古典概型的经典例题

合集下载

高中数学概率几何概型古典概型精选题目(附答案)

高中数学概率几何概型古典概型精选题目(附答案)

高中数学概率几何概型古典概型精选题目(附答案)一、古典概型1.互斥事件与对立事件的概率(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)当事件A与B互斥时,P(A+B)=P(A)+P(B),当事件A与B对立时,P(A+B)=P(A)+P(B)=1,即P(A)=1-P(B).(3)求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式P(A)=1-P(A)求解.2.古典概型的求法对于古典概型概率的计算,关键是分清基本事件的总数n与事件A包含的基本事件的个数m,有时需用列举法把基本事件一一列举出来,再利用公式P(A)=mn求出事件发生的概率,这是一个形象、直观的好方法,但列举时必须按照某种顺序,以保证不重复、不遗漏.1.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.[解]甲校两名男教师分别用A,B表示,女教师用C表示;乙校男教师用D 表示,两名女教师分别用E,F表示.(1)从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.从中选出的2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,所以选出的2名教师性别相同的概率为P=4 9.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.从中选出的2名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种.所以,选出的2名教师来自同一学校的概率为P=615=25.注:解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.2.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为()A.13 B.110C.25 D.310解析:选D设2个金鸡奖演员编号为1,2,3个百花奖演员编号为3,4,5.从编号为1,2,3,4,5的演员中任选3名有10种挑选方法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种.其中挑选出2名金鸡奖和1名百花奖的有3种:(1,2,3),(1,2,4),(1,2,5),故所求的概率为P=3 10.3.随着经济的发展,人们生活水平的提高,中学生的营养与健康问题越来越得到学校与家长的重视.从学生体检评价报告单了解到我校3 000名学生的体重发育评价情况,得下表:0.15.(1)求x的值;(2)若用分层抽样的方法,从这批学生中随机抽取60名,问应在肥胖学生中抽多少名?(3)已知y ≥243,z ≥243,求肥胖学生中男生不少于女生的概率.解:(1)由题意得,从这批学生中随机抽取1名学生,抽到偏痩男生的概率为0.15,可知x3 000=0.15,所以x =450.(2)由题意,可知肥胖学生人数为y +z =500(人).设应在肥胖学生中抽取m 人,则m 500=603 000.所以m =10.即应在肥胖学生中抽10名.(3)由题意,可知y +z =500,且y ≥243,z ≥243,满足条件的基本事件如下: (243,257),(244,256),…,(257,243),共有15组.设事件A :“肥胖学生中男生不少于女生”,即y ≤z ,满足条件的(y ,z )的基本事件有:(243,257),(244,256),…,(250,250),共有8组,所以P (A )=815.所以肥胖学生中男生不少于女生的概率为815.二、几何概型(1)几何概型满足的两个特点:①等可能性;②无限性. (2)几何概型的概率求法公式P (A )=构成事件A 的区域长度(面积、体积)试验的全部结果长度(面积、体积).4.(1)已知平面区域D 1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )| ⎩⎨⎧|x |<2,|y |<2,D 2={}(x ,y )|(x -2)2+(y -2)2<4.在区域D 1内随机选取一点P ,则点P 恰好取自区域D 2的概率是( )A.14 B.π4 C.π16D.π32(2)把一根均匀木棒随机地按任意点折成两段,则“其中一段长度大于另一段长度2倍”的概率为________.[解析] (1)因区域D 1和D 2的公共部分是一个半径为2的圆的14,从而所求概率P =14×22π42=π16,故选C.(2)将木棒折成两段的折点应位于距木棒两端点小于13木棒长度的区域内,故所求概率为2×13=23.[答案] (1)C (2)23 注:几何概型问题的解题方法(1)由于基本事件的个数和结果的无限性,其概率就不能应用P (A )=mn 求解,因此需转化为几何度量(如长度、面积、体积等)的比值求解.(2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.5.如图,两个正方形的边长均为2a ,左边正方形内四个半径为a2的圆依次相切,右边正方形内有一个半径为a 的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P 1,P 2,则P 1,P 2的大小关系是( )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .无法比较解析:选A 由题意知正方形的边长为2a .左图中圆的半径为正方形边长的14,故四个圆的面积和为πa 2,右图中圆的半径为正方形边长的一半,圆的面积也为πa 2,故P 1=P 2.6.在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( )A.34B.23C.13D.14解析:选A 不等式-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1可化为log 122≤log 12⎝ ⎛⎭⎪⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.7.圆具有优美的对称性,以圆为主体元素构造的优美图案在工艺美术、陶瓷、剪纸等上有着广泛的应用,如图1,图2,图3,图4,其中图4中的3个阴影三角形的边长均为圆的半径,记图4中的阴影部分区域为M ,现随机往图4的圆内投一个点A ,则点A 落在区域M 内的概率是( )A.34πB.334πC.2πD.3π解析:选B 设圆内每一个小正三角形的边长为r , 则一个三角形的面积为12×r ×32r =34r 2, ∴阴影部分的面积为334r 2. 又圆的面积为πr 2,∴点A 落在区域M 内的概率是334r 2πr 2=334π.。

《古典概型的概率计算公式》典型例题剖析

《古典概型的概率计算公式》典型例题剖析

《古典概型的概率计算公式》典型例题剖析题型1 古典概型的判断例1 (1)“在区间[0,10]上任取一个数,这个数恰为5的概率是多少?”这个概率模型是古典概型吗?(2)若一次试验的结果所包含的样本点的个数为有限个,则该试验是古典概型吗?解析(1)不是古典概型,因为在区间[0,10]上任取一个数,其试验结果有无限个,故其样本点有无限个,所以不是古典概型.(2)不一定是古典概型.还必须满足每个样本点出现的可能性相等才是古典概型.答案(1)不是古典概型(2)不一定是古典概型方法技巧判断随机试验是否为古典概型,关键是抓住古典概型的两个特征—有限性和等可能性,二者缺一不可.变式训练1 下列试验是古典概型的为_________(填序号).①求从5个数学学习小组中选出甲、乙两个小组代表学校参加数学竞赛的概率;②掷一枚均匀的硬币3次,求有2次正面向上的概率;③播下10粒种子,求有5粒发芽的概率;④一周中7人每天值班1天,求甲、乙相邻的概率.答案①②④.点拨①②④是古典概型,因为符合古典概型的定义和特征.③不是古典概型,因为不符合等可能性,每一粒种子发芽的概率一般是不相等的.题型2 古典概型概率的计算例2 某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为,x y.奖励规则如下:①若3xy,则奖励玩具一个;②若8xy,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由解析写出试验的样本空间,计算随机事件的样本点个数,应用古典概型的概率计算公式计算概率.答案用数对(,)x y表示儿童参加活动先后记录的数,则样本空间Ω与点集{(,),,14,14}S x y x y x y=∈∈N N∣一一对应.因为S中元素的个数是4416⨯=,所以样本点总数16n=.(1)记“3xy”为事件A,则事件A包含的样本点有5个,即{(1,1),(1,2),(1,3),(2,1),(3,1)}A=.所以5()16P A=,即小亮获得玩具的概率为516.(2)记“8xy”为事件B,“38xy<<”为事件C,则事件B包含的样本点有6个,即{(2,4),(3, 3) ,(3,4),(4,2),(4,3),(4,4)}B=,所以63 ()168 P B==.事件C包含的样本点有5个,即{(1,4),(2,2),(2,3),(3,2),(4,1)}C=,所以5()16P C=.因为35816>, 所以小亮获得水杯的概率大于获得饮料的概率.规律方法 解古典概型问题时,要牢牢抓住它的两个特征和其计算公式.但是这类问题的解法多样,技巧性强,在解决此类题时需要注意以下两个问题:(1)试验必须具有古典概型的两个特征一有限性和等可能性;(2)计算样本点的个数时,须做到不重不漏,常借助坐标系、表格及树状图等列出所有样本点.变式训练2 一个口袋内装有形状、大小相同,编号为123,,a a a 的3个白球和1个黑球b .(1)从中一次性摸出2个球,求摸出2个白球的概率;(2)从中连续取两次,每次取一球后放回,求取出的两个球中恰好有1个黑球的概率.答案 (1)一次性摸出2个球,此试验的样本空间为()()()()()(){}121323123,,,,,,,,,,,a a a a a a a b a b a b Ω=.Ω由6个样本点组成,而且这些样本点的出现是等可能的.用A 表示“摸出2个白球”这一事件,则({)()()}121323,,,,,A a a a a a a =. 事件A 由3个样本点组成,因而31()62P A ==. 有放回地连续取两次,此试验的样本空间为()()()()(){()()()()1112131212223231,,,,,,,,,,,,,,,,,,a a a a a a a b a a a a a a a b a a Ω=()()()()()()}32333123,,,,,,,,,,,,(,)a a a a a b b a b a b a b b .其中小括号左边的字母表示第1次取出的球,右边的字母表示第2次取出的球,Ω由16个样本点组成,而且这些样本点的出现是等可能的.用B 表示“连续取出的两球恰好有1个黑球”这一事件,则()()()()(){)}123123,,,,,,,,,,(,B a b a b a b b a b a b a =,事件B 由6个样本点组成,则63()168P B ==. 规律方法总结1.古典概型是一种最基本的概率模型.判断试验是否为古典概型要紧紧抓住其两个特征:样本点的有限性和等可能性.2.求随机事件A 包含的样本点个数和样本点总数常用的方法是列举法(画树状图和列表),注意要做到不重不漏.3.在应用公式()A m P A n==Ω包含的样本点个数包含的样本点总数时,关键是正确理解样本点与事件A 的关系,从而正确求出m 和n .4.注意“有放回取样”与“不放回取样”对样本点的影响.核心素养园地例 某单位N 名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示,下表是年龄的频数分布表.(1)求正整数,,a b N 的值;(2)现要从年龄较小的第1,2,3组中用分层随机抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人年龄在第3组的概率.解析 (1)根据频率分布直方图的意义并结合表格内的已知数据可以求得,,a b N 的值.(2)先求出这三组的总人数,再根据分层抽样的取样方法求得每组取样的人数.(3)利用列举法列出所有的样本点,共有15个,其中满足条件的样本点有8个,利用古典概型的概率计算公式计算得出结果.答案 (1)由频率分布直方图可知,[25,30)与[30,35)两组的人数相同,所以25a =.且0.08251000.02b =⨯=.总人数252500.025N ==⨯. (2)因为第1,2,3组共有2525100150++=(人),所以利用分层随机抽样的方法在150名员工中抽取6人,第1组被抽取的人数为2561150⨯=,第2组被抽取的人数为2561150⨯=,第3组被抽取的人数为10064150⨯=. 所以年龄在第1,2,3组的人数分别是1,1,4.(3)由(2)可设第1组的1人为A ,第2组的1人为B ,第3组的4人分别为1234,,,C C C C ,则从6人中随机抽取人的所有可能结果为()()1,,,,A B A C ())()()()()()()()()2341234121314,,(,,,,,,,,,,,,,,,,,,A C A C A C B C B C B C B C C C C C C C ()()()232434,,,,,C C C C C C ,共有15个样本点.其中恰有1人年龄在第3组的所有结果为()()()()()()()()12341234,,,,,,,,,,,,,,,A C A C A C A C B C B C B C B C ,共有8个样本点.所以恰有1人年龄在第3组的概率为815. 讲评 概率问题常常与统计问题结合在一起考查.在此类问题中,概率与频率的区别并不是十分明显,通常直接用题目中的频率代替概率进行计算.第(3)题是古典概型问题.解决与古典概型交汇的问题时,应明确相关事件,列举样本点,然后利用古典概型的概率计算公式求解.如果能正确理解题意,分析求解第(1)题与第(2)题,那么可以认为达到数学运算、直观想象、数学建模核心素养水平一的要求;如果能正确求解第(3)题,那么可以认为达到数学建模核心素养水平二与数学运算核心素养水平一的要求.。

典型例题探究(古典概型)

典型例题探究(古典概型)

[典型例题探究]规律发现【例1】连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件的总数; (3)“恰有两枚正面向上”这一事件包含哪几个基本事件? 分析:理解并运用各定义. 解:(1)这个试验的基本事件空间Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)};在一次试验中,所有可能发生的每一个基本结果,都称为一个基本事件.所有基本事件构成的集合称为基本事件空间,基本事件空间常用大写希腊字母Ω表示.(2)基本事件的总数是8. (3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).【例2】甲、乙两人做出拳游戏(锤子、剪刀、布),求: (1)平局的概率; (2)甲赢的概率; (3)乙赢的概率.解决此类题目只要理清思路,按一定的顺序逐个写出产生的各种结果即可.当然要注意不重不漏问题.分析:研究此试验是否为古典概型,如果是,基本事件总数n ,事件A 包含的基本事件数m 各为多少.解:甲有3种不同的出拳方法,每一种出法是等可能的,乙同样有等可能的3种不同出法.一次出拳游戏共有3×3=9种不同的结果,可以认为这9种结果是等可能的.所以一次游戏(试验)是古典概型.它的基本事件总数为9.平局的含义是两人出法相同,例如都出了锤.甲赢的含义是甲出锤且乙出剪,甲出剪且乙出布,甲出布且乙出锤这3种情况.乙赢的含义是乙出锤且甲出剪,乙出剪且甲出布,乙出布且甲出锤这3种情况.设平局为事件A ,甲赢为事件B ,乙赢为事件C . 由图3-2-1容易得到:甲布剪锤O3-2-1 (1)平局含3个基本事件(图中的△); (2)甲赢含3个基本事件(图中的⊙); (3)乙赢含3个基本事件(图中的※). 由古典概率的计算公式,可得 P (A )3193==; P (B )3193==; P (C )3193==. 利用图示法可以简捷明了地求出基本事件数以及事件A 包含的基本事件数,它在概率问题中是一种常的方法.【例3】甲、乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少?(2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率.分析:(1)准确求出基本事件总数n 和事件A 包含的基本事件个数m . (2)可采用列表的方法求m 、n . 解:(1)甲有6种不同的结果,乙也有6种不同的结果,故基本事件总数为6×6=36个.其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定.故共有6×1=6种不同的结果,即概率为61366 . (2)两个玩具同时掷的结果可能出现的情况如下表.要做某一件事,如果需要分“步”进行,则需用乘法计算个数(或种数). 其中共有36种不同情况,但数字之和却只有2,3,4,5,6,7,8,9,10,11,12共11种不同结果.从中可以看出,出现2的只有一种情况,而出现12的也只有一种情况,它们的概率均为361,因为只有甲、乙均为1或均为6时才有此结果.出现数字之和为6的共有(1,5),(2,4),(3,3),(4,2),(5,1)五种情况,所以其概率为365.请同学们思考,出现概率最大的数字和是多少?【例4】从含有两件正品a 1,a 2和一件次品b 1的3件产品中每次任取1件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.如果将“每次取出后不放回”这一条件换成“每次取出后放回”呢?分析:对于较简单的事件可列举出事件总数n ,从而也可找出事件A 包含的基本事件个数.列表法也是求基本事件总数、事件A 包含的基本事件数的常用方法. 解:(1)每次取一件,取后不放回地连续取两次,其一切可能的结果组成的基本事件空间为 求基本事件总数时也常用列举法.Ω={(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次要注意“有放回抽取”和“无放回抽取”在求基本事件总数时取出的产品.Ω由6个基本事件组成,而且可以认为这些基本事件的出现是等可能的.用A 表示“取出的两件中,恰好有一件次品”这一事件,则A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}. 事件A 由4个基本事件组成.因而P (A )3264==. (2)有放回地连续取出两件,其一切可能的结果组成的基本事件空间 Ω={(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1)},由9个基本事件组成.由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}. 事件B 由4个基本事件组成,因而P (B )=94. 的区别.。

高中 古典概型 知识点+例题+练习

高中 古典概型 知识点+例题+练习

教学过程【训练2】(2014·滨州一模)甲、乙两名考生在填报志愿时都选中
了A,B,C,D四所需要面试的院校,这四所院校的面试安排在同
一时间.因此甲、乙都只能在这四所院校中选择一所做志愿,假设
每位同学选择各个院校是等可能的,试求:
(1)甲、乙选择同一所院校的概率;
(2)院校A,B至少有一所被选择的概率.
1.古典概型计算三步曲
第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;
第三,事件A是什么,它包含的基本事物有多少个.
2.确定基本事件的方法
列举法、列表法、树形图法.





析。

古典概型练习题(有详细答案)

古典概型练习题(有详细答案)

古典概型练习题1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是A.3个都是正品B.至少有一个是次品C.3个都是次品D.至少有一个是正品2.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使20x<”是不可能事件③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件.其中正确命题的个数是( )A. 0B. 1C.2D.34.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为()A. 37B.710C.110D.3105.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概率为( )A. 12B.718C.1318D.11186.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女当选的概率为( )A.715B.815C.35D. 17.下列对古典概型的说法中正确的个数是 ( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③基本事件的总数为n,随机事件A包含k个基本事件,则()kP An=;④每个基本事件出现的可能性相等;A. 1B. 2C. 3D. 48.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( )⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 ( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70%10.若事件A 、B 是对立事件,则P(A)+P(B)=________________.11.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。

古典概型例题及解析

古典概型例题及解析

古典概型例题及解析古典概型是概率论中的一种基本概念,用于描述事件发生的可能性。

它适用于试验结果等可能且独立的情况。

下面我将给出一个古典概型的例题,并对其进行解析。

例题,某班级有30名学生,其中10名男生和20名女生。

从中随机选择3名学生,求选出的学生中至少有2名男生的概率。

解析:首先,我们需要计算总的样本空间,即从30名学生中选择3名学生的可能性。

根据组合的计算公式,可以得到:C(30, 3) = 30! / (3! (30-3)!) = 30 29 28 / (3 2 1) = 4060。

其中,C(n, r)表示从n个元素中选择r个元素的组合数。

接下来,我们需要计算选出的学生中至少有2名男生的情况。

根据古典概型的原理,我们可以将这个事件分解为两个互斥事件,选出3名学生中有2名男生和选出3名学生中有3名男生。

选出3名学生中有2名男生的情况:从10名男生中选择2名男生,再从20名女生中选择1名女生。

根据组合的计算公式,可以得到:C(10, 2) C(20, 1) = 10! / (2! (10-2)!) 20! / (1! (20-1)!) = 45 20 = 900。

选出3名学生中有3名男生的情况:从10名男生中选择3名男生。

根据组合的计算公式,可以得到:C(10, 3) = 10! / (3! (10-3)!) = 120。

因此,选出的学生中至少有2名男生的概率为:(900 + 120) / 4060 ≈ 0.249。

所以,选出的学生中至少有2名男生的概率约为0.249,或者可以表示为24.9%。

以上是对古典概型例题的解析,通过计算总的样本空间和符合条件的事件数,我们可以得到所求概率。

希望这个例题的解析能够帮助你理解古典概型的应用。

如果你还有其他问题,欢迎继续提问。

关于古典概型的三个典型例题及其在解题中的应用

关于古典概型的三个典型例题及其在解题中的应用

关于古典概型的三个典型例题及其在解题中的应用古典概型是概率论的基础,又有着很高的实用价值,已成为义务教育阶段数学课程的一项重要内容.结合初中数学活动课的教学实践,通过古典概型应用的若干实例,阐述了问题求解的策略、多种方法以及不同方法的具体适用场合,对古典概型的解题规律做了有益的探究.关键词:古典概型;等概基本事件组;有利场合数;应用实例;求解策略;计算方法古典概型是概率论发展史上最早被人们认识、研究并加以应用的概率模型,是一种特殊的数学模型.古典概型在概率论中具有相当重要的地位,不仅其优越性明显,应用广泛,而且是进一步学习概率不可或缺的内容.一、学习古典概型的重要性1.有利于理解概率的意义.对于古典概型,频率的稳定性比较容易验证,也与同学们已有的生活经验和数学活动经验相吻合,从而概率的存在性和确定性易于领会、理解和接受.2.可帮助我们直接计算随机事件发生的概率,化解大量重复试验带来的耗时费力的矛盾,避免破坏性试验造成的损失.也就是说,不需要做任何试验,只要分析事件的本质,确认是古典概型,就可以直接计算得到概率的精确值,而且是理论值,它与用统计方法得到的结论相一致.3.能够有效地解决生产、生活和科研中的某一类问题.如抽签、摸球、摇号、掷骰子、中奖率、次品率、密码解锁、公平规则设计等.二、古典概型的概念1.等概基本事件组设A1,A2,…,An是一个事件组,如果它具有下列三条性质:(1)A1,A2,…,An发生的机会相同(等可能性);(2)在任一次试验中,A1,A2,…,An至少有一个发生.也就是除此以外,不可能有别的结果(完全性);(3)在任一次试验中,A1,A2,…,An至多有一个发生.也就是说这n个事件是互相排斥的(互不相容性).则称A1,A2,…,An为一个等可能基本事件组,也称为一个等概基本事件组,其中任一事件Ai(i=1,2,…,n)称为基本事件.2.概率的古典定义如果试验的所有可能的结果可以表述为一个等概基本事件组A1,A2,…,An.其中有且仅有m个基本事件包含于随机事件J(即当且仅当这m个事件中任一事件发生时,事件J发生),则比值m/n就称为事件J的概率,记作P(J)=m/n.其中,n是基本事件的总数,m是事件J所包含的基本事件数,通常叫做事件J的有利场合数,或有利结果数.3.古典概型及其计算公式可以根据概率的古典定义来计算随机事件的概率,这样的概率模型称为古典概型.P(J)=m/n是概率古典定义的核心内容,它给出了古典概型中随机事件的概率计算公式.三、求解方法与策略1.古典概型的确认.对所要解决的问题,首先要确定是不是属于古典概型?这主要根据古典概型的两个基本特征,即试验结果是否具有有限性和等可能性.2.判定等可能性的常用依据.(1)客观对称性(如抛掷硬币、掷骰子等试验);(2)某种均衡性(如摸球、抽签等试验). 3.考察等概基本事件组.等概基本事件组是与古典概型相互印证的,也是概率计算的第一步.对某些问题,等概基本事件组不是唯一的,可供选择.一般情况下,其基本事件的总数越少,求解越为简便.4.按照古典概型中随机事件的概率计算公式,先求分母和分子,再求比值,即得所求概率.分母是等概基本事件组中基本事件的总数,分子是相应事件所包含的基本事件数,即该事件的有利场合数.5.运用多种方法实施计算.(1)直接列举法;(2)表格法;(3)树状图法;(4)根据乘法原理;(5)根据排列与组合的基本知识,或兼用乘法原理;(6)根据概率的运算性质.6.不同计算方法的适用场合.(1)计算简单随机事件的概率,可运用列举法(包括列表、画树状图).当试验结果显然或试验步骤只有1个时,可直接列举出所有等可能的结果;当试验步骤只有2个且试验结果较少时,表格法和树状图法都是行之有效的;当试验步骤只有2个但试验结果较多时,宜选用列表的方法,显得整体清晰,类别分明,解题便捷.(2)當试验分为3步(或以上),通常选用树状图法;如果要采用列表法,则需2张(或更多)表格,即分步列表.(3)义务教育阶段,宜使用列举法,帮助计算.(4)初中后阶段,可介绍乘法原理,并实施计算.乘法原理通俗易懂,其思想方法与树状图法是一致的.遵循认知规律,所花时间不多,初中学生很快就能接受并较好地掌握,既可以帮助快捷计算,也可以作为对列举法的一种验算或印证,确保列举的所有等可能结果既不遗漏,也不重复.(5)当试验出现的结果较多时,往往需要运用乘法原理或排列与组合的基本知识加以计算.(6)随着概率知识的进一步学习和加深,运用概率的运算性质进行计算,常常会收到更好的效果.7.转化(化归)策略举例.(1)编号.例如,在摸球试验中,通常将彩色球编号,目的是创设等可能性.(2)等分.例如,在转盘问题上,通常将转盘作等分、涂色处理,就是把无限转化为有限,从而归结为古典概型来求解.8.对比策略举例.(1)放回与不放回,或称有放回与无放回.例如,在摸球试验中常有这两种不同的情形,注意到这二者之间的联系与区别,对比在使用表格时各自呈现的特点,从而掌握其规律.抽签方法指的是不放回的情形.(2)有序与无序,也就是考虑顺序与不考虑顺序.对某些问题,必须考虑顺序;而对有些问题,两种方法都能使用.注意这二者之间的联系与区别.(3)比照.这里是指通过对问题实质的分析,能否与一些常见的实用类型等同看待.例如,某些实际问题可以比照为摸球问题,某些实际问题可比照为抽签问题,等等.问题的实质相同,解决问题的思想方法也相同.四、应用实例与一题多解文中解题过程,在使用排列数或组合数符号计算的等号后面,紧接着写出了详细数字,是为了看清楚,让初中学生在还没有学习排列与组合知识的情况下,能运用乘法原理有效实施计算.为书写简洁起见,同一题中的同一随机事件除首次出现外,均用J表示.例1.经典分金币问题.传说,17世纪中叶,法国贵族公子梅雷参加赌博,和赌友各押赌注32枚金币.双方约定:抛掷1枚质地均匀的硬币,正面朝上,梅雷得1分;反面朝上,赌友得1分,先积满10分者赢全部赌注.赌博进行了一段时间,梅雷已得8分,赌友得7分.这时,梅雷接到通知,要他马上陪国王接见外宾,赌局只好中止.于是,产生了一个问题,应该怎样分配这64枚金币才算公平合理?这就是历史上著名的“分赌注”问题.解:假设赌局继续,那么最多再抛掷硬币4次,就可以分出输赢.不妨用m表示梅雷积1分,用d表示赌友积1分,运用树状图法可得所有等可能的结果共有16种,其中,梅雷先积满10分的有利场合数为11,赌友先积满10分的有利场合数为5.所以P(梅雷赢)=;P(赌友赢)=.于是梅雷应分得64×=44(枚)金币,赌友应分得64×=20(枚)金币.。

古典概型练习题(有详细答案)解析

古典概型练习题(有详细答案)解析

古典概型练习题1.从12个同类产品(其中10个正品,2个次品中任意抽取3个,下列事件是必然事件的是A.3个都是正品B.至少有一个是次品 (C.3个都是次品D.至少有一个是正品2.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使20x<”是不可能事件③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是 (A. 0B. 1C.2D.33.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为5B.25C.35D.45(4.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为A. 37B.710110D.310(5.从标有1,2,3,4,5,6,7,8,9的9纸片中任取2,那么这2 纸片数字之积为偶数的概率为(A. 12B.718C.1318D.186.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为(A.715B.815C.35D. 17.下列对古典概型的说法中正确的个数是 (①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③基本事件的总数为n,随机事件A包含k个基本事件,则(kP An④每个基本事件出现的可能性相等;A. 1B. 2C. 3D. 48.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是(⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 (A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70%10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则(A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件11.下列说法中正确的是 (A.事件A 、B 至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件也是互斥事件D.互斥事件不一定是对立事件,而对立事件一定是互斥事件12.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上1,2,3,现任取3面,它们的颜色与均不相同的概率是 ( A.13 B.19 C.114 D.12713.若事件A 、B 是对立事件,则P(A+P(B=________________.14.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。

古典概型(原卷版)

古典概型(原卷版)

10.1.3 古典概型1 概率对随机大事发生可能性大小的度量〔数值〕称为大事的概率,大事A的概率用P(A)表示.【例】掷一个硬币,大事A为硬币消失的是正面,那么P(A)=12.2 古典概型的特点①有限性:样本空间的样本点只有有限个;②等可能性:每个样本点发生的可能性相等.满意以上两个特征的试验称为古典概型试验,其数学模型称为古典概率概型,简称古典概型.【例1】“在1,2,3,4,5中取2个数,其差为1概率〞属于古典概型,由于试验的结果有限,每种结果发生的可能性相等;【例2】“在区间[1,5]中取2个数,其差为1概率〞不属于古典概型,由于试验的结果有无限种可能;【例3】“贵哥投篮中与否〞不属于古典概型,由于中与不中的可能性相等.3 古典概型大事A的概率(1) 一般地,设试验E是古典概型,样本空间Ω包含n个样本点,大事A包含其中的k个样本点,那么定义大事A的概率P(A)=n(A) n(Ω)其中n(A)和n(Ω)分别表示大事A和样本空间Ω包含的样本点个数.【例】掷一个骰子,大事A=“点数为奇数〞,那么n(Ω)=6,n(A)=3,P(A)=n(A)n(Ω)=36=12.(2) 求解古典概型问题的一般思路①明确试验的条件及要观看的结果,用适当的符号〔字母、数字、数组等〕表示试验的可能结果〔借助图表可以关心我们不重不漏地列出全部的可能结果〕;②依据实际问题情境推断样本点的等可能性;③计算样本点总个数及大事A包含的样本点个数,求出大事A的概率.【题型1】古典概型的概念【典题1】以下概率模型中,古典概型的个数为()①从区间[1,10]内任取一个数,求取到1的概率;②从1,2,…,9,10中任取一个整数,求取到1的概率;③向正方形ABCD内任意投一点P,求点P刚好与点A重合的概率;④抛掷一枚质地不匀称的骰子,求向上点数为3的概率.A.1B.2C.3D.4【稳固练习】1.以下是古典概型的个数有()①1≤x≤9且x∈Z,从x中任取一个数,那么满意2<x≤5的概率;②同时掷两颗骰子,点数和为11的概率;③近一周中有一天降雨的概率;④10个人站成一排,其中甲在乙右边的概率.A.1B.2C.3D.42.以下试验中,为古典概型的是()A.种下一粒种子,他是否发芽B.从规格质量为59千克的产品中任意抽取一袋,其是否合格C.抛掷一枚硬币,观看其消失正面还是反面D.某人射击中靶或不中靶【题型2】求古典概型概率【典题1】如图是一个古典概型的样本空间Ω和大事A和B,其中n(Ω)=24,n(A)=12,n(B)=8,n(A∪B)=16,以下运算结果,正确的有()A.n(AB)=4B.P(AB)=16C.P(A⋃B)=23D.P(A B̅)=12【典题2】假设连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,那么点P落在区域|x−2|+|y−2|⩽2内的概率是.【典题3】将一颗骰子先后抛掷2次,观看向上的点数,大事A:“两数之和为8〞,大事B:“两数之和是3的倍数〞,大事C:“两个数均为偶数〞.(1)写出该试验的根本领件空间Ω,并求大事A发生的概率;(2)求大事B发生的概率;(3)大事A与大事C至少有一个发生的概率.【稳固练习】1.从4名选手甲、乙、丙、丁中选取2人组队参与数学竞赛,其中甲被选中的概率是()A .13B .12C .23D .352.先后抛掷两枚骰子,设消失的点数之和是8,7,6的概率依次为P 1,P 2,P 3,那么( )A .P 1=P 2<P 3B .P 3<P 2<P 1C .P 3=P 1<P 2D .P 3=P 1>P 23.从集合A ={−1,12,2}中随机选取一个数记为k ,从集合B ={12,32,2}中随机选取一个数记为a ,那么a k >1的概率为( ) A .13B .23C .79D .594.抛掷两颗质地匀称的正方体骰子,登记骰子朝上面的点数.设A =“两个点数之和等于8〞,B =“至少有一颗骰子的点数为5〞,那么大事A ∪B 的概率是( ) A .118B .29C .718D .495.数学与文学有很多奇异的联系,如诗中有回文诗:“儿忆父兮妻忆夫〞,既可以顺读也可以逆读,数学中有回文数,如343、12521等,两位数的回文数有11、22、33、…、99共9个,那么三位数的回文数中为偶数的概率是( ) A .19B .29C .13D .496.一个口袋内装有大小相同的6个小球,其中2个红球记为A 1,A 2,4个黑球记为B 1,B 2,B 3,B 4,从中一次摸出2个球.(1)写出这个试验的样本空间及样本点总数; (2)求摸出的2个球颜色不同的概率.7.调查某校高三班级500名同学的肥胖状况,得到下表:从这批同学中随机抽取1名同学,抽到偏瘦女生的概率为0.1.(1)求x的值;(2)假设用分层抽样的方法,从这批同学中随机抽取50名,问应在偏胖同学中抽多少名?(3)y≥46,z≥46,求偏胖同学中男生人数大于女生人数的概率.8.从0,1,2,3这四个数字中,不放回地取两次,每次取一个,构成数对(x,y),x为第一次取到的数字,y为其次次取到的数字.设大事A=“第一次取出的数字是1〞,B=“其次次取出的数字是2〞.(1)写出此试验的样本空间及P(A),P(B)的值;(2)推断A与B是否为互斥大事,并求P(A∪B);(3)写出一个大事C,使A⊆C成立.【A组根底题】1.以下古典概型的说法中正确的个数是()①试验中全部可能消失的根本领件只有有限个;②每个大事消失的可能性相等;③根本领件的总数为n,随机大事A包含k个根本领件,那么P(A)=kn;④每个根本领件消失的可能性相等.A.1B.2C.3D.42.以下试验是古典概型的是()A.口袋中有2个白球和3个黑球,从中任取一球,样本点为{取中白球}和{取中黑球}B.在区间[−1,5]上任取一个实数x,使x2−3x+2>0C.抛一枚质地匀称的硬币,观看其消失正面或反面D.某人射击中靶或不中靶3.掷一枚匀称的硬币两次,大事M={一次正面对上,一次反面对上};大事N={至少一次正面对上}.以下结果正确的选项是()A.P(M)=13,P(N)=12B.P(M)=12,P(N)=34C.P(M)=13,P(N)=34D.P(M)=12,P(N)=124. 任取三个整数,至少有一个数为偶数的概率为( )A.0.125B.0.25C.0.5D.0.8755.(多项选择)甲罐中有2个大小、质地完全一样的小球,标号为1,2,乙罐中有4个大小、质地完全一样的小球,标号为1,2,3,4,现从甲罐、乙罐中分别随机抽取1个小球,记样本空间为Ω,大事A为“抽取的两个小球标号之和大于4〞,大事B为“抽取的两个小球标号之积小于5〞,那么以下结论正确的选项是() A.A与B是互斥大事B.A与B不是对立大事C.Ω=A∪B D.P(A)+P(B)=986.将一枚质地匀称的骰子先后抛掷两次,假设第一次朝上一面的点数为a,其次次朝上一面的点数为b,那么函数y=ax2−2bx+1在(−∞,2]上为减函数的概率是.7.经过某十字路口的汽车,它可能连续直行,也可能向左转或向右转,假如这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为.8.有3个相同的球,分别标有数字1,2,3,从中有放回的随机取两次,每次取1个球.用(x,y)表示试验的样本点,其中x表示第一次取出的根本结果,y表示其次次取出的根本结果.(1)写出这个试验的样本空间Ω;(2)用A表示大事“第一次取出的球的数字是1〞;用B表示大事“两次取出的球的数字之和是4〞,求证:P(AB)=P(A)P(B).9.将一枚骰子先后抛掷2次,观看向上的点数,求:(1)两数之和为6的概率;(2)两数之和是3的倍数的概率;(3)两数之积是6的倍数的概率;(4)以第一次向上的点数为横坐标x、其次次向上的点数为纵坐标y的点(x,y)在圆x2+y2=25的内部的概率.10.将一颗骰子先后抛掷2次,观看向上的点数,大事A:“两数之和为8〞,大事B:“两数之和是3的倍数〞,大事C:“两个数均为偶数〞.(1)写出该试验的根本领件空间Ω,并求大事A发生的概率;(2)求大事B发生的概率;(3)大事A与大事C至少有一个发生的概率.【B组提高题】1.一个正方体,它的外表涂满了红色.在它的每个面上切两刀可得27个小立方块,从中任取两个,其中恰有1个一面涂有红色,1个两面涂有红色的概率为()A.16117B.32117C.839D.1639。

17.1.1 古典概型(含答案)

17.1.1 古典概型(含答案)

【课堂例题】例1.求下列试验的样本空间:(1)投掷一公正骰子,观察出现的点数是奇数或偶数;(2)同时投掷两个公正的骰子,观察出现的点数和;(3)从一副52张扑克牌中抽取4张,观察出现是A的张数.例2.连续投掷一公正骰子4次,观察点数3是否出现,求次试验的样本空间.例3.连续投掷一公正骰子两次,观察出现的点数,令A表示点数和为7的事件,B表示点数6至少出现一次的事件,C表示点数相同的事件,求事件A,B,C.【知识再现】1.随机试验所有可能的结果所成的集合S 称为 ,其中每一个元素都称为一个 ,2.这个集合S 的子集称为事件,其中∅叫做 ,S 叫做 , 基本事件是指只含有 .(选做)3.,A S B S ⊆⊆,若A B =∅,则事件A 与B 为 ;若S B A =ð,则事件A 与B 为 .【基础训练】1.给出下列事件:①明天进行的某场足球比赛的比分是3:1;②同时掷两颗骰子,向上一面的两个点数之和不小于2;③下周一某地的最高气温与最低气温相差10C ︒;④射击一次,命中靶心;⑤当x 为实数时,2440x x ++<.其中,必然事件有 ,不可能事件有 .2.求下列试验的样本空间:(1)从班上抽出一人,观察其生日月份:;(2)从含有15件次品的100件产品中任取5件,观察其中的次品数:;(3)袋中有编号为1~5的5颗球,从中任取两球,观察两球的编号和:.3.设样本空间{1,2,3,4}S =,则S 的不同事件的总数是 .4.样本空间*{(,)|,,1,6,16}S a b a b a b =∈≤≤≤≤N ,事件A 表示a b +为5的倍数, 则事件A = .5.从集合{,,,,}A a b c d e =中取出两个相异字母,试列出:(1)此试验的样本空间;(2)字母a 被选中的事件.提示:此题(1)可以有不同的写法,但(2)必须依据(1)的结果书写 6.将5颗相同的球,任意放入,A B 两个箱子中,可以有空箱子,观察,A B 两个箱子中的球数,求此试验的样本空间.7.{||1|3,}S x x x Z =+≤∈,则S 中:(1)恰含有两个样本点的事件有多少个?(2)至少含有三个样本点的事件有多少个?【巩固提高】8.连续投掷一公正骰子两次,依序出现的点数分别为,a b 而定出二次方程220x ax b ++=,以123,,E E E 分别表示此方程有两个不同的实根、两个相等的实根与两个共轭虚根的事件,分别计算123,,E E E 所含样本点的个数.(选做)9.在有三个子女的家庭中,观察这些子女的性别,且依出生先后,令A 表示至少有一个是男孩的事件,B 表示至少有二位是女孩的事件,求A 与B 的和事件与积事件. (男孩可以用b 表示,女孩可以用g 表示)(选做)10.人类的血型是由检验三种主要抗原,,A B Rh 有或者没有决定的,只有抗原A 和B 的血型分别为A 型和B 型,两者皆有的为AB 型,未具有抗原A 及B 的血型为O 型,是否具有Rh 抗原,则是以+或-标示,例如AB +表示三种抗原都有,而O -表示三种抗原都没有,若以E 表示至少具有抗原A 或B 的血型,F 表示不具有Rh 的血型,求E 与F 的和事件与积事件,其中F 表示F 的对立事件.【温故知新】11.从一副扑克牌(共52张)中,任意抽取5张,且每张被抽中的机会均等,则至少抽到3张A 的不同抽法数为 .【课堂例题答案】例1.(1){奇,偶};(2){2,3,4,5,6,7,8,9,10,11,12};(3){0,1,2,3,4}例2.{(,,,)|,,,{0,1}}S a b c d a b c d =∈例3.{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}A ={(1,6),(6,1),(2,6),(6,2),(3,6),(6,3),(4,6),(6,4),(5,6),(6,5),(6,6)}B = {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}C =【知识再现答案】1.样本空间,样本点2.不可能事件,必然事件,一个样本点的事件3.互斥事件,对立事件【习题答案】1.②;⑤2.(1){1,2,3,4,5,6,7,8,9,10,11,12};(2){0,1,2,3,4,5};(3){3,4,5,6,7,8,9}3.164.{(1,4),(4,1),(2,3),(3,2),(4,6),(6,4),(5,5)}5.(1){,,,,,,,,,}ab ac ad ae bc bd be cd ce de ;(2){,,,}ab ac ad ae注意,也可写成(1){(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)}a b b a a c c a a d d a a e e a b c c b b d d b b e e b c d d c c e e c d e e d (2){(,),(,),(,),(,),(,),(,),(,),(,)}a b b a a c c a a d d a a e e a6.{(5,0),(0,5),(4,1),(1,4),(3,2),(2,3)}S =7.(1)21个 提示:27{4,3,2,1,0,1,2},21S =----=C(2)99个 提示:70127772---C C C8.123()27,()2,()7n E n E n E ===提示:21{(,)|,16,16}E a b a b a b =>≤≤≤≤,22{(,)|,16,16}E a b a b a b ==≤≤≤≤ 23{(,)|,16,16}E a b a b a b =<≤≤≤≤且123()()()36n E n E n E ++=9.{(,,),(,,),(,,)}A B b g g g b g g g b ={(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,)}A B b g g g b g g g b b b g b g b g b b b b b g g g = 提示:{(,,),(,,),(,,),(,,),(,,),(,,),(,,)}A b g g g b g g g b b b g b g b g b b b b b = {(,,),(,,),(,,)}B b g g g b g g g b = 10.{,,,,,,}E F A A B B AB AB O +-+-+-+={,,}E F A B AB +++=提示:{,,,,,,,}S A A B B AB AB O O +-+-+-+-={,,,,,},{,,,}E A A B B AB AB F A B AB O +-+-+-----=={,,,}F A B AB O ++++=11.4560。

古典概型例子

古典概型例子

古典概型例子
1. 比如说掷骰子,这多经典啊!你想想,骰子那六个面,掷出每个点数的机会不就是均等的嘛,这就是典型的古典概型呀!
2. 抽奖的时候也一样呀!那一堆奖券放在箱子里,你随手一抽,和别人抽到大奖的概率理论上是一样的。

哎呀,想想都有点小紧张呢!
3. 抛硬币算吧,正面和反面出现的概率相等,这就好像人生的选择,有时候真不知道会抛出个啥结果来!
4. 从一副牌里抽一张牌,每种牌被抽到的概率也符合古典概型呢。

嘿,可别小瞧这抽牌,有时候能决定游戏的胜负哦!
5. 选彩票号码也是哦,每个号码出现的可能性都一样,虽然中大奖很难,但也是古典概型的体现呀,说不定哪天好运就砸到你头上了呢!
6. 还记得小时候玩的转转盘游戏不?转到不同区域的概率,那也是古典概型呀,当时玩得多开心啊!
7. 抓阄决定顺序也类似呀,大家机会均等,真公平呀,就看谁运气好了!
8. 把不同颜色的球放在一个袋子里,伸手去摸一个球,摸到特定颜色球的概率不就是古典概型嘛,你说神奇不神奇!
9. 猜硬币正反的游戏,多简单但又多能说明古典概型啊。

天哪,生活中到处都是古典概型的例子呀!
我的观点结论就是:古典概型在我们生活中无处不在,很多看似平常的事情都蕴含着它的原理。

例析古典概型中的几种经典问题

例析古典概型中的几种经典问题

ʏ查 霖在日常工作和现实生活中,有大量的随机事件的概率并不一定要通过大量的试验来得到,只要掌握了一些基本情况,就可以知道它们相应的概率,这就是最常见的古典概型㊂古典概型中主要有几种经典的实例:骰子(硬币)问题㊁摸球问题㊁抽数问题㊁格子问题等㊂下面就此举例分析,供大家学习与参考㊂一㊁骰子(或硬币)问题抛掷骰子问题和抛掷硬币问题一样,是古典概型中一种重要的模型㊂它的实质就是抛掷骰子(或硬币)n 次,那么对应的基本事件总数为6n (或2n),根据相应事件所对应的基本事件的个数,结合古典概型的计算公式求得对应的概率㊂例1 将一颗质地均匀的骰子(一种六个面分别标有1,2,3,4,5,6的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率为㊂思路导引:根据抛掷骰子的总数确定古典概型中的基本事件总数,再结合抛掷2次出现向上的点数之和为4的事件的个数,进而利用古典概型的概率公式求解㊂基本事件的总数为6ˑ6=36,点数之和为4的可能结果为(1,3),(2,2),(3,1),共3种情况,所以所求概率P =336=112㊂答案为112㊂解法反思:抛掷骰子或抛掷硬币问题,关键是确定相关事件的个数㊂容易出错的地方是计算遗漏,如本题中的(1,3)和(3,1)是两种不同的结果,不能认为是一种结果㊂二㊁摸球问题摸球问题等同于抽签问题,关键是确定每次所摸的符合题目要求的球的可能结果㊂要注意所摸球的先后顺序和球的颜色与题目条件之间的关系,否则容易出错㊂例2 袋中有4个白球,3个黑球,从中连续任意取出2个球,且每次取出的球不再放回,求第2次取出的球是白球的概率㊂思路导引:本题的基本事件总数是从7个球中有次序地取出2个球的不同取法,即7ˑ6种取法㊂第2次取出的球是白球的可能结果是:若第一次取的是白球,那么第2次是从3个白球中再取出一球,若第一次取的是黑球,那么第2次是从4个白球中再取出一球㊂由题意可得,所求概率P ( 第2次取出的球是白球 )=4ˑ37ˑ6+3ˑ47ˑ6=47㊂解法反思:本题实质上也是抽签问题,按上述规则抽签,每人抽中白球的机会相等,且与抽签次序无关㊂在涉及与抽签及其相关事件时,都可以采用摸球问题的数学模型所对应的古典概型问题来分析与处理㊂三㊁抽数问题抽数问题可以根据条件加以分析,也可以结合排列与组合加以综合分析㊂解答这类问题,关键是确定所有的数的总个数,以及所满足条件的数的个数㊂如果利用排列与组合分析时,一定要注意两者分析时的一致性㊂例3 从1,2, ,9这9个数字中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A.59 B .49C .1121D .1021思路导引:本题基本事件的总数是从9个数中有次序地取出3个数的不同取法,即基本事件总数是9ˑ8ˑ7=504㊂分析3个数的和为偶数的不同情况,确定所包含的基本事件个数,从而得到所求概率㊂基本事件的总数是9ˑ8ˑ7=504㊂这3个数的和为偶数33经典题突破方法高一数学 2023年5月Copyright ©博看网. All Rights Reserved.的可能结果有四种情况:偶奇奇,共有4ˑ5ˑ4=80(种);奇偶奇,共有5ˑ4ˑ4=80(种);奇奇偶,共有5ˑ4ˑ4=80(种);偶偶偶,共有4ˑ3ˑ2=24(种)㊂所以所求概率P =80+80+80+24504=1121㊂应选C ㊂解法反思:本题实质上就是数的一种排列问题,抽出来的2个数所组成的两位数有次序关系,通过计算基本事件的总数以及所求事件的个数,从而得到所求的概率㊂四㊁格子问题格子问题也是一种常见的古典概型问题㊂解答这类问题,关键是确定对应的格子与相应的元素之间的填充关系,有时可以结合树状图㊁列举法加以分析与处理㊂例4 把3个不同的球投入3个不同的盒子内(每盒球数可以不限),计算:(1)无空盒的概率㊂(2)恰有一个空盒的概率㊂思路导引:本题的基本事件总数是把3个不同的球投入3个不同的盒子内的不同放法,题设条件是每盒的球数可以不限,即最多可以投入3个,最少可以投入0个,然后按要求计算出所求事件的个数,从而得到所求概率㊂基本事件的总数是把3个不同的球投入3个不同的盒子内的不同放法,第一个球的放法有3种可能,第二个球的放法也有3种可能,第三个球的放法还是有3种可能,则基本事件总数是3ˑ3ˑ3=27㊂设事件A = 无空盒 ,事件B = 恰有一个空盒 ,3个不同的球分别记为a ,b ,c ㊂(1)事件A 包含的可能结果为a b c ,a c b ,b ac ,b c a ,c a b ,c b a ,共有6种情况,所以P (A )=627=29㊂(2)第一个盒子是空盒的可能结果为( )(a )(b c ),( )(b )(a c ),( )(c )(a b ),( )(b c )(a ),( )(a c )(b ),( )(a b )(c ),共有6种情况,其他两个盒子是空盒的情况与第一个盒子一样,所以事件B 包含的基本事件个数是6ˑ3=18,所以P (B )=1827=23㊂解法反思:本题通过分析3个不同的球与3个不同的盒子之间的关系,计算出基本事件的总数,再根据题设条件,正确分析并列举出所求事件的个数,最后结合古典概型的概率公式求得结果㊂编者的话:在解答古典概型问题时,有时会直接涉及骰子(硬币)问题㊁摸球问题㊁抽数问题㊁格子问题等,有时会涉及与之相关的问题,解题的关键是合理构建对应的古典概率模型,借助古典概型的概率公式来分析与处理,从而实现问题的解决㊂1.连掷两次骰子分别得到点数m ,n ,则向量a =(m ,n )与向量b =(-1,1)的夹角θ>90ʎ的概率是( )㊂A.512 B .712 C .13 D .12提示:连掷两次骰子得到的点数(m ,n )的所有基本事件为(1,1),(1,2), ,(6,6),共36个㊂因为(m ,n )㊃(-1,1)=-m +n <0,所以m >n ,可知符合要求的事件为(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1), ,(5,4),(6,1), ,(6,5),共15个㊂故所求概率P =1536=512㊂应选A ㊂2.已知集合A ={2,3,4,5,6,7},B ={2,3,6,9},在集合A ɣB 中任取一个元素,则它是集合A ɘB 中的元素的概率为( )㊂A.23 B .35 C .37 D .25提示:依题意得A ɣB ={2,3,4,5,6,7,9},即这个试验的样本空间Ω中有7个元素㊂由A ɘB ={2,3,6},可知这个试验包含3个样本点㊂由古典概型的概率公式得所求概率为37㊂应选C ㊂作者单位:江苏省高邮市临泽中学(责任编辑 郭正华)43 经典题突破方法 高一数学 2023年5月Copyright ©博看网. All Rights Reserved.。

古典概型的经典例题

古典概型的经典例题
2、古典概型的两个基本特征是什么
试验结果具有有限性和等可能性
4种
3向上的点数之和是5的概率是多少
P(A)= 4 =1 36 9
解:1掷一个骰子的结果有6种,我们把两个骰子标上记号
1,2以便区分,它总共出现的情况如下表所示:
2号骰子 1号骰子
1 2 3 4 5 6
1
2
3
4
5
6
(1,1) (1,2) (1,3) ((1,1,4)4)(1,5) (1,6) (2,1) (2,2) ((22,,33)) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) ((4,4,1)1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
12 13
3 13
2 13
1
2、小明、小刚、小亮三人正在做游戏,现在要从他们三
人中选出一人去帮助王奶奶干活,则小明被选中的概率
为_____1_,小明没被选中的概率为_____.2 3、抛掷3一1枚均匀的骰子,它落地时,朝上的3 点数为16的概
率为______.朝上的点数为奇数的概率为_______ .朝上
新抛掷,直到结束.
对于方案3:同学们能帮忙制定一个公平的规则吗?
例3 、从含有两件正品a,b和一件次品c的三件产品 中,每次任取一件,取两次;
问:每次取出后不放回,取出的两件产品中 恰有一件次品的概率为多少
Ω={a,b,b,a,a,c,c,a,b,c,c,b}
变式:
P(A)=4=2 63

高中数学人教B版必修3 3.2 素材 《古典概型》例题(人教)

高中数学人教B版必修3 3.2 素材 《古典概型》例题(人教)

答: ⑴共有28个基本事件;
3 ⑶摸出的两个球都是黄球的概率为 28 15 ⑷摸出的两个球一红一黄的概率为 28
5 ⑵摸出两个球都是红球的概率为 14
通过对摸球问题的探讨,你能总结出求古典概型 概率的方法和步骤吗?
想 一 想 ?
例2(掷骰子问题):将一个骰子先后抛掷2次,观察向上的点数。 问:⑴两数之和是3的倍数的结果有多少种? 两数之和是3的倍数的概率是多少? ⑵两数之和不低于10的结果有多少种? 两数之和不低于10的的概率是多少? 第 二 6 7 8 9 10 11 12 次 抛 5 6 7 8 9 10 11 掷 5 6 7 8 9 10 4 后 建立模型 向 3 4 5 6 7 8 9 上 的 2 3 4 5 6 7 8 解:由表可 点 1 2 3 4 5 6 7 数 知,等可能基 1 2 3 4 5 6 本事件总数为 36种。 第一次抛掷后向上的点数
第 二 次 抛 掷 后 向 上 的 点 数
6 5 4 3 2 1
7 6 5 4 3 2 1
8 7 6 5 4 3 2
9 8 7 6 5 4 3
10 9 8 7 6 5 4
11 10 9 8 7 6 5
12 11 10 9 8 7 6
第一次抛掷后向上的点数 ⑵记“两次向上点数之和不低于10”为事件B, 则事件B的结果有6种, 如(4,6)、(6、4)、(5,5)等, 6 1 因此所求概率为: P ( B ) 36 6
例1(摸球问题):一个口袋内装有大小相同的5个红球和3个黄球, 从中一次摸出两个球。 ⑶求摸出的两个球都是黄球的概率;
设“摸出的两个球都是黄球” 为事件B, 则事件B中包含的基本事件有3个, 故
(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(1,7)、(1,8) (2,3)、(2,4)、(2,5)、(2,6)、(2,7)、(2,8)

1-4古典概型

1-4古典概型
4 p4 4 3 2 1 p 4 p10 10 9 8 7
1 . 210
课堂练习 1o 分房问题 将张三、李四、王五3人等可能 地分配到3 间房中去,试求每个房间恰有1人的概 率. 3
(答案 : 3! 3 )
2o 生日问题 某班有20个学生都 是同一年出生的,求有10个学生生 日是1月1日,另外10个学生生日是 12月31日的概率.
4.古典概型的基本模型:球放入杯子模型
(1)杯子容量无限 问题1 把 4 个球放到 3个杯子中去,求第1、2个 杯子中各有两个球的概率, 其中假设每个杯子可 放任意多个球.
3 3 3 3
4个球放到3个杯子的所有放法 3 3 3 3 34 种,

4 种 2
因此所求概率为
3!12! 15! 25 p1 . 4! 4! 4! 5! 5! 5! 91
(2)将3名优秀生分配在同一个班级的分法共有3种,
12! 对于每一种分法,其余12名新生的分法有 2! 5! 5! 种.
因此3名优秀生分配在同一个班级的分法共有
( 3 12! ) ( 2! 5! 5! ) 种, 因此所求概率为
10 10 10 103 ,
A 所包含样本点的个数为
6 6 4 0.144. 故 P( A ) 3 10 课堂练习
6 6 4,
1o 电话号码问题 在7位数的电话号码中,求各 位数字互不相同的概率.
(答案 : p P
(答案 : p 3 6 )
7 10
10 )
7
2o 骰子问题 掷3颗均匀骰子,求点数之和为4的 概率. 3
设A={所取球恰好含m个白球,n个黑球}
样本点总数为

高中数学古典概型-典型例题

高中数学古典概型-典型例题

古典概型-典型例题规律发现【例1】口袋里装有100个球,其中有1个白球和99个黑球,这些球除颜色外完全相同.100个人依次从中摸出一球,求第81个人摸到白球的概率.分析:只考虑第81个人摸球的情况.此法不难理解,因为每个人摸到白球的概率都相等,有100个球,而白球只有1个.解:只考虑第81个人摸球的情况.他可能摸到100个球中的任何一个,这100个球出现的可能性相同,且第81个人摸到白球的可能结果只有1种,因此第81个人摸到白球的概率为1001. 【例2】100个人依次抓阄决定1件奖品的归属,求最后一个人中奖的概率.分析:这是日常生活中常见的问题,中奖与否与先抓后抓没有关系,每个人中奖与不中奖的概率都相同.解:只考虑最后一个人抓阄的情况,他可能抓到100个阄中的任何一个,而他摸到有奖的阄的结果只有一种,因此,最后一个人中奖的概率为1001. 【例3】从含有两件正品a 、b 和一件次品c 的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有一件是次品的概率.(1)每次取出不放回; (2)每次取出后放回.分析:问题的关键在于一种是不放回试验,一种是放回试验.不放回试验,取一件少一件;而放回试验,取一件后,再取一件时情况不变.通过列出所有基本事件解答比较直观易懂.(1)解法一:每次取出后不放回的所有可能结果有(a ,b ),(a ,c ),(b ,a ),(b ,c ),(c ,a ),(c ,b ),其中小括号内左边字母表示第一次取出的产品,右边字母表示第二次取出的产品,共有6个基本事件.其中有一件次品的事件有(a ,c ),(b ,c ),(c ,a ),(c ,b ),共4个基本事件.因此,每次取出后不放回,取出的两件产品中恰有一件次品的概率为3264 . 解法二:取出的两件产品中有一件次品,至于是第一次取出,还是第二次取出可不必考虑,则所有可能结果有(a ,b ),(a ,c ),(b ,c ),共3个基本事件;而恰有一件次品的基本事件有(a ,c ),(b ,c ),共2个.因此结果与解法一相同.(2)解:这是放回试验,第一次被取出的产品,第二次也可能被取出,由于最后关心的是两件产品中有一件次品,因此必须考虑顺序,则所有可能结果有(a ,a ),(a ,b ),(a ,c ),(b ,a ),(b ,b ),(b ,c ),(c ,a ),(c ,b ),(c ,c ),共9个基本事件,其中恰有一件次品的基本事件有(a ,c ),(b ,c ),(c ,a ),(c ,b ),共4若用前3种解法相当烦琐,而用解法4的方法问题则迎刃而解,且比较直观.这是古典概型,每个人中奖的概率相同,与第几个开始抓没有关系.建立概率模型,写出所有的基本事件,再写出某事件所含有的基本事件,问题就比较容易解答.每次摸出一球是有顺序的,(a ,b )与(b ,a )不同.可不考虑顺序,即(a ,b )与(b ,a )可认为相同.结果(a ,a )在第(1)题不可能出现,由于是放回试验,在第(2)题中就有了可能.个基本事件.因此每次取出后放回,取出的两件产品中恰有一件次品的概率为94. 互斥事件规律发现【例1】从一箱产品中随机地抽取一件产品,设事件A =“抽到的一等品”,事件B =“抽到的二等品”,事件C =“抽到的三等品”,且已知P (A )=0.7,P (B )=0.1,P (C )=0.05.求下列事件的概率. (1)事件D =“抽到的是一等品或二等品”; (2)事件E =“抽到的是二等品或三等品”. 分析:事件A 、B 、C 彼此互斥,且D =A +C ,E =B +C .解:(1)∵D =A +C ,且事件A 和C 互斥,P (A )=0.7,P (C )=0.05, ∴P (D )=P (A +C )=P (A )+P (C )=0.7+0.05=0.75. (2)∵事件E =B +C ,且事件B 和C 互斥,P (B )=0.1,P (C )=0.05,∴P (E )=P (B +C )=P (B )+P (C )=0.1+0.05=0.15. 【例2】某学校成立数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止1个小组,具体情况如右图所示.随机选取1个成员:(1)他至少参加2个小组的概率为多少? (2)他只参加1个小组的概率是多少?分析:至少参加2个小组是指参加2个小组或3个小组,其反面是只参加1个小组.解:设事件A =“只参加英语小组”,B =“只参加音乐小组”,C =“只参加数学小组”,D =“只参加英语、音乐小组”,E =“只参加英语、数学小组”,F =“只参加音乐、数学小组”,G =“参加了英语、音乐、数学3个小组”.(1)设事件M =“他至少参加2个小组”,则M =D +E +F +G . ∵3个小组共有60人,且P (D )=607,P (E )=6011,P (F )=6010,P (G )=608, ∴P (M )=P (D +E +F +G )=P (D )+P (E )+P (F )+P (G )=6.0603660860106011607==+++. (2)设事件N =“他参加不超过2个小组”,则N =“他参加3个小组”=G .∴P (N )=1-P (N )=1-P (G )=1-1513608=. 【例3】小明的自行车用的是密码锁,密码锁的四位数码由4个数字2、4、6、8按一定顺序构成.小明不小心忘记了密码中4个数字的顺序,试问:随机地输入由2、4、6、8组成的一个四位数,不能打开锁的概率是多少?分析:密码只有1个,由2、4、6、8能组成多少个不同的四位利用互斥事件有一个发生的概率计算公式,首先确定是否是互斥事件.英语 音乐数学6881010117首先确定某个事件由哪些互斥事件组成,或确定它的对立事件,然后求出各事件的概率.把整个事件彻底分解,所求事件中有几个互斥事件则一目了然.也可用M 的对立事件M 求,即P (M )=1-P (M ).用对立事件求比较简单.“打开锁”与“打不开锁”是对立事件,因此可用“打开锁”的概率表示“打不开锁”的概率.也可直接求P (A )=2423.数呢?用树状图分析知有4×3×2=24(个).解:设事件A =“由2、4、6、8组成的四位数不是开锁密码”,而由2、4、6、8组成的所有四位数有4×3×2=24个,且P (A )=241. ∴P (A )=1-P (A )=1-241=2423,即小明随机地输入由2、4、6、8组成的一个四位数,不能打开锁的概率为2423.【例4】班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等.指定3个男生和2个女生来参与,把5个人分别编号为1、2、3、4、5,其中1、2、3号是男生,4、5号是女生.将每个人的编号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.(1)为了取出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率;(2)为了取出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:①独唱和朗诵是由同一个人表演的概率;②取出的2人不全是男生的概率.分析:为了得到从5张卡片中连续抽取2张的所有结果,利用树状图列出,所有情况直观显现,有助于下面问题的解决.在第(2)题中也可用树状图表示,由于它是放回抽取,也可用有序数组的方式一一列举出.解:(1)首先利用树状图列举所有可能结果如下:1112222333344455555,,,,. 由图可看出所有可能结果数为20.每个结果出现的可能性相同,属古典概型.方法一:设A 1=“2人中恰有1人是女生”,A 2=“2人都是女生”,A =“2人不全是男生”,则A =A 1+A 2.由树状图易知P (A 1)=2012,P (A 2)=202,且A 1与A 2是互斥事件, ∴P (A )=P (A 1+A 2)=P (A 1)+P (A 2)=2012+202=107=0.7,即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.方法二:设事件A =“2人不全是男生”,则A =“2人全是男生”,且P (A )=206=0.3. ∴P (A )=1-P (A )=1-0.3=0.7,即连续抽取2张卡片,取出的2个不全是男生的概率为0.7.方法三:不考虑抽取的顺序,即(a ,b )与(b ,a )相同,则要认真阅读题目内容,明确题目的条件和要求,这是解题的关键第一步. 有多少种不同抽法,可用树状图表示.利用树状图进行列举是常用的方法.也可用有序数组列举:(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20个.通过A 的对立事件A 求P (A ).最后考虑的是结果,可不考虑顺序.所有可能结果有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种.易知这也属于古典概型.设事件A =“2人不全是男生”,则A =“2人全是男生”,且P (A )=103=0.3. ∴P (A )=1-P (A )=1-0.3=0.7,即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.(2)利用有序数组的方式列出所有结果为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1), (4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种.①设事件A =“独唱和朗诵由同一个人表演”,则P (A )=255=0.2,即独唱和朗诵由同一个人表演的概率为0.2.②设事件A =“有放回抽取,取出的两人不全是男生”,则A =“有放回抽取,取出的两人全是男生”,且P (A )=259, ∴P (A )=1-P (A )=1-259=0.64,即有放回地抽取2张卡片,取出的2人不全是男生的概率为0.64.【例5】10件产品中有两件次品,任取两件检验,求下列事件的概率(不放回抽取).(1)至少有1件是次品; (2)最多有1件是次品.分析:可用树状图列出所有结果,从正面回答,不如从反面解决快捷.解:由树状图可知,共有90种可能结果.(1)设事件A =“至少有1件是次品”,则A =“没有次品”,且P (A )=9056. ∴P (A )=1-P (A )=1-45179056=,即至少有1件是次品的概率为4517. (2)设事件A =“最多有1件是次品”,则A =“2件都是次品”,且P (A )=902. ∴P (A )=1-P (A )=1-4544902=,即最多有1件是次品的概率为4544. 这是放回抽取,也可用树状图,如112345也可从正面直接解答,A 中含有两个互斥事件:“2人是一名男生和一名女生”和“2人都是女生”.列树状图要列10组,每组中有9个结果,共90个结果,通过想象可解决问题.也可从不考虑顺序的角度求解.。

体育单招古典概型典型例题

体育单招古典概型典型例题

体育单招古典概型典型例题1、我国历史上在奥运会获得第一枚金牌的是哪个项目? ()[单选题] *A:剑术B:跳水C:射击(正确答案)D:体操2、38.在“三摸二拦赛”的游戏方法中规定:整套动作重复做两遍,然后返回本队(),第二个人再做同样的动作。

[单选题] *A摸第二个人的球B击拍第二个人的头C摸第二个人的肩D击拍第二个人的手掌(正确答案)3、正常人的体温是( )摄氏度。

[单选题] *A:33-34B:33-35C:35-36D:36-37(正确答案)4、篮球动作投篮是靠什么力量最后集中到手腕、手指上将球投出?( ) [单选题] *A、屈膝蹬地力量B、腰腹伸展力量C、手臂力量D、身体各部的综合力量(正确答案)5、167.“二防三”的游戏开始后,各队由一名防守队员到中线处()开始游戏。

[单选题] * A抽签B猜硬币C猜拳D跳起争球(正确答案)6、羽毛球场地一般分为( ) [单选题] *A、前场B、中场C、后场D、以上都是(正确答案)7、.在跳高、跳远、三级跳远比赛中,参赛选手人数达到8人或以上时运动员每次试跳的一般时限为( )。

[单选题] *A、1分钟(正确答案)B、1分30秒C、2分钟D.3分钟8、在网球比赛中,一方先胜6局为胜一盘,双方各得5局时,一方必须净胜( )局才算胜一盘。

[单选题] *A: 1B:2(正确答案)C:3D:59、188.“拍上传球”的游戏的计分方法是:()分为一局,三局两胜。

[单选题] *A 10B 11C 20(正确答案)D 2510、A提高学生带球快速跑的能力(正确答案)B提高学生带球过障碍的能力(正确答案)C提高学生射门的能力D提高学生传球的能力59.“橄榄球赛”的游戏11、2019年女子排球世界杯赛,中国队取得( )连胜的不败战绩,成功卫冕世界杯冠军。

[单选题] *A:十二B:十一(正确答案)C:十D:九12、在跑步练习时,要( ) [单选题] *A.光脚跑步B、口袋装利器C、穿着运动服装(正确答案)D、佩戴首饰13、一般情况下羽毛球比赛中那一方先获得( )分为胜利[单选题] *A 10分B 15分C 21分(正确答案)D 25分14、114.在“犁地接力”的游戏方法中规定:作“犁”的同学准备的姿势是()。

古典概型数学书练习题

古典概型数学书练习题

古典概型数学书练习题
1. 某古典概型的概率空间包含5个基本事件,每个基本事件发生的概
率相等。

求该概率空间中任一基本事件发生的概率。

2. 一个袋子里有10个球,其中3个是红球,7个是蓝球。

随机抽取一个球,求抽到红球的概率。

3. 一个骰子有6个面,每个面上的数字分别为1至6。

投掷一次骰子,求掷出偶数的概率。

4. 一个转盘被平均分成了8个扇区,每个扇区被涂上了不同的颜色。

如果转盘停在红色扇区的概率是1/4,求转盘上红色扇区的数量。

5. 一个古典概型的概率空间有n个基本事件,其中事件A包含m个基
本事件。

求事件A发生的概率。

6. 一个袋子里有5个白球和3个黑球。

随机抽取两个球,求两个球颜
色相同的概率。

7. 一个古典概型的概率空间包含10个基本事件,其中事件B发生包
含3个基本事件。

如果事件B发生的概率是0.6,求该概率空间中基本事件的总数。

8. 一个骰子投掷两次,求两次投掷结果之和为7的概率。

9. 一个古典概型的概率空间包含12个基本事件,每个基本事件发生
的概率相等。

如果事件C发生包含4个基本事件,求事件C发生的概率。

10. 一个袋子里有8个球,其中2个是黄球,3个是绿球,3个是紫球。

随机抽取一个球,求抽到紫球的概率。

古典概型的经典例题.22页PPT

古典概型的经典例题.22页PPT
型的经典例题.
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引例:
1.掷一枚硬币,观察落地后哪一面向上,这个试验的 基本事件空间 Ω ={正,反}.
2.掷一颗骰子,观察掷出的点数,这个事件的基本事 件空间是 Ω ={1,2,3,4,5,6}.
3.一先一后掷两枚硬币,观察正反面出现的情况,则 基本事件空间 Ω ={(正,正),(正,反),(反,正),(反,反)}.
2号骰子 1号骰子
1
1
2
3
4
5
6
(1,1) (1,合2)作(讨1,论3),(概1,念4)深(化1,5) (1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
现3采用抛掷(3骰,1子)的(方3,式2),(决3定,3两)名(运3,动4)员(A3,,B5的)乒(乓3,球6) 比赛发4 球权,(4问,下1)面(几4,种2)方案(4对,3两)名(运4,动4)员(来4说,5,)公(平4,吗6)? 请你说5 明理由(5。,1) (5,2) (5,3) (5,4) (5,5) (5,6)
1
(7)是红色
2
(2)不是7 12 13
若改为每次抽取后放回,概率又为多少?
Ω={(a,b),(b,a),(a,c),(c,a),(b,c),(c,b),(a,a),(b,b),(
P( A ) = 4 9
注意:放回抽样和不放回抽样的区别
例4、(摸球问题):一个口袋内装有大小相同的3个 红球和2个黄球,从中一次摸出两个球。
⑴问共有多少个基本事件; 1 0
⑵求摸出两个球都是红球的概率; P( A) = 3
10
⑶求摸出的两个球都是黄球的概率; P(B)= 1
10
⑷求摸出的两个球一红一黄的概率。P(C)= 6 3
10 5
1、从52张扑克牌(没有大小王)中随机地抽取一张 牌,这张牌出现下列情形的概率:
(1)是7 1 13
(3)是方片 1 4
(5)既是红心又是草花 0
方案1:6抛掷一枚(质6,地1均) 匀(的6,骰2子),(由6,骰3子)的(点6,数4为)奇(数6还,5是)偶(数6决,定6)
方案2:同时抛掷两枚质地均匀的骰子,由两枚骰子的点数之和为奇数
还是偶数决定
方案3:两人各掷一枚质地均匀的骰子.当两枚骰子的点数和是5或6时,
A先发球,当两枚骰子的点数是7或8时,B先发球 ,其余情况重
又因为每个基本事件发生的可能性是相等的,即
P (A 1 ) P (A 2 ) P (A n )
所以
nP(A1)1, P(A1)1n
古典概型概率公式
如果随机事件A包含的基本事件数为m,同样的, 由互斥事件的概率加法公式可得
P( A) m n
所以在古典概型中
事件A包含的基本事件数 P(A)= ————————————
新抛掷,直到结束。
对于方案3:同学们能帮忙制定一个公平的规则吗?
例3 、从含有两件正品a,b和一件次品c的三件产品 中,每次任取一件,取两次;
问:每次取出后不放回,取出的两件产品中 恰有一件次品的概率为多少?
Ω={(a,b),(b,a),(a,c),(c,a),(b,c),(c,b)}
变式:
P(A)=4=2 63
3、互斥事件、事件的并、对立事件
(1)互斥事件:不可能同时发生的两个事件叫做互斥 事件(或称为互不相容事件);
(2)对立事件:不能同时发生且必有一个发生的两
个事件叫做互为对立事件。事件A的对立事件记作_
_
A
_
.
对立事件一定是互斥事件,而互斥事件不一定是对
立事件。
(3)事件的并:由事件A和B至少有一个发生 (即A发生,或B发生,或A、B都发生) 所构成的事件C,称为事件A与B的并(或和)。 记作C=A∪B。
(2)如图所示,射击运动员向一靶心进行射击,这一 试验的结果只有有限个:
命中1环、命中2环、…命中10环
和命中0环(即不命中)。你认为 这是古典概型吗?为什么? 不是
一般地,对于古典概型,如果试验的n个基本事件 为A1,A2,……,An,由于基本事件是两两互斥的, 则由互斥事件的概率加法公式得
P ( A 1 ) P ( A 2 ) P ( A n ) P ( A 1 A 2 A n ) P ( ) 1
4、互斥事件的概率加法公式 假定事件A与B互斥,则
P(A∪B)=P(A)+P(B)。 一般地,如果事件A1,A2,…,An彼此互斥,那么 P(A1∪A2∪…∪An)=P(A1)+P(A2) +…+P(An), 即彼此互斥事件和的概率等于概率的和.
5、对立事件的概率
若事件A的对立事件为A,则 P(A)=1-P(A).
4种Leabharlann (3)向上的点数之和是5的概率是多少?
P(A)= 4 =1 36 9
解:(1)掷一个骰子的结果有6种,我们把两个骰子标
上记号1,2以便区分,它总共出现的情况如下表所示:
2号骰子 1号骰子
1 2 3 4 5 6
1
2
3
4
5
6
(1,1) (1,2) (1,3) ((1,1,4)4)(1,5) (1,6) (2,1) (2,2) ((22,,33)) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) ((4,4,1)1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
刚才三个试古验典的概结果型有哪些特点?
(1)试验中所有可能出现的基本事件只有有限个。 有限性
(2)每个基本事件出现的可能性相等。 等可能性
我们将具有这两个特点的概率模型称为古典概率模型, 简称古典概型。
本课学习目标
1、理解古典概型。 2、会用列举法计算随机事件发生的概率。
(1)向一个圆面内随机地投一个点,如果该点落在圆 内任意一点都是等可能的,你认为这是古典概型吗? 为什么? 不是
试验的基本事件总数
例1. 甲、乙两人作出拳游戏(锤子、剪刀、布),求:
(1)平局的概率;
P( A)
1 3
(2)甲赢的概率; P(B) 1
3
(3)乙赢的概率. P(C) 1
3
乙 锤子 剪刀 布 甲
锤子 Δ


剪刀 ※
Δ




Δ
例2 同时掷两个骰子,计算:
(1)一共有多少种不同的结果? 36种 (2)其中向上的点数之和是5的结果有多少种?
相关文档
最新文档