六年级奥数体育比赛中的数学问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数体育比赛中
的数学问题
集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)
体育比赛中的数学问题一.知识点总结
1.单循环赛:每两个队之间都要比赛一场,无主客场之分。
(通俗的说就是除了不和自己比赛,其他人都要比)
2.双循环赛:每两个队都要比赛一场,有主客场之分。
(每个队和同一个对手交换场地赛两次)
一共比赛场数=(人数-1)×人数
3.淘汰赛:每两个队用一场比赛定胜负,经过若干轮之后,最后决出冠
军。
(每场比赛输者打包回家)
二.做题方法
1.点线图
2.列表法
3.极端性分析------根据个人比赛场数,猜个人最高分
根据得分,猜“战况”
三.例题分析
例题1:三年级四个班进行足球比赛,每两个班之间都要赛一场,每个班赛几场?一共要进行多少场比赛?
解析:除了不和自己赛,和其他班都要赛,所以每个班赛4-1=3场
一共进行的场数:3×4÷2=6场
学案1:每个学校都要赛一场,共赛了28场,那么有几个学校参加比赛?
解析:方法一:“老土方法”:1+2+3+4+……7=28
7+1=8个
方法二:(人数-1)×人数=28×2=56
7×8=56,所以为8人
例题2:20名羽毛球运动员参加单打比赛,淘汰赛,那么冠军一共要比赛多少场?
解析:第一轮:20÷2=10(场),10名胜利者进入下一轮比赛
第二轮:10÷2=5(场), 5名胜利者进入下一轮比赛
第三轮:5÷2=2(场)....1人,3名胜利者进入下一轮比赛
第四轮:2÷2=1(场)胜利者和第三轮中剩下的一人进入下一轮比赛
第五轮:2÷2=1(场)
冠军一共参加了5场比赛。
决出冠军一共要比赛的场数:一场比赛淘汰一人,除了冠军不被淘汰
20-1=19场
例题3:规定投中一球得5分,投不进得2分,涛涛共投进6个球,得了16分,涛涛投中几个球?
解析:方法一:(鸡兔同笼)
6个球全投进得5×6=30分
少得了30-16=14分
有1个不进的球就少得5+2=7分,不但没得5分,反而倒扣2分
所以没进的个数14÷7=2个
进的个数6-2=4个
方法二:5×() -2 ×() = 16
根据个位数字特点猜数,5×( 4 ) -2 ×( 2 ) = 16进了4个
学案2:规定投进一球得3分,投不进倒扣1分,如果大明得30分,且知他有6个球没进,他共进几个球?
解析:方法一:(鸡兔同笼)
假设6个没进的球也进,30+6×(3+1)=54分
共投54÷3=18个
方法二:3×() -1 ×( 6 ) = 30
(30+6)÷3=12个
12+6=18个
例题4:A,B,C,D,E,五位同学一起比赛象棋,单循环比赛,A已经赛了4盘,B已经赛了3盘,C赛了2盘,D赛了1盘,此时E赛了几盘?
解析:利用点线图
所以E赛2盘
例题5:A,B,C,D,E,五位同学一起比赛乒乓球,单循环比赛,胜者得2分,负者不得分,比赛结果如下:
(1)A与E并列第一
(2)B是第三名
(3)C和D并列第四名
求B得分?
解析:根据个人比赛场数猜最高分
每人比赛4场,全胜得8分,有并列第一,就没有全胜,所以不可能得8分;有并列倒数第一,所以没有全败,没有0分;而每个人得分是个偶数,在0和8之间的偶数只有2,4,6,三个分数,三个名次,所以B得4分
学案3:四名同学单循环比赛,胜者得2分,负者得0分,平者各得1分。已知甲乙丙三人得分分别为3分,4分,4分,且丙无平局,甲有胜局,乙有平局,那么丁同学得分?
解析:共比赛场数 3×4÷2=6场
每场比赛两人共得2分,6场比赛共得6×2=12分
所以丁得分12-2-4-4=1分
例题6:A,B,C,D,E,进行单循环比赛,每场比赛胜者得3分,负者得0分,平局各得1分,若A,B,C,D分别得分为1,4,7,8,问E最到得几分?最少得几分?
解析:根据得分猜“战况”
要想E得分最高,希望总分最高,在3,0,1赛制中,出现一场平局,总分少1分,所以希望平局的场数少,也就是B的战况为1胜,1平,2负;根据平的总场数是偶数,ABCD四人平的场数之和为5场,希望平的场数少,所以E为1平;胜的总场数等于负的总场数,所以E是2胜1负1平,得分为7分
要想E得分最低,希望总分最低,平局出现的越多越好,即B的战况是4平,ABCD平的场数之和为8平,此四人胜的场数之和恰好等于负的场数之和,所以E 的战况为4平,得分为4分。
学案4:四个球队单循环比赛,有一个队没有输球但是倒数第一,有可能吗?
解析:有可能。虚线表示平局,箭头表示有胜负,箭头指向胜者
A得3分,B,C,D都得4分,所以A没输球但倒数第一。
例1 A、B、C、D、E五人参加乒乓球比赛,每两个人都要赛一盘,并且只赛一盘,规定胜者得2分,负者不得分,已知比赛结果如下:
(1)A与E并列第一名;
(2)B是第三名;
(3)C和D并列第四名;
求B的得分。
分析:共五名选手参加乒乓球比赛,每人都要赛4场,每场比赛不是得2分,就是得0分,所以每名选手的总分一定是0、2、4、6、8五数之一,四场都负得0分,四场都胜得8分,因此,B的得分比0分多,比8分少(他不是第一,也不是第四),只可能是2、4、6三数之一。同时不要忘记“两个并列第一,两个并列第四”这两个重要条件。
解因为五个人一共比赛(4×5÷2=)10(场)。
所以十场球一共得分(2×10=)20(分)。
有两个并列第一,两个并列第四,决定了没有全胜的,也没有全败的,也就是没有得8分的,也没有得0分的,只有2分、4分、6分三种得分情况。因此,并列第一的一共得(6×2=)12(分)。
并列第四的一共得2×2=4(分),
第三名得 20-(12+4)= 4(分)。
所以,B得4分。
例2 在一次射击练习中,甲、乙、丙三位战士各打了四发子弹,全部中靶,其命中情况如下:
(1)每人四发子弹所命中的环数各不相同;
(2)每人四发子弹所命中的总环数均为17环;
(3)乙有两发命中的环数分别与甲其中两发一样,乙另两发命中的环数与