51学时固体物理模拟试题2答案

合集下载

固体物理答案-第二章

固体物理答案-第二章
NaCl晶体
N0=6.0221023,与N0对应的质量应为
M=23+35.5=58.5(g)
Na原子量
Cl原子量
阿伏加德罗常数
面心立方,最近邻原子有12个, 由N个惰性气体原子构成的分子晶体,其总互作用势能可表示为
(2)计及最近邻和次近邻,次近邻有6个。
2.14 KCl晶体的体积弹性模量为 相邻离子间距缩小0.5%,需要施加多大的压力。 ,若要使晶体中 解:根据体积弹性模量K的定义, 得 ,因而 设R为相邻离子间的距离。KCL具有NaCL结构,平均每体 才有一个离子,若晶体中共含N个离子,则晶体体积 积
式中,V为晶体体积,N为晶体包含的原子数,v为每个原子平 均占据的体积。若以
表示晶体包含的晶胞数,
中每个晶胞的体积,n表示晶胞中所含的粒子数,则(1)式完全 等效于
解:题给
表示晶体
(1)
于是得
(2)
R为离子间的最短距离。题给的各种晶格均为立方格子,如令
证明:
选取负离子O为参考离子,相邻两离子间的距离用R表示。
第j个离子与参考离子的距离可表示为
对于参考
离子O,它与其它离子的互作用势能为
马德隆常数
2.3 设两原子间的互作用能可由 表述。 式中第一项为吸引能,第二项为排斥能; 均为正的常数。证明,要使这两原子系统处于平衡状态,必须n>m。 且 即当 时, 证明:相互作用着的两原子系统要处于稳定平衡状态,相应 于平衡距离 处的能量应为能量的极小值,
为常数,试求
(1)平衡时原子间的最短距离;
(2)平衡时晶体体积;
(3)平衡时体积弹性模量;
(4)抗张强度。
解:
(1)


01

固体物理学基础知识训练题及其参考答案

固体物理学基础知识训练题及其参考答案

《固体物理》基础知识训练题及其参考答案说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。

第一章作业1:1.固体物理的研究对象有那些答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。

2.晶体和非晶体原子排列各有什么特点答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。

非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。

3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点试画图说明。

有那些单质晶体分别属于以上三类。

答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。

常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。

面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。

常见的面心立方晶体有:Cu, Ag, Au, Al等。

六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。

常见的六角密排晶体有:Be,Mg,Zn,Cd等。

4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。

答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。

固体物理复习题答案完整版

固体物理复习题答案完整版

一·简答题1.晶格常数为a 的体心立方、面心立方结构,分别表示出它们的基矢、原胞体积以及最近邻的格点数。

(答案参考教材P7-8)(1)体心立方基矢:123()2()2()2ai j k a i j k ai j k ααα=+-=-++=-+,体积:312a ,最近邻格点数:8(2)面心立方基矢:123()2()2()2a i j a j k ak i ααα=+=+=+,体积:314a ,最近邻格点数:122.习题1.5、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。

证明:因为33121323,a aa a CA CB h h h h =-=-,112233G h b h b h b =++ 利用2i j ij a b πδ⋅=,容易证明12312300h h h h h h G CA G CB ⋅=⋅=所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。

3.习题 1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak ===由倒格子基矢的定义:2311232a a b a a a π⨯=⋅⨯,3121232a a b a a a π⨯=⋅⨯,1231232a a b a a a π⨯=⋅⨯倒格子基矢:123222,,b i b j b k a a aπππ=== 倒格子矢量:123G hb kb lb =++,222G hi k j l k a a aπππ=++ 晶面族()hkl 的面间距:2d Gπ=2221()()()h k l a a a=++4.习题1.9、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。

固体物理学考试试题及答案

固体物理学考试试题及答案

固体物理学考试试题及答案题目一:1. 介绍固体物理学的定义和基本研究对象。

答案:固体物理学是研究固态物质行为和性质的学科领域。

它主要研究固态物质的结构、形态、力学性质、磁学性质、电学性质、热学性质等方面的现象和规律。

2. 简述晶体和非晶体的区别。

答案:晶体是具有有序结构的固体,其原子、离子或分子排列规则且呈现周期性重复的结构。

非晶体则是没有明显周期性重复结构的固体,其原子、离子或分子呈现无序排列。

3. 解释晶体中“倒易格”和“布里渊区”的概念。

答案:倒易格是晶体中倒格矢所围成的区域,在倒易格中同样存在周期性的结构。

布里渊区是倒易格中包含所有倒格矢的最小单元。

4. 介绍固体中的声子。

答案:声子是固体中传递声波和热传导的一种元激发。

它可以看作是晶体振动的一种量子,具有能量和动量。

5. 解释“价带”和“能带”之间的关系。

答案:价带是材料中的电子可能占据的最高能量带。

能带是电子能量允许的范围,它由连续的价带和导带组成。

6. 说明禁带的概念及其在材料中的作用。

答案:禁带是能带中不允许电子存在的能量范围。

禁带的存在影响着材料的导电性和光学性质,决定了材料是绝缘体、导体还是半导体。

题目二:1. 论述X射线衍射测定晶体结构的原理。

答案:X射线衍射利用了X射线与晶体的相互作用来测定晶体结构。

当X 射线遇到晶体时,晶体中的晶格会将X射线发生衍射,衍射图样可以提供关于晶体的结构信息。

2. 解释滑移运动及其对晶体的影响。

答案:滑移运动是晶体中原子沿晶格面滑动而发生的变形过程。

滑移运动会导致晶体的塑性变形和晶体内部产生位错,影响了晶体的力学性质和导电性能。

3. 简述离子的间隙、亚格子和空位的概念。

答案:间隙是晶体结构中两个相邻原子之间的空间,可以包含其他原子或分子。

亚格子是晶体结构中一个位置上可能有不同种类原子或离子存在的情况。

空位是晶体结构中存在的缺陷,即某个原子或离子缺失。

4. 解释拓扑绝缘体的特点和其应用前景。

答案:拓扑绝缘体是一种特殊的绝缘体,其表面或边界上存在不同于体内的非平庸的拓扑态。

固体物理参考答案(修正版)

固体物理参考答案(修正版)

固体物理试题及参考答案注意:本答案仅供参考作答,名词解释部分有个别题不是很精确,如有自己的想法请自己把握,作图题由于不专业只能表示大概意思,但应该不会有错,一、名词解释1布里渊区:布里渊区是空间中由倒格矢的中垂面所围成的区域,按序号由倒空间的原点逐步向外扩展,可分为第一布里渊区、第二布里渊区、第三布里渊区等等。

2倒格子:晶格经傅里叶变换所得到的几何格子,其倒格子基矢定义:3声子:格波的能量量子,声子的能量为ħω,准动量为4声学波和光学波:声学波是晶格振动中频率比较低的、而且频率随波矢变化较大的那一支格波,描述的是晶体中原胞的整体运动;描述的是晶体中原胞内原子之间的相对运动。

5能带:由于原子之间的相互作用,当若干个原子相互靠近时,由于彼此之间的力的作用,原子原有能级发生分裂,由一条变成多条,形成的众多能级间的间隔很小,故可近似看成连续的,即称之为能带。

6布洛赫函数:当势场具有晶格周期性时,对于含有晶格周期势的薛定谔方程,其解必定具有形式,则晶体中的波函数具有调幅的平面波形式,称其波函数为布洛赫函数。

7电负性:电负性是原子对核外电子束缚能力大小的量度,通常用电离能与亲合能之和表示。

8布拉伐格子:晶体结构中全同原子构成的晶格称为布拉伐格子。

9等效晶面:简单立方晶格中晶面的密勒指数和晶面法线的晶向指数完全相同的面。

10赝势:在离子实内部,用假想的势能取代真实的势能,求解波动方程时,如不改变其能量本征值及离子实之间的区域的波函数,这个假想的势叫做赝势。

二、证明题11证明:体心立方晶格的倒格子是面心立方。

12、证明倒格子原胞的体积为,其中为正格子原胞的体积。

三、作图题13、在面心立方和体心立方的晶胞图上分别画出其原胞。

答:图如下:14、请在下图中标明[110]、[010]、(100)、(111)晶向和晶面。

答:【注意:由于此图没有相应的作图软件,不能画得和老师一样的立体效果,请同学们对照作图】四、简答题15、通过原子电负性的定义及周期分布,说明离子晶体形成的特征。

固体物理试题及答案

固体物理试题及答案

固体物理试题及答案一、选择题(每题2分,共10分)1. 固体物理中,晶体的周期性结构是通过哪种方式描述的?A. 电子云B. 原子轨道C. 布洛赫定理D. 费米面答案:C2. 以下哪种材料不属于半导体材料?A. 硅B. 锗C. 铜D. 砷化镓答案:C3. 在固体物理中,能带理论描述的是:A. 电子在固体中的自由运动B. 电子在固体中的局域化C. 电子在固体中的能级分布D. 电子在固体中的跃迁过程答案:C4. 固体中的声子是:A. 一种基本粒子B. 一种准粒子C. 一种实际存在的粒子D. 一种不存在的粒子答案:B5. 以下哪种效应与超导现象无关?A. 迈斯纳效应B. 约瑟夫森效应C. 霍尔效应D. 量子隧穿效应答案:C二、填空题(每题2分,共20分)1. 固体物理中,描述电子在周期性势场中的运动的定理是______。

答案:布洛赫定理2. 固体中的能带结构是由______决定的。

答案:电子波函数3. 在固体中,电子的费米能级是______。

答案:电子占据的最高能级4. 固体中的电子输运性质可以通过______来描述。

答案:电导率5. 固体中的晶格振动可以用______来描述。

答案:声子6. 固体中的电子-声子相互作用会导致______。

答案:电子散射7. 固体中的能隙是指______。

答案:价带顶部和导带底部之间的能量差8. 超导体的临界温度是指______。

答案:超导相变发生的温度9. 固体中的霍尔效应是由于______。

答案:电子在磁场中的偏转10. 固体中的磁阻效应是由于______。

答案:电子在磁场中的运动受到阻碍1. 简述固体物理中能带理论的基本思想。

答案:能带理论的基本思想是将固体中的电子视为在周期性势场中运动的量子粒子。

由于周期性势场的存在,电子的能级不再是离散的,而是形成了连续的能带。

这些能带决定了固体的电子结构和性质,如导电性、磁性和光学性质等。

2. 描述固体中的声子是如何产生的。

答案:固体中的声子是由于晶格振动的量子化而产生的准粒子。

固体物理试题分析及答案

固体物理试题分析及答案

1 简述Drude模型的基本思想?2 简述Drude模型的三个基本假设并解释之.• 独立电子近似:电子与电子无相互作用;• 自由电子近似:除碰撞的瞬间外电子与离子无相互作用;• 弛豫时间近似:一给定电子在单位时间内受一次碰撞的几率为1/τ。

3 在drude模型下,固体如何建立热平衡?建立热平衡的方式——与离子实的碰撞• 碰撞前后速度无关联;• 碰撞后获得速度的方向随机;• 速率与碰撞处的温度相适应。

4 Drude模型中对金属电导率的表达式。

5 在自由电子气模型当中,由能量均分定理知在特定温度T下,电子的动能为。

6 在Drude模型当中,按照理想气体理论,自由电子气的密度为n·cm-3,比热Cv=(见上图)。

7 1853年维德曼和弗兰兹在研究金属性质时发现一个定律,即在给定温度下金属的热导系数和电导率的比值为常数。

8 简述Drude模型的不足之处?、Drude模型的局限性• 电子对比热的贡献与温度无关,过大(102)• 电子速度,v2,太小(102)• 什么决定传导电子的数目?价电子?• 磁化率与温度成反比?实际无关• 导体?绝缘体?半导体?9 对于自由电子气体,系统的化学势随温度的增大而降低。

10 请给出Fermi-Dirac统计分布中,温度T下电子的能量分布函数,并进一步解释电子能量分布的特点。

在温度T下,能量为E的状态被占据的几率。

式中E F是电子的化学势,是温度的函数。

当温度为零时,电子最高占据状态能量,称为费米能级。

11 比较分析经典Maxwel-Boltzman统计分布与Fermi-Dirac统计分布对解释自由电子气能量分布的不同之处.• 基态,零度时,电子都处于费米能级以下• 温度升高时,即对它加热,将发生什么情况?• 某些空的能级将被占据,同时,原来被占据的某些能级空了出来。

12 在自由电子气模型当中若电子的能量为E, 则波矢的大小为K= 。

13 若金属的体积为V,那么在k空间中,k的态密度为。

固体物理习题及答案

固体物理习题及答案

固体物理第一章习题及参考答案1.题图1-1表示了一个由两种元素原子构成的二维晶体,请分析并找出其基元,画出其布喇菲格子,初基元胞和W -S 元胞,写出元胞基矢表达式。

解:基元为晶体中最小重复单元,其图形具有一定任意性(不唯一)其中一个选择为该图的正六边形。

把一个基元用一个几何点代表,例如用B 种原子处的几何点代表(格点)所形成的格子 即为布拉菲格子。

初基元胞为一个晶体及其空间点阵中最小周期性重复单元,其图形选择也不唯一。

其中一种选法如图所示。

W -S 也如图所示。

左图中的正六边形为惯用元胞。

2.画出下列晶体的惯用元胞和布拉菲格子,写出它们的初基元胞基矢表达式,指明各晶体的结构及两种元胞中的原子个数和配位数。

(1) 氯化钾 (2)氯化钛 (3)硅 (4)砷化镓 (5)碳化硅 (6)钽酸锂 (7)铍 (8)钼 (9)铂 解:基矢表示式参见教材(1-5)、(1-6)、(1-7)式。

11.对于六角密积结构,初基元胞基矢为→1a =→→+j i a 3(2 →→→+-=j i a a 3(22求其倒格子基矢,并判断倒格子也是六角的。

倒空间 ↑→ji i (B)由倒格基失的定义,可计算得Ω⨯=→→→3212a a b π=a π2)31(→→+j i →→→→→+-=Ω⨯=j i a a a b 31(22132ππ→→→→=Ω⨯=k ca ab ππ22213正空间二维元胞(初基)如图(A )所示,倒空间初基元胞如图(B )所示(1)由→→21b b 、组成的倒初基元胞构成倒空间点阵,具有C 6操作对称性,而C 6对称性是六角晶系的特征。

(2)由→→21a a 、构成的二维正初基元胞,与由→→21b b 、构成的倒初基元胞为相似平行四边形,故正空间为六角结构,倒空间也必为六角结构。

12.用倒格矢的性质证明,立方晶格的(hcl )晶向与晶面垂直。

证:由倒格矢的性质,倒格矢→→→→++=321b l b k b h G hkl 垂直于晶面(h 、k 、l )。

51学时固体物理模拟试题2答案

51学时固体物理模拟试题2答案

1 a 2
B、
1 a 3
C、
1 a 4
D、
1 a 5
3、对于一维双原子链晶格振动的频隙宽度,若最近邻原子之间的力 常数β 增大为 4β ,则晶格振动的频隙宽度变为原来的( A ) 。 A、 2 倍 B、 4 倍 C、 16 倍 D、1 倍 4、布洛赫电子的准动量为( D ) 。 A、 h B.、 m v C、 ih D、 hk 5、一维自由电子的能态密度,与能量 E 的关系是正比于( A A、 E A、
2N 2
1/ 2


2 m
五、证明题(每小题题 10 分,共 30 分)
1、金属 Na 的晶体结构为体心立方点阵,则其 X 射线衍射的几何结构因子满足如下关系 F(h,k,l)=
2f Na 0
当h+k+l=偶数 当h+k+l=奇数
证: 每个单胞有两个同种原子,位矢为 r 1 :(0,0,0),r 2 : (1/2,1/2,1/2) 所以,Na 晶体的几何结构因子 F(K h )为: F( h, k , l )=
1 2
) 。
B、 E
0
C、 E
1/ 2
D、 E
6、Lenard-Jones 势为: ( C

A B r rn
B、N(
Am Bn ) rm rn
D.
12 6 1 N A12 A6 2 r r
C. 4
证: 内聚能为 U=N(
e2 A B n ),A= 4 0 r r
0 B 1 n1 r0 A n
由平衡条件
dU dr
r0
所以结合能为

固体物理chapter2课堂测试答案

固体物理chapter2课堂测试答案

Chapter 2 固体的结合(Solid Combination )一、简要回答下列问题(answer the following questions):1、晶体的结合能,晶体的内能,原子间的相互作用势能有何区别?[答] 自由粒子结合成晶体过程中释放出的能量,或者把晶体拆散成一个个自由粒子所需要的能量称为晶体的结合能。

用公式表示为:0E E E N b-=,其中E N 表示组成晶体的N 个原子在自由时的总能量,E 0 为晶体的总能量,则E b 为晶体的结合能。

原子的动能与原子间的相互作用势能之和称为晶体的内能。

在0E E E N b-=中,如果以组成晶体的N 个原子处于自由状态的能量作为能量的零点,则-E b 就是晶体的内能。

在0K 时,原子有零点振动能。

但原子的零点振动与原子间的相互作用势能的绝对值相比小得多。

所以,在0K 时原子间的相互作用势能的绝对值近似等于晶体的结合能。

2、原子间的排斥作用和吸引作用有何关系?起主导作用的范围是什么?[答] 在原子由分散无规的中性原子结合成规则排列的晶体过程中,吸引力起了主要作用。

在吸引力的作用下,原子间的距离缩小到一定的程度,原子间才出现排斥力。

当排斥力与吸引力相等时,晶体达到稳定结合状态。

可见,晶体要达到稳定结合状态,吸引力与排斥力缺一不可。

设此时相邻原子间的距离为r 0,当相邻原子间的距离0r r >时,吸引力起主导作用;当相邻原子间的距离0r r <时,排斥力起主导作用。

3、共价结合为什么有“饱和性”和“方向性”?[答] “饱和性”是指共价结合时一个原子只能形成一定数目的共价键,因此依靠共价键只能和一定数目的其它原子相结合。

共价键的数目取决于原子未配对的电子数。

共价结合时,共价键的形成只在特定的方向上,这些方向是配对电子波函数的对称轴方向,在这个方向上交迭的电子云密度最大。

这就是共价键的“方向性”。

4、如何理解电负性可用电离能加亲和能来表征?[答] 原子的电负性是用来标志原子得失电子能力的物理量。

固体物理第二章答案

固体物理第二章答案

第21. 有一晶体,平衡时体积为 0V , 原子间相互作用势为0.如果相距为 r 的两原子互作用势为 ()n m r r a r u β+-= 证明(1) 体积弹性模量为 K=.90V mnU (2) 求出体心立方结构惰性分子的体积弹性模量.[解答]设晶体共含有 N 个原子,则总能量为U(r)=()∑∑i jij r u '21. 由于晶体表面层的原子数目与晶体内原子数目相比小得多,因此可忽略它们之间的基异,于是上式简化为 U=().2'∑jijr u N设最近邻原子间的距离为R 则有j ij a r =R再令 A ,1'∑=j m j m a A ,1'∑=jn j n a 得到 U=.200⎪⎪⎭⎫ ⎝⎛+-n n m m R A R A N βα 平衡时R=R 0,则由已知条件U(R 0) = 0U 得0002U R A R A N n n m m =⎪⎪⎭⎫⎝⎛+-βα 由平衡条件 0)(0=R dRR dU得021010=⎪⎪⎭⎫⎝⎛-++n nm m R A n R A m N βα. 由(1),(2)两式可解得.)(2,)(20000n n m m nR n m N U A nR n m N U A -=-=βα利用体积弹性模量公式[参见《固体物理教程》(2.14)式]K=0220209R R U V R ⎪⎪⎭⎫ ⎝⎛∂∂得K= ⎥⎦⎤⎢⎣⎡+++-n n m m R A n n R A m m N V 000)1()1(291βα = ⎥⎦⎤⎢⎣⎡-++-+-)(2)1()(2)1(2910000000n m N mR U R n n n m N nR U R m m N V nnm m = .900V mn U - 由于,00<U 因此,00U U -= 于是 K= .90V mnU (1) 由《固体物理教程》(2.18)式可知,一对惰性气体分子的互作用能为.)(126r B r A r u +-=若令 61,42⎪⎭⎫⎝⎛==A B B A σε,则N 个惰性气体分子的互作用势能可表示为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=6612122)(R A R A N r U σσε.由平衡条件0)(0=R dRR dU 可得 R .2616120⎪⎪⎭⎫ ⎝⎛=A A σ进一步得 .2)(122600A A N R U U ε-==代入K=.900V mn U 并取 m =6,n =12,V 300334R N =得 K=5126123233⎪⎪⎭⎫⎝⎛A A A σε.对体心立方晶体有 A .11.9,25.12126==A 于是.1.703σε=K 2. 一维原子链,正负离子间距为a ,试证:马德隆常数为2=μ1n2. [解答] 相距ij r 的两个离子间的互作用势能可表示成.4)(2n ijij ij r br q r u +=πμ设最近邻原子间的距离为R 则有 R a r j ij =, 则总的离子间的互作用势能 U=()∑∑∑-⎪⎪⎭⎫ ⎝⎛±-=jn jn j j j ij a bRa R q N r u N ''0'114[22πε. 基中 jja 1'±=∑μ 为离子晶格的马德隆常数,式中+;- 号分别对应于与参考离子相异和相同的离子.任选一正离子作为参考离子,在求和中对负离子到正号,对正离子取负号,考虑到对一维离子两边的离子是正负对称分布的,则有.413121112)1('⎥⎦⎤⎢⎣⎡+-+-=±=∑Λj ja μ利用正面的展开式 1n(1+x ),432432Λ+-+-x x x x 并令 1=x 得Λ+-+-41312111=1n(1+1)=1n2.于是,一维离子链的马德常数为2=μ1n23. 计算面心立方面简单格子的6A 和12A(1) 只计最近邻; (2) 计算到次近邻; (3) 计算到次近邻.[解答]图2.26示出了面心立方简单格子的一个晶胞.角顶O 原子周围有8个这样的晶胞,标号为1的原子是原子O 的最近邻标号为2的原子是O 原子的最近邻,标号为3的原子是O 原子的次次近邻.由此得到,面心立方简单格子任一原子有12个最近邻,6个次近邻及24个次次近邻.以最近邻距离度量,其距离分别为:.3,2,1===j j j a a a 由 .1,112'126'6⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=∑∑jj j j a A a A图2.6 面心立方晶胞得(1) 只计最近邻时1211*12)1(66=⎪⎭⎫⎝⎛=A , 1211*12)1(1212\=⎪⎭⎫⎝⎛=A .(2) 计算到次近邻时.094.1221*611*12)2(,750.1221*611*12)2(121212666=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=A A(3) 计算到次次近邻时.127.12033.0094.1231*2421*611*12)3(,639.13899.0750.1231*2421*611*12)3(121212126666=+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=A A 由以上可以看出,由于12A中的幂指数较大,12A 收敛得很快,而6A 中的幂指数较小,因此 6A 收敛得较慢,通常所采用的面心立方简单格子的 6A 和 12A 的数值分别是14.45与12.13.4. 用埃夫琴方法计算二维正方离子(正负两种)格子的马德隆常数. [解答]马德隆常数的定义式为 jja 1'±=∑μ,式中+、-号分别对应于与参考离子相异和相同的离子,二维正方离子(正负两种)格子,实际是一个面心正方格子,图 2.7示出了一个埃夫琴晶胞.设参考离子O 为正离子,位于边棱中点的离子为负离子,它们对晶胞的贡献为4*(1/2).对参考离子库仑能的贡献为图2.7二维正方离子晶格.121*4顶角上的离子为正离子,它们对晶胞的贡献为4*(1/4), 对参考离子库仑能的贡献为 .241*4-因此通过一个埃夫琴晶胞算出的马德隆常数为 .293.1241*4121*4=-=ν再选取422=个埃夫琴晶胞作为考虑对象,这时离子O 的最的邻,次近邻均在所考虑的范围内,它们对库仑能的贡献为,2414-而边棱上的离子对库仑能的贡献为 ,521*8221*4+- 顶角上的离子对为库仑能的贡献为 ,841*4-这时算出的马德隆常数为图 2.8 4个埃夫琴晶胞同理对932=个埃夫琴晶胞进行计算,所得结果为611.11841*41321*81021*8321*48458242414=⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+⎪⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-=μ 对 1642=个埃夫琴晶胞进行计算,所得结果为614.13241*42521*81721*81021*8421*4184138108348458242414=⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+-+⎪⎪⎭⎫ ⎝⎛-+-+⎪⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-=μ当选取 n 2个埃夫琴晶胞来计算二维正方离子(正负两种)格子的马德隆常数,其计算公式(参见刘策军,二维NaC1 晶体马德隆常数计算,《大学物理》,Vo1.14,No.12,1995.)为 [][].1,8411>+++=--n D C B A n n n n μ其中 ,21)1(,1)1(11111nB t A n n n t t n +-=+--=-=∑,1)1(1)1()2()1(1)1()1(2112212221112122122222222221⎪⎪⎪⎪⎪⎭⎫⎝⎛+--+--+-+-+--++⎪⎪⎭⎫⎝⎛+++-+⎪⎪⎭⎫ ⎝⎛+---n n n n n C n n ΛΛ.121)1()1(2181222222+-+-++++-=n n n n n D n n Λ5. 用埃夫琴方法计算CsCl 型离子晶体的马德隆常数(1) 只计最近邻 (2) 取八个晶胞 [解答](1) 图2.29是CsCl 晶胸结构,即只计及最近邻的最小埃夫琴晶胞,图2.29()a 是将Cs +双在体心位置的结构,图2.9(a)是将 Cl -取在体心位置的结构,容易求得在只计及最近邻情况下,马德隆常数为1.图2.29 (a )Cs 取为体心的CsC1晶胞,(b) C1取为体心的CsC1晶胞(2)图2.10是由8个CsCl 晶胞构成的埃夫琴晶胞,8个最近邻在埃夫琴晶胞内,每个离子对晶胞的贡献为1,它们与参考离子异号,所以这8个离子对马德隆常数的贡献为8埃夫琴晶胞6个面上的离子与参考离子同号,它们对埃夫琴晶胞的贡献是21,它们与参考离子的距离为32R 它们对马德隆常数的贡献为-()3/2*621图 2.10 8个CsCl 晶胞构成的一个埃夫琴晶胞埃夫琴晶胞楞上的12个离子,与参考离子同号,它们对埃夫琴晶胞的贡献是41它们与参考离子的距离为322R 它们对马德隆常数的贡献为-()3224/1*12埃夫琴晶胞角顶上的 8个离子,与参考离子同号,它们对埃夫琴晶胞的贡献是81它们与参考离子的距离为2R 它们对马德隆常数的贡献为 -()281*8,由8个CsCl 晶胞构成的埃夫琴晶胞计算的马德隆常数.064806.32)8/1(*8322)4/1(*123/2)2/1(*68=---=μ 为了进一步找到马德常数的规律,我们以计算了由27个CsCl 晶胞构成的埃夫琴晶胞的马德隆常数,结果发现,由27个CsCl 晶胞构成的埃夫琴晶胞的马德隆常数是0.439665.马德隆常数的不收敛,说明CsCl 晶胞的结构的马德隆常数不能用传统的埃夫琴方法计算.为了找出合理的计算方法,必须首先找出采用单个埃夫琴晶胞时马德隆常数不收敛的原因.为了便于计算,通常取参考离子处于埃夫琴晶胞的中心.如果以Cs +作参考离子,由于埃夫琴晶胞是电中性的要求,则边长为pa 2(p 是大于或等于1的整数)的埃夫琴晶胞是由(2p )3个CsCl 晶胞所构成,埃夫琴晶胞最外层的离子与参考离子同号,而边长为(2p +1)的埃夫琴晶胞是由(2p +1)3 个 CsCl 晶胞所构成,但埃夫琴晶胞的最外层离子与参考离子异号,如果以C1-作参考离子也有同样的规律,设参考离子处于坐标原点O ,沿与晶胞垂直的方向(分别取为x,y,z 图2.11示出了z 轴)看去,与参考郭同号的离子都分布在距O 点ia 的层面上,其中i 是大于等于 1的整数,与 O 点离子异号的离子都分布在距O 点(i -0.5)a 的层面上,图 2.11(a) 示出了同号离子层,图2.11(b)示出了异号离子层.图2.11 离子层示意图(a)表示同号离子层, O 离子所在层与 O '离子所在层相距ia(b)表示异号离子层, O 离子所在层和O ' 离子所在层相距(i -0.5)a当 CsCl 埃夫琴晶胞边长很大时,晶胞最外层的任一个离子对参考离子的库仑能都变得很小,但它们对参考离子总的库仑能不能忽略.对于由(2p )3个CsCl 晶胞所构成的埃夫琴晶胞来说,最外层有6*(2p )2个与参考离子同号的离子,它们与参考离子的距离为(1/2)pa ~(23)pa ,它们与参考离子的库仑能为a pe 024πε量级,这是一个相对大的正值.对于由(2p +1)3个CsCl 晶胞所构成的埃夫琴晶胞来说,离外层有6*(2p +1)2个与参考离子异号的离子,它们与参考离子的库仑能为a pe 024πε-量级,这是一个绝对值相对大的负值,因此,由(2p )3个CsCl 晶胞构成的埃夫琴晶胞所计算的库仑能,与由(2p +1)3个CsCl 晶胞构成的埃夫琴晶胞所计算的库仑能会有较大的差异.即每一情况计算的库仑能都不能代表CsCl 晶体离子间相互作用的库仑能.因此这两种情况所计算的马德隆常数也必定有较大的差异,由1个CsCl 晶胞、8个CsCl 晶胞和27个CsCl 晶胞构成的埃夫琴晶胞的计算可知, CsCl 埃夫琴晶胞体积不大时,这种现象已经存在.为了克服埃夫琴方法在计算马德隆常数时的局限性,可采取以下方法,令由 (2p )3个CsCl 晶胞构成的埃夫琴晶胞计算的库仑能为1U ,由(2p +1)3个CsCl 晶胞构成的埃夫琴晶胞所计算的库仑能为1U ,则CsCl 晶体离子间相互作用的库仑能可近似取作 )(2121U U U +=(1) 因子1/2 的引入是考虑除了(2p +1)3个CsCl 晶胞构成的埃夫琴晶胞最外层离子外,其他离子间的库仑能都累计了两偏,计算1U 和2U 时要选取体积足够大的埃夫琴晶胞,此时埃夫琴晶胞最外层离子数与晶胞内的离子数相比是个很小的数,相应的马德隆常数应为 )(2121μμμ+=(2) 其中:=1μ⎪⎪⎭⎫ ⎝⎛±∑i ja 1'是由(2p )3个CsC1晶胞构成的埃夫琴晶胞计算的值; =1μ⎪⎪⎭⎫ ⎝⎛±∑i ja 1'由 (2p +1)3 个CsC1晶胞构成的埃夫琴晶胞所计算成本的值.为简化计算,特选取晶胞边长a 为计算单位,由于,32a R =所以,23'μμ= ⎪⎪⎭⎫ ⎝⎛±=∑'''1i i a μ (3) 其中'i a 是某一离子到参点的距离与a 的比值.考虑到对称性,对选定的埃夫琴晶胞,把晶胞的离子看成分布在一个个以参考离子为对称心的正六面体的六个面上,体积不同的正六面六个面上的离子分别计算.由(2p )3个CsC1晶胞构成埃夫琴晶胞时,由分析整理可得,231111⎪⎪⎭⎫ ⎝⎛++=∑∑=-=p pi i p i i C B A μ (4) 由(2p +1)3个 CsC1 晶胸构成埃夫琴晶胞时,,231112⎪⎪⎭⎫ ⎝⎛++=∑∑=-=p pi i p i i D B A μ (5)其中:),1(''''22'2'p i i y x k A i x iy y x i <≤++-=∑∑(6)i A 表示与 O 点距离为ia 的6个面上所有的离子对马德隆常数的面贡献,因为这些离子与参考离子同号,故到负号.'x 、'y 是离子在平面 '''y x o 上的坐标, ''y x k 代表 6个面上等价离子的个数,其取值规则为:(1) 在角上(如E 点),即'x =i 且 'y = i. 时, ''y x k =8;(2) 在棱与坐标轴的交点(如 F 点),'x =i 且'y = 0或 'x =0且'y = 0时, ''y x k =6 (3) 在棱上的其他点(如H 、I 点)即不满足上述条件,且'x =i 或'y = i.时, ''y x k =12 (4) 在'O 点,即'x =0且'y = 0时, ''y x k =6(5) 在除'O 点外的面上的点(如J 点),即不满足上述条件时,''y x k =24.),1()5.0(5.05.05.05.022'2''''''p i i y x k B i x i y yx i ≤≤-++=∑∑-=-=(7)i B 代表距O 点距离为(i -0.5)a 的6个面上的离子对马德隆常数的贡献,因为这种些离子与参考离子异号,故取正号. 'x ,'y 是离子在平面'''y x o 上的坐标, '''y x k 代表这6个面上等价离子的个数,其取值规则为:(1) 在角上(如K 点),即'x =i 且 'y = i.时, '''y x k =8;(2) 在棱下(如L 、M 点),即不满足不述条件,且'x =i 或'y = i 时,'''y x k =12; (3) 在面上(如N 点)好不满足上述条件时, '''y x k =24.),(0022'2'"''''p i i y x k C i x iy i yx =++-=∑∑==i C 表示在边长为2pa 的晶胞最外层,即与参考离子相距pa 的6个面上的离子对马德隆常数的贡献,应取负号,与iA 的不同在于"''y x k的取值: (1) 在角上, "''y x k =''y x k /8; (2) 在棱上, "''y x k =''y x k /4; (3) 在面上, "''y x k=''y x k /2.),()5.0(5.05.05.05.022'2''''''''p i i y x k D i x i y yx i =-++=∑∑-=-=i D 表示在边长为2a p )1(+的晶胞最外层,即与参考离子相距(p +0.5)a 的离子层对马德隆常数的贡献,应取正号,与i B 的不同在于'''''yx k 的取值: (1) 在角上, '''''y x k ='''y x k /8; (2) 在棱上, '''''y x k ='''y x k /4; (3) 在面上, '''''y x k ='''y x k /2.表2.1给出了计算结果,给出的μ是由分别对应2p 和2p+1的1μ和2μ求得的,实际上, 1μ和2μ只需对应边长相近的埃夫琴晶胞即可,如取对应2p 和2p-1的埃夫琴晶胞也可得到一样的收敛结果,由以上数据可见,马德隆常数μ随晶胞边长的增大而迅速收敛.该方法适用于NaC1结构以外离子晶体马德隆常数的计算.6.只计及最近邻间的排斥作用时,一离子晶体离子间的互作用势为⎪⎪⎩⎪⎪⎨⎧±-=-)2(,)1(,)(22r e R e e r u R ρλ(1)最近邻(2)最近邻以外 式中ρλ,是常数,R 是最近邻距离,求晶体平衡时,原子间总的互作用势.[解 答]设离子数目为2N,以j ij a r =R 表示第j 个离子到参考离子i 的距离,忽略表面效应,则总的相互作用能可表示为U =N ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛±-∑∑-ρλR j j e R a e 2' (∑表示最近邻)=N ,2⎥⎦⎤⎢⎣⎡+--ρλμR e Z R e其中⎪⎪⎭⎫⎝⎛±=∑j ia 1'μ 为马德隆常数,+号对应于异号离子,-号对应于同号离子;Z 为任一离子的最近邻数目,设平衡时R=R 0 ,由平衡条件,02020=⎥⎦⎤⎢⎣⎡+=-ρρλμR R e Z R e N dRdU 得.0202ρλμρR e Z R e -=平衡时的总相互作用为.1)(0020200⎪⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡+-=-R R e N e Z R e N R U R ρμλμρ 7. 设离子晶体中,离子间的互作用势为⎪⎪⎩⎪⎪⎨⎧±+-=最近邻以外最近邻,,)(22re R b R e r u m(1) 求晶体平衡时,离子间总的相互作用势能)(0R U (2) 证明: )(0R U 11-⎪⎪⎭⎫⎝⎛∝m mZ μ其中μ是马德隆常数,Z 是晶体配位数 [解答](1)设离子数目为2N , 以j ij a r =R 表示第j 个离子到参考离子i 的距离,忽略表面效应,则总的相互作用能可表示U =N ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛±-∑∑m j j R b R a e 2'(∑表示最近邻) =N ,2⎥⎦⎤⎢⎣⎡+-m R b Z Re μ其中⎪⎪⎭⎫ ⎝⎛±=∑j i a 1'μ,为马德隆常数,+号对应于异号离子,-号对应于同号离子.Z 为任一离子的最近邻数目,设平衡时R=R 0由平衡条件,0102020=⎥⎦⎤⎢⎣⎡-=+m R R Zmb R e N drdUμ得10-m R Zmb=2e μ即1120-⎪⎪⎭⎫ ⎝⎛=m e Zmb R μ.于是,晶体平衡时离子间总的相互作用势能0U =).1(000--=⎥⎦⎤⎢⎣⎡+-m R NZbR b Z R Zmb N m m m(2)晶体平衡时离子间的相互作用势能可进一步化为0U =.)()()1()1(1111121211--------=⎪⎪⎭⎫ ⎝⎛--m m m m mm m m m m mb Ze Nbm e Zmb ZNbm μμ由上式可知 .110-⎪⎪⎭⎫⎝⎛∝m mZ U μ8.一维离子链,其上等间距载有正负2N 个离子,设离子间的泡利排斥只出现在最近邻离子之间,且为b/R n,b,n 是常R 是两最近邻离子的间距,设离子电荷为q ,(1) 试证明平衡间距下 )(0R U =;114212002⎪⎭⎫⎝⎛--n R n Nq πε(2) 令晶体被压缩,使0R )1(0δ-→R , 试证明在晶体被压缩单位长度的过程中外力作功的主项为c 2δ其中c=;21)1(02R n q n -(3) 求原子链被压缩了2)1(0<<e e NR δδ时的外力[解答](1) 因为离子间是等间距的,且都等于R ,所以认定离子与第j 个离子的距离j r 总可表示成为R a r j j =ja 是一整数,于是离子间总的互作用势能⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛±-=⎥⎥⎦⎤⎢⎢⎣⎡+=∑∑n i in j j j R b a R q N r b r q N R U 214242)('202'0πεπεμ,其中+、-分别对应相异离子和相同离子的相互作用.一维离子晶格的马德隆常数(参见本章习题2)为=⎪⎪⎭⎫ ⎝⎛±∑i ia 1'21n2. 利用平衡条件0)(0=R dRR dU得到b=nq 01-n 0241n2R πε,)(R U =⎪⎪⎭⎫ ⎝⎛---n n nR R R Nq 102141n22πε. 在平衡间距下⎪⎭⎫⎝⎛--n R Nq R U 1141n22)(0020πε.(2) 将互作用势能在平衡间距附近展成级数Λ+-⎪⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛+=202200)(21)()()(0R R dR U d R R dR dU R U R U R R 由外力作的功等于晶体内能的增量,可得外力作功的主项为W=20220)(21)()(0R R dR U d R U R U R-⎪⎪⎭⎫ ⎝⎛=-, 其中利用平衡条件,将R=R )1(0δ- ,代入上式,得到W=δδπε)2(421)1(2102002NR R n q n ⎥⎥⎦⎤⎢⎢⎣⎡-. 晶体被压缩单位长度的过程中,外力作的功的主项δ02W NR =δπε⎥⎥⎦⎤⎢⎢⎣⎡-2002421)1(21R n q n 令c=202421)1(R n q n πε-(CGS)得到在晶体被压缩单位长度的过程中,外力作的功的主项为2δc . (3)设e δδ=时外力为F e ,由于在弹性范围内,外力与晶格的形变成正比,所以 F= )2(0δαNR , F e = )2(0e NR δα,其中α为比例系数离子链被压缩e NR δ02过程中外力作的功W e =δδαδδd NR NR Fdx e eNR e 020002)]2([0⎰⎰== e e e F NR NR δδα022022121)2(=.由于 W e =)2(20e eNR c δδ,所以离子链被压缩了e NR δ02时的外力为F e =202)1(21R n n q c ee δδ-=.9.设泡利排斥项的形式不变,讨论电荷加倍对NaC1晶格常数,体积弹性模量以及结合能的影响。

物理模拟2考试题及答案

物理模拟2考试题及答案

物理模拟2考试题及答案一、选择题(每题2分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

以下哪项描述是错误的?A. 质量越大的物体,受到相同力时加速度越小B. 质量越小的物体,受到相同力时加速度越大C. 加速度与作用力成正比D. 加速度与物体质量无关2. 电磁波的传播速度在真空中是恒定的,这个速度是多少?A. 299792458 m/sB. 3×10^8 m/sC. 1×10^8 m/sD. 9×10^12 m/s3. 以下哪个选项不是描述能量守恒定律的?A. 能量不能被创造或毁灭,只能从一种形式转换为另一种形式B. 能量的总量在封闭系统中是恒定的C. 能量可以无限增加D. 能量转换过程中总量不变4. 根据热力学第一定律,能量守恒在热力学过程中也是适用的。

以下描述正确的是?A. 系统吸收的热量等于系统对外做的功B. 系统吸收的热量加上系统对外做的功等于系统内能的增加C. 系统对外做的功等于系统内能的减少D. 系统吸收的热量等于系统内能的减少5. 光的波动性可以通过哪些实验现象来证明?A. 光的直线传播B. 光的反射C. 光的折射D. 光的干涉和衍射6. 以下哪个现象不是由量子力学解释的?A. 光电效应B. 原子光谱线C. 原子核的放射性衰变D. 物体的宏观运动7. 根据相对论,当物体的速度接近光速时,以下哪个现象会发生?A. 物体的质量会增加B. 时间会变慢C. 长度会缩短D. 所有选项都是8. 以下哪种力不是基本相互作用力?A. 电磁力B. 强力C. 弱力D. 重力9. 根据库仑定律,两个点电荷之间的力与它们的电荷量的乘积成正比,与它们之间距离的平方成反比。

以下描述正确的是?A. 电荷量越大,作用力越小B. 距离越远,作用力越大C. 电荷量相同,距离越远,作用力越小D. 电荷量相同,距离越近,作用力越大10. 根据理想气体状态方程 PV=nRT,以下哪个选项是错误的?A. 温度不变时,压强与体积成反比B. 体积不变时,压强与温度成正比C. 压强不变时,体积与温度成正比D. 体积不变时,压强与温度成反比二、填空题(每题2分,共10分)11. 牛顿第三定律指出,作用力与反作用力大小相等,方向相反,且________。

固体物理考试试卷2(广工大版、附有参考答案)

固体物理考试试卷2(广工大版、附有参考答案)
3
23
J K 1 )
(15 分)
m N AZ
M

10.5 103 6.02 10 23 1 5.86 10 28 (m 3 ) 3 107.87 10
3 2 n 3 3 2 5.86 10 28 1.20 1010 (m 1 )
2 2kF (1.055 10 34 ) 2 (1.20 1010 ) 2 3. 费米能量 E F 8.80 10 19 J 5.50eV 31 2me 2 9.11 10
倒格子基矢:
3 a j 2 ai 2
3 a j ck 2 ai 2
3 ca j 2 caj 2 i
3 a ai j ck 2 2 a2 c 2 3 b1 2 2 i 3j 3a 3 2 ca 2 3 a c k 2 ai 2 j 2 3 c a1 b2 2 2 i 3j 3a 3 2 ca 2 3 a 3 a 2 ai 2 j 2 ai 2 j a2 a1 2 k b3 2 2 c 3 2 ca 2
的平衡距离 r0 。
参考答案: 令
u (r ) r
r r0
12 6 0 12 13 12 7 0 得,原子间平衡距离 r0 1 (m) r0 r0
10. 阐述半导体能带结构的基本特征。
参考答案:价带为满带,价带与导带之间存在较窄的禁带,其宽度较绝缘体的窄。
i ( qna t ) U 2 n (na ) A1e i[ q ( na d ) t ] 其中方程特解为 ,将其代入上述方程得: U 2 n 1 (na ) A2 e

固体物理习题及解答

固体物理习题及解答

一、填空题1. 晶格常数为a 的立方晶系 (hkl)晶面族的晶面间距为222/l k h a ++ ;该(hkl)晶面族的倒格子矢量hkl G 为 k al j a k i a hπππ222++ 。

2. 晶体结构可看成是将 基元 按相同的方式放置在具有三维平移周期性的 晶格 的每个格点构成。

3. 晶体结构按晶胞形状对称性可划分为 7 大晶系,考虑平移对称性晶体结构可划分为 14 种布拉维晶格。

4. 体心立方(bcc )晶格的结构因子为[]{})(ex p 1l k h i f S hkl ++-+=π ,其衍射消光条件是奇数=++l k h 。

5. 与正格子晶列[hkl]垂直的倒格子晶面的晶面指数为 (hkl) , 与正格子晶面(hkl )垂直的倒格子晶列的晶列指数为 [hkl] 。

6. 由N 个晶胞常数为a 的晶胞所构成的一维晶格,其第一布里渊区边界宽度为a /2π ,电子波矢的允许值为 Na /2π 的整数倍。

7. 对于体积为V,并具有N 个电子的金属, 其波矢空间中每一个波矢所占的体积为()V/23π ,费米波矢为3/123⎪⎪⎭⎫⎝⎛=V N k F π 。

8. 按经典统计理论,N 个自由电子系统的比热应为B Nk 23,而根据量子统计得到的金属三维电子气的比热为 F B T T Nk /22π ,比经典值小了约两个数量级。

9.在晶体的周期性势场中,电子能带在 布里渊区边界 将出现带隙,这是因为电子行波在该处受到 布拉格反射 变成驻波而导致的结果。

10. 对晶格常数为a 的简单立方晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族的面指数为 (122) , 其面间距为 .11. 铁磁相变属于典型的 二级 相变,在居里温度附近,自由能连续变化,但其 一阶导数(比热) 不连续。

12. 晶体结构按点对称操作可划分为 32 个点群,结合平移对称操作可进一步划分为 230 个空间群。

大学固体物理试题及答案

大学固体物理试题及答案

大学固体物理试题及答案一、选择题(每题2分,共20分)1. 固体物理中,晶格振动的量子化描述中,声子是()。

A. 电子的量子化B. 光子的量子化C. 晶格振动的量子化D. 磁场的量子化答案:C2. 能带理论中,价带和导带之间的区域称为()。

A. 能隙B. 能级C. 能带D. 能区答案:A3. 在固体中,电子的自由度不包括()。

A. 位置B. 动量C. 能量D. 质量答案:D4. 固体物理中,金属的自由电子模型是由哪位科学家提出的?()A. 薛定谔B. 泡利C. 德鲁德D. 海森堡答案:C5. 固体物理中,半导体的能带结构中,导带和价带之间的能隙称为()。

A. 能隙B. 能级C. 能带D. 能区答案:A6. 晶格常数是指()。

A. 晶格中原子间的平均距离B. 晶格中原子间的最大距离C. 晶格中原子间的最小距离D. 晶格中原子间的任意距离答案:A7. 固体物理中,费米能级是指()。

A. 最高占据能级的电子能量B. 最低未占据能级的电子能量C. 电子从导带跃迁到价带所需的能量D. 电子从价带跃迁到导带所需的能量答案:B8. 固体物理中,布拉格反射定律描述的是()。

A. X射线在晶体中的衍射现象B. 电子在晶体中的衍射现象C. 光在晶体中的反射现象D. 声波在晶体中的反射现象答案:A9. 固体物理中,超导现象是指()。

A. 材料在低温下电阻突然消失的现象B. 材料在高温下电阻突然消失的现象C. 材料在低温下电阻突然增加的现象D. 材料在高温下电阻突然增加的现象答案:A10. 固体物理中,霍尔效应是指()。

A. 电流通过导体时,导体两端产生电压的现象B. 电流通过导体时,导体两侧产生磁场的现象C. 电流通过导体时,导体内部产生电场的现象D. 电流通过导体时,导体内部产生磁场的现象答案:B二、填空题(每题2分,共20分)1. 固体物理中,晶格振动的量子化描述中,声子是晶格振动的_______。

答案:量子化2. 固体物理中,金属的自由电子模型中,电子被视为_______。

2021-2022学年湖南省怀化市五一煤矿子弟中学高二物理模拟试题含解析

2021-2022学年湖南省怀化市五一煤矿子弟中学高二物理模拟试题含解析

2021-2022学年湖南省怀化市五一煤矿子弟中学高二物理模拟试题含解析一、选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意1. 于物体内能的以下说法正确的是().A.物体内能的多少可以用物体吸热或放热的多少来量度B.内能大的物体热量多C.两物体发生热传递,达到平衡后,它们的内能必定相等D.做功和热传递对于改变物体内能是等效的参考答案:D2. (多选题)一静止的铝原子核Al俘获一速度为1.0×107 m/s的质子p后,变为处于激发态的硅原子核Si*.下列说法正确的是()A.核反应方程为p+Al→Si*B.核反应过程中系统动量守恒C.核反应过程中系统能量不守恒D.核反应前后核子数相等,所以生成物的质量等于反应物的质量之和参考答案:AB【考点】动量守恒定律.【分析】由质量数、电荷数守恒可知核反应方程,核反应方程过程中系统动量守恒,能量也守恒,核反应过程中质量发生亏损.【解答】解:A、根据电荷数守恒、质量数守恒得,核反应方程为p+Al→Si*,故A正确.B、在核反应过程中,系统不受外力,动量守恒,故B正确.C、在核反应过程中,系统能量守恒,故C错误.D、核反应过程中,要释放热量,质量发生亏损,生成物的质量小于反应物的质量之和,故D错误.故选:AB.3. 平面内作用于同一点的四个力若以力的作用点为坐标原点,有F1=5 N,方向沿x轴的正方向;F2=6 N,沿y轴正方向;F3=4 N,沿x轴负方向;F4=8 N,沿y轴负方向,以上四个力的合力方向指向()A.第一象限B.第二象限C.第三象限D.第四象限参考答案:D4. 为了测量某化肥厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计,该装置由绝缘材料制成,长、宽、高分别为a、b、c,左右两端开口,在垂直于上下表面方向加磁感应强度为B的匀强磁场,在前后两个内侧面固定有金属板作为电极,污水充满管口从左向右流经该装置时,电压表将显示两个电极间的电压U.若用Q表示污水流量 (单位时间内排出的污水体积),下列说法正确的是()A.若污水中正离子较多,则前内侧面比后内侧面电势高B.前内侧面的电势一定低于后内侧面的电势,与哪种离子多无关C.污水中离子浓度越高,电压表的示数将越大D.污水流量Q与电压U成正比,与a、b有关参考答案:B5. 如图6甲所示,A、B为两个相同的环形线圈,共轴并靠近放置,A线圈中通过如图6乙所示的电流I,则下列说法错误的是 ( )A.在t1到t2时间内A、B两线圈相吸引B.在t2到t3时间内A、B两线圈相排斥C.t1时刻两线圈作用力为零D.t2时刻两线圈作用力最大参考答案:D二、填空题:本题共8小题,每小题2分,共计16分6. 如右图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef内有一半径很小的金属圆环L,圆环与导轨在同一平面内。

51学时固体物理模拟试题4答案

51学时固体物理模拟试题4答案

51学时固体物理模拟试题4答案与评分标准一、问答题(每小题5分,共20分)1.(5分)固体的弹性强弱主要由排斥作用决定呢, 还是吸引作用决定? 答:如图1.1所示,r 0附近的力曲线越陡, 当施加一定外力, 固体的形变就越小。

r 0附近力曲线的斜率决定了固体的弹性 性质。

(3分)而r 0附近力曲线的斜率主要取决于排斥力。

因此, 固体的弹性强弱主要由排斥作用决定。

(2分)2.(5分)温度一定,一个光学波的声子数目多呢, 还是声学波的声子数目多?而对同一个振动模式, 温度高时的声子数目多呢, 还是温度低时的声子数目多? 答:频率为ω的格波的(平均) 声子数为()/11B k Tn eωω=-h因为光学波的频率O ω比声学波的频率A ω高, (/1o B k Te ω-h )大于(/1A B k Te ω-h ), 所以在温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目。

(3分)设温度H L T T >, 由于(1/-HB T k eωη)小于(1/-L B T k e ωη), 所以温度高时的声子数目多于温度低时的声子数目。

(2分)3.(5分)金属与绝缘体的热容量在温度0T K →时有何差别?简要说明原因。

答:温度0T K →时,绝缘体的热容量遵从3T 定律,即3V C T :;而金属的热容量在温度0T K →时,3V C T bT γ=+。

(3分)造成差别的原因在于金属中有大量的近自由电子,它们对热容量的贡献为V C T : (2分)4.(5分)在k 空间倒格矢中垂面上电子的能带有何特点? 答:在k 空间中,倒格矢的中垂面即布里渊区的界面。

在布里渊区边界上, 根据布洛赫定理的推理,晶体中电子能带的等能面在垂直于布里渊区边界的方向上的斜率为零, 即电子的等能面与布里渊区边界正交。

(3分)电子的能带依赖于波矢的方向, 在任一方向上, 在布里渊区边界上, 近自由电子的能带一般会出现禁带。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2N 2
1/ 2


2 m
五、证明题(每小题题 10 分,共 30 分)
1、金属 Na 的晶体结构为体心立方点阵,则其 X 射线衍射的几何结构因子满足如下关系 F(h,k,l)=
2f Na 0
当h+k+l=偶数 当h+k+l=奇数
证: 每个单胞有两个同种原子,位矢为 r 1 :(0,0,0),r 2 : (1/2,1/2,1/2) 所以,Na 晶体的几何结构因子 F(K h )为: F( h, k , l )=
能带宽度 E max -E min =12J 1 (2)V=
1 ▽ k E(K) 1 = 2J 1 a(isink x a+jsink y a+k 0 sink z a)
3、求一维单原子链的声子谱密度 ,并作图。 解
2
Q q
L 1 2 d q / dq 4 1 sin aq m 2
安徽师范大学
学年第
学期
51 学时固体物理模拟试题 2______参考答案
一 、填空题(每小题 2 分,共 12 分)
1、晶格常数为 a 的体心立方晶格,原胞体积Ω 等于
1 3 a 2

2、金刚石结构中,相邻两共价键之间的夹角为 cos
1 ,or 109 o 28 ' 。 3
晶格振动的光学波支数为 。
k h k e , Eh k h Ee k e , vh k h ve k e , mh me 。
二、单项选择题(每小题 2 分,共 12 分)
1、一个二维简单正交晶格的第一布里渊区形状是( A ) 。 A、长方形 B、正六边形 C、圆 D、圆球 2、晶格常数为 a 的简立方晶格的(111)面间距为( B A、 ) 。
12 6 r r
三、问答题(每小题 4 分,共 16 分)
1、共价结合为什么有 “饱和性”和 “方向性”?
解答: 设 N 为一个原子的价电子数目, 对于 IVA、VA、VIA、VIIA 族元素,价电子壳层一共有 8 个 量子态, 最多能接纳(8- N)个电子, 形成(8- N)个共价键. 这就是共价结合的 “饱和性” 。 共价键的形成只在特定的方向上, 这些方向是配对电子波函数的对称轴方向, 在这个方 向上交迭的电子云密度最大. 这就是共价结合的 “方向性” 。 2、什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事? 解答: 为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级 数中的非线形项忽略掉的近似称为简谐近似。 在简谐近似下, 由 N 个原子构成的晶体的晶格 振动, 可等效成 3N 个独立的谐振子的振动。 每个谐振子的振动模式称为简正振动模式, 它 对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这 3N 个简正振动模式的线性迭加。 简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子 的自由度数之和, 即等于 3N.(或 3Nn,N 为原胞数,n 为原胞中不同原子数) 。 3、四角晶系中为什么没有底心四角和面心四角点阵? 解答: 底心四角实际即 简单四角(如图) , 面心四角实际即 体心四角(如图) 。
v=
证:
1 $k 1 E k kp k n m h
$k ih r = ih eik gru r eik gr hk p $ u r p r k k k





v=
1 $k 1 u r hk p $u r kp k k m m
证: 内聚能为 U=N(
e2 A B n ),A= 4 0 r r
0 B 1 n1 r0 A n
由平衡条件
dU dr
r0
所以结合能为
N e 2 1 W= —U(r 0 )= 1 4 0 r0 n
3·根据布洛赫布洛赫定理,晶体中电子的波函数为 Ψ k (r )=e ik .r u k (r ), = u k (r+ R l ). 则能带中电子的平均速度即布洛赫波包的群速度: 且 u k (r )
1 2
) 。
B、 E
0
C、 E
1/ 2
D、 E
6、Lenard-Jones 势为: ( C

A B r rn
B、N(
Am Bn ) rm rn
D.
12 6 1 N A12 A6 2 r r
C. 4
4、在布里渊区界上电子的能带有何特点? 解答 : 电子的能带依赖于波矢的方向, 在任一方向上, 在布里渊区边界上, 近自由电子的能带一般 会出现禁带. 若电子所处的边界与倒格矢 正交, 则禁带的宽度 , 是周期势场的付里叶级数的系数.不 论何种电子, 在布里渊区边界上, 其等能面在垂直于布 里渊区边界的方向上的斜率为零, 即电子的等能面与布里渊区边界正交.
3、含有 N 个初基原胞的铜晶体,晶格振动的声学波支数为 3 , 0 。
4、由 N 个原胞组成的简单晶体,不考虑能带交叠,则每个 S 能带可容纳的电子数为 2N 5、三维晶格振动按德拜模型,模式密度与 2 成正比。
6、晶体的价带处于近满带时,其导电性质可归结为“空穴”在外电场作用下的运动。空穴有 如下基本性质:
(2)b 1 =
2 (2i-k ),b 2 = (2j-k ),b 3 = k 3 3 3
1 6
(i+j+2k ),n (1,1 ,1)=

(3)n (1,1,1)=
1 6
(i-j+2k )
cosα = n (1,1,1) ·n (1,1 ,1)=
2 3
2、在紧束缚近似下,对简立方晶格中的 S 态能带,计算: ⑴能带宽度; ⑵能带中的电子平均速度; 解 (1) E k Es J 0
fe
i i
2 i hxi1 kxi 2 lxi 3
=f N a +f N a e 所以 F(h,k,l)=
i h k l
2f Na 0
当h+k+l=偶数 当h+k+l=奇数
2、氯化钠晶体的结合能为:
N e 2 1 W 1 4 0 r0 n
µk u r E k , 又 H k
µk k H $ h hk p m
µk H
$ hk p 2m
2
V r


µ u r E k u r k H k k k k h $ µk u E K u E K u p hk uk H k k k k k k m
四、计算题(每小题 10 分,共 30
a 1 =3i,a 2 =3j,a 3 =1.5(i+j+2k ) 。
分)
1、有一由同种原子组成的晶格,其固体物理学原胞的基失为:
(1)此晶格属什么晶系?是哪种布喇菲点阵?求单胞基矢; (2)求其倒格子基矢; (3) (1,1,1)晶列与(1,-1,1)晶列之间的夹角是多少? 解 (1)属四角晶系,体心四角点阵。单胞基矢: a=3i, b=3j, c=6k

1 a 2
B、
1 a 3
C、
1 a 4
D、
1 a 5
3、对于一维双原子链晶格振动的频隙宽度,若最近邻原子之间的力 常数β 增大为 4β ,则晶格振动的频隙宽度变为原来的( A ) 。 A、 2 倍 B、 4 倍 C、 16 倍 D、1 倍 4、布洛赫电子的准动量为( D ) 。 A、 h B.、 m v C、 ih D、 hk 5、一维自由电子的能态密度,与能量 E 的关系是正比于( A A、 E A、
最近邻 RS 0
J R e
s
ik gR sห้องสมุดไป่ตู้
简立方中一个原子最临近的有六个原子 R n : a(1,00),a(-1,0,0),a(0,1,0),a(0,-1,0),a(0,0,1),a(0,0,-1) ∴
e
RS
ik gR S
=2(cosk x a+cosk y a+cosk z a)


用 uk

r 乘上式并积分得:
h $u u H µk u = u E k u E k u u uk hk p k k k k k k k k k k m µk u Hu µ u E k u u µK 的厄密性, u H 由H k k k k k k k k k h $u = u E k u = E k u u = E k uk hk p k k k k k k k k m 1 $u r = 1 E k 于是, v uk r hk p k k n m h
相关文档
最新文档