第一章 人工神经网络的基本知识共51页
合集下载
人工神经网络
![人工神经网络](https://img.taocdn.com/s3/m/3e1887a7760bf78a6529647d27284b73f24236c8.png)
• 输入层: 被记作第0层。该层负责接收来自 网络外部信息
x1
o1
x2
o2
…… xn
输入层
人工神经网络
…
…
隐藏层
… …… om
输出层
第30页
– 第j层: 第j-1层直接后继层(j>0),它直接接 收第j-1层输出。
– 输出层: 它是网络最终一层,含有该网络最大 层号,负责输出网络计算结果。
– 隐藏层: 除输入层和输出层以外其它各层叫隐 藏层。隐藏层不直接接收外界信号,也不直接 向外界发送信号
函数饱和值为0和1。 S形函数有很好增益控制
人工神经网络
第19页
4.S形函数
o a+b
c=a+b/2
(0,c)
net
a
人工神经网络
第20页
联接模式
人工神经网络
第21页
联接模式
• 层次(又称为“级”)划分,造成了神经 元之间三种不一样互连模式:
• 1、 层(级)内联接 • 层内联接又叫做区域内(Intra-field)联接
人工神经网络
第3页
人工神经网络概念
• 1) 一组处理单元(PE或AN); • 2) 处理单元激活状态(ai); • 3) 每个处理单元输出函数(fi); • 4) 处理单元之间联接模式; • 5) 传递规则(∑wijoi); • 6) 把处理单元输入及当前状态结合起来产生激
活值激活规则(Fi); • 7) 经过经验修改联接强度学习规则; • 8) 系统运行环境(样本集合)。
本集来说,误差不超出要求范围。
人工神经网络
第40页
Delta规则
Widrow和Hoff写法: Wij(t+1)=Wij(t)+α(yj- aj(t))oi(t) 也能够写成: Wij(t+1)=Wij(t)+∆ Wij(t) ∆ Wij(t)=αδjoi(t) δj=yj- aj(t) Grossberg写法为: ∆ Wij(t)=αai(t)(oj(t)-Wij(t)) 更普通Delta规则为: ∆ Wij(t)=g(ai(t),yj,oj(t),Wij(t))
x1
o1
x2
o2
…… xn
输入层
人工神经网络
…
…
隐藏层
… …… om
输出层
第30页
– 第j层: 第j-1层直接后继层(j>0),它直接接 收第j-1层输出。
– 输出层: 它是网络最终一层,含有该网络最大 层号,负责输出网络计算结果。
– 隐藏层: 除输入层和输出层以外其它各层叫隐 藏层。隐藏层不直接接收外界信号,也不直接 向外界发送信号
函数饱和值为0和1。 S形函数有很好增益控制
人工神经网络
第19页
4.S形函数
o a+b
c=a+b/2
(0,c)
net
a
人工神经网络
第20页
联接模式
人工神经网络
第21页
联接模式
• 层次(又称为“级”)划分,造成了神经 元之间三种不一样互连模式:
• 1、 层(级)内联接 • 层内联接又叫做区域内(Intra-field)联接
人工神经网络
第3页
人工神经网络概念
• 1) 一组处理单元(PE或AN); • 2) 处理单元激活状态(ai); • 3) 每个处理单元输出函数(fi); • 4) 处理单元之间联接模式; • 5) 传递规则(∑wijoi); • 6) 把处理单元输入及当前状态结合起来产生激
活值激活规则(Fi); • 7) 经过经验修改联接强度学习规则; • 8) 系统运行环境(样本集合)。
本集来说,误差不超出要求范围。
人工神经网络
第40页
Delta规则
Widrow和Hoff写法: Wij(t+1)=Wij(t)+α(yj- aj(t))oi(t) 也能够写成: Wij(t+1)=Wij(t)+∆ Wij(t) ∆ Wij(t)=αδjoi(t) δj=yj- aj(t) Grossberg写法为: ∆ Wij(t)=αai(t)(oj(t)-Wij(t)) 更普通Delta规则为: ∆ Wij(t)=g(ai(t),yj,oj(t),Wij(t))
《人工神经网络》课件
![《人工神经网络》课件](https://img.taocdn.com/s3/m/0326e3cf690203d8ce2f0066f5335a8103d26656.png)
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
人工神经网络教学课件
![人工神经网络教学课件](https://img.taocdn.com/s3/m/d775523f178884868762caaedd3383c4bb4cb4e2.png)
2006年
Hinton等人提出了深度学习的概念,使得神经网络的层次和参数数量大大增加,提高了模型的表示能力和泛化能力。
1997年
Bengio等人提出了卷积神经网络(CNN),用于图像识别和处理。
感知机模型:由输入层、隐藏层和输出层组成,通过权重和激活函数实现非线性映射,完成分类或识别任务。
人工神经网络的基本结构
人工神经网络教学课件
目录
CONTENTS
人工神经网络简介人工神经网络的基本结构常见的人工神经网络模型人工神经网络的训练与优化人工神经网络的应用场景人工神经网络的未来展望
人工神经网络简介
人工神经网络是一种模拟生物神经网络结构和功能的计算模型,由多个神经元相互连接而成,通过训练和学习来处理和识别数据。
适用于小样本数据集和高维数据集
支持向量机在小样本数据集和高维数据集上表现良好,因为它主要基于数据的内积运算,而不是计算输入空间中的距离。这使得它在文本分类、生物信息学等领域得到广泛应用。
核函数的选择对模型性能影响较大
支持向量机通过核函数将输入空间映射到高维特征空间,然后在这个空间中找到最优决策边界。不同的核函数会导致不同的决策边界,因此选择合适的核函数对模型性能至关重要。
总结词
自然语言处理是人工神经网络的另一个应用领域,通过训练神经网络理解和生成自然语言文本,实现文本分类、情感分析、机器翻译等功能。
自然语言处理是利用人工神经网络对自然语言文本进行分析、理解和生成,广泛应用于搜索引擎、智能问答、新闻推荐等领域。通过训练神经网络理解和生成自然语言文本,可以实现文本分类、情感分析、机器翻译等功能,提高自然语言处理的准确性和效率。
人工神经网络具有自适应性、非线性、并行处理和鲁棒性等特点,能够处理复杂的模式识别和预测问题。
Hinton等人提出了深度学习的概念,使得神经网络的层次和参数数量大大增加,提高了模型的表示能力和泛化能力。
1997年
Bengio等人提出了卷积神经网络(CNN),用于图像识别和处理。
感知机模型:由输入层、隐藏层和输出层组成,通过权重和激活函数实现非线性映射,完成分类或识别任务。
人工神经网络的基本结构
人工神经网络教学课件
目录
CONTENTS
人工神经网络简介人工神经网络的基本结构常见的人工神经网络模型人工神经网络的训练与优化人工神经网络的应用场景人工神经网络的未来展望
人工神经网络简介
人工神经网络是一种模拟生物神经网络结构和功能的计算模型,由多个神经元相互连接而成,通过训练和学习来处理和识别数据。
适用于小样本数据集和高维数据集
支持向量机在小样本数据集和高维数据集上表现良好,因为它主要基于数据的内积运算,而不是计算输入空间中的距离。这使得它在文本分类、生物信息学等领域得到广泛应用。
核函数的选择对模型性能影响较大
支持向量机通过核函数将输入空间映射到高维特征空间,然后在这个空间中找到最优决策边界。不同的核函数会导致不同的决策边界,因此选择合适的核函数对模型性能至关重要。
总结词
自然语言处理是人工神经网络的另一个应用领域,通过训练神经网络理解和生成自然语言文本,实现文本分类、情感分析、机器翻译等功能。
自然语言处理是利用人工神经网络对自然语言文本进行分析、理解和生成,广泛应用于搜索引擎、智能问答、新闻推荐等领域。通过训练神经网络理解和生成自然语言文本,可以实现文本分类、情感分析、机器翻译等功能,提高自然语言处理的准确性和效率。
人工神经网络具有自适应性、非线性、并行处理和鲁棒性等特点,能够处理复杂的模式识别和预测问题。
《人工神经网络》课件
![《人工神经网络》课件](https://img.taocdn.com/s3/m/57da431976232f60ddccda38376baf1ffc4fe3ad.png)
拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。
人工智能与专家系统(PPT 51张)
![人工智能与专家系统(PPT 51张)](https://img.taocdn.com/s3/m/6e867861c850ad02de804157.png)
电 脉 冲 输 入 树 突 细 胞 体 形 成 轴 突 传 输 突 触
输
出
信 息 处 理
图 物 神 经 元 功 能 模 型 1 2 .2 生
电 脉 冲 输 入 树 突 细 胞 体 形 成 轴 突 传 输 突 触
输
出
信 息 处 理
图 物 神 经 元 功 能 模 型 1 2 .2 生 黑箱
当常规方法解决不了或效果不佳时ANN方法才能显示出其优 越性。尤其对问题的机理不甚了解或不能用数学模型表示 的系统,如故障诊断、特征提取和预测等问题,ANN往往是最 有利的工具。另一方面, ANN对处理大量原始数据而不能用 规则或公式描述的问题, 表现出极大的灵活性和自适应性。
8.2 人工神经网络基础
存储和回忆 人工神经网络中存储图形的类型
–
–
在计算机中,数据和信息是存放在存贮 器中(RAM或ROM),以8比特字节作为 存储单位。 在人工神经网络中,信息或图形不再限 定为8比特,它是多维的二进制数据或连 续信息。
8.2 人工神经网络基础
存储和回忆 人工神经网络中存储的两类图形 – 空间图形的存储 存储单个空间静态图像,如一幅画面。 – 时空图形的存储 存储一系列随时间变化的图像,比如电影。 – 我们讨论的人工神经网络存储的图形大多是空 间图形,因它是构成时空图形的基础。
单层网络
–
输入信号的加权和表示为:
– –
s是各结点加权和的行向量,s=(s1, s2,…, sn)。 输出向量 y=(y1, y2,…, yn),其中yj=F(sj)。
8.2 人工神经网络基础
人工神经网络的拓扑结构
多层网络
– –
–
一般来说,大而复杂的网络能提供更强的计算 能力。 虽然目前已构成了很多网络模型,但它们的结 点都是按层排列的,这一点正是模仿了大脑皮 层中的网络模块。 多层网络是由单层网络进行级联构成的,即上 一层的输出作为下一层的输入。
第一讲 人工神经网络的基本知识
![第一讲 人工神经网络的基本知识](https://img.taocdn.com/s3/m/6bb6e0e99e314332396893e2.png)
1.3.2 人工神经元模型
1.3.2 人工神经元模型
一组连接(对应于生物神经元的突触),连接 强度由各连接上的权值表示,权值为正表示激 活,为负表示抑制。 一个求和单元,用于求取各输入信号的加权和 (线性组合). 一个非线性激活函数(作用函数),起非线性映 射作用并将神经元拘出幅度限制在一定范围内.
课程目的和基本要求
了解人工神经网络的有关研究思想,从中 学习开拓者们的部分问题求解方法。 通过实验进一步体会有关模型的用法和性 能,获取一些初步的经验。 查阅适当的参考文献,将所学的知识与自 己未来研究课题(包括研究生论文阶段的 研究课题)相结合起来,达到既丰富学习 内容,又有一定的研究和应用的目的。
1、控制输入对输出的激活作用; 2、对输入、输出进行函数转换; 3、将可能无限域的输入变换成指定的有 限范围内的输出。
几种常用的作用函数
1、阈值函数.
M-P 模型
几种常用的作用函数
2,分段线性函数
它类似于一个放大系数为1 的非线性放大器,当工作 于线性区时它是一个线性 组合器,放大系数趋于无 穷大时变成一个阈值单元。
1、构成
2、工作过程:树突
轴突
突触 其他神经元
1.3.1 生物神经网
3、六个基本特征:
1)神经元及其联接; 2)神经元之间的联接强度决定信号传递的强弱; 3)神经元之间的联接强度是可以随训练改变的; 4 )信号可以是起 刺激 作用的,也可以是起 抑制 作用 的; 5 )一个神经元接受的信号的 累积效果 决定该神经元 的状态; 6)每个神经元可以有一个“阈值”。
第二高潮期(1983~1990) 1982年,J. Hopfield提出循环网络,并 将Lyapunov函数作为网络性能判定的 能量函数,阐明了人工神经网络与动力 学的关系,用非线性动力学的方法来研 究人工神经网络的特性,建立了人工神 经网络稳定性的判别依据,指出信息被 存放在网络中神经元的联接上。
人工神经网络ppt课件
![人工神经网络ppt课件](https://img.taocdn.com/s3/m/156d6c88561252d381eb6e62.png)
LOGO
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率
人工神经网络ppt课件
感知器
• 一种类型的ANN系统是以感知器为基础
• 感知器以一个实数值向量作为输入,计 算这些输入的线性组合,如果结果大于 某个阈值,就输出1,否则输出-1
o(x1,..xn .), 11w 0w 1o x1 t.h..ew nrxnw 0ise
其 值 率中,。每用特个来别w决地i是定 ,一输-w个入0是实xi阈对数值感常。知量器,输或出叫的做贡权献
• 算法的一种常用改进方法是随着梯度下降步数 的增加逐渐减小学习速率
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
26
梯度下降的随机近似
• 梯度下降是一种重要的通用学习范型,它是搜 索庞大假设空间或无限假设空间一种策略
• 梯度下降应用于满足以下条件的任何情况
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
33
可微阈值单元
• 使用什么类型的单元来构建多层网络?
• 多个线性单元的连接仍产生线性函数,而我们 希望构建表征非线性函数的网络
Байду номын сангаас
• 感知器单元可以构建非线性函数,但它的不连 续阈值使它不可微,不适合梯度下降算法
2019.12.18
机器学习-人工神经网络 作者:Mitchell 译者:曾华军等 讲者:陶晓鹏
25
梯度下降法则的推导(4)
• 梯度下降算法如下
– 选取一个初始的随机权向量 – 应用线性单元到所有的训练样例,根据公式4.7计算
每个权值的w 更新权值
• 因为误差曲面仅包含一个全局的最小值,所以 无论训练样例是否线性可分,算法都会收敛到 具有最小误差的权向量,条件是使用足够小的 学习速率
人工神经网络讲稿ppt课件
![人工神经网络讲稿ppt课件](https://img.taocdn.com/s3/m/71b6cc01773231126edb6f1aff00bed5b9f373d0.png)
举例:2-3岁小孩能够从人群中认出父母、3-4岁能够顺利地穿过十字路 口,但最先进机器人也难以完成这项任务。
因而模仿人类思维方式能够提升机器人能力
人工神经网络讲稿
5/40
1.2 神经细胞与生物神经网络
1. 神经网络
组织形式 大脑中大约有100亿个神经元,它们相互连接,形成一个复杂庞大网络
系统。所以大脑结构是一个神经(元)网络。 依据预计,每个神经元大约与上千个神经元相互连接。 大脑所形成神经网络是由一些小网络连接而成。依据预计,全部神经元
层次结构:神经元联接按层次排列。 模块结构:主要特点是将整个网络按功效划分为不一样模块,每个模块 内部神经元紧密互联,并完成各自特定功效,模块之间再互联以完成整体功 效; 层次模块结构:将模块结构和层次结构结合起来,使之更靠近人脑神经 系统结构,这也是当前为人们广泛注意一个新型网络互联模式。 依据网络中神经元层数不一样,可将神经网络分为单层网络和多层网络; 依据同层网络神经元之间有没有相互联接以及后层神经元与前层神经元有 没有反馈作用不一样,可将神经网络分为以下各种。
Hopfield网络和BP算法出现,使得人工神经研究出现了复兴。因为人 工神经网络在信息处理方面优点,使得大批学者加入到了这一研究领域, 掀起了神经网络研究新高潮。
人工神经网络讲稿
13/40
4. 全方面发展时期(1987-现在) 1987年在美国召开了第一届国际神经网络学术大会,并宣告成立了
国际神经网络学会,与会代表1600多人。这次大会也宣告了神经网络 学科诞生。神经网络研究进入了一个转折点,其范围不停扩大,领域 几乎包含各个方面。神经网络应用使工业技术发生了很大改变,尤其 是在自动控制领域有了新突破。
互制约,从而能够将层内神经元分为几组,让每组作为一个整体来动作。
人工神经网络-第一章
![人工神经网络-第一章](https://img.taocdn.com/s3/m/0d93cc265901020207409c50.png)
以上这些原因,使神经网络研究转入低潮,进入萧条时期。
2004-8-8
《神经网络导论》--概述
1-15
西安交通大学电信学院
第一章 神经网络概述
§1.2 神经网络研究发展简史
XI’AN JIAOTONG UNIVERSITY
C. 1949年心理学家Donald Hebb提出神经元之间突触联系强度可变的假 设,认为学习过程是在突触上发生的,突触的联系强度随其前后神经 元的活动而变化。根据这一假设,Hebb提出了神经元突触的一种具体 的学习规律,为神经网络的学习算法奠定了基础。
3. 结构性问题和非结构性问题 A. 结构性问题 可以用数学语言清楚而严格地描述,且可将其算法公式化,并映 射成计算机程序,然后由计算机逐条地执行该程序的指令,从而 得到问题的解。
2004-8-8
《神经网络导论》--概述
1-4
1-1
《神经网络导论》讲义
§1.1 引言
XI’AN JIAOTONG UNIVERSITY
2004-8-8
《神经网络导论》--概述
1-11
西安交通大学电信学院
第一章 神经网络概述
§1.1 引言
五、神经网络的研究内容
神经网络的研究内容十分广泛,如各种网络模 型的构造,以及它们的原理、性能分析,在各个 领域的应用等,具体如下:
1. 生物原型研究:从生理学、心理学、解剖 学、脑科学、病理学等生物科学方面。研究神经 网络细胞、神经网络、神经系统的生物原型结构 及功能机理。
XI’AN JIAOTONG UNIVERSITY
人工神经网络早期地研究工作可以追溯至二十世纪四十年代。其 发展过程大致可以分为以下几个阶段。
1. 奠基时期
A. 1943年心理学家W.McCulloch和W.Pitts发表文章,总结了生物神 经元的一些基本特性,提出了形式神经元的数学描述与结构方法, 即M-P模型,此模型一直沿用至今,可以说他们是神经网络研究的 先驱。
2004-8-8
《神经网络导论》--概述
1-15
西安交通大学电信学院
第一章 神经网络概述
§1.2 神经网络研究发展简史
XI’AN JIAOTONG UNIVERSITY
C. 1949年心理学家Donald Hebb提出神经元之间突触联系强度可变的假 设,认为学习过程是在突触上发生的,突触的联系强度随其前后神经 元的活动而变化。根据这一假设,Hebb提出了神经元突触的一种具体 的学习规律,为神经网络的学习算法奠定了基础。
3. 结构性问题和非结构性问题 A. 结构性问题 可以用数学语言清楚而严格地描述,且可将其算法公式化,并映 射成计算机程序,然后由计算机逐条地执行该程序的指令,从而 得到问题的解。
2004-8-8
《神经网络导论》--概述
1-4
1-1
《神经网络导论》讲义
§1.1 引言
XI’AN JIAOTONG UNIVERSITY
2004-8-8
《神经网络导论》--概述
1-11
西安交通大学电信学院
第一章 神经网络概述
§1.1 引言
五、神经网络的研究内容
神经网络的研究内容十分广泛,如各种网络模 型的构造,以及它们的原理、性能分析,在各个 领域的应用等,具体如下:
1. 生物原型研究:从生理学、心理学、解剖 学、脑科学、病理学等生物科学方面。研究神经 网络细胞、神经网络、神经系统的生物原型结构 及功能机理。
XI’AN JIAOTONG UNIVERSITY
人工神经网络早期地研究工作可以追溯至二十世纪四十年代。其 发展过程大致可以分为以下几个阶段。
1. 奠基时期
A. 1943年心理学家W.McCulloch和W.Pitts发表文章,总结了生物神 经元的一些基本特性,提出了形式神经元的数学描述与结构方法, 即M-P模型,此模型一直沿用至今,可以说他们是神经网络研究的 先驱。
《人工神经网络讲》课件
![《人工神经网络讲》课件](https://img.taocdn.com/s3/m/3617c670ef06eff9aef8941ea76e58fafbb04549.png)
应用场景
常用于模式分类、预测等静态数据处理任务。
循环神经网络
定义
循环神经网络是一种能够处理序列数据的神经网络,通过记忆单 元实现信息的循环传递。
特点
循环神经网络能够捕捉序列数据中的长期依赖关系,但训练过程 中容易陷入梯度消失或梯度爆炸问题。
应用场景
广泛应用于自然语言处理、语音识别、机器翻译等领域。
03
智能控制
强化学习与神经网络的结合在智能控制领域具有广泛的应用前景,例如
机器人控制、自动驾驶等。通过训练神经网络代理在模拟环境中进行学
习,可以实现高效、安全的智能控制。
深度学习与人工神经网络的结合
深度生成模型
生成模型如变分自编码器(VAE)和生成对抗网络(GAN)可以学习从噪声生成数据的分布,并生成全新的数据样本 。通过结合深度学习和神经网络,可以创建更强大、更灵活的生成模型,用于图像生成、文本生成等领域。
深度神经网络
1 2 3
定义
深度神经网络是指神经网络中包含多个隐藏层的 结构,能够提取更抽象的特征表示。
特点
深度神经网络具有强大的特征学习和分类能力, 但需要大量的训练数据和计算资源,且容易过拟 合。
应用场景
广泛应用于图像识别、语音识别、自然语言处理 等领域。
自组织映射网络
定义
自组织映射网络是一种无监督学 习的神经网络,通过自组织的方 式对输入数据进行降维或聚类。
人工神经网络讲
BIG DATA EMPOWERS TO CREATE A NEW
ERA
• 人工神经网络简介 • 常见的人工神经网络模型 • 人工神经网络的训练方法 • 人工神经网络的应用场景 • 人工神经网络的未来展望
目录
CONTENTS
常用于模式分类、预测等静态数据处理任务。
循环神经网络
定义
循环神经网络是一种能够处理序列数据的神经网络,通过记忆单 元实现信息的循环传递。
特点
循环神经网络能够捕捉序列数据中的长期依赖关系,但训练过程 中容易陷入梯度消失或梯度爆炸问题。
应用场景
广泛应用于自然语言处理、语音识别、机器翻译等领域。
03
智能控制
强化学习与神经网络的结合在智能控制领域具有广泛的应用前景,例如
机器人控制、自动驾驶等。通过训练神经网络代理在模拟环境中进行学
习,可以实现高效、安全的智能控制。
深度学习与人工神经网络的结合
深度生成模型
生成模型如变分自编码器(VAE)和生成对抗网络(GAN)可以学习从噪声生成数据的分布,并生成全新的数据样本 。通过结合深度学习和神经网络,可以创建更强大、更灵活的生成模型,用于图像生成、文本生成等领域。
深度神经网络
1 2 3
定义
深度神经网络是指神经网络中包含多个隐藏层的 结构,能够提取更抽象的特征表示。
特点
深度神经网络具有强大的特征学习和分类能力, 但需要大量的训练数据和计算资源,且容易过拟 合。
应用场景
广泛应用于图像识别、语音识别、自然语言处理 等领域。
自组织映射网络
定义
自组织映射网络是一种无监督学 习的神经网络,通过自组织的方 式对输入数据进行降维或聚类。
人工神经网络讲
BIG DATA EMPOWERS TO CREATE A NEW
ERA
• 人工神经网络简介 • 常见的人工神经网络模型 • 人工神经网络的训练方法 • 人工神经网络的应用场景 • 人工神经网络的未来展望
目录
CONTENTS
人工神经网络课件
![人工神经网络课件](https://img.taocdn.com/s3/m/b0fe177f11661ed9ad51f01dc281e53a59025148.png)
人工神经网络课件
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本章内容
1.1人工神经网络的提出 1.2神经网络的发展 1.3人工神经网络的基础知识
1.1 人工神经网络的提出
人工神经网络(Artificial Neural Networks,简记作ANN),是对人类大 脑系统的一阶特性的一种描述。简单地 讲,它是一个数学模型,可以用电子线 路来实现,也可以用计算机程序来模拟, 是人工智能研究的一种方法。
1.2人工神经网络的发展
2)1984年, J. Hopfield设计研制了后来被人 们称为Hopfield网的电路。较好地解决了著名 的TSP问题,找到了最佳解的近似解,引圣地亚哥分校 (UCSD)的Hinton、Sejnowsky、Rumelhart 等人所在的并行分布处理(PDP)小组的研究 者在Hopfield网络中引入了随机机制,提出所 谓的Boltzmann机。
模型和算法。 4)进一步对生物神经系统进行研究,不断地丰富对
人脑的认识。
1.3人工神经网络的基础知识
1.3.1 生物神经网 1.3.2 人工神经元模型
(Artificial Neuron model) 1.3.3人工神经网络的构成
(structure of ANN) 1.3.4人工神经网络的学习
1.2 人工神经网络的发展
再认识与应用研究期(1991~) 问题:
1)应用面还不够宽 2)结果不够精确 3)存在可信度的问题
1.2 人工神经网络的发展
研究:
1)开发现有模型的应用,并在应用中根据实际运行 情况对模型、算法加以改造,以提高网络的训练速 度和运行的准确度。
2)充分发挥两种技术各自的优势是一个有效方法 3)希望在理论上寻找新的突破,建立新的专用/通用
(learning or training of ANN)
1.3.1 生物神经网
1、构成
2、工作过程:树突 轴突 突触 其他神经元
1.3.1 生物神经网
3、六个基本特征:
1)神经元及其联接; 2)神经元之间的联接强度决定信号传递的强弱; 3)神经元之间的联接强度是可以随训练改变的; 4)信号可以是起刺激作用的,也可以是起抑制作用
基本实现 串行处理;由程序实现 并行处理;对样本数据进行多目标学习;
方式
控制
通过人工神经元之间的相互作用实现控制
基本开发 设计规则、框架、程序;定义人工神经网络的结构原型,通过样本
方法
用 样 本 数 据 进 行 调 试 数据,依据基本的学习算法完成学习——
(由人根据已知的环境 自动从样本数据中抽取内涵(自动适应应
1.2人工神经网络的发展
第二高潮期(1983~1990) 1) 1982年,J. Hopfield提出循环网络,并
将Lyapunov函数作为网络性能判定的 能量函数,阐明了人工神经网络与动力 学的关系,用非线性动力学的方法来研 究人工神经网络的特性,建立了人工神 经网络稳定性的判别依据,指出信息被 存放在网络中神经元的联接上。
• 可用电子线路模拟。
• 人们乐观地认为几乎已经找到了智能的关键。许 多部门都开始大批地投入此项研究,希望尽快占 领制高点。
1.2人工神经网络的发展
反思期(1969~1982)
M. L. Minsky和S. Papert,《Perceptron》, MIT Press,1969年
异或”运算不可表示 二十世纪70年代和80年代早期的研究结果 认识规律:认识——实践——再认识
去构造一个模型)
用环境)
适应领域 精确计算:符号处理, 非精确计算:模拟处理,感觉,大规模数
数值计算
据并行处理
模拟对象 左脑(逻辑思维)
右脑(形象思维)
1.2人工神经网络的发展
萌芽期(20世纪40年代)
人工神经网络的研究最早可以追溯到人类开始 研究自己的智能的时期,到1949年止。
1943年,心理学家McCulloch和数学家Pitts建 立起了著名的阈值加权和模型,简称为M-P模 型。发表于数学生物物理学会刊《Bulletin of Methematical Biophysics》
课程目的和基本要求
作为人工神经网络的入门课程,用于将学 生引入人工神经网络及其应用的研究领域。
介绍人工神经网络及其基本网络模型,使 学生
了解智能系统描述的基本模型 掌握人工神经网络的基本概念、单层网、多层
网、循环网等各种基本网络模型的结构、特点、 典型训练算法、运行方式、典型问题 掌握软件实现方法。
1.2人工神经网络的发展
4 ) 1986 年 , 并 行 分 布 处 理 小 组 的 Rumelhart等研究者重新独立地提出多层 网络的学习算法——BP算法,较好地解 决了多层网络的学习问题。(Paker1982 和Werbos1974年)
国内首届神经网络大会是1990年12月在 北京举行的。
课程目的和基本要求
了解人工神经网络的有关研究思想,从中 学习开拓者们的部分问题求解方法。
通过实验进一步体会有关模型的用法和性 能,获取一些初步的经验。
查阅适当的参考文献,将所学的知识与自 己未来研究课题(包括研究生论文阶段的 研究课题)相结合起来,达到既丰富学习 内容,又有一定的研究和应用的目的。
1.1 人工神经网络的提出
核心:智能的本质是联接机制。 神经网络是一个由大量简单的处理单元组成的
高度复杂的大规模非线性自适应系统 ANN力求从四个方面去模拟人脑的智能行为
物理结构 计算模拟 存储与操作 训练
1.1 人工神经网络的提出
ANN与传统人工智能的比较
项目
基于物理符号系统的传 基于联接主义观点的人工神经网络技术 统的人工智能技术
1949年,心理学家D. O. Hebb提出神经元之间 突触联系是可变的假说——Hebb学习律。
1.2人工神经网络的发展
• 第一高潮期(1950~1968)
• 以Marvin Minsky,Frank Rosenblatt,Bernard Widrow 等 为 代 表 人 物 , 代 表 作 是 单 级 感 知 器 (Perceptron)。
的; 5)一个神经元接受的信号的累积效果决定该神经元
的状态; 6)每个神经元可以有一个“阈值”。