小学奥数:分解质因数(一).专项练习及答案解析

合集下载

五年级奥数专题分解质因数

五年级奥数专题分解质因数

五年级奥数专题分解质因数(一)【一】想一想,50以内有哪些数是3个不同的质数的积?练习1、想一想,100以内有哪些数是3个不同的质数的积?2、想一想,150以内有哪些数是3个不同的质数的积?【二】23÷()=()……5,在括号内填入适当的数,使等式成立,共有几种不同的填法?练习1、33÷()=()……1,在括号内填入适当的数,使等式成立,共有几种不同的填法?2、47÷()=()……2,在括号内填入适当的数,使等式成立,共有几种不同的填法?【三】把18个苹果平均分成若干份,每份大于1,小于18个。

一共有多少种不同的分法?练习1、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人,有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?【四】写出若干个连续的自然数,使它的积是15120。

练习1、有三个连续的自然数,它们的乘积是39270,求这三个数。

2、有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024,问这4个孩子中最大的几岁?【五】将下面八个数字平均分成两组,使这两组数的乘积相等。

2、5、14、24、27、55、56、99练习1、有三个自然数a、b、c,已知a×b=30,b×c=42,求a×b×c的积是多少?2、把40、44、45、63、65、78、99、105这八个数平均分成两组,使两组四个数的乘积相等。

【六】王老师带领一班同学去植树,学生恰好分成4组,如果王老师和学生每人植树一样多,那么他们一个植了539棵。

这个班有多少个学生?每人植树多少棵?练习1、3月12日是植树节,周老师带领同学排成两路人数相等的纵队去植树,已知周老师和同学们每人植树的棵树相等,一共植了111棵,求有多少个同学?2、小虎去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6,小虎买的电影票是几排几座?【七】下面算式里,□里数字各不相同,求这四个数字的和。

分解质因数(一)(含详细解析)

分解质因数(一)(含详细解析)

1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法 例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式. 例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;知识点拨教学目标5-3-4.分解质因数(一)200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯【答案】323753⨯⨯⨯【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数 【难度】1星 【题型】填空【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

《小学奥数》小学五年级奥数讲义之精讲精练第23讲 分解质因数(一)含答案

《小学奥数》小学五年级奥数讲义之精讲精练第23讲 分解质因数(一)含答案

第23讲分解质因数(一)一、专题简析:1、一个自然数的因数中,为质数的因数叫做这个数的质因数。

把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。

例如:24=2×2×2×3,75=3×5×5。

2、我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。

其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。

二、精讲精练例题1 把18个苹果平均分成若干份,每份大于1个,小于18个。

一共有多少种不同的分法?练习一1、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。

有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?例题2 有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。

共有多少种分法?练习二把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。

例题3 将下面八个数平均分成两组,使这两组数的乘积相等。

2、5、14、24、27、55、56、991、下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出这个完整的算式。

□□×□□=12882、有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?例题4 王老师带领一班同学去植树,学生恰好分成4组。

如果王老师和学生每人植树一样多,那么他们一共植了539棵。

这个班有多少个学生?每人植树多少棵?1、3月12日是植树节,李老师带领同学们排成两路人数相等的纵队去植树。

已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个学生。

2、小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6。

小青买的电影票是几排几座?例题5 下面的算式里,□里数字各不相同,求这四个数字的和。

小学数学五年级奥数第23讲分解质因数(一)

小学数学五年级奥数第23讲分解质因数(一)

小学数学五年级奥数第23讲分解质因数(一)第23讲分解质因数(一)一、专题简析:1、一个自然数的因数中,为质数的因数叫做这个数的质因数。

把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。

例如:24=2×2×2×3,75=3×5×5。

2、我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。

其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。

二、精讲精练例题1 把18个苹果平均分成若干份,每份大于1个,小于18个。

一共有多少种不同的分法?分析先把18分解质因数:18=2×3×3,可以看出:18的约数是1、2、3、6、9、18,除去1和18,还有4个约数,所以,一共有4种不同的分法。

练习一1.有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。

有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?例题2 有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。

共有多少种分法?分析先把168分解质因数,168=2×2×2×3×7,由于每份不得少于10颗,也不能多于50颗,所以,每份有2×2×3=12颗,2×7=14颗,3×7=21颗,2×2×2×3=24颗,2×3×7=42颗,共有5种分法。

练习二把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。

例题3 将下面八个数平均分成两组,使这两组数的乘积相等。

2、5、14、24、27、55、56、99分析 14=2×7 55=5×1124=2×2×2×3 56=2×2×2×727=3×3×3 99=3×3×11可以看出,这八个数中,共含有八个2,六个3,二个5,二个7和二个11。

小学奥数教程:分解质因数全国通用(含答案)

小学奥数教程:分解质因数全国通用(含答案)

1.能够利用短除法分解2.整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数(1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数. (2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235.其中2、3、5叫做30的质因数.又如21222323,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征. (4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号)所以12223;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p 其中为质数,12k a a a 为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337;100171113;1111141271;1000173137;199535719;1998233337;200733223;2008222251;10101371337. 模块一、分数的拆分【例1】算式“1希+1望+1杯=1”中,不同的汉字表示不同的自然数,则“希+望+杯”=。

【考点】分数的拆分【难度】1星【题型】填空【关键词】希望杯,五年级,初赛,第19题,6分【解析】三个分数中一定有大于三分之一的,那个数是二分之一,剩下的两个数必有一个大于四分之一,即例题精讲知识点拨教学目标5-3-4.分解质因数。

五年级奥数专题-分解质因数

五年级奥数专题-分解质因数

五年级奥数专题-分解质因数分解质因数(一)【专题导引】一个自然数的因数中,为质数的因数叫做这个数的质因数.把一个合数,用质因数相乘的形式表示出来,叫做分解质因数.例如:24=2×2×2×3,75=3×5×5.我们数学课本上介绍的分解质因数,是为求最大公因数、最小公倍数服务的.其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题.【典型例题】【例1】把18个苹果平均分成若干份,每份大于1个,小于18个.一共有多少种不同的分法?【试一试】1、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人,有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?【例2】写出若干个连续的自然数,使它的积是15120.【试一试】1、有一个长方体,它的长、宽、高是三个连续的自然数,且体积是39270立方厘米,求这个长方体的表面积.2、有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024,问这4个孩子中最大的几岁?【例3】将下面八个数平均分成两组,使这两组数的乘积相等.2、5、14、24、27、55、56、99【试一试】1、有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?2、把40、44、45、63、65、78、99、105这八个数平均分成两组,使两组四个数的乘积相等.【例4】王老师带领一班同学去植树,学生恰好分成4组,如果王老师和学生每人植树一样多,那么他们一共植了539棵.这个班有多少个学生?每人植树多少棵?【试一试】1、3月12日是植树节,李老师带领同学排成两路人数相等的纵队去植树,已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个同学?2、小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6,小青买的电影票是几排几座?【﹡例5】下面的算式里,□里数字各不相同,求这四个数字的和.□□×□□=1995【﹡试一试】1、在下面算式的框内,各填入一个数字,使算式成立.□□□×□=19952、下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出这个完整的算式.□□×□□=1288课外作业家长签名:1、100以内的质数有哪些?2、54÷()=()……4,在括号内填入适当的数,使等式成立,共有几种不同的填法?3、甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少?4、四个连续奇数的积是19305,这四个奇数各是多少?5、把30、33、42、52、65、66、67、78、105九个数分成三组,使每个组的数的乘积相等,写出这三组数.6、把一篮苹果分给4人,使四人的苹果数一个比一个多2,且他们的苹果个数之积是1920,这篮苹果共有几个?﹡7、在下面算式里,四个小纸片各盖住一个数字,被盖住的四个数字总和是多少?第三讲 分解质因数(二)【专题导引】许多题目,特别是一些竞赛题,初看起来很玄妙,但它们都与乘积有关,对于这类题目,我们可以用分解质因数的方法来解.因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题.【典型例题】【例1】三个质数的和是80,这三个数的积最大可以是多少?【试一试】1、如果A +B=70,A ×B =1161,那么A -B 等于多少?1、把1、2、3、4、5、6、7、8、9九张卡片分给甲、乙、丙三人,每人各3张.甲说:“我的三个数的积是48.”乙说:“我的三个数的和是16.”丙说:“我的三个数的积是63.”问甲、乙、丙各拿了哪几张卡片?【例2】一个两位数除310余37,这个数可以是( )或( ).× 6 5 3 1【试一试】1、237除以一个两位数,所得的余数是6,请写出适合于这个条件的所有两位数.2、5100除以一个三位数,余数是95,这个三位数最大是多少?【例3】某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果师生每人种树一样多,一共种了1073棵.那么,平均每人种了多少棵?【试一试】1、一个长方体的长、宽、高是三个连续的自然数.已知这个长方体的体积是9240立方厘米,那么,这个长方体的表面积是多少?2、老师用216元买一种钢笔若干支,如果每支钢笔便宜1元钱,那么他就能多买3支.问:每支钢笔原价多少元?【例4】把186155和187221约分.【试一试】把下面的几个分数约分.1、 6946 2、 117143【﹡例5】小明用2.16元买了一种画片若干张,如果每张画片的价钱便宜1分钱,那么他还能多买3张.问小明买了多少张画片?【﹡试一试】1、求2310的约数中,除它本身以外最大的约数是多少?2、自然数a 乘以2376,所得的积正好是自然数b 的平方.求a 最小是多少?课 外 作 业家长签名:1、在下面括号内填上15以内适当的质数.10=( )+( )=( )×( )=( )-( )2、如果A ×B=50,它们的和最大是多少?3、长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多少米?4、有一块长方形的场地,它是由319块1平方分米的水泥方砖铺成的,求这块长方形场地的周长.5、王老师带同学们擦玻璃,同学们恰好平均分成3组.如果师生每人擦的块数同样多,一共擦111块,那么,平均每人擦了多少块?6、把下面的几个分数约分.(1)323247 (2)253161﹡7、将750元奖金平均分给若干个获奖者,如果每人所得的钱数化成角为单位的数就正好是得钱人数的12倍.求获奖人数和每人分得的钱数.。

小学奥数5-3-4 分解质因数(一).专项练习及答案解析

小学奥数5-3-4 分解质因数(一).专项练习及答案解析

1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯例题精讲知识点拨教学目标5-3-4.分解质因数(一)【答案】3⨯⨯⨯23753【例2】三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数【难度】1星【题型】填空【解析】210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

五年级奥数周周练 第23周 分解质因数(一) (教师版)答案

五年级奥数周周练 第23周 分解质因数(一) (教师版)答案

第23周分解质因数(一)一、知识要点一个自然数的因数中,为质数的因数叫做这个数的质因数。

把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。

例如:24=2×2×2×3,75=3×5×5。

我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。

其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。

二、精讲精练【例题1】把18个苹果平均分成若干份,每份大于1个,小于18个。

一共有多少种不同的分法?【思路导航】先把18分解质因数:18=2×3×3,可以看出:18的约数是1、2、3、6、9、18,除去1和18,还有4个约数,所以,一共有4种不同的分法。

练习1:1.有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。

有哪几种分法?先把60分解质因数:60=2×2×3×5,可以看出:60的约数是1、2、3、4、5、6、10、12、15、20、30、60,除去1、2、3、4、5和20、30、60,还有4个约数,所以,一共有4种不同的分法。

60=6×10=10×6=12×5=15×4答:有4种分法:每组6人,分成10组;每组10人,分成6组;每组12人,分成5组;每组15人,分成4组。

2.195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?先把195分解质因数:195=3×5×13,可以看出:195的约数是1、3、5、13、15、39、65、195,除去1和195,还有6个约数,所以,一共有6种不同的排法。

195=3×65=5×39=13×15=15×13=39×5=65×3答:共有6种排法:3行65列,5行39列,13行15列,15行13列,39行5列,65行3列。

(小学奥数)分解质因数(一)

(小学奥数)分解质因数(一)

....1. 能夠利用短除法分解2. 整數唯一分解定理:讓學生自己初步領悟“任何一個數字都可以表示為...⨯⨯⨯☆☆☆△△△的結構,而且表達形式唯一”一、質因數與分解質因數 (1).質因數:如果一個質數是某個數的約數,那麼就說這個質數是這個數的質因數.(2).互質數:公約數只有1的兩個自然數,叫做互質數.(3).分解質因數:把一個合數用質因數相乘的形式表示出來,叫做分解質因數.例如:30235=⨯⨯.其中2、3、5叫做30的質因數.又如21222323=⨯⨯=⨯,2、3都叫做12的質因數,其中後一個式子叫做分解質因數的標準式,在求一個數約數的個數和約數的和的時候都要用到這個標準式.分解質因數往往是解數論題目的突破口,因為這樣可以幫助我們分析數字的特徵.(4).分解質因數的方法:短除法 例如:212263,(┖是短除法的符號) 所以12223=⨯⨯;二、唯一分解定理任何一個大於1的自然數n 都可以寫成質數的連乘積,即:知識點撥教學目標5-3-4.分解質因數(一).... 312123k a a a a kn p p p p =⨯⨯⨯⨯其中為質數,12k a a a <<<為自然數,並且這種表示是唯一的.該式稱為n 的質因數分解式.例如:三個連續自然數的乘積是210,求這三個數.分析:∵210=2×3×5×7,∴可知這三個數是5、6和7. 三、部分特殊數的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模組一、分解質因數【例 1】 分解質因數20034= 。

【考點】分解質因數 【難度】1星 【題型】填空【關鍵字】走美杯,決賽,5年級,決賽,第2題,10分【解析】 原式323753=⨯⨯⨯【答案】323753⨯⨯⨯【例 2】 三個連續自然數的乘積是210,求這三個數是多少?【考點】分解質因數 【難度】1星 【題型】填空【解析】 210分解質因數:2102357=⨯⨯⨯,可知這三個數是5、6和7。

(小学奥数)分解质因数(一)

(小学奥数)分解质因数(一)

1. 能夠利用短除法分解2. 整數唯一分解定理:讓學生自己初步領悟“任何一個數字都可以表示為...⨯⨯⨯☆☆☆△△△的結構,而且表達形式唯一”一、質因數與分解質因數 (1).質因數:如果一個質數是某個數的約數,那麼就說這個質數是這個數的質因數.(2).互質數:公約數只有1的兩個自然數,叫做互質數.(3).分解質因數:把一個合數用質因數相乘的形式表示出來,叫做分解質因數.例如:30235=⨯⨯.其中2、3、5叫做30的質因數.又如21222323=⨯⨯=⨯,2、3都叫做12的質因數,其中後一個式子叫做分解質因數的標準式,在求一個數約數的個數和約數的和的時候都要用到這個標準式.分解質因數往往是解數論題目的突破口,因為這樣可以幫助我們分析數字的特徵.(4).分解質因數的方法:短除法 例如:212263,(┖是短除法的符號) 所以12223=⨯⨯;二、唯一分解定理任何一個大於1的自然數n 都可以寫成質數的連乘積,即:312123ka a a a k n p p p p =⨯⨯⨯⨯其中為質數,12k a a a <<<為自然數,並且這種表示是唯一的.該式稱為n 的質因數分解式. 知識點撥教學目標5-3-4.分解質因數(一)例如:三個連續自然數的乘積是210,求這三個數.分析:∵210=2×3×5×7,∴可知這三個數是5、6和7.三、部分特殊數的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模組一、分解質因數【例 1】 分解質因數20034= 。

【例 2】 三個連續自然數的乘積是210,求這三個數是多少?【例 3】 兩個連續奇數的乘積是111555,這兩個奇數之和是多少?【巩固】 已知兩個自然數的積是35,差是2,則這兩個自然數的和是_______. 例題精講【例 4】今年是2010年,從今年起年份數正好為三個連續正整數乘積的第一個年份是。

六年下册奥数试题- 分解质因数 全国通用(含答案)

六年下册奥数试题-  分解质因数 全国通用(含答案)

六年下册奥数试题- 分解质因数姓名得分知识网络(1)如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

(2)把一个合数用质因数相乘表示,叫做分解质因数。

如把12分解质因数得,这时称2和3是12的质因数。

(3)算术基本定理:任何大于1的整数都能表示成质数的乘积。

(4)如果把相同的质因数合并为它的幂,则任一大于1的整数N只能惟一地表示成:(其中质数;,,…,是自然数,它们分别是,,…,的指数),则上式称为N的标准分解式。

(5)分解质因数的方法主要是短除法。

(在小学阶段)试除时一般从最小质数开始。

重点·难点质数与互质的区别:质数是指约数只有1和它本身的自然数;而两个数的共同约数只有1时,这样两个数的关系称为互质。

学法指导已知约数的个数,求原自然数,属于求一个合数的约数个数的逆向问题。

首先把约数个数分解质因数,逆推求出原自然数,再从中找到符合题目要求的一个。

经典例题[例1]将八个数14、33、35、30、75、39、143、169分成两组,每组四个数,并且每组四个数的乘积相等,应该怎样分?思路剖析要使两组数的乘积相等,就要使两组中的质因数一样,并且相同质因数的个数相同。

为此,我们先将八个数分解质因数:14=2×733=3×1135=5×730=2×3×575=3×5×539=3×13143=11×13169=13×13通过观察各式可知,八个数中,质因数2、7、11各有两个,质因数3、5、13各有四个,所以每组中应该是2、7、11各有一个,3、5、13各有两个。

解答首先将14=2×7分在第一组,另外两个含有质因数2和7的数30=2×3×5和35=5×7就应分在第二组。

这样,在第二组中不仅有2与7,还有两个5,所以另外两个质因数5就应分在第一组,即75=3×5×5归在第一组中。

小学 奥数分解质因数1

小学 奥数分解质因数1

分解质因数(一)一个自然数的因数中,为质数的因数叫做这个数的质因数。

把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。

例如:24=2×2×2×3,75=3×5×5。

把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。

【例题1】把18个苹果平均分成若干份,每份大于1个,小于18个。

一共有多少种不同的分法?练习一1,有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。

有哪几种分法?2,195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?3,甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少。

【例题2】有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。

共有多少种分法?练习二1,把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。

2,四个连续奇数的积是19305,这个四奇数分别是多少?3,把1、2、3、4、5、6、7、8、9九张卡片分给甲、乙、丙三人,每人各3张。

甲说:“我的三个数的积是48。

”乙说:“我的三个数的和是16。

”丙说:“我的三个数的积是63。

”甲、乙、丙各拿了哪几张卡片?【例题3】将下面八个数平均分成两组,使这两组数的乘积相等。

2、5、14、24、27、55、56、99练习三1,下面四张小纸片各盖住一个数字,如果这四个数字都是偶数,请写出这个完整的算式。

□□×□□=12882,有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?3,把40、44,45、63、65、78、99、105这八个数平分成两组,使两组四个数的乘积相等。

【例题4】王老师带领一班同学去植树,学生恰好平均分成4组。

人教版五年级下册数学奥数试题-- 质数、合数、分解质因数(含答案)

人教版五年级下册数学奥数试题-- 质数、合数、分解质因数(含答案)

质数、合数、分解质因数一、走进来1742年,德国一位数学老师歌德巴赫向当时的大数学家欧拉提出这样一个问题:每个不小于6的偶数都可表示为两个质数的和。

但欧拉未能给出解答,这就是著名的歌德巴赫猜想。

数学王子高斯曾说过:“歌德巴赫猜想是数学皇冠上的明珠”。

1938年,我国著名数学家华罗庚证明了:几乎所有大于6的偶数均可表示成两个质数之和。

也就是说歌德巴赫猜想几乎对所有的偶数成立。

1966年,我国数学家陈景润解决了歌德巴赫猜想“1+2”的问题。

这一结果是到目前为止,对歌德巴赫猜想研究的最好结果。

国际上一般称之为“陈氏定理”。

“陈氏定理”引起世界数学家的重视和兴趣。

虽然这一结果离歌德巴赫猜想(即“1+1”)仅一步之遥,但要完全攻克它,仍然存在十分巨大的困难。

数字中有着各式各样的奇妙性质,质数、合数里面就隐藏着很多有趣的问题。

二、一起做【例1】判断269、439是质数还是合数?提示:从最小的质数顺次试除,除到除数大于或等于商时为止。

【例2】两个质数和是20,它们的乘积最大是多少?提示:和一定时,两数相差越_____,乘积越________.【例3】36的全部因数有多少个?216的全部因数有多少个?提示:写出36的全部因数,找出因数个数和质因数的关系。

【例4】36的全部因数的和是多少?360的全部因数的和是多少?提示:写出36的所有因数并求和,找出和与质因数的关系。

【例5】李聪是个中学生,参加了全市的数学竞赛(满分100分)。

他说:“我的名次、分数和我的年龄乘起来是3738。

”李聪得了多少分,获得了第几名?提示:将3738分解质因数,根据年龄、名次及分数的特点组数。

【例6】小亚、小美和小欧是三个好朋友,他们三人的年龄依次相差2岁,已知他们三人的年龄之积是1680,他们中年龄最大的上了初中,小亚和小欧在同一学校学习,小亚不是年龄最小的,那么三个好朋友的年龄分别是多少?提示:分解质因数后根据已知条件合理组数。

三、一起做:展示自己(一)、填空题。

五年级奥数-分解质因数(一)

五年级奥数-分解质因数(一)

例3、将下面八个数平均分成 两组,使这两组数的乘积相 等。
2、5、14、24、27、55、 56、99
分析 :
14=2×7
55=5×11
24=2×2×2×3 56=2×2×2×7
27=3×3×399=3× Nhomakorabea×11可以看出,这八个数中,共含有八个2,六个
3,二个5,二个7和二个11。因为要把这八个
五年级奥数-分解质因数(一)
专题简析:
一个自然数的因数中,为质数的因数叫做这 个数的质因数。
把一个合数,用质因数相乘的形式表示出来, 叫做分解质因数。例如:24=2×2×2×3, 75=3×5×5。 我们数学课本上介绍的分解质因数,是为求 最大公约数和最小公倍数服务的。其实,把 一个数分解成质因数相乘的形式,能启发我 们寻找解答许多难题的突破口,从而顺利解 题。
练习四
1,3月12日是植树节,李老师带领同学们排成 两路人数相等的纵队去植树。已知李老师和同 学们每人植树的棵数相等,一共植了111棵树, 求有多少个学生。 2,小青去看电影,他买的票的排数与座位号 数的积是391,而且排数比座位号数大6。小青 买的电影票是几排几座? 3,把一篮苹果分给4人,使四人的苹果数一个 比一个多2,且他们的苹果个数之积是1920。 这篮苹果共有多少个?
例5、面的算式里,□里数字
各不相同,求这四个数字的和。 □□×□□=1995
分析:
要使两个两位数的积等于1995,那 么,这两个数的积应和1995有相同 的质因数。1995=3×5×7×19,可 以有35×57=1995和21×95=1995。 因为要满足“数字各不相同”的条 件,所以取21×95=1995,这四个 数字的和是:2+1+9+5=17。

小学思维数学讲义:分解质因数(一)-含答案解析

小学思维数学讲义:分解质因数(一)-含答案解析

分解质因数(一)1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数(1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法 例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式. 例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯【答案】323753⨯⨯⨯例题精讲 知识点拨 教学目标【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数 【难度】1星 【题型】填空【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

小学奥数知识名师点拨 例题精讲 分解质因数(一).教师版

小学奥数知识名师点拨 例题精讲 分解质因数(一).教师版
【例 2】 三个连续自然数的乘积是 210 ,求这三个数是多少? 【考点】分解质因数 【难度】1 星 【题型】填空 【解析】 210 分解质因数: 210 2 3 5 7 ,可知这三个数是 5 、 6 和 7 。 【答案】 5 、 6 和 7
【例 3】 两个连续奇数的乘积是111555 ,这两个奇数之和是多少? 【考点】分解质因数 【难度】2 星 【题型】填空
【关键词】迎春杯,中年级,复试,2 题
D. 10
【解析】 D,解:设 a b c d e 。由 ab 3, ac 6 推知 c 2b ;由 ce 120, de 300 推知 d 5 c 5b 。 2
bc b 2b 2b2 , bd b 5b 5b2 , cd 2b 5b 10b2 。在 15,18, 20,50, 60,100 中,满足 2 : 5 :10 的
【答案】 A
【例 15】 a、b、c、d、e 这五个无数各不相同,它们两两相乘后的积从小到大排列依次为:3,6,15,18,20,50,60,
100,120,300.那么,这五个数中从小大大排列第 2 个数的平方是___________。
A. 1
B. 3
C. 5
【考点】分解质因数 【难度】5 星 【题型】选择
2 12 例如: 2 6 ,(┖是短除法的符号) 所以12 2 2 3 ;
3
二、唯一分解定理
任何一个大于 1 的自然数 n 都可以写成质数的连乘积,即: n p1a1 p2a2 p3a3 pkak 其中为质数, a1 a2 ak 为自然数,并且这种表示是唯一的.该式称为 n 的质因子分解式.
所以可以断定,这四个数一定是 12、14、16、18。也就是说,这四个人的年龄分别是 12 岁、14 岁、16 岁、18 岁。答:这四个人的年龄分别是 12 岁、14 岁、16 岁、18 岁。 【答案】12 岁、14 岁、16 岁、18 岁

小学奥数:分解质因数(一).专项练习及答案解析

小学奥数:分解质因数(一).专项练习及答案解析

5-3-4.分解质因数(一).题库 教师版 page 1 of1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯L 其中为质数,12k a a a <<<L L 为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯例题精讲知识点拨教学目标5-3-4.分解质因数(一)【答案】323753⨯⨯⨯【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数 【难度】1星 【题型】填空【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5-3-4.分解质因数(一).题库 教师版 page 1 of1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯例题精讲知识点拨教学目标5-3-4.分解质因数(一)【答案】323753⨯⨯⨯【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数 【难度】1星 【题型】填空【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

【答案】5、6和7【例 3】 两个连续奇数的乘积是111555,这两个奇数之和是多少?【考点】分解质因数 【难度】2星 【题型】填空【解析】 111555分解质因数:1115553353767=⨯⨯⨯⨯=(3337⨯⨯)⨯(567⨯)333335=⨯,所以和为668.本讲不仅要求学生熟练掌握分解质因数,而且要注意一些技巧,例如本题中的111337=⨯。

【答案】668【巩固】 已知两个自然数的积是35,差是2,则这两个自然数的和是_______.【考点】分解质因数 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第8题【解析】 35=1×35=5×7,5、7差2,两个自然数的和是5+7=12【答案】12元【例 4】 今年是2010年,从今年起年份数正好为三个连续正整数乘积的第一个年份是。

【考点】分解质因数 【难度】3星 【题型】填空【关键词】而思杯,6年级,1试,第3题【解析】 1112131716⨯⨯=,1213142184⨯⨯=,所以是2184【答案】2184【例 5】 如果两个合数互质,它们的最小公倍数是126,那么,它们的和是 .【考点】分解质因数 【难度】2星 【题型】填空【关键词】迎春杯,五年级,初赛,第3题【解析】2126237=⨯⨯,因为两个数互质且都是合数,所以这两个数只能为9和14,它们的和为23.【答案】23【例 6】 4个一位数的乘积是360,并且其中只有一个是合数,那么在这4个数字所组成的四位数中,最大的一个是多少?【考点】分解质因数 【难度】2星 【题型】解答【解析】 将360分解质因数得360222335=⨯⨯⨯⨯⨯,它是6个质因数的乘积.因为题述的四个数中只有一个是合数,所有该合数必至少为633-=个质因数的积,又只有3个2相乘才能是一位数,所以这4个乘数分别为3,3,5,8,所组成的最大四位数是8533.【答案】8533【例 7】 已知5个人都属牛,它们年龄的乘积是589225,那么他们年龄的和为多少?【考点】分解质因数 【难度】2星 【题型】解答【解析】 基本思路与上题一样,重点还是在“1”这个因数的使用上,所以分解因数得到589225113253749=⨯⨯⨯⨯,五个人的年龄和为125岁。

【答案】125岁【例 8】如果两个自然数的和与差的积是23,那么这两个自然数的和除以这两个数的差的商是___________。

【考点】分解质因数【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,4题【解析】根据题意列式子如下:()()23+-=,因为23分解质因数是1与23,所以a b a ba b a b+=-=,根据和差关系算出1223,1b=,所以这两个自然数的和除a=,11以这两个自然数的差的商为23,【答案】23【例 9】2004720⨯⨯的计算结果能够整除三个连续自然数的乘积,这三个连续自然数之和最小是多少?【考点】分解质因数【难度】2星【题型】解答【解析】首先分解质因数,20047202222357167⨯⨯=⨯⨯⨯⨯⨯⨯⨯,其中最大的质因数是167,所以所要求的三个连续自然数中必定有167本身或者其倍数.165351=⨯⨯,⨯⨯,=⨯,所以165166167 166283=⨯⨯⨯⨯,1691313=⨯,16822237⨯⨯都没有4个2,不满足题意.说明167不可行.尝试166167168⨯⨯,167168169=⨯⨯⨯⨯⨯,=⨯,336222237 =⨯,3355673341672⨯⨯中的所有质⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯,包括了2004720 3343353362222235767167因数,所以这组符合题意,以此三数之和最小为1005.【答案】1005【例 10】A是乘积为2007的5个自然数之和,B是乘积为2007的4个自然数之和。

那么A、B两数之差的最大值是。

【考点】分解质因数【难度】3星【题型】填空【关键词】华杯赛,五年级,决赛,第8题,10分【解析】2007=1×1×3×3×223=1×1×1×9×223=1×1×1×3×669=1×1×1×1×2007,所以A的可能值是231或235或675或2011,又2007=1×3×3×223=1×1×9×223=1×1×3×669=1×1×1×2007,所以B的可能值是230或234或674或2010,A、B两数之差的最大值为 2011-230=1781。

【答案】1781【例 11】(老师可以先引入:小明一家四兄弟,大哥叫大毛,二哥叫二毛,三哥叫三毛,那老四叫什么?)大毛、二毛、三毛、小明四个人,他们的年龄一个比一个大2岁,他们四个人年龄的乘积是48384。

问他们四个人的年龄各是几岁?【考点】分解质因数【难度】2星【题型】填空【解析】题中告诉我们,48384是四个人年龄的乘积,只要我们把48384分解质因数,再按照每组相差2来分成四个数相乘,这四个数就是四个人的年龄了。

=⨯⨯(223)(27)24(232)=⨯⨯⨯,由此得出这四4838428337=⨯⨯⨯⨯⨯⨯12141618个人的年龄分别是12岁、14岁、16岁、18岁。

由题意可知,这四个数是相差2的四个整数。

它们的积是偶数,当然这四个数不是奇数,一定是偶数。

又因为48384的个位数字不是0,显然这四个数中,没有个位数字是0的,那么这四个数的个位数字一定是2、4、6、8。

又因为4<,1048384而44838420<,所以可以断定,这四个数一定是12、14、16、18。

也就是说,这四个人的年龄分别是12岁、14岁、16岁、18岁。

答:这四个人的年龄分别是12岁、14岁、16岁、18岁。

【答案】12岁、14岁、16岁、18岁【例 12】 甲数比乙数大5,乙数比丙数大5,三个数的乘积是6384,求这三个数?【考点】分解质因数 【难度】2星 【题型】解答【解析】 将6384分解质因数,638422223719=⨯⨯⨯⨯⨯⨯,则其中必有一个数是19或19的倍数;经试算,1951427-==⨯,195242223+==⨯⨯⨯,恰好1419246384⨯⨯=,所以这三个数即为14,19,24.一般象这种类型的题,都是从最大的那个质因数去分析.如果这道题里19不符合要求,下一个该考虑38,再下一个该考虑57,依此类推.【答案】14,19,24【例 13】 四个连续自然数的乘积是3024,这四个自然数中最大的一个是多少?【考点】分解质因数 【难度】2星 【题型】填空【解析】 分解质因数433024237=⨯⨯,考虑其中最大的质因数7,说明这四个自然数中必定有一个是7的倍数.若为7,因3024不含有质因数5,那么这四个自然数可能是6、7、8、9或7、8、9、10(10仍含有5,不行),经检验6、7、8、9恰符合.【答案】9【例 14】 植树节到了,某市举行大型植树活动,共有1430人参加植树,要把人数分成相等的若干队,且每队人数在100至200之间,则有分法( )。

A 、3种B 、7种C 、11种D 、13种【考点】分解质因数 【难度】3星 【题型】选择【关键词】华杯赛,五年级,初赛,第4题【解析】 只要找到100到200之间可以整除1430的数即可。

1430可分解成2,5,11,13的乘积,所以可以按每组110人,130人,143人分组,共有3个方案。

所以答案为A【答案】A【例 15】 a 、b 、c 、d 、e 这五个无数各不相同,它们两两相乘后的积从小到大排列依次为:3,6,15,18,20,50,60,100,120,300.那么,这五个数中从小大大排列第2个数的平方是___________。

A . 1 B. 3 C. 5 D. 10【考点】分解质因数 【难度】5星 【题型】选择【关键词】迎春杯,中年级,复试,2题【解析】 D ,解:设a b c d e <<<<。

由3,6ab ac ==推知2c b =;由120,300ce de ==推知552d c b ==。

222bc b b b ==⨯,255bd b b b ==⨯,22510cd b b b ==⨯。

相关文档
最新文档