三重积分的典型物 理背景是求密度非均匀 分布的空间物体的质量. 研究三重积分的方法和 步骤与二重积分相似.
一、三重积分的概念 二、化三重积分为累次积分 三、三重积分换元法
*点击以上标题可直接前往对应内容
§1三重积分
三重积分的概念
化三重积分为累次积分
三重积分的概念
V1,V2 ,K ,Vn , 用 Vi 记 Vi (i 1, 2, L , n) 的体积, 并记
T
max 1i n
Vi 的直径
.
(i ,i , i ) Vi (i 1, 2,L , n), 作积分和
n
f (i ,i , i )Vi .
i 1
数学分析 第二十一章 重积分

重积分的换元

重积分的换元
f [ x( u, v , w ), y( u, v , w ), z( u, v , w )] J dudvdw.
1

上述变换叫做三重积分的 Jacobian 变换,也就是 三重积分的换元法公式,J 叫做 Jacobian 行列式。
1. 柱面坐标变换
设 M ( x , y , z ) 为空间内一点,并设点M 在 xoy 面上的投影 P 的极坐标为 r ,,则这样的三 个数 r , , z 就叫点 M 的柱面坐标.
例8 计算三重积分
( x y ) dxdydz , 其中

2
z x 2 y 2 与平面 z 4 所围成的立体。 是由曲面
解 在 xoy面的投影区域为:x 2 y 2 4,
D
x y x y u , v , 2 3 2 3 3 则有 x u v , y ( u v ) ,该变换把平面区域 D 2
2 映射为平面区域 D1 : u v 和 u v 围成,而且
( x , y ) 1 1 3 3 0 ,则 J 3 ( u, v ) 2 2
规定: 0 r ,
0 2,
z
M ( x, y, z )
z .
x
o

r
P(r , )

y
如图,三坐标面分别为
r 为常数
圆柱面;
半平面; 平 面.
为常数
z 为常数
柱面坐标与直角坐标的关系为
x r cos , y r sin , z z.
8.3 重积分的换元法
8.3.1 二重积分的换元法 8.3.2 三重积分的换元法
8.3.1 二重积分的换元法 定理8.1 若函数 f ( x , y ) 在平面 xoy上的闭区域

9-5三重积分柱、球变换

9-5三重积分柱、球变换

R r 4dr

0
2
d
0
0

2cos2 sind
2
0
Rcos
r

4dr
59 480
R
5
0
高等数学(下)
3
补充:利用对称性化简三重积分计算
一般地,当积分区域 关于 xoy平面对称, 且被积函数 f ( x, y, z)关于 z是奇函数,则三重积 分为零,若被积函数 f ( x, y, z)关于 z是偶函数, 则三重积分为在 xoy平面上方的半个闭区域的 三重积分的两倍.
2 a r 3(a r )dr 2[a a4 a5 ] a5 .
0
4 5 10
高等数学(下)
例 5 求曲面 x2 y2 z2 2a2 与z x2 y2 所围 成的立体体积.
解 由锥面和球面围成,采用球面坐标,
由 x 2 y2 z 2 2a 2

f [x(u, v, w), y(u, v, w), z(u, v, w)]J dudvdw.
其中: J ( x, y, z) (u,v, w)
高等数学(下)
一、利用柱面坐标计算三重积分
设 M ( x, y, z) 为空间内一点,并设点M 在
xoy 面上的投影 P 的极坐标为r,,则这样的三
1
dx
1 x 2
1
dy
f dz 化为柱坐标下
1 0
x2 y2
的累次积分.

1
1
I d rdr f (r cos , r sin , z)dz
0
0
r2
2
2 xx2
4

8_3重积分的换元法

8_3重积分的换元法

αβD)(θϕ=r (2θϕ=r注: 利用例3可得到一个在概率论与数理统计及工程上 非常有用的反常积分公式+∞ − x2 e dx 0 当D 为 R2 时,∫=π2+∞ − x2 e −∞①事实上,∫∫D e− x2 − y2d xd y = ∫d x∫+∞ − y 2 e −∞dy利用例3的结果, 得= 4⎛ ⎜∫ ⎝2+∞ − x 2 e 0d x⎞ ⎟ ⎠24⎛ ⎜∫ ⎝ 故①式成立 .+∞ − x2 e 0−a 2 ⎞ d x ⎟ = lim π (1 − e ) = π ⎠ a → +∞112 2 x + y = 2 ax 例4. 求球体 x + y + z ≤ 4 a 被圆柱面 (a > 0) 所截得的(含在柱面内的)立体的体积. 2 2 2 2解: 设 D : 0 ≤ r ≤ 2 a cosθ , 0 ≤ θ ≤ 由对称性可知π2zV = 4 ∫∫ = 4∫π0D 24 a 2 − r 2 r d r dθ dθo2y∫02 acosθ4a − r r dr22ax32 3 π 2 32 3 π 2 3 = a ∫ (1 − sin θ ) d θ = a ( − ) 0 3 2 3 312x2 y2 z 2 例5. 试计算椭球体 2 + 2 + 2 ≤ 1 的体积V. a b c 2 2 x y 解: 取 D : 2 + 2 ≤ 1, 由对称性 a b令 x = a r cosθ , y = b r sin θ , 则D 的原象为 D′ : r ≤ 1 , 0 ≤ θ ≤ 2π ∂( x, y ) a cosθ − a r sin θ J= = = abr b sin θ b r cos θ ∂( r ,θ )V = 2 ∫∫ z d x d y = 2 c ∫∫DD1−x2 a2−y2 2 d xd by∴ V = 2 c ∫∫D1 − r 2 a b r d r dθ2π 0= 2 abc ∫dθ∫104 1 − r r d r = π abc 3213内容小结(1) 二重积分的换元法x = x(u , v) 下 ⎧ 在变换 ⎨ ⎩ y = y (u , v) ∂ ( x, y ) (u , v) ∈ D′, 且 J = ≠0 ( x, y ) ∈ D ∂ (u , v) 则 ∫∫ f ( x, y ) d σ = ∫∫ f [ x(u , v), y (u , v)] J d u d vD D′14极坐标系情形: 若积分区域为 D = { (r ,θ ) α ≤ θ ≤ β , ϕ1 (θ ) ≤ r ≤ ϕ 2 (θ ) } 则∫∫D f ( x, y) d σ = ∫∫D f (r cosθ , r sin θ ) rd r dθ= ∫ dθ ∫α β ϕ 2 (θ ) ϕ 1 (θ )f (r cosθ , r sin θ ) rd rβD r = ϕ 2 (θ ) oαr = ϕ1 (θ )15二、三重积分换元法定理: 设f (x, y, z)在有界闭区域Ω上连续变换: ⎧ x = x(u , v, w) ⎪ T : ⎨ y = y (u , v, w) (u , v, w) ∈ Ω′ → Ω ⎪ z = z (u , v, w) ⎩ 满足 (1) x, y , z在 Ω′上 有一阶连续偏导数;(2) 在 Ω′上 雅可比行列式 ∂ ( x, y , z ) ≠ 0; 注 J (u , v, w) = ∂ (u , v, w) (3) 变换 T : Ω′ → Ω 是一一对应的 ,则∫∫∫ = ∫∫∫Ωf ( x, y, z )d x d y d zf ( x(u , v), y (u , v), z (u , v)) J (u , v, w) d u d v d w 16 Ω′常用的变换 1. 柱面坐标变换设 M ( x, y, z ) ∈ R 3 , 将x, y用相应的极坐标 ρ ,θ 代替,则称 (ρ ,θ , z ) 为点M 的柱坐标. 直角坐标与柱面坐标的关系:x = ρ cosθ y = ρ sin θ z=z坐标面分别为⎛ 0 ≤ ρ < +∞ ⎞ ⎜ 0 ≤ θ ≤ 2π ⎟ ⎜ ⎟ ⎝ − ∞ < z < +∞ ⎠圆柱面 半平面 平面zzM ( x, y , z )ρ = 常数 θ = 常数z = 常数ox ρy θ ( x, y,0)17如图所示, 在柱面坐标系中体积元素为 d v = ρ d ρ dθ d z 因此zρ dθ∫∫∫Ω f ( x, y, z )d xd yd z = ∫∫∫ F ( ρ ,θ , z )ρ d ρ d θ d z Ωxzρodρ dzy其中 F ( ρ ,θ , z ) = f ( ρ cosθ , ρ sin θ , z ) 适用范围:θρdθdρ1) 积分域表面用柱面坐标表示时方程简单 ; 2) 被积函数用柱面坐标表示时变量互相分离. 积分次序通常为 z → ρ → θ .18柱面 x 2 + y 2 = 2 x 及平面 z = 0, z = a (a > 0), y = 0 所围 成半圆柱体.例6. 计算三重积分 ∫∫∫ z x 2 + y 2 d xd yd z 其中Ω为由Ω0 ≤ ρ ≤ 2 cosθ 解: 在柱面坐标系下 Ω : 0 ≤ θ ≤ π 2 0≤ z≤a原式 = ∫∫∫ z ρ 2 d ρ dθ d zΩz ao= ∫ zd z ∫0aπ02 dθ∫02 cosθρ2 d ρ2 ρ = 2 cos θ xy=2 π 4a3∫02 cos 3θ8 2 dθ = a 9dv = ρ d ρ d θ d z19d xd yd z , 其中Ω由抛物面 例7. 计算三重积分 ∫∫∫ 2 2 Ω1 + x + y z x 2 + y 2 = 4 z 与平面 z = h (h > 0) 所围成 .hxoy20ox h d d θρρ),,(ϕθr Myo4πRr =o x y2 4πo xy24πvd )作业P163 1(2)(4), 2(2)(4), 3(4),6(1)(3)(6), 7(3), 12, 13, 1531。

第二节-三重积分

第二节-三重积分
Dxy
f
(x,
y, z)dV
Dxy
z2 (x, y) z1 ( x, y)
f
(x,
y, z)dzdxdy.
(其中 z1(x, y) z2 (x, y))
(若Dxy : y1(x) y y2 (x), a x b, 为x—型区域)
z
b
dx
y2 (x) dy
z2 (x,y) f (x, y, z)dz.
为先对z, 再对r, 再对的三次积分(即先对z积分,
然后在Dxy上用极坐标做二重积分).
例5. 计算 zdxdydz, 其中:x2+y2+z2 1, 且z0.
解: 是上半球体,它在xy面上的投影区域是单位
圆x2+y2 ≦ 1.
令 x=rcos, y=rsin , z=z,则平面 z = 0 和球面
z 1 x2 y2的柱面坐标方程分别为z 0和z 1 r2 ,
即0 z 1 r 2 . 且0 r 1, 0 2,
2
1
1r 2
zdxdydz 0 d 0 dr0 z rdz
2 1 1 r(1 r 2 )dr .
02
4
例6. 求 (x2 y2 )dxdydz. 其中由x2+y2=2z
2. 当是一柱体, 但侧面的母线平行于 x 轴, 它在yz面上的投影区域为Dyz, 则可选择先 对x 积分, 然后到Dyz上作二重积分.
3. 当的母线退缩成一点时, 此时不是柱体. 但作三重积分时, 仍可将其当作前面情形的 特殊情形来处理, 比如.
: x2 + y2 + z2 1. 则 Dxy : x2 + y2 1.
由图知,直角坐标与球面
坐标的关系为x=rcos= sin cos, y= rsin = sin sin,

数学分析三重积分

数学分析三重积分

b
y2 ( x )
z2 ( x , y )
f ( x , y , z )dz .
注意
(1) 平行于 z 轴且穿过闭区域 内部的直线与闭 区域 的边界曲面 S 相交不多于两点情形.
( 2) 若平行于 z 轴且穿过闭区域 内部的直线与 闭区域 的边界曲面 S 相交多于两点时,把 分若干个小区域来讨论 .


f ( x , y , z )dxdydz 为三次积分,
2 2
其中积分区域 为由曲面 z x 2 y
z 2 x
2

所围成的闭区域.

z x2 2 y2 由 , 2 z 2 x
得交线投影区域 x y 1,
1 x 1 2 2 故 : 1 x y 1 x , 2 2 2 x 2y z 2 x
2
2
1 x 1 2 2 故 : 1 x y 1 x , 2 2 2 x 2y z 2 x
因此, I
1 dx
1
1 x
2 2
1 x
dy
2 x
2
2 2
x 2 y
f ( x , y , z )dz .
例3
计算三重积分 z dxdydz 。
y b
2 2

z c
2 2
1 所成的空间闭区域.

: {( x , y , z ) | c z c ,
原式
x a
2 2

y b
2 2
1
z c
z
2 2
}
c
c
z dz dxdy ,

重积分

重积分
z
M ( x, y, z)
θ
o
ϕ
r
y
p
x
∂( x, y, z) 2 J= = r sinθ ∂(r,θ ,ϕ)
∫∫∫ f ( x, y, z)dxdydz

= ∫∫∫ f (r sinθ cosϕ, r sinθ sinϕ, r cosθ )r sinθdrdθdϕ
2 Ω′
3. 广义球坐标变换
x = ar sin θ cos ϕ , y = br sin θ sin ϕ , z = cr cosθ ,
2 2
z dz .
2
=
π
15

( 2 2 − 1).
1 x2 + y2 + z2 dxdydz ,其中 Ω 是由
例19 计算 ∫∫∫
曲面 z =
x 2 + y 2 与 z = 1所围成的闭区域。 所围成的闭区域。
( 2 − 1)π
计算 ∫∫∫ x 2 + y 2 + z )dxdydz ,其中 Ω 是由 ( 例20
1
1− x 2
f ( x , y )dy化为极坐标系下的
例 5 计算
∫∫
D
x 2 + y 2 dxdy
2 2
D = {( x , y ) 0 ≤ y ≤ x , x + y ≤ 2 x }
20 2 9
例 6 计算
5 π. 4

2
0
dx ∫
4− x 2 2 x− x
( x 2 + y 2 )dy 2
球体x 2 + y 2 + z 2 ≤ 4a 2 被圆柱面 x 2 + y 2 = 2ax(a > 0) 例7 所截得的( 内部分)立体的体积。 所截得的(含在圆柱面 内部分)立体的体积。

9.5_三重积分计算2

9.5_三重积分计算2

一般地,先对 ,后对r, 一般地,先对z,后对 ,最后对 θ 积分
二、利用球面坐标计算三重积分
z
设 M ( x, y, z ) 为空间内一点, 则点 M 可用三个有次序的数r,
A
x
r
M ( x,
z
y, z )
o
P ,θ 来确定,其中 r 为原点 O 与 x 点 M 间的距离, 为有向线段 OM 与 z轴正向所夹的 角,θ 为从正 z 轴往下看自 x 轴按逆时针方向转到有
0
π 2 0
π 2 0
R
x
.
例 4、 求曲面 x2 + y2 + z2 ≤ 2a2与 z ≥ x2 + y2 成的立体体积. 所围 成的立体体积

由x
2
由锥面和球面围成, 采用球面坐标, 由锥面和球面围成, 采用球面坐标,
+ y + z = 2a
2 2
2 2
2
r = 2a ,
z=
π x + y = , 4
z
M ( x,
∞ < z < +∞ .
x = r cos θ , 直角坐标与柱面坐标的关系为 y = r sin θ , z = z.
o
θ
y, z )
r
P (r ,θ )
y
x
柱面坐标的坐标面 动点M( 动点 r, θ, z) z r =常数:圆柱面 常数: 常数 圆柱面S z =常数: 平面Π 常数: 常数 S

= abc ∫ dθ ∫ sin d ∫ 1 r 2 dr =
0 0 0

π
1
π2
4
例7、计算∫∫∫ ( x + y + z ) cos( x + y + z ) 2 dxdydz

重积分总结

重积分总结

多重积分的方法总结计算根据被积区域和被积函数的形式要选择适当的方法处理,这里主要是看被积区域的形式来选择合适的坐标形式,并给区域一个相应的表达,从而可以转化多重积分为多次的积分形式.具体的一些作法在下面给出.一.二重积分的计算重积分的计算主要是化为多次的积分.这里首先要看被积区域的形式, 选择合适的坐标系来进行处理.二重积分主要给出了直角坐标系和极坐标系的计算方法.我们都可以从以下几个方面把握相应的具体处理过程:1.被积区域在几何直观上的表现(直观描述,易于把握);2.被积分区域的集合表示(用于下一步确定多次积分的积分次序和相应的积分限);3.化重积分为多次积分.1. 在直角坐标下: (a) X-型区域几何直观表现:用平行于y 轴的直线穿过区域内部,与边界的交点最多两个.从而可以由下面和上面交点位于的曲线确定两个函数1()y y x =和2()y y x =;被积区域的集合表示:12{(,),()()}D x y a x b y x y y x =≤≤≤≤; 二重积分化为二次积分:21()()(,)(,)by x ay x Df x y dxdy dx f x y dy =⎰⎰⎰⎰.(b) Y-型区域几何直观表现:用平行于x 轴的直线穿过区域内部,与边界的交点最多两个.从而可以由左右交点位于的曲线确定两个函数1()x x x =和2()x x x =;被积区域的集合表示:12{(,),()()}D x y c y d x x x x x =≤≤≤≤;二重积分化为二次积分:21()()(,)(,)dx y cx y Df x y dxdy dx f x y dx =⎰⎰⎰⎰.2. 在极坐标下:几何直观表现:从极点出发引射线线穿过区域内部,与边界的交点最多两个.从而可以由下面和上面交点位于的曲线确定两个函数1()r r θ=和2()r r θ=(具体如圆域,扇形域和环域等);被积区域的集合表示:1212{(,),()()}D r r r r θθθθθθ=≤≤≤≤,注意,如果极点在被积区域的内部,则有特殊形式2{(,)02,0()}D r r r θθπθ=≤≤≤≤; 直角坐标下的二重积分化为极坐标下的二重积分,并表示成相应的二次积分:2211()()(,)(cos ,sin )(cos ,sin )r r DDf x y dxdy f r r rdrd d f r r rdr θθθθθθθθθθ==⎰⎰⎰⎰⎰⎰.注:具体处理题目时,首要要能够选择适当的处理方法,并能够实现不同积分次序及直角坐标和极坐标的转化.3. 二重积分的换元法:(,)z f x y =在闭区域D 上连续,设有变换(,),(,)(,)x x u v T u v D y y u v =⎧'∈⎨=⎩将D '一一映射到D 上,又(,),(,)x u v y u v 关于u , v 有一阶连续的偏导数,且(,)0(,)x y J u v ∂=≠∂, (,)u v D '∈ 则有(,)((,),(,))DD f x y dxdy f x u v y u v J dudv '=⎰⎰⎰⎰.二.三重积分的计算三重积分具体的处理过程类似于二重积分,也分为三个步骤来进行处理. 1. 在直角坐标下:空间区域几何直观表现:用平行于z 轴的直线穿过区域内部,与边界曲面的交点最多两个.从而可以由下面和上面交点位于的曲面确定两个函数1(,)z z x y =和1(,)z z x y =,并把区域投影到xoy 面上从而确定(,)x y 的范围,记为xy D ;被积区域的集合表示:12{(,,)(,),(,)(,)}xy V x y z x y D z x y z z x y =∈≤≤, 进一步地, xy D 可以表示成X -型区域或Y -型区域;三重积分化为三次积分:21(,)(,)(,,)(,,)xyz x y z x y VD f x y z dV dxdy f x y z dz =⎰⎰⎰⎰⎰⎰(所谓“二套一”的形式)2211()(,)()(,)(,,)by x z x y ay x z x y dx dy f x y z dz =⎰⎰⎰(xy D 为X -型)2211()(,)()(,)(,,)dx y z x y cx y z x y dy dx f x y z dz =⎰⎰⎰(xy D 为Y -型)注:类似于以上的处理方法,把空间区域投影到 yoz 面或zox 面又可把三重积分转化成不同次序的三次积分.这时区域几何直观表现,区域的集合表示,以及新的三次积分次序如何可见,三重积分最多可以对应六种积分次序.这里还有所谓一套二的处理方法,区域的直观表现为:平行于xoy 面的截面面积容易求得.作为被积函数最好与x ,y 无关,即可表示为为()f z .则区域表示为:{(,,),(,)}z V x y z c z d x y D =≤≤∈,其中z D 表示垂直于z 轴的截面.此时,三重积分化为:(,,)()zdcVD f x y z dV dz f z dxdy =⎰⎰⎰⎰⎰⎰ (所谓“一套二”的形式)()z dD cf z S dz =⎰其中z D S 表示截面z D 的面积,它是关于z 的函数.2. 在柱坐标下:柱坐标与直角坐标的关系:cos sin ,(0,02,)x r y r r z z z θθθπ=⎧⎪=≤<∞≤≤-∞<<+∞⎨⎪=⎩空间区域几何直观表现:用平行于z 轴的直线穿过区域内部,与边界曲面的交点最多两个,从而可以由下面和上面交点位于的曲面确定两个函数1(,)z z x y =和1(,)z z x y =.空间区域在xoy 面上的投影区域易于用参数r 和θ表示范围(具体如圆域,扇形域和环域等),并且1(,)z z x y =和1(,)z z x y =也易于进一步表示z 成关于,r θ较简单的函数形式,比如22x y +可以看成一个整体(具体如上、下表面为旋转面的情形);被积区域的集合表示:121212{(,),()(),(,)(,)}V r r r r z r z z r θθθθθθθθ=≤≤≤≤≤≤;直角坐标下的三重积分化为极坐标下的三重积分,并表示成相应的三次积分:(,,)(cos ,sin ,)VVf x y z dV f r r z rdrd dzθθθ=⎰⎰⎰⎰⎰⎰222111()(,)()(,)(cos ,sin ,)r z r r z r d rdr f r r z dz θθθθθθθθθ=⎰⎰⎰.3. 在球坐标下:球坐标与直角坐标的关系:sin cos sin sin ,(0,02,0)cos x r y r r z ϕθϕθθπϕπϕ=⎧⎪=≤<∞≤≤≤≤⎨⎪=⎩空间区域几何直观表现:从原点出发引射线穿过区域内部,与边界曲面的交点最多两个,从而可以由下面和上面交点位于的曲面确定两个球坐标函数1(,)r r r θ=和2(,)r r r θ=; (具体如球心在原点或z 轴上的球形域)被积区域的集合表示:121212{(,,),,(,)(,)}V r r r r θϕθθθϕϕϕθϕθϕ=≤≤≤≤≤≤;直角坐标下的三重积分化为极坐标下的三重积分,并表示成相应的三次积分:2(,,)(sin cos ,sin sin ,cos )sin VVf x y z dV f r r r rdrd d ϕθϕθθϕθϕ=⎰⎰⎰⎰⎰⎰=212(,)20(,)(sin cos ,sin sin ,cos )sin r r d d f r r r r dr ππθϕθϕθϕϕθϕθθϕ⎰⎰⎰.如球心在原点半径为a 的球形域下:220(,,)(sin cos ,sin sin ,cos )sin aVf x y z dV d d f r r r r dr ππθϕϕθϕθθϕ=⎰⎰⎰⎰⎰⎰.4. 三重积分的换元法:(,,)u f x y z =在闭区域V 上连续,设有变换(,,):(,,),(,,)(,,)x x u v w T y y u v w u v w V z z u v w =⎧⎪'=∈⎨⎪=⎩将V '一一映射到V 上,又(,,),(,,)x u v w y u v w 和(,,)z u v w 关于u , v 和w 有一阶连续的偏导数,且(,,)0(,,)x y z J u v w ∂=≠∂, (,)u v V '∈则有(,,)((,,),(,,),(,,))VVf x y z dV f x u v w y u v w z u v w J dudvdw =⎰⎰⎰⎰⎰⎰.三.重积分的几何和物理应用 1. 几何应用a) 二重积分求平面区域面积;b) 二重积分求曲顶柱体体积;c)三重积分求空间区域的体积;d) 二重积分求空间曲面的面积.求曲面的面积A ,对应着曲面方程为直角坐标系下的二元函数形式和参数方程形式分别有以下公式:i ) 曲面方程 :(,),(,)S z f x y x y D =∈DA =ii )曲面参数方程(,):(,),(,)(,)uv x x u v S y y u v u v D z z u v =⎧⎪=∈⎨⎪=⎩()()uvuvu u u v v v uu u D D vvvij k A x i y j z k x i y j z k dudv x y z dudv x y z =++⨯++=⎰⎰⎰⎰ 注:这里的公式都对函数有相应的微分条件. 2. 物理应用包括求质量、质心、转动惯量和引力等应用,积分是研究物理问题的重要工具.建立物理量对应的积分公式的一般方法是从基本的物理原理出发,找到所求量对应的微元,也就是对应积分的被积表达式了.以上对多重积分的计算方法做了个小结,关键要在具体的情况下要找到对应的适宜的处理方法.处理重积分计算时从几何形式出发,则易于直观把握.注意选择适当的坐标系,注意被积区域的表达,还要注意函数关于区域的对称性.这种对称性包括奇对称和偶对称,从而可以简化计算过程.。

三重积分的变量代换

三重积分的变量代换
(u,v, w) (3) 变 换T : 是 一 对 一 的 , 则 有
f (x, y, z)dxdydz f [x(u,v, w), y(u,v, w),z(u,v, w)]J dudvdw.
首页
上页
返回
下页
结束
例1. 求由下面方程表示的曲面所围立体的体积:
( a 1 x b 1 y c 1 z ) 2 ( a 2 x b 2 y c 2 z ) 2 ( a 3 x b 3 y c 3 z ) 2 h 2 , a1 b1 c1
z
ra3cosa
4 2 d
2sin d
a 3 cosr2 dr
0
0
0
r
3 2a30 2sincod s
1
3
y
a3
x
dvr2sin drdd
首页
上页
返回
下页
结束
轮换对称性:
若积分区域Ω的表达式中将 x, y, z 依次轮换,表达式 不变,则称Ω关于 x, y, z 轮换对称. 此时有
f(x, y,z)dv f(y,z,x)dvf(z,x,y)dv.
首页
上页
返回
下页
结束
例4. 计算三重积分 (x2y2z2)dxdydz,其中
为锥 z面 x2y2与球面 x2y2z2R2所围立体.
解: 在球面坐标系下
0rR
z rR
: 04
0 2
4
(x 2y2z2)d xdyd z
oy
2
d
4sin d
Rr4 dr
x
0
0
0
1R5(2 2)
dvr2sin drdd
z
直角坐标与球面坐标的关系

三重积分的计算方法

三重积分的计算方法

学法教法研究任水平,对公司、对社会也将是一件善事。

一是建立明晰的伦理道德责任。

从目前来看,各种类似“天津港的爆炸案”的案例已经不在少数,每天可能都在上演着,尽管造成这种事故的原因各式各样,有的是自然因素,有的是人为因素,但只要我们细细分析,大多与我们工程师的道德观念崩塌有着或多或少的关系,更有甚者,工程师没有履行职责,尤其是伦理责任没有到位而造成了巨大的损失。

二是建立责任评价和追究机制。

目前,我国的工程师主要是在公司、企业、政府担任一定的职责,在承担责任时往往都是单位,尤其是在追究道德层面的责任,由于责任不清晰,无法认定。

或者根本就没有单独制定这样的评价机制。

对工程师的约束就很少以至于没有,所以,建立公开、公正、公平的工程责任评价和追究机制是非常必要的,从制度机制层面明确工程活动主体的责任,对于社会、对企业或者工程师个人都是大有裨益的。

三是加强伦理教育,提升工程师伦理责任意识。

我们无论大学还是社会,对于工程师的伦理道德教育都不能放松,没有一定的伦理道德教育作为基础,想要工程师们的伦理责任有大幅的提高也是不可能的。

目前,我们的高校在人才培养上,可能注重工程专业技术的培训多,而对于工程师伦理责任的培养却是非常的少,重视程度还不是很够。

所以我们大学应该采取多种措施,加大对工程师伦理道德的培养。

当然,在现实社会中,工程伦理又是实践性和应用性很强的学科,必须结合工程的实际问题,培养出具有生态伦理价值观、思维观和执行力的工程技术人才。

通过以上结合天津港爆炸事件分析,对工程师的伦理责任有了更深层次的认识。

社会的进步和发展离不开工程建设活动,生态文明建设更离不开有效的工程活动,我们的工程师要切实树立增强伦理责任的理念,在工程的设计、施工中既要体现对企业、对公司的经济效益负责,又要体现出对社会、对环境的责任。

参考文献:[1]李世新.谈谈工程伦理学[J].哲学研究,2013(02).[2]张铁山.论阻碍工程师伦理责任发挥的因素及其对策[J].漯河职业技术学院学报,2012(01).[3]何放勋.论工程师的伦理责任[J].湖南工程学院学报,2012(04).[4]胡岩.对工程师伦理责任的探讨[J].中北大学学报(社会科学版),2012(04).三重积分的计算方法张辉李应岐陈春梅(火箭军工程大学理学院陕西西安710025)【摘要】介绍了计算直角坐标下三重积分的六种方法,给出相应的求解思路,并辅以典型例题,旨在使学生对三重积分的计算有更深的理解和掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例5. 计算三重积分
2 2

( x 2 y 2 z 2 )d xd yd z , 其中
2 2 2 2
为锥面 z x y 与球面 x y z R 所围立体.
解: 在球面坐标系下
0r R : 0 4 0 2

z

rR

2 0

V
当 f ( x, y, z ) f ( x, y, z ) 即被积函数关于z为偶函数时 , f ( x, y, z )dxdydz 2 f ( x, y, z )dxdydz
V

V1
其中 V1 是V 位于 xoy平面上侧的部分.
yoz , zox 对称,且被积 积分区域关于其它坐标平面:
积和式” 极限 下列“乘
0 k 1
lim f ( k ,k , k )vk
n
记作
f ( x, y, z)dv
存在, 则称此极限为函数 f ( x, y, z ) 在上的三重积分.
dv称为体积元素, 在直角坐标系下常写作 dxd ydz.
1. 利用直角坐标计算三重积分 先假设连续函数 f ( x, y, z ) 0 , 并将它看作某物体 的密度函数 , 通过计算该物体的质量引出下列各计算 方法: 方法1 . 投影法 (“先一后二”)
z x 2 y 2 d xd yd z
成半圆柱体.
0 2 cos 解: 在柱面坐标系下 : 0 2 先二后一 0 za
原式 z d d d z
2
z a
o
y
zd z
0
a

0
2 d
0
2 cos
2 d
2 2 cos x
2 2 2

4
利用对称性
(x 2 y 2 z 2 ) dv

o x
y
用球坐标

2 0
d sin d
4 0

2 4 r dr 0
64 2 1 5 2
2 2 2 2 其中 I ( x 5 xy sin x y ) d x d y d z , 2. 计算
关于 x为奇函 数 ( x2 y2 ) d x d y d z
z
4 1 o
Dz
y
x
f ( x, y, z)dv
d xd y
D z2 ( x , y ) z1 ( x , y )
f ( x, y, z )d z
方法2. 截面法 (“先二后一”)
( x, y ) Dz : czd
z
d
z
以 Dz 为底, d z 为高的柱形薄片质量为
Dz

D f ( x, y, z ) d x d y
球面坐标系 r 2 sin dr d d 变量可分离. * 说明: 三重积分也有类似二重积分的换元积分公式:
适用情况 积分区域多由坐标面 围成 ; 被积函数形式简洁, 或
f ( x, y, z ) d xd yd z * F (u, v, w) J
对应雅可比行列式为 J ( x, y, z ) (u , v, w)
原式 =
[(1 4h) ln(1 4h) 4h] 4
h d d z d 2 0 0 1 2 2 h 2 (h ) d 2 0 4 1
1 x
D
1
2
0 2
y
2
d xd y r 2 dz
4
r2 4
函数分别是 x, y, 的奇、偶函数,也有上述类似的结论
(2)若空间区域具有轮换对称性,即
( x, y, z) V , ( y, z, x),( z, x, y) V ,
也就是三字母轮换积分区域不改变,

f ( x, y, z) f1 ( x, y, z) f1( y, z, x) f1( z, x, y)
坐标面分别为
0 r 0 2 0
球面
半平面 锥面
M ( r , , )
z z
r o x
M
y
r 常数
常数 常数
r sin z r cos
如图所示, 在球面坐标系中体积元素为
z
d
o y ( x, y,0) x
如图所示, 在柱面坐标系中体积元素为,在二重积分的时候我 们讲过极坐标的转化 面积微元为 d d d
体积微元 d v d d d z
z
d
因此
f ( x, y, z)dxd ydz F ( , , z ) d d d z
3. 利用球坐标计算三重积分
设 M ( x, y, z ) R 3 , 其柱坐标为 ( , , z ), 令 OM r , ZOM , 则(r , , ) 就称为点M 的球坐标.
直角坐标与球面坐标的关系
x rsin cos y r sin sin z r cos
f ( x, y, z )dxdydz 3 f ( x, y, z )dxdydz.
1 V V1
2 2 2 4. 设由锥面 z x y 和球面 x y z 4 z 2 所围成 , 计算 I (x y z ) dv . 2 提示:
2
2
I (x y z 2 x y 2 yz 2 xz ) dv
就称为点M 的柱坐标. 直角坐标与柱面坐标的关系:
x cos y sin zz
坐标面分别为
0 0 2 z
圆柱面 半平面 平面
z
z
M ( x, y , z )
常数
常数
z 常数
1 2 由 z ( x y 2 ), z 1, z 4 围成 . 2
2 2 2 解: I x d x d y d z 5 x y sin x y d xd yd z
2


利用对称性
1 2 1 4 2 2 d z ( x y ) d x d y Dz 2 1 2 2z 3 1 4 d z d r d r 21 0 0 2 1
rR

2 0
( x 2 y 2 z 2 )d xd yd z
4

d
1 R 5 (2 2) 5

R 2 0
dr
R2 2
( z ) d z
2 2
x
o
y
注:这个式子虽容易写出,但是要 求积分结果非常难,我们能不能找 到更加简便的方法来研究这道题目 呢?
dudvdw
一、利用空间区域的对称性或被积函数的奇偶性
计算三重积分
(1)若空间闭区域关于平面 xoy 对称, 即
( x, y, z ) V , ( x, y, z ) V , 则当 f ( x, y, z ) f ( x, y, z )
即被积函数关于z 为奇函数时, f ( x, y, z )dxdydz 0
lim M 0
( k ,k , k )vk
k 1
n
v k
( k , k , k )
定义. 设 f ( x, y, z ) , ( x, y, z ) , 若对 作任意分割: vk ( k 1 , 2 , , n), 任意取点 ( k ,k , k ) vk ,
方法2 . 截面法 (“先二后一”)
最后, 推广到一般可积函数的积分计算.
方法1 . 投影法 (“先一后二”) z 找 及在 xoy面投影区域D。过D上一点 ( x, y ) “穿线”确定
的积分上下限,完成了“先一”这一步(定积分);进而按照 二重积分的计算步骤计算投影区域D上的二重积分,完成”后 二“这一步。
第三节
三重积分
换元法计算三重积分
一、柱面坐标求三重积分
二、球面坐标求三重积分
回顾 三重积分的概念
引例: 设在空间有限闭区域 内分布着某种不均匀的
物质, 密度函数为 ( x, y, z ) C ,求分布在 内的物质的
质量 M . 解决方法: 类似二重积分解决问题的思想, 采用 “分割, 近似, 求和, 取极限” 可得
z

o x d d
d dz
y
其中 F ( , , z ) f ( cos , sin , z ) 适用范围:
1) 积分域表面用柱面坐标表示时方程简单 ;
2) 被积函数用柱面坐标表示时变量互相分离.
其中为由 例1. 计算三重积分 柱面 x 2 y 2 2 x 及平面 z 0, z a (a 0), y 0 所围
d v r 2 sin d r d d
因此有
dr

r
o
d

d
f ( x, y, z )d xd yd z
x

y
F (r , , ) r 2 sin d r d d
适用范围:
其中 F (r , , ) f (r sin cos , r sin sin , r cos ) 1) 积分域表面用球面坐标表示时方程简单; 2) 被积函数用球面坐标表示时变量互相分离.
h
x
o
y
2
2 h
例3. 计算三重积分
2 2

( x 2 y 2 z 2 )d xd yd z , 其中
2 2பைடு நூலகம்2 2
相关文档
最新文档