2013年山东高考数学试题(理科)有详细答案答案
【VIP专享】2013年高考理科数学山东卷试题与答案word解析版
2p
C1 于第一象限的点 M.若 C1 在点 M 处的切线平行于 C2 的一条渐近线,则 p=( ).
2013 山东理科数学 第 1 页
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
2013年普通高等学校招生全国统一考试(山东卷)数学试题 (理科) word解析版
2013年山东高考数学理试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数为( ) A. 2+i B.2-i C. 5+i D.5-i 【答案】D【解析】由(z-3)(2-i)=5,得55(2)5(2)3332352(2)(2)5i i z i i i i i ++=+=+=+=++=+--+,所以5z i =-,选D.(2)设集合A={0,1,2},则集合B={x-y |x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9【答案】C【解析】因为,x y A ∈,所以2,1,0,1,2x y -=--,即{2,1,0,1,2}B =--,有5个元素,选C.(3)已知函数f(x)为奇函数,且当x>0时, f(x) =x 2+1x,则f(-1)= ( ) (A )-2 (B )0 (C )1 (D )2 【答案】A【解析】因为函数为奇函数,所以(1)(1)(11)2f f -=-=-+=-,选A.(4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为94,底面积是边长为 3的正三角形,若P为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 ( )(A )512π (B )3π (C ) 4π (D ) 6π 【答案】B【解析】取正三角形ABC 的中心,连结OP ,则PAO ∠是PA 与平面ABC 所成的角。
因为底面边长为3,所以33322AD =⨯=,2231332AO AD ==⨯=.三棱柱的体积为21139(3)224AA ⨯⨯=,解得13AA =,即13OP AA ==,所以tan 3OPPAO OA ∠==,即3PAO π∠=,选B.(5)将函数y=sin (2x +ϕ)的图像沿x 轴向左平移8π个单位后,得到一个偶函数的图像,则ϕ的一个可能取值为(A )34π (B ) 4π (C )0 (D ) 4π- 【答案】B【解析】将函数y=sin (2x +ϕ)的图像沿x 轴向左平移8π个单位,得到函数sin[2()]sin(2)84y x xππϕϕ=++=++,因为此时函数为偶函数,所以,42k k Zππϕπ+=+∈,即,4k k Zπϕπ=+∈,所以选B.(6)在平面直角坐标系xOy中,M为不等式组:2x y20x2y103x y80--≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM斜率的最小值为(A)2 (B)1 (C)13-(D)12-【答案】 C【解析】作出可行域如图,由图象可知当M位于点D处时,OM的斜率最小。
2013年高考真题——理科数学(山东卷)含答案
2013年山东高考数学试题一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( D )A. 2+iB.2-iC. 5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y |x∈A, y∈A }中元素的个数是( C )A. 1B. 3C. 5D.9(A)-2 (B)0 (C)1 (D)2(6)在平面直角坐标系xOy中,M为不等式组:2x y20x2y103x y80--≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM斜率的最小值为C(7)给定两个命题p、q,若﹁p是q的必要而不充分条件,则p是﹁q的 B (A)充分而不必条件(B)必要而不充分条件(C )充要条件 (D )既不充分也不必要条件(8)函数y=xcosx + sinx 的图象大致为 D(A ) (B ) (C) (D)(9)过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 A(A )2x+y-3=0 (B )2x-y-3=0 (C )4x-y-3=0 (D )4x+y-3=0(10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为 B(A )243 (B )252 (C )261 (D )279于第一象限的点M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p= D(15)已知向量AB 与AC 的夹角为120,且||3,||2,AB AC ==若 ,AP AB AC λ=+且AP BC ⊥,则实数λ的值为712(16)定义“正对数”:0,01ln ln ,1x x x x +<<⎧=⎨≥⎩,现有四个命题: ①若0,0a b >>,则ln ()ln b a b a ++=②若0,0a b >>,则ln ()ln ln ab a b +++=+③若0,0a b >>,则ln ()ln ln a a b b +++≥-④若0,0a b >>,则ln ()ln ln ln 2a b a b ++++≤++其中的真命题有: ①③④ (写出所有真命题的编号)三、解答题:本大题共6小题,共74分.(Ⅰ)求证:AB//GH ;(Ⅱ)求二面角D-GH-E 的余弦值 .解答:(1)因为C 、D 为中点,所以CD//AB同理:EF//AB ,所以EF//CD ,EF ⊂平面EFQ ,所以CD//平面EFQ ,又CD ⊂平面PCD,所以CD//GH ,又AB//CD ,所以AB//GH.(2)由AQ=2BD ,D 为AQ 的中点可得,△ABQ 为直角三角形,以B 为坐标原点,以BA 、BC 、BP 为x 、y 、z 轴建立空间直角坐标系,设AB=BP=BQ=2,可得平面GCD 的一个法向量为1(0,2,1)n =,平面EFG 的一个法向量为2(0,1,2)n =,可得4cos5α==,(2)由题意可知X的可能取值为:3,2,1,0相应的概率依次为:14416,,,,所以EX=7解答:(1)由S4=4S2,a2n=2a n+1,{a n}为等差数列,可得,11,2a d==所以21na n=-2.71828是自然对数的底数,(1)求()f x的单调区间,最大值;(2)讨论关于x的方程|ln|()x f x=根的个数.直于x 轴的直线被椭圆C 截得的线段长为l.(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1、PF 2,设∠F 1PF 2的角平分线 PM 交C 的长轴于点M (m ,0),求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点p 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公定值. 1||||PF PM PF PM ⋅=2||||PF PM PF PM ⋅,1||PF PM PF ⋅=2||PF PM PF ⋅,设204x ≠,将向量坐标代入并化简得:m (23000416)312x x x -=-,因为204x ≠,。
2013年高考山东卷理科数学试题及答案
普通高等学校招生全国统一考试理科数学第Ⅰ卷一、选择题(山东卷)1.复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( ) A .2+iB .2-iC .5+iD .5-i答案 D解析 由(z -3)(2-i)=5得,z -3=52-i=2+i ,∴z =5+i ,∴z =5-i. 2.已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ) A .1B .3C .5D .9答案 C解析 x -y ∈{}-2,-1,0,1,2.3.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=( )A .-2B .0C .1D .2答案 A解析 f (-1)=-f (1)=-(1+1)=-2.4.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A.5π12B.π3C.π4D.π6答案 B解析 如图所示:S ABC =12×3×3×sin 60°=334.∴VADC -A 1B 1C 1=S ABC ×OP =334×OP =94,∴OP = 3.又OA =32×3×23=1, ∴tan ∠OAP =OP OA =3,又0<∠OAP <π2,∴∠OAP =π3.5.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( ) A.3π4B.π4C .0D .-π4答案 B解析 把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝⎛⎭⎫x +φ2+π8=sin ⎝⎛⎭⎫2x +φ+π4为偶函数,则φ=π4. 6.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( ) A .2B .1C .-13D .-12答案 C解析 由⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0得A (3,-1).此时线OM 的斜率最小,且为:-13.7.给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件答案 A解析 由题意知:綈p ⇐q ⇔(逆否命题)p ⇒綈p .8.函数y =x cos x +sin x 的图象大致为( )答案 D解析 函数y =x cos x +sin x 为奇函数,排除B.取x =π2,排除C ;取x =π,排除A ,故选D.9.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0D .4x +y -3=0答案 A解析 如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2,∴直线AB 的方程为:y-1=-2(x -1),即2x +y -3=0.10.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .279答案 B解析 不重复的三位数字有:A 39+A 12A 29=648个.则有重复数字的三位数有:900-648=252个.11.抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( ) A.316B.38C.233D.433答案 D解析 抛物线C 1的标准方程为:x 2=2py ,其焦点F 为⎝⎛⎭⎫0,p2,双曲线C 2的右焦点F ′为(2,0),渐近线方程为:y =±33x .由y ′=1p x =33得x =33p ,故M ⎝⎛⎭⎫33p ,p6.由F 、F ′、M 三点共线得p =433.12.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1 C.94 D .3答案 B解析 由已知得z =x 2-3xy +4y 2(*)则xy z =xy x 2-3xy +4y 2=1x y +4yx -3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y2=-⎝⎛⎭⎫1y -12+1≤1. 第Ⅱ卷二、填空题13.执行右面的程序框图,若输入的ε的值为0.25,则输出的n 的值为________. 答案 3解析 第一次循环:F 1=3,F 0=2,n =2;第二次循环:F 1=5,F 0=3,n =3. 14.在区间[-3,3]上随机取一个数x 使得|x +1|-|x -2|≥1成立的概率为________. 答案 13解析 由绝对值的几何意义知:使|x +1|-|x -2|≥1成立的x 值为x ∈[1,3],由几何概型知所求概率为P =3-13+3=26=13.15.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若A P →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________. 答案712解析 由AP →⊥BC →知AP →·BC →=0,即AP →·BC →=(λAB →+AC →)·(AC →-AB →)=(λ-1)AB →·AC →-λA B →2+AC →2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. 16.定义“正对数”:ln +x =⎩⎪⎨⎪⎧0,0<x <1,ln x ,x ≥1.现有四个命题:①若a >0,b >0,则ln +(a b )=b ln +a ; ②若a >0,b >0,则ln +(ab )=ln +a +ln +b ;③若a >0,b >0,则ln +⎝⎛⎭⎫a b ≥ln +a -ln +b ; ④若a >0,b >0,则ln +(a +b )≤ln +a +ln +b +ln 2. 其中的真命题有________.(写出所有真命题的编号) 答案 ①③④解析 ①0<a b <1时(0<a <1),ln +(a b )=0=b ln +a ; ab >1时(a >1),ln +(a b )=ln a b =b ln a =b ln +a ;正确. ②设a =15,b =3,则0=0+ln 3不成立,不正确;③(a >b )ln ab ⎩⎪⎨⎪⎧≥ln a -ln b (a ,b ≥1),≥ln a (0<b <1≤a ),≥0(0<a ,b <1).(a <b )0⎩⎪⎨⎪⎧≥ln a -ln b (a ,b ≥1),≥-ln b (0<a <1≤b ),≥0(0<a ,b <1).④(1)a +b >1,a ,b >1:ln(a +b )≤ln a +ln b +ln 2=ln 2ab 成立; (2)a +b >1,a >1,0<b <1:ln(a +b )≤ln a +ln 2=ln 2a 成立; (3)a +b >1,0<a ,b <1:ln(a +b )≤ln 2成立; (4)0<a +b <1,0<a ,b <1:0≤ln 2成立.三、解答题17.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值. 解 (1)由余弦定理得:cos B =a 2+c 2-b 22ac =a 2+c 2-42ac =79,即a 2+c 2-4=149ac .∴(a +c )2-2ac -4=149ac ,∴ac =9.由⎩⎪⎨⎪⎧a +c =6,ac =9得a =c =3. (2)在△ABC 中,cos B =79,∴sin B =1-cos 2B =1-⎝⎛⎭⎫792=429.由正弦定理得:a sin A =bsin B ,∴sin A =a sin B b =3×4292=223.又A =C ,∴0<A <π2,∴cos A =1-sin 2A =13,∴sin (A -B )=sin A cos B -cos A sin B =223×79-13×429=10227.18.如图所示,在三棱锥P -ABQ 中,PB ⊥平面ABQ ,BA =BP =BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,AQ =2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(1)求证:AB ∥GH ;(2)求二面角D -GH -E 的余弦值.(1)证明 因为D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,所以EF ∥AB ,DC ∥AB . 所以EF ∥DC .又EF ⊄平面PCD ,DC ⊂平面PCD ,所以EF ∥平面PCD .又EF ⊂平面EFQ ,平面EFQ ∩平面PCD =GH ,所以EF ∥GH .又EF ∥AB ,所以AB ∥GH .(2)解 方法一 在△ABQ 中,AQ =2BD ,AD =DQ ,所以∠ABQ =90°,即AB ⊥BQ . 因为PB ⊥平面ABQ ,所以AB ⊥PB .又BP ∩BQ =B ,所以AB ⊥平面PBQ . 由(1)知AB ∥GH ,所以GH ⊥平面PBQ .又FH ⊂平面PBQ ,所以GH ⊥FH . 同理可得GH ⊥HC ,所以∠FHC 为二面角D -GH -E 的平面角.设BA =BQ =BP =2,连接FC ,在Rt △FBC 中,由勾股定理得FC =2,在Rt △PBC 中,由勾股定理PC = 5.又H 为△PBQ 的重心,所以HC =13PC =53.同理FH =53.在FHC 中,由余弦定理得cos ∠FHC =59+59-22×59=-45.即二面角D -GH -E 的余弦值为-45.方法二 在△ABQ 中,AQ =2BD ,AD =DQ ,所以∠ABQ =90° 又PB ⊥平面ABQ ,所以BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.设BA =BQ =BP =2,则E (1,0,1),F (0,0,1),Q (0,2,0),D (1,1,0), C (0,1,0),P (0,0,2).所以EQ →=(-1,2,-1),FQ →=(0,2,-1),DP →=(-1,-1,2),CP →=(0,-1,2). 设平面EFQ 的一个法向量为m =(x 1,y 1,z 1),由m ·EQ →=0,m ·FQ →=0,得⎩⎪⎨⎪⎧ -x 1+2y 1-z 1=0,2y 1-z 1=0,取y 1=1,得m =(0,1,2). 设平面PDC 的一个法向量为n =(x 2,y 2,z 2),由n ·DP →=0,n ·CP →=0,得⎩⎪⎨⎪⎧-x 2-y 2+2z 2=0,-y 2+2z 2=0,取z 1=1,得n =(0,2,1). 所以cos 〈m ,n 〉=m ·n |m ||n |=45.因为二面角D -GH -E 为钝角,所以二面角D -GH -E 的余弦值为-45.19.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X 的分布列及数学期望. 解 (1)设“甲队以3∶0,3∶1,3∶2胜利”分别为事件A ,B ,C 则P (A )=23×23×23=827P (B )=C 23⎝⎛⎭⎫232×⎝⎛⎭⎫1-23×23=827 P (C )=C 24⎝⎛⎭⎫232×⎝⎛⎭⎫1-232×12=427(2)X 的可能的取值为0,1,2,3 则P (X =0)=P (A )+P (B )=1627P (X =1)=P (C )=427P (X =2)=C 24×⎝⎛⎭⎫1-232×⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427P (X =3)=⎝⎛⎭⎫132+C 23⎝⎛⎭⎫132×23×13=19 ∴X 的分布列为∴E (X )=0×1627+1×427+2×427+3×19=79.20.设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且T n +a n +12n =λ(λ为常数).令C n =b 2n ,(n ∈N *),求数列{c n }的前n 项和R n .解 (1)设公差为d ,令n =1,则a 2=2a 1+1,a 1=d -1① 又S 4=4S 2,即2a 1=d ②由①②得:a 1=1,d =2,所以a n =2n -1(n ∈N *). (2)由题意知,T n =λ-n 2n -1,∴当n ≥2时,b n =T n -T n -1=λ-n 2n -1-⎝ ⎛⎭⎪⎫λ-n -12n -2=n -22n -1.∴C n=b 2n =n -14n -1(n ∈N *).∴R n =C 1+C 2+…+C n -1+C n =0+14+242+…+n -14n -1①14R n =142+243+…+n -24n -1+n -14n ② ①-②得:34R n =14+142+…+14n -1-n -14n =14⎝⎛⎭⎫1-14n -11-14-n -14n=13⎝⎛⎭⎫1-14n -1-n -14n =13⎝⎛⎭⎫1-3n +14n ∴R n =49⎝⎛⎭⎫1-3n +14n =19⎝ ⎛⎭⎪⎫4-3n +14n -1.21.设函数f (x )=xe 2x +c (e =2.718 28…是自然对数的底数,c ∈R .(1)求f (x )的单调区间、最大值.(2)讨论关于x 的方程|ln x |=f (x )根的个数. 解 (1)f ′(x )=e 2x -2x e 2x (e 2x )2=1-2xe 2x ,由f ′(x )>0得x <12,由f ′(x )<0得x >12.所以f (x )的单调递增区间为⎝⎛⎭⎫-∞,12,递减区间为⎝⎛⎭⎫12,+∞.所以f (x )max =f ⎝⎛⎭⎫12=12e+c .(2)由已知|ln x |=f (x )得|ln x |-xe 2x=c ,x ∈(0,+∞), 令g (x )=|ln x |-xe 2x,y =c . ①当x ∈(1,+∞)时,ln x >0,则g (x )=ln x -xe 2x .所以g ′(x )=1x +2x -1e 2x >0.所以g (x )在(1,+∞)上单调递增.②当x ∈(0,1)时,ln x <0,则g (x )=-ln x -xe 2x .所以g ′(x )=-1x -1-2x e 2x =1e 2x ⎣⎡⎦⎤-e 2xx +(2x -1). 因为e 2x ∈(1,e 2),e 2x >1>x >0,所以-e 2xx<-1,而2x -1<1.所以g ′(x )<0,即g (x )在(0,1)上单调递减.由①②可知,当x ∈(0,+∞)时,g (x )≥g (1)=-1e 2.由数形结合知,当c <-1e 2时,方程|ln x |=f (x )根的个数为0;当c =-1e 2时,方程|ln x |=f (x )根的个数为1;当c >-1e2时,方程|ln x |=f (x )根的个数为2.22.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,离心率为32,过F 1且垂直于x轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线PF 1、PF 2的斜率分别为k 1、k 2,若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值.解 (1)由已知e =c a =32,b 2a =12, 又c 2=a 2-b 2,所以a 2=4,b 2=1.故椭圆C 的方程为:x 24+y 2=1.(2)方法一 如图,由题意知|F 1M ||MF 2|=|PF 1||PF 2|即|PF 1|4-|PF 1|=c +m c -m =3+m 3-m,整理得:m =32(|PF 1|-2). 又a -c <|PF 1|<a +c ,即2-3<|PF 1|<2+ 3.∴-32<m <32.故m 的取值范围为m ∈⎝⎛⎭⎫-32,32. 方法二 由题意知:PF 1→·PM →|PF 1→||PM →|=PF 2→·PM →|PF 2→||PM →|,即PF 1→·PM →|PF 1→|=PF 2→·PM →|PF 2→|. 设P (x 0,y 0),其中x 20≠4,将向量坐标化得:m (4x 20-16)=3x 30-12x 0.所以m =34x 0,而x 0∈(-2,2),所以m ∈⎝⎛⎭⎫-32,32. (3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0. 所以Δ=64(ky 0-k 2x 0)2-16(1+4k 2)(y 20-2kx 0y 0+k 2x 20-1)=0.即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又x 204+y 20=1,所以16y 20k 2+8x 0y 0k +x 20=0. 故k =-x 04y 0,又1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0. 所以1kk 1+1kk 2=1k ⎝⎛⎭⎫1k 1+1k 2=⎝⎛⎭⎫-4y 0x 0·⎝⎛⎭⎫2x 0y 0=-8. 所以1kk 1+1kk 2为定值,这个定值为-8.。
2013年高考理数真题试卷(山东卷)及解析
2013年高考理数真题试卷(山东卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题1.复数z满足(z﹣3)(2﹣i)=5(i为虚数单位),则z的共轭复数z¯为()A.2+iB.2﹣iC.5+iD.5﹣i2.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.93.已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为94,底面是边长为√3的正三角形,若P为底面A1B1C1的中心,则PA与平面A1B1C1所成角的大小为()A.5π12B.π3C.π4D.π64.函数y=sin(2x+φ)的图象沿x轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能的值为()A.3π4B.π4C.0D.- π45.在平面直角坐标系xOy中,M为不等式组{2x−y−2≥0x+2y−1≥03x+y−8≤0所表示的区域上一动点,则答案第2页,总12页………装…………○…………订…………○…………线请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………装…………○…………订…………○…………线A.2 B.1 C.- 13 D.- 126.函数y=xcosx+sinx 的图象大致为( )A.B.C.D.7.用0,1,2,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.279第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)………○…………订…………○…………线…………○…_________班级:___________考号:___________………○…………订…………○…………线…………○…8.执行右面的程序框图,若输入的ɛ值为0.25,则输出的n 值为 .9.在区间[﹣3,3]上随机取一个数x 使得|x+1|﹣|x ﹣2|≥1的概率为 . 10.定义“正对数”:ln +x= {0,0<x <1lnx,x ≥1,现有四个命题: ①若a >0,b >0,则ln +(a b )=bln +a ;②若a >0,b >0,则ln +(ab )=ln +a+ln +b ; ③若a >0,b >0,则 ln +(ab )≥ln +a −ln +b ; ④若a >0,b >0,则ln +(a+b )≤ln +a+ln +b+ln2. 其中的真命题有 (写出所有真命题的序号)三、解答题(题型注释)11.设△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且a+c=6,b=2, cosB =79.(1)求a ,c 的值;(2)求sin (A ﹣B )的值.12.如图所示,在三棱锥P ﹣ABQ 中,PB⊥平面ABQ ,BA=BP=BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,AQ=2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .答案第4页,总12页……○…………线…………○题※※……○…………线…………○(1)求证:AB∥GH;(2)求二面角D ﹣GH ﹣E 的余弦值.13.设等差数列{a n }的前n 项和为S n , 且S 4=4S 2 , a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n 且 T n +a n +12n=λ (λ为常数).令c n =b 2n (n∈N *)求数列{c n }的前n 项和R n .………外…………○…………装……………○…………线……学校:___________姓名:______________………内…………○…………装……………○…………线……参数答案1.D【解析】1.解:∵(z ﹣3)(2﹣i )=5, ∴z﹣3= 52−i =2+i ∴z=5+i, ∴ z ¯=5﹣i . 故选D .【考点精析】掌握复数的定义是解答本题的根本,需要知道形如的数叫做复数,和分别叫它的实部和虚部.2.C【解析】2.解:∵A={0,1,2},B={x ﹣y|x∈A,y∈A},∴当x=0,y 分别取0,1,2时,x ﹣y 的值分别为0,﹣1,﹣2; 当x=1,y 分别取0,1,2时,x ﹣y 的值分别为1,0,﹣1; 当x=2,y 分别取0,1,2时,x ﹣y 的值分别为2,1,0; ∴B={﹣2,﹣1,0,1,2},∴集合B={x ﹣y|x∈A,y∈A}中元素的个数是5个. 故选C . 3.B【解析】3.解:如图所示,∵AA 1⊥底面A 1B 1C 1 , ∴∠APA 1为PA 与平面A 1B 1C 1所成角, ∵平面ABC∥平面A 1B 1C 1 , ∴∠APA 1为PA 与平面ABC 所成角. ∵==3√34. ∴V 三棱柱ABC ﹣A1B1C1= =,解得 AA 1=√3 . 又P 为底面正三角形A 1B 1C 1的中心,∴==1,在Rt△AA 1P 中, ,∴ ∠APA 1=π3 .故选B .答案第6页,总12页○…………外…………○…………装…………○………订…………○…………线…………○※※请※※不※※要※※在※※装※※订※※线内※※答※※题※※○…………内…………○…………装…………○………订…………○…………线…………○【考点精析】通过灵活运用空间角的异面直线所成的角,掌握已知为两异面直线,A ,C与B ,D 分别是上的任意两点,所成的角为,则即可以解答此题.4.B【解析】4.解:令y=f (x )=sin (2x+φ),则f (x+ π8 )=sin[2(x+ π8 )+φ]=sin(2x+ π4 +φ), ∵f(x+ π8 )为偶函数, ∴ π4 +φ=kπ+ π2 , ∴φ=kπ+ π4 ,k∈Z, ∴当k=0时,φ= π4 . 故φ的一个可能的值为 π4 .故选B .【考点精析】根据题目的已知条件,利用函数y=Asin (ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.…………装………○…………订…………○…………线…………校:___________姓名:_______班级:___________考号:___________…………装………○…………订…………○…………线………… 5.C【解析】5.解:不等式组 {2x −y −2≥0x +2y −1≥03x +y −8≤0表示的区域如图,当M 取得点A (3,﹣1)时,z 直线OM 斜率取得最小,最小值为 k= −13 =﹣ 13 . 故选C .6.D【解析】6.解:因为函数y=xcosx+sinx 为奇函数,所以排除选项B , 由当x= π2 时,,当x=π时,y=π×cosπ+sinπ=﹣π<0. 由此可排除选项A 和选项C . 故正确的选项为D . 故选D . 7.B【解析】7.解:用0,1,2,…,9十个数字,所有三位数个数为:900,其中没有重复数字的三位数百位数从非0的9个数字中选取一位,十位数从余下的9个数字中选一个,个位数再从余下的8个中选一个,所以共有:9×9×8=648, 所以可以组成有重复数字的三位数的个数为:900﹣648=252. 故选B . 8.3【解析】8.解:循环前,F 0=1,F 1=2,n=1, 第一次循环,F 0=1,F 1=3,n=2, 第二次循环,F 0=2,F 1=4,n=3,答案第8页,总12页此时 1F 1=14=0.25 ,满足条件 1F 1≤0.25 ,退出循环,输出n=3,所以答案是:3.【考点精析】解答此题的关键在于理解程序框图的相关知识,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明. 9.13【解析】9.解:利用几何概型,其测度为线段的长度. 由不等式|x+1|﹣|x ﹣2|≥1 可得 ① {x <1(−x −1)−(2−x)≥1,或②{−1≤x <2(x +1)−(2−x)≥1 ,③ {x ≥2(x +1)−(x −2)≥1.解①可得x∈∅,解②可得1≤x<2,解③可得 x≥2. 故原不等式的解集为{x|x≥1},∴|在区间[﹣3,3]上随机取一个数x 使得|x+1|﹣|x ﹣2|≥1的概率为P= 3−13−(−3) = 13 . 所以答案是: 13【考点精析】通过灵活运用几何概型和绝对值不等式的解法,掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等;含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号即可以解答此题. 10.①③④【解析】10.解:(1)对于①,由定义,当a≥1时,a b ≥1,故ln +(a b )=ln (a b )=blna ,又bln +a=blna ,故有ln +(a b )=bln +a ;当a <1时,a b <1,故ln +(a b )=0,又a <1时bln +a=0,所以此时亦有ln +(a b )=bln +a ,故①正确;(2)对于②,此命题不成立,可令a=2,b= 13 ,则ab= 23 ,由定义ln +(ab )=0,ln +a+ln +b=ln2,所以ln +(ab )≠ln +a+ln +b ,故②错误; (3)对于③,i . ab ≥1时,此时 ln +(ab )≥ln(ab ) ≥0,当a≥b≥1时,ln +a ﹣ln +b=lna ﹣lnb= ln(ab ) ,此时则 ln +(ab )≥ln +a −ln +b ,命题成立;当a >1>b >0时,ln +a ﹣ln +b=lna ,此时 a b >a , ln(ab) >lna ,则 ln +(a b )≥ln +a −ln +b ,命题成立;当1>a≥b>0时,ln +a ﹣ln +b=0, ln +(a b )≥ln +a −ln +b 成立; ii . ab <1时,同理可验证是正确的,故③正确;(4)对于④,当a≥1,b≥1时,ln +(a+b )=ln (a+b ),ln +a+ln +b+ln2=lna+lnb+ln2=ln (2ab ), ∵a+b﹣2ab=a ﹣ab+b ﹣ab=a (1﹣b )+b (1﹣a )≤0, ∴a+b≤2ab,∴ln(a+b )<ln (2ab ), ∴ln +(a+b )≤ln +a+ln +b+ln2.当a >1,0<b <1时,ln +(a+b )=ln (a+b ),ln +a+ln +b+ln2=lna+ln2=ln (2a ), ∵a+b﹣2a=b ﹣a≤0, ∴a+b≤2a,∴ln(a+b )<ln (2a ),∴ln +(a+b )≤ln +a+ln +b+ln2.当b >1,0<a <1时,同理可证ln +(a+b )≤ln +a+ln +b+ln2.当0<a <1,0<b <1时,可分a+b≥1和a+b <1两种情况,均有ln +(a+b )≤ln +a+ln +b+ln2. 故④正确.所以答案是①③④.【考点精析】关于本题考查的命题的真假判断与应用,需要了解两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能得出正确答案. 11.(1)解:∵a+c=6①,b=2,cosB= 79,∴由余弦定理得:b 2=a 2+c 2﹣2accosB=(a+c )2﹣2ac ﹣ 149 ac=36﹣ 329 ac=4, 整理得:ac=9②,联立①②解得:a=c=3;(2)解:∵cosB= 79 ,B 为三角形的内角,∴sinB= √1−(79)2 = 4√29 ,∵b=2,a=3,sinB=4√29, ∴由正弦定理得:sinA= asinBb = 3×4√292 =2√23, ∵a=c,即A=C ,∴A 为锐角,∴cosA= √1−sin 2A = 13 ,则sin (A ﹣B )=sinAcosB ﹣cosAsinB= 2√23 × 79 ﹣ 13 × 4√29 = 10√227答案第10页,总12页………○…………订………○…………线…………○在※※装※※订※※线※※内※※答※※题………○…………订………○…………线…………○【解析】11.(1)利用余弦定理列出关系式,将b 与cosB 的值代入,利用完全平方公式变形,求出acb 的值,与a+c 的值联立即可求出a 与c 的值即可;(2)先由cosB 的值,利用同角三角函数间的基本关系求出sinB 的值,再由a ,b 及sinB 的值,利用正弦定理求出sinA 的值,进而求出cosA 的值,所求式子利用两角和与差的正弦函数公式化简后,将各自的值代入计算即可求出值.【考点精析】本题主要考查了两角和与差的正弦公式和正弦定理的定义的相关知识点,需要掌握两角和与差的正弦公式:;正弦定理:才能正确解答此题.12.(1)证明:如图,∵C,D 为AQ ,BQ 的中点,∴CD∥AB, 又E ,F 分别AP ,BP 的中点,∴EF∥AB,则EF∥CD.又EF ⊂平面EFQ ,∴CD∥平面EFQ .又CD ⊂平面PCD ,且平面PCD∩平面EFQ=GH ,∴CD∥GH. 又AB∥CD,∴AB∥GH(2)解:由AQ=2BD ,D 为AQ 的中点可得,三角形ABQ 为直角三角形,以B 为坐标原点,分别以BA 、BQ 、BP 所在直线为x 、y 、z 轴建立空间直角坐标系, 设AB=BP=BQ=2,则D (1,1,0),C (0,1,0),E (1,0,1),F (0,0,1), 因为H 为三角形PBQ 的重心,所以H (0, 23 , 23 ). 则 DC →=(−1,0,0) , CH →=(0,−13,23)EF →=(−1,0,0) , FH →=(0,23,−13) .设平面GCD 的一个法向量为 m →=(x 1,y 1,z 1)第11页,总12页由 {m →⋅DC →=0m →⋅CH →=0,得 {−x 1=0−13y 1+23z 1=0 ,取z 1=1,得y 1=2.所以 m →=(0,2,1) .设平面EFG 的一个法向量为 n →=(x 2,y 2,z 2)由 {n →⋅EF →=0n →⋅FH →=0,得 {−x 2=023y 2+13z 2=0 ,取z 2=2,得y 2=1.所以 n →=(0,1,2) . 所以 cos <m →,n →>=m →⋅n→|m →|⋅|n →|=55= 45 .则二面角D ﹣GH ﹣E 的余弦值等于- 45【解析】12.(1)由给出的D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,利用三角形中位线知识及平行公理得到DC 平行于EF ,再利用线面平行的判定和性质得到DC 平行于GH ,从而得到AB∥GH;(2)由题意可知BA 、BQ 、BP 两两相互垂直,以B 为坐标原点建立空间直角坐标系,设出BA 、BQ 、BP 的长度,标出点的坐标,求出一些向量的坐标,利用二面角的两个面的法向量所成的角的余弦值求解二面角D ﹣GH ﹣E 的余弦值.【考点精析】解答此题的关键在于理解直线与平面平行的性质的相关知识,掌握一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;简记为:线面平行则线线平行. 13.(1)解:设等差数列{a n }的首项为a 1,公差为d ,由a 2n =2a n +1,取n=1,得a 2=2a 1+1,即a 1﹣d+1=0①再由S 4=4S 2,得 4a 1+4×3d 2=4(a 1+a 1+d) ,即d=2a 1②联立①、②得a 1=1,d=2.所以a n =a 1+(n ﹣1)d=1+2(n ﹣1)=2n ﹣1(2)解:把a n =2n ﹣1代入 T n +a n +12n=λ ,得 T n +2n 2n =λ ,则 T n =λ−2n2n .所以b 1=T 1=λ﹣1,当n≥2时, b n =T n −T n−1=(λ−2n2n )−(λ−2(n−1)2n−1) =n−22n−1.所以 b n =n−22n−1 , c n=b 2n =2n−222n−1=n−14n−1.R n =c 1+c 2+…+c n = 0+141+242+⋯+n−14n−1③14R n=142+243+⋯+n−14n④答案第12页,总12页………订…………○……※※线※※内※※答※※题※※………订…………○……③﹣④得: 34R n =14+142+⋯+14n −n−14n = 14(1−14n−1)1−14−n−14n所以 R n =49(1−3n+14n) ; 所以数列{c n }的前n 项和 R n =49(1−3n+14n)【解析】13.(1)设出等差数列的首项和公差,由已知条件列关于首项和公差的方程组,解出首项和公差后可得数列{a n }的通项公式;(2)把{a n }的通项公式代入 T n +a n +12n=λ ,求出当n≥2时的通项公式,然后由c n =b 2n 得数列{c n }的通项公式,最后利用错位相减法求其前n 项和.【考点精析】本题主要考查了等差数列的通项公式(及其变式)和数列的前n 项和的相关知识点,需要掌握通项公式:或;数列{a n }的前n 项和s n 与通项a n 的关系才能正确解答此题.。
2013年山东卷数学试题及答案(理)
2013·山东卷(理科数学)1. 复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( ) A .2+i B .2-i C .5+i D .5-i1.D [解析] 设z =a +bi ,(a ,b ∈),由题意得(a +bi -3)(2-i)=(2a +b -6)+(2b -a+3)i =5,即⎩⎪⎨⎪⎧2a +b -6=5,2b -a +3=0,解之得⎩⎪⎨⎪⎧a =5,b =1,∴z =5-i.2. 已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( ) A .1 B .3 C .5 D .92.C [解析] ∵x ,y ∈{}0,1,2,∴x -y 值只可能为-2,-1,0,1,2五种情况,∴集合B 中元素的个数是5.3. 已知函数f(x)为奇函数,且当x>0时,f(x)=x 2+1x,则f(-1)=( )A .-2B .0C .1D .23.A [解析] ∵f ()x 为奇函数,∴f ()-1=-f(1)=-⎝⎛⎭⎫12+11=-2.4. 已知三棱柱ABC —A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( )A.5π12B.π3C.π4D.π64.B [解析] 设侧棱长为a ,△ABC 的中心为Q ,联结PQ ,由于侧棱与底面垂直,∴PQ ⊥平面ABC ,即∠PAQ 为PA 与平面ABC 所成的角.又∵V ABC -A 1B 1C 1=34×()32×a =94,解得a =3,∴tan ∠PAQ =PQ AQ =332×3×23=3,故∠PAQ =π3.5. 将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位后,得到一个偶函数的图像,则φ的一个可能取值为( )A.3π4B.π4 C .0 D .-π45.B [解析] 方法一:将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位后得到f(x)=sin ⎝⎛⎭⎫2x +π4+φ的图像,若f(x)=sin ⎝⎛⎭⎫2x +π4+φ为偶函数,必有π4+φ=k π+π2,k ∈,当k =0时,φ=π4.方法二:将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位后得到f(x)=sin ⎝⎛⎭⎫2x +π4+φ的图像,其对称轴所在直线满足2x +π4+φ=k π+π2,k ∈,又∵f(x)=sin ⎝⎛⎭⎫2x +π4+φ为偶函数,∴y 轴为其中一条对称轴,即π4+φ=k π+π2,k ∈,当k =0时,φ=π4.6. 在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-126.C [解析] 不等式组表示的可行域如图,联立⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0,解得P ()3,-1,当M 与P 重合时,直线OM 斜率最小,此时k OM =-1-03-0=-13.图1-17. 给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.A [解析] ∵⌝p 是q 的必要不充分条件,∴q 是⌝p 的充分而不必要条件,又“若p ,则⌝q ”与“若q ,则⌝p ”互为逆否命题,∴p 是⌝q 的充分而不必要条件.8. 函数y =xcos x +sin x 的图像大致为( )图1-28.D [解析] ∵f(-x)=-xcos(-x)+sin(-x)=-(xcos x +sin x)=-f(x),∴y =xcos x+sin x 为奇函数,图像关于原点对称,排除选项B.当x =π2时,y =1>0,排除选项C ;x =π,y =-π<0,排除选项A ;故选D.9. 过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=09.A [解析] 方法一:设点P(3,1),圆心为C ,设过点P 的圆C 的切线方程为y -1=k ()x -3,由题意得|2k -1|1+k 2=1,解之得k =0或43,即切线方程为y =1或4x -3y -9=0.联立⎩⎨⎧y =1,()x -12+y 2=1,得一切点为()1,1,又∵k PC =1-03-1=12,∴k AB =-1k PC =-2,即弦AB 所在直线方程为y -1=-2()x -1,整理得2x +y -3=0.方法二:设点P(3,1),圆心为C ,以PC 为直径的圆的方程为()x -3()x -1+y ()y -1=0,整理得x 2-4x +y 2-y +3=0,联立⎩⎨⎧x 2-4x +y 2-y +3=0①,()x -12+y 2=1②,①,②两式相减得2x +y-3=0.10. 用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .27910.B [解析] (排除法)十个数排成不重复数字的三位数求解方法是:第一步,排百位数字,有9种方法(0不能作首位),第二步,排十位数字,有9种方法,第三步,排个位数字,有8种方法,根据乘法原理,共有9×9×8 = 648(个)没有重复数字的三位数.可以组成所有三位数的个数:9×10×10=900,所以可以组成有重复数字的三位数的个数是:900-648=252.11.、 抛物线C 1:y =12p x 2(p>0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.316 B.38 C.2 33 D.4 3311.D [解析] 抛物线C 1:y =12p x 2()p>0的焦点坐标为⎝⎛⎭⎫0,p 2,双曲线x 23-y 2=1的右焦点坐标为()2,0,连线的方程为y =-p4()x -2,联立⎩⎨⎧y =-p4(x -2),y =12px 2得2x 2+p 2x -2p 2=0.设点M 的横坐标为a ,则在点M 处切线的斜率为y′|x =a =⎝⎛⎭⎫12p x 2′.又∵双曲线x 23-y 2=1的渐近线方程为x 3±y =0,其与切线平行,∴a p =33,即a =33p ,代入2x 2+p 2x -2p 2=0得,p =4 33或p =0(舍去).12. 设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z的最大值为( )A .0B .1 C.94D .312.B [解析] 由题意得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y 2=1x y +4y x -3≤12 x y ·4yx-3=1, 当且仅当x y =4yx,即x =2y 时,等号成立,∴2x +1y -2z =22y +1y -24y 2-6y 2+4y 2=-⎝⎛⎭⎫1y -12+1≤1.13.图1-3执行如图1-3所示的程序框图,若输入的ε的值为0.25,则输出的n 的值为________.13.3 [解析] 第一次执行循环体时,F 1=3,F 0=2,n =1+1=2,1F 1=13>0.25;第二次执行循环体时,F 1=2+3=5,F 0=3,n =2+1=3,1F 1=15<0.25,满足条件,输出n =3.14.、 在区间[-3,3]上随机取一个数x ,使得|x +1|-|x -2|≥1成立的概率为________. 14.13[解析] 当x<-1时,不等式化为-x -1+x -2≥1,此时无解;当-1≤x ≤2时,不等式化为x +1+x -2≥1,解之得x ≥1;当x>2时,不等式化为x +1-x +2≥1,此时恒成立,∴|x +1|-|x -2|≥1的解集为[)1,+∞.在[]-3,3上使不等式有解的区间为[]1,3,由几何概型的概率公式得P =3-13-(-3)=13.15. 已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.15.712 [解析] ∵AP →⊥BC →, ∴AP →·BC →=()λAB →+AC →·()AC →-AB→=-λAB →2+AC →2+()λ-1AC →·AB →=0, 即-λ×9+4+()λ-1×3×2×⎝⎛⎭⎫-12=0,解之得λ=712. 16.、 定义“正对数”:ln +x =⎩⎪⎨⎪⎧0,0<x<1,ln x ,x ≥1.现有四个命题:①若a>0,b>0,则ln +(a b )=bln +a ;②若a>0,b>0,则ln +(ab)=ln +a +ln +b ;③若a>0,b>0,则ln +⎝⎛⎭⎫a b ≥ln +a -ln +b ; ④若a>0,b>0,则ln +(a +b)≤ln +a +ln +b +ln 2. 其中的真命题有________.(写出所有真命题的编号)16.①③④ [解析] ①中,当a b ≥1时,∵b>0,∴a ≥1,ln +(a b )=ln a b =bln a =bln +a ;当0<a b <1时,∵b>0,∴0<a<1,ln +(a b )=bln +a =0,∴①正确;②中,当0<ab<1,且a>1时,左边=ln +(ab)=0,右边=ln +a +ln +b =ln a +0=ln a>0,∴②不成立;③中,当a b ≤1,即a ≤b 时,左边=0,右边=ln +a -ln +b ≤0,左边≥右边成立;当a b >1时,左边=ln ab=ln a -ln b>0,若a>b>1时,右边=ln a -ln b ,左边≥右边成立;若0<b<a<1时,右边=0, 左边≥右边成立;若a>1>b>0,左边=ln ab=ln a -ln b>ln a ,右边=ln a ,左边≥右边成立,∴③正确;④中,若0<a +b<1,左边=ln +()a +b =0,右边=ln +a +ln +b +ln 2=ln 2>0,左边≤右边;若a +b ≥1,ln +()a +b -ln 2=ln ()a +b -ln 2=ln(a +b 2),又∵a +b 2≤a 或a +b 2≤b ,a ,b 至少有1个大于1,∴ln(a +b 2)≤ln a 或ln(a +b 2)≤ln b ,即有ln +()a +b -ln 2=ln ()a +b -ln 2=ln(a +b 2)≤ln +a +ln +b ,∴④正确.17.、 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79. (1)求a ,c 的值;(2)求sin(A -B)的值.17.解:(1)由余弦定理b 2=a 2+c 2-2accos B ,得b 2=(a +c)2-2ac(1+cosB),又b =2,a +c =6,cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =4 29.由正弦定理得sin A =asin B b =2 23.因为a =c ,所以A 为锐角,所以cos A =1-sin 2 A =13.因此sin(A -B)=sin Acos B -cos Asin B =10 227.图1-418.、 如图1-4所示,在三棱锥P -ABQ 中,PB ⊥平面ABQ ,BA =BP =BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,AQ =2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,联结GH.(1)求证:AB ∥GH ;(2)求二面角D -GH -E 的余弦值.18.解:(1)证明:因为D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,所以EF ∥AB ,DC ∥AB ,所以EF ∥DC.又EF 平面PCD ,DC 平面PCD , 所以EF ∥平面PCD.又EF 平面EFQ ,平面EFQ ∩平面PCD =GH ,所以EF ∥GH. 又EF ∥AB ,所以AB ∥GH.(2)方法一:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ =90°,即AB ⊥BQ.因为PB ⊥平面ABQ ,所以AB ⊥PB.又BP ∩BQ =B ,图1-5所以AB ⊥平面PBQ.由(1)知AB ∥GH ,所以GH ⊥平面PBQ.又FH 平面PBQ ,所以GH ⊥FH.同理可得GH ⊥HC ,所以∠FHC 为二面角D -GH -E 的平面角.设BA =BQ =BP =2.联结FC ,在Rt △FBC 中,由勾股定理得FC =2,在Rt △PBC 中,由勾股定理得PC = 5.又H为△PBQ 的重心,所以HC =13PC =53.同理FH =53.在△FHC 中,由余弦定理得cos ∠FHC =59+59-22×59=-45.即二面角D -GH -E 的余弦值为-45.方法二:在△ABQ 中,AQ =2BD ,AD =DQ ,所以∠ABQ =90°.又PB ⊥平面ABQ ,所以BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.设BA =BQ =BP =2,则E(1,0,1),F(0,0,1),Q(0,2,0),D(1,1,0),C(0,1,0),P(0,0,2).所以EQ →=(-1,2,-1),FQ →=(0,2,-1),DP →=(-1,-1,2),CP →=(0,-1,2).设平面EFQ 的一个法向量为=(x 1,y 1,z 1), 由·EQ →=0,·FQ →=0, 得⎩⎪⎨⎪⎧-x 1+2y 1-z 1=0,2y 1-z 1=0,取y 1=1,得=(0,1,2). 设平面PDC 的一个法向量为=(x 2,y 2,z 2), 由·DP →=0,·CP →=0, 得⎩⎪⎨⎪⎧-x 2-y 2+2z 2=0,-y 2+2z 2=0, 取z 2=1,得=(0,2,1).所以cos 〈,〉=m·n |m||n |=45.因为二面角D -GH -E 为钝角,所以二面角D -GH -E 的余弦值为-45.图1-519.、 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分、对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X 的分布列及数学期望.19.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故P(A 1)=(23)3=827,P(A 2)=C 23(23)2(1-23)×23=827, P(A 3)=C 24(23)2(1-23)2×12=427. 所以,甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427.(2)设“乙队以3∶2胜利”为事件A 4, 由题意,各局比赛结果相互独立,所以P(A 4)=C 24(1-23)2(23)2×(1-12)=427, 由题意,随机变量X 的所有可能的取值为0,1,2,3. 根据事件的互斥性得 P(X =0)=P(A 1+A 2)=P(A 1)+P(A 2)=1627.又P(X =1)=P(A 3)=427.P(X =2)=P(A 4)=427,P(X =3)=1-P(X =0)-P(X =1)-P(X =2)=327,故X 的分布列为X 0 1 2 3P 1627 427 427 327所以E(X)=0×1627+1×427+2×427+3×327=79.20.、 设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且T n +a n +12n =λ(λ为常数),令c n =b 2n (n ∈),求数列{c n }的前n 项和R n .20.解:(1)设等差数列{a n }的首项为a 1,公差为d. 由S 4=4S 2,a 2n =2a n +1 得⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1, 解得a 1=1,d =2,因此a n =2n -1,n ∈*.(2)由题意知T n =λ-n 2n -1,所以n ≥2时,b n =T n -T n -1=-n2n -1+n -12n -2=n -22n -1.故c n =b 2n =2n -222n -1=(n -1)⎝⎛⎭⎫14n -1,n ∈*.所以R n =0×⎝⎛⎭⎫140+1×⎝⎛⎭⎫141+2×⎝⎛⎭⎫142+3×⎝⎛⎭⎫143+…+(n -1)×⎝⎛⎭⎫14n -1, 则14R n =0×⎝⎛⎭⎫141+1×⎝⎛⎭⎫142+2×⎝⎛⎭⎫143+…+(n -2)×⎝⎛⎭⎫14n -1+(n -1)×⎝⎛⎭⎫14n ,两式相减得34R n =⎝⎛⎭⎫141+⎝⎛⎭⎫142+⎝⎛⎭⎫143+…+⎝⎛⎭⎫14n -1-(n -1)×⎝⎛⎭⎫14n =14-⎝⎛⎭⎫14n 1-14-(n -1)×⎝⎛⎭⎫14n=13-1+3n 3⎝⎛⎭⎫14n , 整理得R n =19(4-3n +14n -1).所以数列{c n }的前n 项和R n =19(4-3n +14n -1).21.、 设函数f(x)=xe2x +c(e =2.718 28…是自然对数的底数,c ∈).(1)求f(x)的单调区间、最大值;(2)讨论关于x 的方程|ln x|=f(x)根的个数.21.解:(1)f′(x)=(1-2x)e -2x .由f′(x)=0,解得x =12,当x<12时,f ′(x)>0,f(x)单调递增;当x>12时,f ′(x)<0,f(x)单调递减.所以,函数f(x)的单调递增区间是(-∞,12),单调递减区间是(12,+∞),最大值为f ⎝⎛⎭⎫12=12e -1+c. (2)令g(x)=|lnx|-f(x)=|lnx|-xe -2x -c ,x ∈(0,+∞).①当x ∈(1,+∞)时,lnx>0,则g(x)=lnx -xe-2x-c ,所以g′(x)=e-2x(e 2xx+2x -1).因为2x -1>0,e 2xx>0,所以g′(x)>0.因此g(x)在(1,+∞)上单调递增.②当x ∈(0,1)时,lnx<0,则g(x)=-lnx -xe -2x -c ,所以g′(x)=e -2x(-e 2x x+2x -1).因为e 2x ∈(1,e 2),e 2x >1>x>0,所以-e 2xx<-1.又2x -1<1,所以-e 2xx+2x -1<0,即g′(x)<0.因此g(x)在(0,1)上单调递减.综合①②可知,当x ∈(0,+∞)时,g(x)≥g(1)=-e -2-c.当g(1)=-e -2-c>0,即c<-e -2时,g(x)没有零点,故关于x 的方程|lnx|=f(x)根的个数为0;当g(1)=-e -2-c =0,即c =-e -2时,g(x)只有一个零点,故关于x 的方程|lnx|=f(x)根的个数为1;当g(1)=-e -2-c<0,即c>-e -2时,(ⅰ)当x ∈(1,+∞)时,由(1)知g(x)=lnx -xe -2x -c ≥lnx -(12e -1+c)>lnx -1-c ,要使g(x)>0,只需使lnx -1-c>0,即x ∈(e 1+c ,+∞);(ⅱ)当x ∈(0,1)时,由(1)知g(x)=-lnx -xe -2x -c ≥-lnx -(12e -1+c)>-lnx -1-c ,要使g(x)>0,只需-lnx -1-c>0,即x ∈(0,e -1-c);所以c>-e -2时,g(x)有两个零点, 故关于x 的方程|lnx|=f(x)根的个数为2. 综上所述,当c<-e -2时,关于x 的方程|lnx|=f(x)根的个数为0;当c =-e -2时,关于x 的方程|lnx|=f(x)根的个数为1;当c>-e -2时,关于x 的方程|lnx|=f(x)根的个数为2.22. 椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别是F 1,F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,联结PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M(m ,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线PF 1,PF 2的斜率分别为k 1,k 2,若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值.22.解:(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a .由题意知2b 2a=1,即a =2b 2.又e =c a =32,所以a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)方法一:设P(x 0,y 0)(y 0≠0). 又F 1(-3,0),F 2(3,0), 所以直线PF 1,PF 2的方程分别为 lPF 1:y 0x -(x 0+3)y +3y 0=0,lPF 2:y 0x -(x 0-3)y -3y 0=0. 由题意知||my 0+3y 0y 20+(x 0+3)2=||my 0-3y 0y 20+(x 0-3)2. 由于点P 在椭圆上,所以x 204+y 20=1, 所以|m +3|⎝⎛⎭⎫32x 0+22=|m -3|⎝⎛⎭⎫32x 0-22 . 因为-3<m<3,-2<x 0<2,可得m +332x 0+2=3-m 2-32x 0. 所以m =34x 0. 因此-32<m<32. 方法二:设P(x 0,y 0).当0≤x 0<2时,①当x 0=3时,直线PF 2的斜率不存在,易知P(3,12)或P ⎝⎛⎭⎫3,-12. 若P ⎝⎛⎭⎫3,12,则直线PF 1的方程为x -4 3y +3=0. 由题意得|m +3|7=3-m , 因为-3<m<3,所以m =3 34. 若P ⎝⎛⎭⎫3,-12,同理可得m =3 34. ②当x 0≠3时,设直线PF 1,PF 2的方程分别为y =k 1(x +3),y =k 2(x -3).由题意知|mk 1+3k 1|1+k 21=|mk 2-3k 2|1+k 22, 所以(m +3)2(m -3)2=1+1k 211+1k 22. 因为x 204+y 20=1, 并且k 1=y 0x 0+3,k 2=y 0x 0-3, 所以(m +3)2(m -3)2=4(x 0+3)2+4-x 204(x 0-3)2+4-x 20=3x 20+8 3x 0+163x 20-8 3x 0+16=(3x 0+4)2(3x 0-4)2, 即|m +3||m -3|=|3x 0+4||3x 0-4|.因为-3<m<3,0≤x 0<2且x 0≠3, 所以3+m 3-m =4+3x 04-3x 0. 整理得m =3x 04, 故0≤m <32且m ≠3 34. 综合①②可得0≤m <32. 当-2<x 0<0时,同理可得-32<m<0. 综上所述,m 的取值范围是⎝⎛⎭⎫-32,32. (3)设P(x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k(x -x 0).联立⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又x 204+y 20=1, 所以16y 20k 2+8x 0y 0k +x 20=0,故k =-x 04y 0. 由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0, 所以1kk 1+1kk 2=1k ⎝⎛⎭⎫1k 1+1k 2=⎝⎛⎭⎫-4y 0x 0·2x 0y 0=-8, 因此为定值,这个定值为-8.。
2013年山东省高考理科数学试卷及参考答案与试题解析
2013年山东省高考理科数学试卷及参考答案与试题解析一、选择题1.(5分)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数为( ) A.2+i B.2-i C.5+i D.5-i2.(5分)已知集合A ={0,1,2},则集合B ={x -y|x ∈A,y ∈A}中元素的个数是( ) A.1 B.3 C.5 D.93.(5分)已知函数f(x)为奇函数,且当x >0时,,则f(-1)=( )A.-2B.0C.1D.24.(5分)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P 为底面A 1B 1C 1的中心,则PA 与平面A 1B 1C 1所成角的大小为( )A.B.C.D.5.(5分)函数y =sin(2x +φ)的图象沿x 轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能的值为( )A.B.C.0D.6.(5分)在平面直角坐标系xOy 中,M 为不等式组所表示的区域上一动点,则直线OM 斜率的最小值为( )A.2B.1C.D.7.(5分)给定两个命题p,q.若¬p 是q 的必要而不充分条件,则p 是¬q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件8.(5分)函数y =xcosx +sinx 的图象大致为( )A. B. C. D.9.(5分)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A,B,则直线AB 的方程为( )A.2x +y -3=0B.2x -y -3=0C.4x -y -3=0D.4x +y -3=010.(5分)用0,1,2,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.27911.(5分)抛物线C 1:的焦点与双曲线C 2:的右焦点的连线交C 1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=( )A. B. C. D.12.(5分)设正实数x,y,z满足x2-3xy+4y2-z=0.则当取得最大值时,的最大值为( )A.0B.1C.D.3二、填空题13.(4分)执行右面的程序框图,若输入的ɛ值为0.25,则输出的n值为.14.(4分)在区间[-3,3]上随机取一个数x使得|x+1|-|x-2|≥1的概率为.15.(4分)已知向量与的夹角为120°,且||=3,||=2.若=λ+,且⊥,则实数λ的值为.16.(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有(写出所有真命题的序号)三、解答题17.(12分)设△ABC的内角A,B,C所对边分别为a,b,c,且a+c=6,b=2,cosB=.(1)求a,c的值;(2)求sin(A-B)的值.18.(12分)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的余弦值.19.(12分)甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是,其余每局比赛甲队获胜的概率都是.设各局比赛结果相互独立.(1)分别求甲队3:0,3:1,3:2胜利的概率;(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.20.(12分)设等差数列{an }的前n项和为Sn,且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)设数列{bn }的前n项和为Tn且(λ为常数).令cn=b2n(n∈N*)求数列{cn}的前n项和Rn.21.(13分)设函数.(1)求f(x)的单调区间及最大值;(2)讨论关于x的方程|lnx|=f(x)根的个数.22.(13分)椭圆C:的左右焦点分别是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.2013年山东省高考数学试卷(理科)参考答案与试题解析一、选择题1.(5分)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( )A.2+iB.2-iC.5+iD.5-i【分析】利用复数的运算法则求得z,即可求得z的共轭复数.【解答】解:∵(z-3)(2-i)=5,∴z-3==2+i∴z=5+i,∴=5-i.故选:D.【点评】本题考查复数的基本概念与基本运算,求得复数z是关键,属于基础题.2.(5分)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )A.1B.3C.5D.9【分析】依题意,可求得集合B={-2,-1,0,1,2},从而可得答案.【解答】解:∵A={0,1,2},B={x-y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x-y的值分别为0,-1,-2;当x=1,y分别取0,1,2时,x-y的值分别为1,0,-1;当x=2,y分别取0,1,2时,x-y的值分别为2,1,0;∴B={-2,-1,0,1,2},∴集合B={x-y|x∈A,y∈A}中元素的个数是5个.故选:C.【点评】本题考查集合中元素个数的最值,理解题意是关键,考查分析运算能力,属于中档题.3.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(-1)=( )A.-2B.0C.1D.2【分析】利用奇函数的性质,f(-1)=-f(1),即可求得答案.【解答】解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(-1)=-f(1)=-2,故选:A.【点评】本题考查奇函数的性质,考查函数的求值,属于基础题.4.(5分)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P为底面A1B1C1的中心,则PA与平面A1B1C1所成角的大小为( )A. B. C. D.【分析】利用三棱柱ABC-A1B1C1的侧棱与底面垂直和线面角的定义可知,∠APA1为PA与平面A 1B1C1所成角,即为∠APA1为PA与平面ABC所成角.利用三棱锥的体积计算公式可得AA1,再利用正三角形的性质可得A1P,在Rt△AA1P中,利用tan∠APA1=即可得出.【解答】解:如图所示,∵AA1⊥底面A1B1C1,∴∠APA1为PA与平面A1B1C1所成角,∵平面ABC∥平面A1B1C1,∴∠APA1为PA与平面ABC所成角.∵==.∴V三棱柱ABC-A1B1C1==,解得.又P为底面正三角形A1B1C1的中心,∴==1,在Rt△AA1P中,,∴.故选:B.【点评】熟练掌握三棱柱的性质、体积计算公式、正三角形的性质、线面角的定义是解题的关键.5.(5分)函数y=sin(2x+φ)的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能的值为( )A. B. C.0 D.【分析】利用函数y=Asin(ωx+φ)的图象变换可得函数y=sin(2x+φ)的图象沿x轴向左平移个单位后的解析式,利用其为偶函数即可求得答案.【解答】解:令y=f(x)=sin(2x+φ),则f(x+)=sin[2(x+)+φ]=sin(2x++φ),∵f(x+)为偶函数,∴+φ=kπ+,∴φ=kπ+,k∈Z,∴当k=0时,φ=.故φ的一个可能的值为.故选:B.【点评】本题考查函数y=Asin(ωx+φ)的图象变换,考查三角函数的奇偶性,属于中档题.6.(5分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为( )A.2B.1C.D.【分析】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(0,0)构成的直线的斜率的最小值即可.【解答】解:不等式组表示的区域如图,当M取得点A(3,-1)时,z直线OM斜率取得最小,最小值为k==-.故选:C.【点评】本题利用直线斜率的几何意义,求可行域中的点与原点的斜率.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.7.(5分)给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】根据互为逆否命题真假性相同,可将已知转化为q是¬p的充分不必要条件,进而根据逆否命题及充要条件的定义得到答案.【解答】解:∵¬p是q的必要而不充分条件,∴q是¬p的充分不必要条件,即q⇒¬p,但¬p不能⇒q,其逆否命题为p⇒¬q,但¬q不能⇒p,则p是¬q的充分不必要条件.故选:A.【点评】本题考查的知识点是充要条件的判断,其中将已知利用互为逆否命题真假性相同,转化为q是¬p的充分不必要条件,是解答的关键.8.(5分)函数y=xcosx+sinx的图象大致为( )A. B. C. D.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:因为函数y=xcosx+sinx为奇函数,所以排除选项B,由当x=时,,当x=π时,y=π×cosπ+sinπ=-π<0.由此可排除选项A和选项C.故正确的选项为D.故选:D.【点评】本题考查了函数的图象,考查了函数的性质,考查了函数的值,是基础题.9.(5分)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为( )A.2x+y-3=0B.2x-y-3=0C.4x-y-3=0D.4x+y-3=0【分析】由题意判断出切点(1,1)代入选项排除B、D,推出令一个切点判断切线斜率,得到选项即可.【解答】解:因为过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,所以圆的一条切线方程为y=1,切点之一为(1,1),显然B、D选项不过(1,1),B、D不满足题意;另一个切点的坐标在(1,-1)的右侧,所以切线的斜率为负,选项C不满足,A满足.故选:A.【点评】本题考查直线与圆的位置关系,圆的切线方程求法,可以直接解答,本题的解答是间接法,值得同学学习.10.(5分)用0,1,2,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.279【分析】求出所有三位数的个数,减去没有重复数字的三位数个数即可. 【解答】解:用0,1,2,…,9十个数字,所有三位数个数为:900,其中没有重复数字的三位数百位数从非0的9个数字中选取一位,十位数从余下的9个数字中选一个,个位数再从余下的8个中选一个,所以共有:9×9×8=648, 所以可以组成有重复数字的三位数的个数为:900-648=252. 故选:B.【点评】本题考查排列组合以及简单计数原理的应用,利用间接法求解是解题的关键,考查计算能力.11.(5分)抛物线C 1:的焦点与双曲线C 2:的右焦点的连线交C 1于第一象限的点M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.B.C.D.【分析】由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在x 取直线与抛物线交点M 的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p 的关系,把M 点的坐标代入直线方程即可求得p 的值. 【解答】解:由,得x 2=2py(p >0), 所以抛物线的焦点坐标为F().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M(),则C 1在点M 处的切线的斜率为.由题意可知,得,代入M 点得M()把M 点代入①得:.解得p =.故选:D.【点评】本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.12.(5分)设正实数x,y,z满足x2-3xy+4y2-z=0.则当取得最大值时,的最大值为( )A.0B.1C.D.3【分析】依题意,当取得最大值时x=2y,代入所求关系式f(y)=+-,利用配方法即可求得其最大值.【解答】解:∵x2-3xy+4y2-z=0,∴z=x2-3xy+4y2,又x,y,z均为正实数,∴==≤=1(当且仅当x=2y时取“=”),∴=1,此时,x=2y.∴z=x2-3xy+4y2=(2y)2-3×2y×y+4y2=2y2,∴+-=+-=-+1≤1,当且仅当y=1时取得“=”,满足题意.∴的最大值为1.故选:B.【点评】本题考查基本不等式,由取得最大值时得到x=2y是关键,考查配方法求最值,属于中档题.二、填空题13.(4分)执行右面的程序框图,若输入的ɛ值为0.25,则输出的n值为 3 .【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出n的值.【解答】解:循环前,F0=1,F1=2,n=1,第一次循环,F0=1,F1=3,n=2,第二次循环,F0=2,F1=4,n=3,此时,满足条件,退出循环,输出n=3,故答案为:3.【点评】本题主要考查了直到循环结构,根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基础题.14.(4分)在区间[-3,3]上随机取一个数x使得|x+1|-|x-2|≥1的概率为.【分析】本题利用几何概型求概率.先解绝对值不等式,再利用解得的区间长度与区间[-3,3]的长度求比值即得.【解答】解:利用几何概型,其测度为线段的长度.由不等式|x+1|-|x-2|≥1 可得①,或②,③.解①可得x∈∅,解②可得1≤x<2,解③可得 x≥2.故原不等式的解集为{x|x≥1},∴|在区间[-3,3]上随机取一个数x使得|x+1|-|x-2|≥1的概率为P==.故答案为:【点评】本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.15.(4分)已知向量与的夹角为120°,且||=3,||=2.若=λ+,且⊥,则实数λ的值为.【分析】利用,,表示向量,通过数量积为0,求出λ的值即可.【解答】解:由题意可知:,因为,所以,所以===-12λ+7=0解得λ=.故答案为:.【点评】本题考查向量的数量积的应用,向量的垂直,考查转化数学与计算能力.16.(4分)定义“正对数”:ln+x=,现有四个命题:①若a>0,b>0,则ln+(a b)=bln+a;②若a>0,b>0,则ln+(ab)=ln+a+ln+b;③若a>0,b>0,则;④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2.其中的真命题有①③④(写出所有真命题的序号)【分析】由题意,根据所给的定义及对数的运算性质对四个命题进行判断,由于在不同的定义域中函数的解析式不一样,故需要对a,b分类讨论,判断出每个命题的真假.【解答】解:(1)对于①,由定义,当a≥1时,a b≥1,故ln+(a b)=ln(a b)=blna,又bln+a=blna,故有ln+(a b)=bln+a;当a<1时,a b<1,故ln+(a b)=0,又a<1时bln+a=0,所以此时亦有ln+(a b)=bln+a,故①正确;(2)对于②,此命题不成立,可令a=2,b=,则ab=,由定义ln+(ab)=0,ln+a+ln+b=ln2,所以ln+(ab)≠ln+a+ln+b,故②错误;(3)对于③,i.≥1时,此时≥0,当a≥b≥1时,ln+a-ln+b=lna-lnb=,此时则,命题成立;当a>1>b>0时,ln+a-ln+b=lna,此时,>lna,则,命题成立;当1>a≥b>0时,ln+a-ln+b=0,成立;ii.<1时,同理可验证是正确的,故③正确;(4)对于④,当a≥1,b≥1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+lnb+ln2=ln(2ab),∵a+b-2ab=a-ab+b-ab=a(1-b)+b(1-a)≤0,∴a+b≤2ab,∴ln(a+b)<ln(2ab),∴ln+(a+b)≤ln+a+ln+b+ln2.当a>1,0<b<1时,ln+(a+b)=ln(a+b),ln+a+ln+b+ln2=lna+ln2=ln(2a),∵a+b-2a=b-a≤0,∴a+b≤2a,∴ln(a+b)<ln(2a),∴ln+(a+b)≤ln+a+ln+b+ln2.当b>1,0<a<1时,同理可证ln+(a+b)≤ln+a+ln+b+ln2.当0<a<1,0<b<1时,可分a+b≥1和a+b<1两种情况,均有ln+(a+b)≤ln+a+ln+b+ln2.故④正确.故答案为①③④.【点评】本题考查新定义及对数的运算性质,理解定义所给的运算规则是解题的关键,本题考查了分类讨论的思想,逻辑判断的能力,综合性较强,探究性强.易因为理解不清定义及忘记分类讨论的方法解题导致无法入手致错.三、解答题17.(12分)设△ABC的内角A,B,C所对边分别为a,b,c,且a+c=6,b=2,cosB=.(1)求a,c的值;(2)求sin(A-B)的值.【分析】(1)利用余弦定理列出关系式,将b与cosB的值代入,利用完全平方公式变形,求出acb的值,与a+c的值联立即可求出a与c的值即可;(2)先由cosB的值,利用同角三角函数间的基本关系求出sinB的值,再由a,b及sinB的值,利用正弦定理求出sinA的值,进而求出cosA的值,所求式子利用两角和与差的正弦函数公式化简后,将各自的值代入计算即可求出值.【解答】解:(1)∵a+c=6①,b=2,cosB=,∴由余弦定理得:b2=a2+c2-2accosB=(a+c)2-2ac-ac=36-ac=4,整理得:ac=9②,联立①②解得:a=c=3;(2)∵cosB=,B为三角形的内角,∴sinB==,∵b=2,a=3,sinB=,∴由正弦定理得:sinA===,∵a=c,即A=C,∴A为锐角,∴cosA==,则sin(A-B)=sinAcosB-cosAsinB=×-×=.【点评】此题考查了正弦、余弦定理,两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握定理及公式是解本题的关键.18.(12分)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的余弦值.【分析】(1)由给出的D,C,E,F分别是AQ,BQ,AP,BP的中点,利用三角形中位线知识及平行公理得到DC平行于EF,再利用线面平行的判定和性质得到DC平行于GH,从而得到AB∥GH;(2)由题意可知BA、BQ、BP两两相互垂直,以B为坐标原点建立空间直角坐标系,设出BA、BQ、BP的长度,标出点的坐标,求出一些向量的坐标,利用二面角的两个面的法向量所成的角的余弦值求解二面角D-GH-E的余弦值.【解答】(1)证明:如图,∵C,D为AQ,BQ的中点,∴CD∥AB,又E,F分别AP,BP的中点,∴EF∥AB,则EF∥CD.又EF⊂平面EFQ,∴CD∥平面EFQ.又CD⊂平面PCD,且平面PCD∩平面EFQ=GH,∴CD∥GH.又AB∥CD,∴AB∥GH;(2)由AQ=2BD,D为AQ的中点可得,三角形ABQ为直角三角形,以B为坐标原点,分别以BA、BQ、BP所在直线为x、y、z轴建立空间直角坐标系, 设AB=BP=BQ=2,则D(1,1,0),C(0,1,0),E(1,0,1),F(0,0,1),因为H为三角形PBQ的重心,所以H(0,,).则,,.设平面GCD的一个法向量为由,得,取z1=1,得y1=2.所以.设平面EFG的一个法向量为由,得,取z2=2,得y2=1.所以.所以=.则二面角D-GH-E的余弦值等于.【点评】本题考查了直线与平面平行的性质,考查了二面角的平面角及其求法,考查了学生的空间想象能力和思维能力,考查了计算能力,解答此题的关键是正确求出H点的坐标,是中档题.19.(12分)甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是,其余每局比赛甲队获胜的概率都是.设各局比赛结果相互独立.(1)分别求甲队3:0,3:1,3:2胜利的概率;(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.【分析】(1)甲队获胜有三种情形,①3:0,②3:1,③3:2,其每种情形的最后一局肯定是甲队胜,分别求出相应的概率,最后根据互斥事件的概率公式求出甲队获得这次比赛胜利的概率;(2)X的取值可能为0,1,2,3,然后利用相互独立事件的概率乘法公式求出相应的概率,列出分布列,最后根据数学期望公式解之即可.【解答】解:(1)甲队获胜有三种情形,其每种情形的最后一局肯定是甲队胜①3:0,概率为P1=()3=;②3:1,概率为P2=C()2×(1-)×=;③3:2,概率为P3=C()2×(1-)2×=∴甲队3:0,3:1,3:2胜利的概率:.(2)乙队得分X,则X的取值可能为0,1,2,3.由(1)知P(X=0)=P1+P2=;P(X=1)=P3=;P(X=2)=C(1-)2×()2×=;P(X=3)=(1-)3+C(1-)2×()×=;E(X)=3×+2×+1×+0×=.【点评】本题主要考查了相互独立事件的概率乘法公式,以及离散型随机变量的期望与分布列,同时考查了分类讨论的数学思想,属于中档题.20.(12分)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n 且(λ为常数).令c n =b 2n (n ∈N *)求数列{c n }的前n 项和R n . 【分析】(1)设出等差数列的首项和公差,由已知条件列关于首项和公差的方程组,解出首项和公差后可得数列{a n }的通项公式;(2)把{a n }的通项公式代入,求出当n ≥2时的通项公式,然后由c n =b 2n 得数列{c n }的通项公式,最后利用错位相减法求其前n 项和.【解答】解:(1)设等差数列{a n }的首项为a 1,公差为d,由a 2n =2a n +1,取n =1,得a 2=2a 1+1,即a 1-d +1=0①再由S 4=4S 2,得,即d =2a 1② 联立①、②得a 1=1,d =2.所以a n =a 1+(n -1)d =1+2(n -1)=2n -1;(2)把a n =2n -1代入,得,则.所以b 1=T 1=λ-1, 当n ≥2时,=.所以,.R n =c 1+c 2+…+c n =③④③-④得:=所以;所以数列{c n }的前n 项和.【点评】本题考查了等差数列的通项公式,考查了数列的求和,训练了错位相减法,考查了学生的计算能力,属中档题.21.(13分)设函数.(1)求f(x)的单调区间及最大值;(2)讨论关于x的方程|lnx|=f(x)根的个数.【分析】(1)利用导数的运算法则求出f′(x),分别解出f′(x)>0与f′(x)<0即可得出单调区间及极值与最值;(2)分类讨论:①当0<x≤1时,令u(x)=-lnx--c,②当x≥1时,令v(x)=lnx-.利用导数分别求出c的取值范围,即可得出结论.【解答】解:(1)∵=,解f′(x)>0,得;解f′(x)<0,得.∴函数f(x)的单调递增区间为;单调递减区间为.故f(x)在x=取得最大值,且.(2)函数y=|lnx|,当x>0时的值域为[0,+∞).如图所示:①当0<x≤1时,令u(x)=-lnx--c,c==g(x),则=.令h(x)=e2x+x-2x2,则h′(x)=2e2x+1-4x>0,∴h(x)在x∈(0,1]单调递增,∴1=h(0)<h(x)≤h(1)=e2-1.∴g′(x)<0,∴g(x)在x∈(0,1]单调递减.∴c.②当x≥1时,令v(x)=lnx-,得到c=lnx-=m(x),则=>0,故m(x)在[1,+∞)上单调递增,∴c≥m(1)=.综上①②可知:当时,方程|lnx|=f(x)无实数根;当时,方程|lnx|=f(x)有一个实数根;当时,方程|lnx|=f(x)有两个实数根.【点评】本题综合考查了利用导数研究函数的单调性、极值最值、数形结合的思想方法、分类讨论的思想方法等基础知识与基本技能,考查了推理能力和计算能力及其化归思想方法.22.(13分)椭圆C:的左右焦点分别是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明为定值,并求出这个定值.【分析】(1)把-c代入椭圆方程得,解得,由已知过F1且垂直于x轴的直线被椭圆C截得的线段长为1,可得.再利用,及a2=b2+c2即可得出;(2)设|PF1|=t,|PF2|=n,由角平分线的性质可得,利用椭圆的定义可得t+n=2a=4,消去t得到,化为,再根据a-c<n<a+c,即可得到m的取值范围;(3)设P(x0,y),不妨设y>0,由椭圆方程,取,利用导数即可得到切线的斜率,再利用斜率计算公式即可得到k1,k2,代入即可证明结论.【解答】解:(1)把-c代入椭圆方程得,解得,∵过F1且垂直于x轴的直线被椭圆C截得的线段长为1,∴.又,联立得解得,∴椭圆C的方程为.(2)如图所示,设|PF1|=t,|PF2|=n,由角平分线的性质可得,又t+n=2a=4,消去t得到,化为,∵a-c<n<a+c,即,也即,解得. ∴m的取值范围;.(3)证明:设P(x0,y),不妨设y>0,由椭圆方程,取,则=, ∴k==.∵,,∴=,.∴==-8为定值【点评】本题综合考查了椭圆的定义、标准方程及其性质、角平分线的性质、利用导数的几何意义研究切线、斜率计算公式等基础知识,考查了推理能力、分类讨论的思想方法、计算能力、分析问题和解决问题的能力.第21页,共21页。
2013年山东高考数学理科试卷(带详解)
2013年普通高等学校招生全国统一考试(山东卷)理 科 数 学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。
2、第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3、第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4、填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B +=; 如果事件A 、B 独立,那么()()()P AB P A P B = 。
第Ⅰ卷(共60分)一、选择题:本大题共12小题。
每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数z 满组(3)(2i)5z --=(z 为虚数单位),则z 的共轭复数z 为 ( ) A. 2i + B. 2i - C.5i + D. 5i - 【测量目标】复数代数形式的四则运算.【考查方式】给出复数的等式,求它的共轭复数. 【难易程度】容易. 【参考答案】D【试题解析】由(3)(2i)5z --=,得5(2i)35i,5i.(2i)(2i)z z +=+=+∴=--+故选D.2.已知集合{}0,1,2=A ,则集合{},=-∈∈B x y x A y A 中元素的个数是 ( ) A. 1 B.3 C.5 D. 9【测量目标】集合的含义.【考查方式】给出集合的关系,求集合的元素. 【难易程度】容易. 【参考答案】C【试题解析】当x =0,y =0时,0x y -=;当x =0,y =1时,1x y -=-;当x =0,y =2时,2x y -=-;x =1,y =0时,1x y -=;当x =1,y =1时,0x y -=;当x =1,y =2时,1x y -=-;当x =2,y =0时,2x y -=,当x =2,y =1时,1x y -=;当x =2,y =2时,0x y -=.根据集合中元素的互异性知,B 中点的元素有0,1,2,1,2,--共5个.3.已知函数()f x 为奇函数,且当0>x 时,21(),=+f x x x则(1)-=f ( ) A.-2 B.0 C. 1 D.2【测量目标】函数的奇偶性.【考查方式】利用函数的奇偶性质求函数值. 【难易程度】中等. 【参考答案】A【试题解析】当x >0时,21(),(1) 2.f x x f x=+∴=而f (x )为奇函数,(1)(1) 2.f f ∴-=-=-4.已知三棱柱111-ABC A B C 的侧棱与底面垂直,体积为94P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 ( )A.5π12 B. π3 C. π4 D. π6【测量目标】二面角的大小和柱的体积.【考查方式】给出几何体的相关性质,求二面角的大小. 【难易程度】中等 【参考答案】B【试题解析】如图所示,P 为正三角形111A B C 的中心,设O 为△ABC 的中心,由题意知:PO ,ABC ⊥平面连接OA ,则PAO ∠即为P A 与平面ABC 所成的角.在正三角形ABC 中,AB BC AC ==则2S ==,1119,4ABC A B C V S PO PO -=⨯=∴=又1,tan POAO PAO AO==∴∠==π.3PAO =故选B .第4题图Twj825.将函数sin(2)ϕ=+y x 的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 ( )A.3π4 B.π4 C. 0 D. π4-【测量目标】三角函数的平移问题.【考查方式】通过得到是偶函数求平移的距离. 【难易程度】中等. 【参考答案】B【试题解析】A 选项得到sin 2y x =-为奇函数;B 选项得到cos 2y x =为偶函数.C 选项得到πsin(2)4y x =+为非奇非偶函数.D 选项得到sin 2y x =为奇函数.故选B.6.在平面直角坐标系xOy 中,M 为不等式组220210,380x y x y x y --⎧⎪+-⎨⎪+-⎩,………所表示的区域上一动点,则直线OM的斜率的最小值为 ( ) A. 2 B. 1 C. 13-D.12-【测量目标】二元线性规划求最值.【考查方式】给出限制条件方程,求最小斜率. 【难易程度】中等. 【参考答案】C【试题解析】画出如图可行域可知,由210,380x y x y +-=⎧⎨+-=⎩得(3,1)C -当M 与C 重合时,OM 的斜率最小,13OM k =-.第6题图Twj847.给定两个命题,.p q若⌝p 是q 的必要不充分条件,则p 是⌝q 的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【测量目标】充分必要条件.【考查方式】推测命题之间的关系. 【难易程度】容易. 【参考答案】A【试题解析】p 是q 的必要不充分条件,则q 是p 充分不必要条件.8.函数cos sin =+y x x x 的图象大致为Twj77 Twj78 Twj79 Twj80第8题图A B C D【测量目标】函数图象的判断.【考查方式】给出函数解析式判断函数的图象. 【难易程度】中等. 【参考答案】D 【试题解析】当π2x =时,y =1,排除C,当π2x =-时,1y =-,排除B ,当πx =时,π<0,A,y =-排除故选D.9.过点(3,1)作圆22(1)1-+=x y 的两条切线,切点分别为,A B ,则直线AB 的方程为 ( )A. 230+-=x yB. 230--=x yC. 430--=x yD. 430+-=x y【测量目标】直线与圆的位置关系.【考查方式】给出直线和圆的位置关系,求直线的方程. 【难易程度】中等. 【参考答案】A【试题解析】设(3,1),P 圆心(1,0)C ,切点为A,B ,则P ,A,C,B 四点共圆,且PC 为圆的直径,∴四边形P ABC 的外接圆的方程为2215(2)+()24x y --=,圆C:22(1)1x y -+=,相减的230x y +-=,即为直线的方程.10.用0,1,⋅⋅⋅,9十个数字,可以组成有重复数字的三位数的个数为 ( )A. 243B. 252C. 261D. 279【测量目标】排列组合的应用.【考查方式】用数字的组合来考查排列组合. 【难易程度】较难. 【参考答案】B【试题解析】9位数一共可以组成900个数,其中无重复的三位数为998648⨯⨯=(个),∴有重复数字的三位数有900648=252-(个).11.抛物线211:(0)2=>C y x p p 的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M若1C 在点M 处的切线平行于2C 的一条渐近线,则=p ( )A.B. C.D.【测量目标】圆锥曲线的综合问题.【考查方式】通过限制条件求曲线基本要素. 【难易程度】较难. 【参考答案】D【试题解析】 双曲线222:1,3x C y -=∴又焦点为(2,0),F渐近线方程为y x =.抛物线方程1C :21(0),2y x p p=>焦点为(0)2p F ',.设00(,),M x y 则22001201122.24o px p p y x k k p x -==∴=-又0011,,33x x y x y x p pp =''=∴===联立解的.12.设正实数,,x y z 满足22340.-+-=x xy y z 则当xy z 取得最大值时,212+-x y z的最大值为 ( ) A. 0 B. 1 C.94D. 3 【测量目标】基本不等式最值.【考查方式】给出关系式,求不等式的最大值. 【难易程度】较难. 【参考答案】B【试题解析】2234(0,0,0),x x xy y x y z =-+>>>22111434433xy xy x y z x xy y y x∴===-+-+-=?,当且仅当42x y x y y x==时,即时等号成立,此时222222122121342,+(1)1,22z x xy y y x y z y y y y =-+=∴-=+-=--+∴当y =1时,211x y z+-的最大值为1第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。
2013山东高考数学试卷(理科)及答案详解
2013年普通高等学校招生全国统一考试(山东卷) 理 科 数 学参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B += 如果事件A 、B 独立,那么()()()=•P AB P A P B 。
第Ⅰ卷(共60分)一、选择题:本大题共12小题。
每小题5分共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为(A) 2+i (B) 2-i (C) 5+i (D) 5-i2、已知集合{}0,1,2=A ,则集合{},=-∈∈B x y x A y A 中元素的个数是(A) 1 (B) 3 (C) 5 (D) 93、已知函数()f x 为奇函数,且当0>x 时,21(),=+f x x x则(1)-=f (A) -2 (B) 0 (C) 1 (D) 24、已知三棱柱111-ABC A B C 的侧棱与底面垂直,体积为94,底面是边长为3的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为(A)512π (B) 3π (C) 4π (D) 6π 5、将函数sin(2)ϕ=+y x 的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 (A)34π (B) 4π(C) 0 (D) 4π- 6、在平面直角坐标系xOy 中,M 为不等式组220210,380,--≥⎧⎪+-≥⎨⎪+-≤⎩x y x y x y 所表示的区域上一动点,则直线OM的斜率的最小值为(A) 2 (B) 1 (C) 13-(D) 12- 7、给定两个命题,.p q若⌝p 是q 的必要不充分条件,则p 是⌝q 的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件8、函数cos sin =+y x x x 的图象大致为πOxyπO xy πOxyπOxy(A) (B) (C) (D)9、过点(3,1)作圆22(1)1-+=x y 的两条切线,切点分别为,A B ,则直线AB 的方程为(A) 230+-=x y (B) 230--=x y (C) 430--=x y (D) 430+-=x y 10、用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A) 243 (B) 252 (C) 261 (D) 27911、抛物线211:(0)2=>C y x p p 的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M若1C 在点M 处的切线平行于2C 的一条渐近线,则=p(A)316 (B) 38 (C) 233 (D) 43312、设正实数,,x y z 满足22340.-+-=x xy y z 则当xyz取得最大值时,212+-x y z 的最大值为(A) 0 (B) 1 (C) 94(D) 3第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。
2013年高考数学考试试题(山东卷理科考试试题)和答案_53
2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B )。
第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 若复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为 (A ) 2+i (B ) 2-i (C ) 5+i (D ) 5-i(2) 已知集合A ={0,1,2},则集合B={x-y|x ∈A, y ∈A}中元素的个数是 (A ) 1 (B ) 3 (C ) 5 (D ) 9(3)已知函数f(x) 为奇函数设且x >0时, f(x)= x 2+x1,则f(-1)= (A ) -2 (B ) 0 (C ) 1 (D ) 2(4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 (A )125π (B )3π (C )4π (D )6π (5)将函数y=sin(2x+Φ)的图象沿轴向左平移个单位后,得到一个偶函数的图象,则Φ的一个可能取值为 (A )43π (B )4π (C )0 (D )-4π(6)在平面直角坐标系xOy 中,M 为不等式组220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM 斜率的最小值为(A )2(B )1(C )31-(D )21- (7)给定两个命题p,q.若﹃p 是q 的必要而不充分条件,则p 是﹃q 的(A )充分而不必要条件(B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件 (8)函数y=xcosx+sinx 的图象大致为(9过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为A .032=-+y xB . 032=--y xC . 034=--y xD .034=-+y x(10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A )243 (B)252 (C)261 (D)279(11)抛物线C1:221x py =(p >0)的焦点与双曲线C2:1322=-y x 的右焦点的连线交C1于第一象限的点M 。
2013山东高考数学试卷(理科)及答案详解
2013年普通高等学校招生全国统一考试(山东卷) 理 科 数 学参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B += 如果事件A 、B 独立,那么()()()=∙P AB P A P B 。
第Ⅰ卷(共60分)一、选择题:本大题共12小题。
每小题5分共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为(A) 2+i (B) 2-i (C) 5+i (D) 5-i2、已知集合{}0,1,2=A ,则集合{},=-∈∈B x y x A y A 中元素的个数是(A) 1 (B) 3 (C) 5 (D) 93、已知函数()f x 为奇函数,且当0>x 时,21(),=+f x x x则(1)-=f (A) -2 (B) 0 (C) 1 (D) 2 4、已知三棱柱111-ABC A B C 的侧棱与底面垂直,体积为94,的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 (A)512π (B) 3π (C) 4π (D) 6π 5、将函数sin(2)ϕ=+y x 的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 (A)34π (B) 4π (C) 0 (D) 4π- 6、在平面直角坐标系xOy 中,M 为不等式组220210,380,--≥⎧⎪+-≥⎨⎪+-≤⎩x y x y x y 所表示的区域上一动点,则直线OM的斜率的最小值为(A) 2 (B) 1 (C) 13- (D) 12- 7、给定两个命题,.p q若⌝p 是q 的必要不充分条件,则p 是⌝q 的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件8、函数cos sin =+y x x x 的图象大致为(A)(B) (C) (D)9、过点(3,1)作圆22(1)1-+=x y 的两条切线,切点分别为,A B ,则直线AB 的方程为(A) 230+-=x y (B) 230--=x y (C) 430--=x y (D) 430+-=x y 10、用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A) 243 (B) 252 (C) 261 (D) 27911、抛物线211:(0)2=>C y x p p 的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M若1C 在点M 处的切线平行于2C 的一条渐近线,则=p(A)(B)(C)(D)12、设正实数,,x y z 满足22340.-+-=x xy y z 则当xy z取得最大值时,212+-的最大值为(A) 0 (B) 1 (C) 94(D) 3第Ⅱ卷(共90二、填空题:本大题共4小题,每小题4分,共16分。
2013年高考理科数学山东卷-答案
【考点】函数的奇偶性. 4.【答案】B 【解析】如图所示,P 为正三角形 A1B1C1 的中心,设 O 为△ABC 的中心,由题意知: PO 平面ABC ,连 接 OA,则 PAO 即为 PA 与平面 ABC 所成的角.在正三角形 ABC 中, AB BC AC 3 ,
【提示】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出
n 的值.
【考点】循环结构的程序框图 14.【答案】 1
3
3, x 2 【解析】设 y | x 1| | x 2 | 2x 1, 1 x 2 利用函数图象可知| x 1| | x 2 |1的解集为[1,+) .而在
2013 年普通高等学校招生全国统一考试(山东卷)
理科数学答案解析
第Ⅰ卷
一、选择题
1.【答案】D
【解析】由
(z
3)(2
i)
5 ,得
z
5(2 i) (2 i)(2
i)
3
5
i
,∴
z
5
i
,故选
D.
【提示】利用复数的运算法则求得 z,即可求得 z 的共轭复数 z . 【考点】复数代数形式的四则运算. 2.【答案】C 【解析】当 x 0 , y 0 时, x y 0 ;当 x 0 , y 1时, x y 1;当 x 0 , y 2 时, x y 2 ; x 1 , y 0 时, x y 1;当 x 1 , y 1时, x y 0 ;当 x 1 , y 2 时, x y 1;当 x 2 , y 0 时,x y 2 ,当 x 2 , y 1时,x y 1;当 x 2 , y 2 时,x y 0 .根据集合中元素的互异性知,
2013高考理科数学试卷和答案山东卷
绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第Ⅱ卷两部分,共8页。
满分150分,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字将自己的姓名、座号、考生号、区县和科类填写在答题卡和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答.答案必须写在答题卡各题目指定区域内相应 的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求怍答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A )+P(B);如果事件A,B 独立,那么P (AB )=P(A )•P (B )。
第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 若复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为(A ) 2+i (B ) 2-i (C ) 5+i (D ) 5-i(2) 已知集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A}中元素的个数是(A ) 1 (B ) 3 (C ) 5 (D ) 9(3)已知函数f(x) 为函数设且x >0时, f(x)= x 2+x1,则f(-1)= (A ) -2 (B ) 0 (C ) 1 (D ) 2(4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为(A )125π (B )3π (C )4π (D )6π (5)将函数y=sin(2x+Φ)的图象沿轴向左平移个单位后,得到一个偶函数的图象,则Φ的一个可能取值为(A )43π (B )4π (C )0 (D )-4π(6)在平面直角坐标系xOy 中,M 为不等式组2x y 20x 2y 103x y 80--≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM 斜率的最小值为(A )2 (B )1 (C )31-(D )21- (7) 给定两个命题p 、q ,若﹁p 是q 的必要而不充分条件,则p 是﹁q 的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件(8)函数y=xcosx+sinx 的图象大致为(9)过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为(A )032=-+y x(B )032=--y x(C )034=--y x (D )034=-+y x(10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A )243 (B)252 (C)261 (D)279(11)抛物线C 1:y= 12px 2(p >0)的焦点与双曲线C 2: 2213x y -=的右焦点的连线交C 1于第一象限的点M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p=(A )163 (B )83(C )(D )334 (12)设正实数x ,y ,z 满足x 2-3xy+4y 2-z=0,则当zxy取得最大值时,z y x 212-+的最大值为(A )0 (B )1 (C )49(D )3第Ⅱ卷(共90分)(D)二、 填空题:本大题共4小题,每小题4分,共16分。
2013山东高考数学(理科)答案
2013年普通高等学校招生全国统一考试(山东卷)理科数学 答案(1)答案D. 解:由题得i 25)i 2(5i 253z +=+=-=-,所以i 5z +=所以i 5z -=。
该题计算简单,熟练后口算即得答案,但应注意让求的是共轭复数,第一个题要稳住,不要看错呦(*^__^*) 嘻嘻……。
(2)答案C.解:对应x=y 时,元素为0;对应1-0、2-1时,元素为1;对应0-1、1-2时,元素为-1;对应2-0时,元素为2;对应0-2时,元素为-2.共5个.该题要看清B 的元素是y x -的结果,稍加列举便可得到答案。
(3)答案A.解:由题得2)1(f )1(f -==--。
关于该类题可以考察周期函数(比较复杂),但是本题目实在是太简单了!尼玛,这不是送分,是直接拿分砸你,我次奥,$_$。
(4)答案B.解:该题只需小算立刻得出结果。
由题三角形面积为433(利用公式2a 43S =,可以在平时就把这个玩意背下来的,很多有用的公式在之前都可以背的,亲)则P P '长为3S /49=,在这里就可以直接选答案B 了,( ⊙o ⊙ )纳尼?,在一个直角三角形(边长比为1:3:2)中,与3对应的角就是3π。
那如果P A ''对应的不是1的边而是3的边呢?请看底面正三角形边长为3,而P P '又怎能超过之,所以...你懂得。
其实13a 2132P A =⋅⋅=''。
选择、填空你也敢浪费时间,有这功夫还不如借揪头发乘机瞅瞅考场妹子。
soga.(5)答案B.解:原函数平移后变为)4x 2sin())8x (2sin(y ϕ+π+=ϕ+π+=,所以Z k ,k 24∈π+π=ϕ+π,即Z k ,k 4∈π+π=ϕ,答案立刻被鲁出。
其实这种题亦可以出的稍微复杂一些的,出题的老湿主算很照顾你们了。
本老歪屌湿是不会有这么好肚量的(∩_∩)。
(6)答案C.解:当你拿到这个题时怎么破?①画图,②联立求点,③三找到最小值的点代入求解。
2013山东高考数学理科试题带答案
绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共4页,满分150分。
考试用时150分钟.考试结束后,将本卷和答题卡一并交回。
注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B);如果事件A ,B 独立,那么P (AB )=P(A)*P(B) 第Ⅰ卷 (共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、复数z 满足i i z (5)2)(3(=--为虚数单位),则z 的共轭复数-z 为( ) (A )2+i (B )2-i (C )5+i (D )5-i2、已知集合}2,1,0{=A ,则集合},|{A y A x y x B ∈∈-=中元素的个数是( ) (A )1 (B )3 (C )5 (D )93、已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则)1(-f =( ) (A )-2 (B )0 (C )1 (D )2 4、已知三棱柱111C B A ABC -的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面111C B A 的中心,则PA 与平面ABC 所成角的大小为( )(A )125π (B )3π (C )4π (D )6π 5、若函数)2sin()(ϕ+=x x f 的图像沿x 轴向左平移8π个单位,得到一个偶函数的图像,则ϕ的一个可能取值为( ) (A )43π (B )4π (C )0 (D )4π-6、在平面直角坐标系x O y 中,M 为不等式组220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线O M 斜率的最小值为()2A ()1B ()13C -()12D -7、给定两个命题,、q p 若p ⌝是q 的必要而不充分条件,则p 是q ⌝的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件 8、函数x x x y sin cos +=的图象大致为xyπOxyπOxyπOxyπO(A) (B) (C) (D)9、过点(3,1)作圆1)1(22=+-y x 作圆的两条切线切点为A ,B ,则直线AB 的方程 (A )032=-+y x (B )032=--y x (C )034=--y x (D )034=-+y x10、用0,1, ,9十个数字可以组成有重复数字的三位数的个数为 (A )243 (B )252 (C )261 (D )27911、抛物线)0(21:21>=p x p y C 的焦点与双曲线13:222=-y x C 的右焦点的连线交1C 于第一象限的点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则=p63 (B )83 (C )332 (D )33412、设正实数z y x ,,满足04322=-+-z y xy x ,则当z xy 取最大值时,z y x 212-+的最大值为(A )0 (B )1 (C )49(D )3二、填空题:本大题共4小题,每小题4分,共16分13、执行右面的程序框图,若输入的ε值为0.25,则输出的n 的值为______________14、在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为______________.15、已知向量−→−AB 与−→−AC 的夹角1200,且|−→−AB |=3,|−→−AC |=2,若−→−−→−−→−+=AC AB AP λ,且−→−−→−⊥BC AP ,则实数λ的值为____________.16、 定义“正对数”: 0,01ln ,ln ,1x x x x +<<⎧=⎨≥⎩现有四个命题:①若0,0,a b >>()l n l n ;b a b a ++=②若0,0,a b >>()l n l n l n ;a b a b +++=+ ③若0,0,a b >>l n l n l n ;a a b b +++⎛⎫≥- ⎪⎝⎭④若0,0,a b >>()l n l n l n +l n 2;a b a b ++++≤+ 其中真命题有____________.(写出所有真命题的编号)三、解答题:本大题共6小题,共74分。
2013年山东高考理科数学试题及答案详解word版
绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟,考试结束后,将本试卷和答题卡一并交回。
注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么P(A+B)=P(A)+P(B);如果事件A ,B 独立,那么P(AB)=P(A)·P(B);第Ⅰ卷(共60分)一、选择题:本大题共12题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1). 复数满足(为虚数单位),则的共轭复数为(A) (B) (C) (D)(2). 已知集合,则集合中元素的个数是(A) (B) (C) 5 (D)(3). 已知函数为奇函数,且当时,,则(A) (B) (C) (D)(4). 已知三棱柱的侧棱与底面垂直,体积为,底面是边长为的正三角形。
若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为(A) (B) (C) 4π (D) (5). 将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为 (A) 34π (B) 4π (C) (D)(6). 在平面直角坐标系中,M 为不等式组所表示的区域上一动点,则直线OM 斜率的最小值为(A) (B) (C) (D)(7). 给定两个命题。
2013年高考理科数学山东卷试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(山东卷) 第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 答案:D解析:由题意得z -3=52i-=2+i ,所以z =5+i.故z =5-i ,应选D. 2. 答案:C解析:当x ,y 取相同的数时,x -y =0;当x =0,y =1时,x -y =-1;当x =0,y =2时,x -y =-2;当x =1,y =0时,x -y =1;当x =2,y =0时,x -y =2;其他则重复.故集合B 中有0,-1,-2,1,2,共5个元素,应选C. 3. 答案:A解析:因为f (x )是奇函数,故f (-1)=-f (1)=2111⎛⎫-+ ⎪⎝⎭=-2,应选A. 4. 答案:B解析:如图所示,由棱柱体积为94.设P 在平面ABC上射影为O ,则可求得AO 长为1,故AP 2=故∠PAO =π3,即PA 与平面ABC 所成的角为π3. 5. 答案:B解析:函数y =sin(2x +φ)的图象向左平移π8个单位后变为函数πsin 28y x ϕ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦=πsin 24x ϕ⎛⎫++ ⎪⎝⎭的图象,又πsin 24y x ϕ⎛⎫++ ⎪⎝⎭=为偶函数,故πππ42k ϕ+=+,k ∈Z ,∴ππ4k ϕ=+,k ∈Z .若k =0,则π4ϕ=.故选B. 6. 答案:C解析:不等式组表示的区域如图阴影部分所示,结合斜率变化规律,当M 位于C 点时OM 斜率最小,且为13-,故选C.7. 答案:A解析:由题意:q ⇒⌝p ,⌝pq ,根据命题四种形式之间的关系,互为逆否的两个命题同真同假,所以等价于所以p 是⌝q 的充分而不必要条件.故选A. 8. 答案:D解析:因f (-x )=-x ·cos(-x )+sin(-x )=-(x cos x +sin x )=-f (x ),故该函数为奇函数,排除B ,又x ∈π0,2⎛⎫⎪⎝⎭,y >0,排除C ,而x =π时,y =-π,排除A ,故选D. 9. 答案:A解析:该切线方程为y =k (x -3)+1,即kx -y -3k +1=0=1,得k =0或43,切线方程分别与圆方程联立,求得切点坐标分别为(1,1),93,55⎛⎫- ⎪⎝⎭,故所求直线的方程为2x +y -3=0.故选A.10. 答案:B解析:构成所有的三位数的个数为11191010C C C =900,而无重复数字的三位数的个数为111998C C C =648,故所求个数为900-648=252,应选B. 11. 答案:D解析:设M 2001,2x x p ⎛⎫ ⎪⎝⎭,21''2x y x p p ⎛⎫== ⎪⎝⎭,故在M点处的切线的斜率为0x p =故M 1,36p p ⎛⎫ ⎪ ⎪⎝⎭.由题意又可知抛物线的焦点为0,2p ⎛⎫⎪⎝⎭,双曲线右焦点为(2,0),且1,36p p ⎛⎫ ⎪ ⎪⎝⎭,0,2p ⎛⎫ ⎪⎝⎭,(2,0)三点共线,可求得pD. 12. 答案:B解析:由x 2-3xy +4y 2-z =0得2234x xy y z -+即xy z≤1,当且仅当x 2=4y 2时成立,又x ,y 为正实数,故x =2y .此时将x =2y 代入x 2-3xy +4y 2-z =0得z =2y 2,所以222121211+1x y z y y y ⎛⎫+-=-+=-- ⎪⎝⎭,当1=1y ,即y =1时,212x y z+-取得最大值为1,故选B. 第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.答案:3解析:第1次运行将F 0+F 1赋值给F 1,即将3赋值给F 1,然后将F 1-F 0赋值给F 0,即将3-1=2赋值给F 0,n 增加1变成2,此时1113F =比ε大,故循环,新F 1为2+3=5,新F 0为5-2=3,n 增加1变成3,此时1115F =≤ε,故退出循环,输出n =3. 14.答案:13解析:设y =|x +1|-|x -2|=3,2,21,12,3,1,x x x x ≥⎧⎪--<<⎨⎪-≤-⎩利用函数图象(图略)可知|x +1|-|x -2|≥1的解集为[1,+∞).而在[-3,3]上满足不等式的x 的取值范围为[1,3],故所求概率为311333-=-(-).15.答案:712解析:∵AP =λAB +AC ,AP ⊥BC ,又BC =AC -AB ,∴(AC -AB )·(AC +λAB )=0.∴AC 2+λAB ·AC -AB ·AC -λAB 2=0,即4+(λ-1)×3×2×12⎛⎫- ⎪⎝⎭-9λ=0,即7-12λ=0,∴λ=712.16.答案:①③④三、解答题:本大题共6小题,共74分.17.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac (1+cos B ), 又b =2,a +c =6,cos B =79, 所以ac =9,解得a =3,c =3. (2)在△ABC 中,sin B9=. 由正弦定理得sin A=sin 3a Bb =. 因为a =c ,所以A 为锐角. 所以cos A13=. 因此sin(A -B )=sin A cos B -cos A sin B=27. 18.(1)证明:因为D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点, 所以EF ∥AB ,DC ∥AB .所以EF ∥DC .又EF 平面PCD ,DC ⊂平面PCD , 所以EF ∥平面PCD .又EF ⊂平面EFQ ,平面EFQ ∩平面PCD =GH , 所以EF ∥GH .又EF ∥AB ,所以AB ∥GH .(2)解法一:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ =90°,即AB ⊥BQ .因为PB ⊥平面ABQ , 所以AB ⊥PB.又BP ∩BQ =B , 所以AB ⊥平面PBQ .由(1)知AB ∥GH ,所以GH ⊥平面PBQ . 又FH ⊂平面PBQ ,所以GH ⊥FH . 同理可得GH ⊥HC ,所以∠FHC 为二面角D -GH -E 的平面角. 设BA =BQ =BP =2,连接FC ,在Rt △FBC 中,由勾股定理得FC, 在Rt △PBC 中,由勾股定理得PC又H 为△PBQ 的重心,所以HC=133PC =. 同理FH=3.在△FHC 中,由余弦定理得cos ∠FHC =5524995529+-=-⨯.故二面角D -GH -E 的余弦值为45-.解法二:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ =90°.又PB ⊥平面ABQ ,所以BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系. 设BA =BQ =BP =2,则E (1,0,1),F (0,0,1),Q (0,2,0),D (1,1,0),C (0,1,0),P (0,0,2). 所以EQ =(-1,2,-1),FQ =(0,2,-1),DP =(-1,-1,2),CP =(0,-1,2).设平面EFQ 的一个法向量为m =(x 1,y 1,z 1), 由m ·EQ =0,m ·FQ =0, 得1111120,20,x y z y z -+-=⎧⎨-=⎩取y 1=1,得m =(0,1,2).设平面PDC 的一个法向量为n =(x 2,y 2,z 2), 由n ·DP =0,n ·CP =0, 得2222220,20,x y z y z --+=⎧⎨-+=⎩取z 2=1,得n =(0,2,1). 所以cos 〈m ,n 〉=4||||5=·m n m n .因为二面角D -GH -E 为钝角, 所以二面角D -GH -E 的余弦值为45-. 19.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故P (A 1)=328327⎛⎫= ⎪⎝⎭,P (A 2)=2232228C 133327⎛⎫⎛⎫-⨯=⎪ ⎪⎝⎭⎝⎭, P (A 3)=22242214C 133227⎛⎫⎛⎫-⨯=⎪⎪⎝⎭⎝⎭. 所以,甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4,由题意,各局比赛结果相互独立,所以P (A 4)=22242214C 1133227⎛⎫⎛⎫⎛⎫-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627, 又P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427, P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327. 故X 的分布列为所以EX =0×1627+1×427+2×27+3×27=9.20.解:(1)设等差数列{a n }的首项为a 1,公差为d , 由S 4=4S 2,a 2n =2a n +1得11114684,21221 1.a d a d a n d a n d +=+⎧⎨+(-)=+(-)+⎩ 解得a 1=1,d =2.因此a n =2n -1,n ∈N *. (2)由题意知,T n =12n nλ--, 所以n ≥2时,b n =T n -T n -1=12112222n n n n n n ------+=. 故c n =b 2n =21222n n --=11(1)4n n -⎛⎫- ⎪⎝⎭,n ∈N *.所以R n =0×14⎛⎫ ⎪⎝⎭0+1×14⎛⎫ ⎪⎝⎭1+2×14⎛⎫ ⎪⎝⎭2+3×14⎛⎫ ⎪⎝⎭3+…+(n -1)×14⎛⎫ ⎪⎝⎭n -1,则14R n =0×14⎛⎫ ⎪⎝⎭1+1×14⎛⎫ ⎪⎝⎭2+2×14⎛⎫ ⎪⎝⎭3+…+(n -2)×14⎛⎫ ⎪⎝⎭n -1+(n -1)×14⎛⎫ ⎪⎝⎭n , 两式相减得34R n =14⎛⎫ ⎪⎝⎭1+14⎛⎫ ⎪⎝⎭2+14⎛⎫ ⎪⎝⎭3+…+14⎛⎫ ⎪⎝⎭n -1-(n -1)×14⎛⎫ ⎪⎝⎭n =11144(1)1414nn n ⎛⎫- ⎪⎛⎫⎝⎭--⨯ ⎪⎝⎭- =1131334nn +⎛⎫- ⎪⎝⎭, 整理得R n =1131494n n -+⎛⎫- ⎪⎝⎭,所以数列{c n }的前n 项和R n =1131494n n -+⎛⎫- ⎪⎝⎭.21.解:(1)f ′(x )=(1-2x )e -2x, 由f ′(x )=0,解得x =12. 当x <12时,f ′(x )>0,f (x )单调递增; 当x >12时,f ′(x )<0,f (x )单调递减.所以,函数f (x )的单调递增区间是1,2⎛⎫-∞ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞ ⎪⎝⎭,最大值为111e 22f c -⎛⎫=+ ⎪⎝⎭.(2)令g (x )=|ln x |-f (x )=|ln x |-x e -2x-c ,x ∈(0,+∞).①当x ∈(1,+∞)时,ln x >0,则g (x )=ln x -x e -2x-c , 所以g ′(x )=22e e21x xx x -⎛⎫+- ⎪⎝⎭. 因为2x -1>0,2e xx>0,所以g ′(x )>0.因此g (x )在(1,+∞)上单调递增.②当x ∈(0,1)时,ln x <0,则g (x )=-ln x -x e -2x-c . 所以g ′(x )=22e e21x xx x -⎛⎫-+- ⎪⎝⎭. 因为e 2x∈(1,e 2),e 2x>1>x >0,所以2e xx -<-1.又2x -1<1,所以2e xx-+2x -1<0,即g ′(x )<0.因此g (x )在(0,1)上单调递减.综合①②可知,当x ∈(0,+∞)时,g (x )≥g (1)=-e -2-c .当g (1)=-e -2-c >0,即c <-e -2时,g (x )没有零点, 故关于x 的方程|ln x |=f (x )根的个数为0;当g (1)=-e -2-c =0,即c =-e -2时,g (x )只有一个零点, 故关于x 的方程|ln x |=f (x )根的个数为1;当g (1)=-e -2-c <0,即c >-e -2时, 当x ∈(1,+∞)时,由(1)知g (x )=ln x -x e -2x -c ≥11ln e 2x c -⎛⎫-+ ⎪⎝⎭>ln x -1-c ,要使g (x )>0,只需使ln x -1-c >0,即x ∈(e 1+c,+∞);当x ∈(0,1)时,由(1)知g (x )=-ln x -x e -2x -c ≥11ln e 2x c -⎛⎫--+ ⎪⎝⎭>-ln x -1-c ,要使g (x )>0,只需-ln x -1-c >0,即x ∈(0,e -1-c);所以c >-e -2时,g (x )有两个零点,故关于x 的方程|ln x |=f (x )根的个数为2. 综上所述,当c <-e -2时,关于x 的方程|ln x |=f (x )根的个数为0;当c =-e -2时,关于x 的方程|ln x |=f (x )根的个数为1;当c >-e -2时,关于x 的方程|ln x |=f (x )根的个数为2. 22.(1)解:由于c 2=a 2-b 2,将x =-c 代入椭圆方程2222=1x y a b+,得2b y a =±,由题意知22=1b a ,即a =2b 2.又c e a ==,所以a =2,b =1.所以椭圆C 的方程为2214x y +=. (2)解法一:设P (x 0,y 0)(y 0≠0). 又F 1(,0),F 2,0), 所以直线PF 1,PF 2的方程分别为lPF 1:y 0x -(x 0yy 0=0, lPF 2:y 0x -(x 0yy 0=0.由于点P 在椭圆上,所以220014x y +=,=.因为m2<x 0<2,=所以m =034x .因此3322m -<<.解法二:设P (x 0,y 0).当0≤x 0<2时,①当0x =时,直线PF 2的斜率不存在,易知P 12⎫⎪⎭或P 12⎫-⎪⎭. 若P 12⎫⎪⎭,则直线PF 1的方程为0x -=.m =,因为m所以m =若P 12⎫-⎪⎭,同理可得m =.②当x 0时,设直线PF 1,PF 2的方程分别为y =k 1(x),y =k 2(x).=,221221111k k +=+. 因为220014x y +=, 并且k 1,k 2,222=22==.因为为m,0≤x 0<2且x 0=.整理得m =34x , 故0≤m <32且m综合①②可得0≤m <32.当-2<x 0<0时,同理可得32-<m <0. 综上所述,m 的取值范围是33,22⎛⎫- ⎪⎝⎭.(3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立22001,4x y y y k x x ⎧+=⎪⎨⎪-=(-)⎩整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(20y -2kx 0y 0+220k x -1)=0.由题意Δ=0,即220(4)x k -+2x 0y 0k +1-20y =0.又220014x y +=, 所以22016y k +8x 0y 0k +20x =0,故k =004xy -.由(2)知00012000211x x x k k y y y +=+=, 所以121211111kk kk k k k ⎛⎫+=+ ⎪⎝⎭ =000042=8y xx y ⎛⎫-⋅- ⎪⎝⎭, 因此1211kk kk +为定值,这个定值为-8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年山东高考数学试题
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( D )
A. 2+i
B.2-i
C. 5+i
D.5-i
(2)设集合A={0,1,2},则集合B={x-y |x∈A, y∈A }中元素的个数是( C )
A. 1
B. 3
C. 5
D.9
(A)-2 (B)0 (C)1 (D)2
(6)在平面直角坐标系xOy中,M为不等式组:
2x y20
x2y10
3x y80
--≥
⎧
⎪
+-≥
⎨
⎪+-≤
⎩
,所表示的区域上一动
点,则直线OM斜率的最小值为
C
(7)给定两个命题p、q,若﹁p是q的必要而不充分条件,则p是﹁q的 B (A)充分而不必条件(B)必要而不充分条件
(C )充要条件 (D )既不充分也不必要条件
(8)函数y=xcosx + sinx 的图象大致为 D
(A ) (B ) (C) (D)
(9)过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 A
(A )2x+y-3=0 (B )2x-y-3=0 (C )4x-y-3=0 (D )4x+y-3=0
(10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为 B
(A )243 (B )252 (C )261 (D )279
(11)抛物线C 1:y= 12p
x 2(p >0)的焦点与双曲线C 2: 2213x y -=的右焦点的连线交C 1于第一象限的点M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p= D
(12)设正实数x,y,z 满足x 2-3xy+4y 2-z=0.则当xy z
取得最大值时,212x y z +-的最大值 为 B (A )0 (B )1 (C ) 94
(D )3 二、填空题:本大题共4小题,每小题4分,共16分
(13)执行右面的程序框图,若输入的ε的值为0.25,则输入的n 的值为 3
(14)在区间[-3,3]上随机取一个数x ,使得 |x+1 |- |x-2 |≥1成立的概率为
13
(15)已知向量AB 与AC 的夹角为120,且||3,||2,AB AC ==若 ,AP AB AC λ=+且AP BC ⊥,则实数λ的值为
712
(16)定义“正对数”:0,01ln ln ,1x x x x +<<⎧=⎨
≥⎩,现有四个命题: ①若0,0a b >>,则ln ()ln b a b a ++=
②若0,0a b >>,则ln ()ln ln ab a b +++=+
③若0,0a b >>,则ln ()ln ln a a b b +++≥-
④若0,0a b >>,则ln ()ln ln ln 2a b a b ++++≤++
其中的真命题有: ①③④ (写出所有真命题的编号)
三、解答题:本大题共6小题,共74分. (17)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a+c=6,b=2,cosB= 79. (Ⅰ)求a ,c 的值;
(Ⅱ)求sin (A-B )的值.
解答:(1)由cosB= 79与余弦定理得,221449
a c ac +-=,又a+c=6,解得3a c == (2)又a=3,b=2,42sin 9B =
与正弦定理可得,22sin 3A =,1cos 3A =, 所以sin (A-B )=sinAcosB-cosAsinB=10227
(18)(本小题满分12分)
如图所示,在三棱锥P-ABQ 中,PB ⊥平面ABQ ,
BA=BP=BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP
的中点,AQ=2BD ,PD 与EQ 交于点G ,PC 与FQ 交
于点H ,连接GH 。
(Ⅰ)求证:AB//GH ;
(Ⅱ)求二面角D-GH-E 的余弦值 .
解答:(1)因为C 、D 为中点,所以CD//AB
同理:EF//AB ,所以EF//CD ,EF ⊂平面EFQ ,
所以CD//平面EFQ ,又CD ⊂平面PCD,所以
CD//GH ,又AB//CD ,所以AB//GH.
(2)由AQ=2BD ,D 为AQ 的中点可得,△ABQ 为直角
三角形,以B 为坐标原点,以BA 、BC 、BP 为x 、y 、z 轴建立空间直角坐标系,设AB=BP=BQ=2,可得平面GCD 的一个法向量为1(0,2,1)n =,平面EFG 的一个法向量为2(0,1,2)n =,可得
4
cos
5
α==,
(2)由题意可知X的可能取值为:3,2,1,0
相应的概率依次为:
14416
,,,,所以EX=
7
解答:(1)由S4=4S2,a2n=2a n+1,{a n}为等差数列,可得,
1
1,2
a d
==
所以21
n
a n
=-
2.71828是自然对数的底数,
(1)求()
f x的单调区间,最大值;
(2)讨论关于x的方程|ln|()
x f x
=根的个数.
直于x 轴的直线被椭圆
C 截得的线段长为l.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1、PF 2,设∠F 1PF 2的角平分线 PM 交C 的长轴于点M (m ,0),求m 的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点p 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公定值. 11||||PF PM PF PM ⋅=22||||PF PM PF PM ⋅,11||PF PM PF ⋅=22||
PF PM PF ⋅,设P 204x ≠,将向量坐标代入并化简得:m (23000416)312x x x -=-,因为204x ≠,。