不等式恒成立能成立恰成立问题经典教程
初升高数学暑假衔接(人教版)高一预习专题强化2 不等式恒成立、能成立问题(教师版)
强化专题2不等式恒成立、能成立问题【方法技巧】在解决不等式恒成立、能成立的问题时,常常使用不等式解集法、分离参数法、主参换位法和数形结合法解决,方法灵活,能提升学生的逻辑推理,数学运算等素养.一、“Δ”法解决恒成立问题(1)如图①一元二次不等式ax2+bx+c>0(a≠0)在R上恒成立⇔一元二次不等式ax2+bx+c>0(a≠0)的解集为(2)如图②一元二次不等式ax2+bx+c<0(a≠0)在R上恒成立⇔一元二次不等式ax2+bx+c<0(a≠0)的解集为二、数形结合法解决恒成立问题结合函数的图象将问题转化为函数图象的对称轴,区间端点的函数值或函数图象的位置(相对于x轴)关系求解.可结合相应一元二次方程根的分布解决问题.三、分离参数法解决恒成立问题通过分离参数将不等式恒成立问题转化为求函数最值问题.四、主参换位法解决恒成立问题转换思维角度,即把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围求解.五、利用图象解决能成立问题结合二次函数的图象,将问题转化为端点值的问题解决.六、转化为函数的最值解决能成立问题能成立问题可以转化为m>y min或m<y max的形式,从而求y的最大值与最小值,从而求得参数的取值范围.【题型目录】一、“Δ”法解决恒成立问题二、数形结合法解决恒成立问题三、分离参数法解决恒成立问题四、主参换位法解决恒成立问题五、利用图象解决能成立问题六、转化为函数的最值解决能成立问题【例题详解】一、“Δ”法解决恒成立问题1.不等式2(2)4(2)120a x a x -+--<的解集为R ,则实数a 的取值范围是()A .{}|12a a -≤<B .{}|12a a -<≤C .{}|12a a -<<D .{}|12a a -≤≤【答案】B【分析】分类讨论2a =和2a ≠两种情况,结合一元二次不等式的解法求解即可.【详解】当2a =时,原不等式为120-<满足解集为R ;当2a ≠时,根据题意得20a -<,且216(2)4(2)(12)0a a ∆=---⨯-<,解得1a 2-<<.综上,a 的取值范围为{}|12a a -<≤.故选:B .2.若关于x 的一元二次不等式23208x kx -+>对于一切实数x 都成立,则实数k 满足()A .{k k <B .{k k <C .{k k <D .{k k >3.(多选)不等式22x bx c x b ++≥+对任意的x ∈R 恒成立,则()A .2440b c -+≤B .0b ≤C .1c ≥D .0b c +≥4.若“0R x ∃∈,20230mx +-≥”是假命题,则实数m 的取值范围是______.二、数形结合法解决恒成立问题1.(多选)若“0x ∀>,都有2210x x λ-+≥”是真命题,则实数λ可能的值是()A .1B .C .3D .②若04λ>时0λ>,如图,由图像可知y 的最小值在对称轴处取得,则4x λ=时,22min184y λλ=-+=此时,022λ<≤,综上,22λ≤,故选:AB .2.已知不等式220x bx c -++>的解集{}13x x -<<,若对任意10x -≤≤,不等式224x bx c t -+++≤恒成立.则t 的取值范围是__________.【答案】{}2-≤t t3.当1≤x ≤2时,不等式x 2+mx +4<0恒成立,求m 的取值范围.三、分离参数法解决恒成立问题1.对任意的(,0)x ∈-∞,210x mx -+>恒成立,则m 的取值范围()A .{}22x x -<<B .{}2x x >C .{}2x x >-D .{}2x x ≤-2.已知命题p :“[]1,4x ∀∈,226ax x ≤+”为真命题,则实数a 的最大值是___.3.写出使不等式()3R x xx++≥∈恒成立的一个实数a 的值__________.4.已知命题“[1,2]x ∃∈-,230x x a +>-”是假命题,则实数a 的取值范围是________.【答案】(,4]-∞-【分析】先求得存在量词命题的否定,然后利用分离常数法,结合二次函数的性质来求得a 的取值范围.【详解】由题意得,“[1,2]x ∀∈-,230x x a -+≤”是真命题,则23a x x ≤-+对[1,2]x ∀∈-恒成立,在区间[]1,2-上,23x x -+的最小值为()()21314--+⨯-=-,所以()2min 34a x x ≤-+=-,即a 的取值范围是(,4]-∞-.故答案为:(,4]-∞-5.函数()22f x ax ax =-,若命题“[]()0,1,3x f x a ∃∈≤-”是假命题,则实数a 的取值范围为___________.四、主参换位法解决恒成立问题1.若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为()A .[]1,4-B .50,3⎡⎤⎢⎥C .[]51,0,43⎡⎤⎢⎥- D .[)51,0,43⎛⎤- ⎥2.若不等式21634x ax x a -≥--对任意2,4a ∈-成立,则x 的取值范围为()A .(][),83,-∞-⋃+∞B .()[),01,-∞+∞C .[]8,6-D .(]0,3【答案】A【分析】由题得不等式2(4)3160x a x x ---+≤对任意[]2,4a ∈-成立,解不等式组22(4)(2)3160(4)43160x x x x x x ⎧----+≤⎨---+≤⎩即得解.【详解】由题得不等式2(4)3160x a x x ---+≤对任意[]2,4a ∈-成立,所以22(4)(2)3160(4)43160x x x x x x ⎧----+≤⎨---+≤⎩,即2252400x x x x ⎧--+≤⎨-+≤⎩,解之得3x ≥或8x ≤-.故选:A【点睛】关键点睛:解答本题的关键是联想到“反客为主”,把“a ”看作自变量,把“x ”看作参数,问题迎刃而解.3.不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是()A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪五、利用图象解决能成立问题1.命题“2R,210x mx mx ∀∈-+>”是假命题,则实数m 的取值范围为()A .01m ≤<B .0m <或1m ≥C .0m ≤或1m ≥D .01m <<【答案】B【分析】先写出原命题的否定,然后结合判别式以及对m 分类讨论来求得m 的取值范围.【详解】命题“2R,210x mx mx ∀∈-+>”是假命题,所以“2R,210x mx mx ∃∈-+≤”是真命题,当0m =时,10≤不成立,不符合题意,所以0m ≠,所以0m <或()2Δ44410m m m m m >⎧⎨=-=-≥⎩,所以0m <或m 1≥.故选:B2.若关于x 的不等式2420x x a ---≤有解,则实数a 的取值范围是()A .{}2a a ≥-B .{}2a a ≤-C .{}6a a ≥-D .{}6a a ≤-【答案】C【分析】直接利用判别式即可研究不等式的解的情况.【详解】若关于x 的不等式2420x x a ---≤有解,则()16420a ∆=++≥,解得6a ≥-.故选:C.3.若命题:p x ∃∈R ,20x ax a ++≤是真命题,则实数a 的取值范围为______.【答案】(][),04,-∞+∞U 【分析】依题意可得二次函数2y x ax a =++与x 轴有交点,转化为判别式的关系进行求解.【详解】已知命题:p x ∃∈R ,20x ax a ++≤是真命题,则二次函数图像2y x ax a =++与x 轴有交点,所以240a a ∆=-≥,解得4a ≥或0a ≤.所以实数a 的取值范围为(][),04,-∞+∞U .故答案为:(][),04,-∞+∞U .4.若命题“R x ∃∈,使22(32)(1)20a a x a x -++-+<”是真命题,则实数a 的取值范围为______.六、转化为函数的最值解决能成立问题1.已知命题“[]01,1x ∃∈-,20030x x a -++>”为真命题,则实数a 的取值范围是()A .(),2-∞-B .(),4-∞C .()2,-+∞D .()4,+∞2.若关于x 的不等式26110x x a -+-≤在区间()2,5内有解,则实数a 的取值范围是()A .[)6,+∞B .()6,+∞C .[)2,+∞D .()2,+∞【答案】C 【分析】由关于x 的不等式26110x x a -+-≤在区间(2,5)内有解,可得2611a x x ≥-+在区间(2,5)内有解,从而a 大于2611x x -+在区间(2,5)的最小值,结合二次函数的性质即可得出结果.【详解】由关于x 的不等式26110x x a -+-≤在区间(2,5)内有解,得2611a x x ≥-+在区间(2,5)内有解,从而a 大于2611x x -+在区间(2,5)的最小值.令2()611f x x x =-+,()2,5x ∈,函数图像抛物线开口向上,对称轴方程为3x =,则()f x 在()2,3上单调递减,在()3,5是单调递增则,min ()(3)918112f x f ==-+=,得2a ≥,所以实数a 的取值范围是[)2,+∞.故选:C .3.若命题“22R,213x x x a a ∀∈--≥-”为假命题,则实数a 的取值范围___________.【答案】1a <或2a >【分析】转化为命题“0R x ∃∈,使得2200213x x a a --<-成立”为真命题,利用不等式有解,左边的最小值小于右边,可求出结果.【详解】因为命题“22R,213x x x a a ∀∈--≥-”为假命题,所以命题“0R x ∃∈,使得2200213x x a a --<-成立”为真命题,因为2200021(1)22x x x --=--≥-,当且仅当01x =时,等号成立,所以20021x x --的最小值为2-,所以232a a ->-,解得1a <或2a >.故答案为:1a <或2a >.4.若关于x 的不等式2420x x a --->在区间[]1,4内有解,则a 的取值范围是_________.【答案】(),2-∞-【分析】将问题转化为242a x x <--在区间[]1,4内有解,从而求得()242f x x x =--的最大值即可得解.【详解】因为2420x x a --->在区间[]1,4内有解,所以242a x x <--在区间[]1,4内有解,令()242f x x x =--,则()f x 开口向上,对称轴为2x =,所以()f x 在[)1,2上单调递减,在(]2,4上单调递增,又()2114125f =-⨯-=-,()2444422f =-⨯-=-,故()max 2f x =-,所以2a <-,即(),2a ∈-∞-.故答案为:(),2-∞-.。
高中数学不等式的恒成立问题教案及练习
不等式的恒成立,能成立,恰成立等问题不等式恒成立问题的常规处理方式:常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)1).恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 2). 能成立问题若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()m i n f x B <.3). 恰成立问题若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .1.设常数a >0,若9x +a 2x ≥a +1对一切正实数x 成立,则a 的取值范围为___.2.已知f (x )=2x x 2+6.若对任意x >0,f (x )≤t 恒成立,求实数t 的范围. 3.当x>1时,不等式恒成立,则实数a 的取值范围是 A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]4.若对任意恒成立,则的取值范围是_____5.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是________. 6.已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.7.已知x >0,y >0,2x +y =1,若2240x y m <+恒成立,则m 的取值范围是8.不等式)(322y x ay y x +≥+对任意R y x ∈,恒成立,则实数a 的最大值为.9.已知正实数满足,且恒成立,则的最大值是________.10. 若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 .0x >1a ≤+a ,x y ln ln 0x y +=22(2)4k x y x y +≤+k。
第二十二讲 绝对值不等式恒成立能成立问题(经典题型+答案)
第二十二讲 绝对值不等式问题 例1:解不等式|23||3|4x x ++->;解:3339|23|3||||3||42222x x x x x x ++-=++++-≥++>;故不等式的解集为R 。
例2:3232≤-++x x解:3337|23|2||||2||32222x x x x x x ++-=++++-≥++>;故不等式的解集为φ。
例3:3232≤---x x解:222|2|3|2|||2||333x x x x x ---=----+根据同小反大原理负号的绝对值较大,属于反大类型,故有最大值2224|2|||2||23333x x x -----≤-=,不等式解集为R 。
秒杀秘籍:绝对值不等式之最值确定之前谈到绝对值不等式,主要谈及不等式的数轴解法,但对于一些不等式如2236x x x +++>-之类的,就需要另外的解法。
定理1:()2f x x a x b x a x b x b a b x b =-+-=-+-+-≥-+-,当x b =时取得最小值a b -; 这个定理可以演绎为:当0n m ≥>时;()f x m x a n x b =-+-()()m x a x b n m x b =-+-+-- ()m a b n m x b ≥-+--;故两个一次绝对值不等式之和能求出最小值,并且在绝对值系数较大的部分为零时取到最小。
定理2:()2f x x a x b x a x b x b a b x b =---=-----≤---,当x b =时取得最大值a b -; 这个定理可以演绎为:当0n m ≥>时;()f x m x a n x b =---()()m x a x b n m x b =------ ()m a b n m x b ≤----;故两个一次绝对值不等式之差能求出最大值,并且在绝对值系数较大的部分为零时取到最大。
定理3:()2f x x a x b x a x b x a x a a b =---=---+-≥---,当x a =时取得最小值a b --; 这个定理可以演绎为:当0n m ≥>时;()f x n x a m x b =---()()m x a x b n m x a =---+-- ()n m x a m a b ≥----;故两个一次绝对值不等式之差能求出最小值,并且在绝对值系数较大的部分为零时取到最小。
高考数学:不等式恒成立、能成立、恰成立问题
不等式恒成立、能成立、恰成立问题一、不等式恒成立问题的处理方法 1、转换求函数的最值:(1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,⇔()f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。
例2、已知(),22x a x x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围;例3、R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.例4、已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间;(3)若对任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围。
2、主参换位法例5、若不等式a 10x -<对[]1,2x ∈恒成立,求实数a 的取值范围例6、若对于任意1a ≤,不等式2(4)420x a x a +-+->恒成立,求实数x 的取值范围例7、已知函数323()(1)132a f x x x a x =-+++,其中a 为实数.若不等式2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围.3、分离参数法(1) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式;(2) 求()f x 在x D ∈上的最大(或最小)值;(3) 解不等式()max()g f x λ≥(或()()ming f x λ≤) ,得λ的取值范围。
高中数学 专题不等式恒成立、能成立、恰成立问题 含答案
不等式恒成立、能成立、恰成立问题一、不等式恒成立问题的处理方法 1、转换求函数的最值:(1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,⇔()f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A 例1、设f(x)=x 2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。
例2、已知(),22xax x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围; 例3、R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.例4、已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间;(3)若对任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围。
2、主参换位法例5、若不等式a 10x -<对[]1,2x ∈恒成立,求实数a 的取值范围例6、若对于任意1a ≤,不等式2(4)420x a x a +-+->恒成立,求实数x 的取值范围例7、已知函数323()(1)132a f x x x a x =-+++,其中a 为实数.若不等式2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围.3、分离参数法(1) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值;(3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。
不等式恒成立、能成立、恰成立问题
1不等式恒成立、能成立、恰成立问题分析及应用庆阳二中 曹久贤恒成立,也就是一个代数式在某一个给定的范围内总是成立的,例如:x²≥0,在实数范围即x∈R 内恒成立能成立,也就是一个代数式在某一个给定的范围内存在值使这个代数式成立,使代数式成立的值有可能是一个,两个或是无穷多个,即个数是不定的,而在这个给定的范围内可以存在使这个代数式不成立的值,也可以不存在这样的值,例如:x+1>0在x>-2上能成立.恰成立,也就是一个代数式在某一个给定的范围内恰好是成立的,或是说这个代数式只有在这个范围内成立,在这个范围外的值都不能使这个代数式成立,而这个代数式里面的值均能使这个代数式成立.例如:(x-1)²=0,在x=1时恰成立.可以说恰成立是恒成立的一种特例,在给定的范围内恰成立肯定是恒成立的,但是恒成立的条件中还有可能符合代数式的在给定的范围之外,即恒成立不一定包含了满足这个代数式的所有的值,但是恰成立包含了满足这个代数的值,并且给定的范围也全都满足这个代数式. 例如:x+1>0在x>-5上是能成立的,在x>-1上是恰成立也是恒成立的.而在-1<x<9上是恒成立但不是恰成立.常见关键词列表如下:多参数恒成立问题举例:例1: 已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若0)()(0],1,1[,>++≠+-∈nm n f m f n m n m 时,若12)(2+-≤at t x f 对于所有的]1,1[],1,1[-∈-∈a x 恒成立,求实数t 的取值范围.二、不等式能成立问题的处理方法:图像法、最值法若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A>; 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.例2、已知不等式ax x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围______例3、若关于x 的不等式32-≤--a ax x 的解集不是空集,则实数a 的取值范围是________.2例4、已知函数()21ln 22f x x ax x=--(0≠a )存在单调递减区间,求a 的取值范围________.三、不等式恰好成立问题的处理方法:韦达定理法、代入法、最值法例5、不等式2ax bx 10++>的解集为1|13x x ⎧⎫-<<⎨⎬⎩⎭则a b ⋅=___________ 例6、已知(),22x ax x x f ++=当[)()x f x ,,1+∞∈的值域是[)+∞,0,试求实数a 的值.例7、已知两函数f(x)=8x 2+16x-k ,g(x)=2x 3+5x 2+4x ,其中k 为实数。
恒成立能成立问题总结(详细)
⎩g (2) < 0 ⎧ ⎩ ,所以 x 的范围是 x ∈ ( 恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。
这类问题在各类考试以及高考中都屡见不鲜。
感觉题型变化无常,没有一个固定的思想 方法去处理,一直困扰着学生,感到不知如何下手。
在此为了更好的准确地把握快速解 决这类问题,本文通过举例说明这类问题的一些常规处理。
一、函数法(一)构造一次函数利用一次函数的图象或单调性来解决对于一次函数 f ( x ) = kx + b (k ≠ 0), x ∈ [m , n ] 有:⎧k > 0 ⎧k < 0 ⎧ f (m ) > 0f ( x ) > 0恒成立 ⇔ ⎨ 或⎨ ⇔⎨; ⎩ f (m ) > 0 ⎩ f (n) > 0 ⎩ f (n) > 0 ⎧ f (m ) < 0f ( x ) < 0恒成立 ⇔ ⎨⎩ f (n) < 0例 1 若不等式 2 x - 1 > mx 2 - m 对满足 - 2 ≤ m ≤ 2 的所有 m 都成立,求 x 的范 围。
解析:将不等式化为: m ( x 2 - 1) - (2 x - 1) < 0 ,构造一次型函数: g (m ) = ( x 2 - 1)m - (2 x - 1)原命题等价于对满足 - 2 ≤ m ≤ 2 的 m ,使 g (m ) < 0 恒成立。
⎧g (-2) < 0 由函数图象是一条线段,知应 ⎨ ⎪-2( x 2 - 1) - (2 x - 1) < 0 ⇔⎨⎪2( x 2 - 1) - (2 x - 1) < 0解得- 1 + 7 1 + 3 - 1 + 7 1 + 3< x < , ) 。
2 2 2 2[ ⎧ b ⎧α≤- ≤ β ⎩ ⎩ 若 f ( x) < 0在[α , β ] 上恒成立 ⇔ ⎪ - 2 a < α 或 ⎪α ≤ - 2 a ≤ β 或 ⎪ - 2 a > β⎧b⎩⎩小结:解题的关键是将看来是解关于 x 的不等式问题转化为以 m 为变量, x 为参数 的一次函数恒成立问题,再利用一次函数的图象或单调性解题。
不等式的恒成立、能成立、恰成立问题
不等式的恒成立、能成立、恰成立问题1.恒成立问题:恒成立问题的基本类型类型1:对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m , 令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x ,所以x 的范围是)231,271(++-∈x 。
类型2:设)0()(2≠++=a c bx ax x f ],[βα∈x(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a b a b f a b 或或 ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f ],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a b a b f a b 或或 例2:若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围. 12m >- 类型3:设)0()(2≠++=a c bx ax x f ,R x ∈(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
不等恒成立解法总结及例题
不等式恒成立、能成立、恰成立问题分析及应用一、不等式恒成立问题的处置方式一、转换求函数的最值:(1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,⇔()f x 的下界大于A(2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A例一、设f(x)=x 2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。
例二、已知(),22x a x x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围;例3、R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫ ⎝⎛∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.二、主参换位法例五、若不等式a 10x -<对[]1,2x ∈恒成立,求实数a 的取值范围例六、若对于任意1a ≤,不等式2(4)420x a x a +-+->恒成立,求实数x 的取值范围3、分离参数法(1) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值;(3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。
适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。
例八、当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .4、数形结合例10 、若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是________例1一、当x ∈(1,2)时,不等式2(1)x -<log a x 恒成立,求a 的取值范围。
不等式恒成立、能成立、恰成立问题分析及应用
不等式恒成立、能成立、恰成立问题分析及应用问题引入:例1 :已知不等式0122>+-ax x 对]2,1[∈x 恒成立,其中0>a .求实数a 的取值范围. 分析:思路1、通过化归最值,直接求函数12)(2+-=ax x x f 的最小值解决,即0)(min >x f 。
思路 2、通过分离变量,转化到)1(21212x x x x a +=+<解决,即min 2)21(xx a +<。
思路3、通过数形结合,化归到ax x 212>+作图解决,即12+=x y 图像在ax y 2=的上方.小结:不等式恒成立问题的处理方法 1、转换求函数的最值:⑴若不等式()A f x <在区间D 上恒成立,则等价于在区间D 上()()min A f x f x <⇔的下界大于A⑵若不等式()B f x >在区间D 上恒成立,则等价于在区间D 上()()max B f x f x >⇔的上界小于B 。
2、分离参数法(1) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值; (3) 解不等式()()maxg f x λ≥ (或()()ming f x λ≤) ,得λ的取值范围。
3.转换成函数图象问题⑴若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;⑵若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;【变式练习:】 对]2,1[∈x ,0122>+-ax x →0123>+-ax x 012ln >+-→ax x 均恒成立,该如何处理?例2:已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;【分析:】1)思路、等价转化为函数0)()(>-x g x f 恒成立,在通过分离变量,创设新函数求最值解决.2)思路、对在不同区间内的两个函数)(x f 和)(x g 分别求最值,即只需满足)()(max min x g x f >即可.简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x xx x ϕ的最小值大于a 即可.对12)(23++=x x x x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .例3 设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x x ab +-≤或x b x a )10(2-+-≤; 方法3:变更主元,0101)(≤-++⋅=b x a x a ϕ,]2,21[∈a简解:方法1:对b x xab x x g x h ++=++=)()(求导,22))((1)(x a x a x x a x h +-=-=',由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴a b a b b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b . 练习题1、设()222f x x ax =-+,当x ∈[-1,+∞]时,都有()f x a ≥恒成立,求a 的取值范围。
高中数学不等式的恒成立、能成立、恰成立问题
专题:不等式的“恒成立”、“能成立”、“恰成立”问题不等式恒成立问题若不等式A x f >)(在区间D 上恒成立,则等价于在区间D 上A x f >min )]([ 若不等式B x f <)(在区间D 上恒成立,则等价于在区间D 上B x f <max )]([当)(x f 的最值取不到时,留意表达要精确,如1)(<x f ,则)(x f m >恒成立⇔1≥m 不等式中能成立...问题(有解) 若在区间D 上存在实数X 使不等式A x f >)(成立,则等价于在区间D 上A x f >max )]([ 若在区间D 上存在实数X 使不等式B x f <)(成立,则等价于在区间D 上B x f <min )]([ 不等式中恰成立问题若不等式A x f >)(在区间D 上恰成立,则等价于不等式A x f >)(的解集为D 若不等式B x f <)(在区间D 上恰成立,则等价于不等式B x f <)(的解集为D 利用一次函数的性质对于一次函数]),[)(0()(n m x a b ax x f ∈≠+=有:①0)(>x f 恒成立⎩⎨⎧>>⇔0)(0)(n f m f ②0)(<x f 恒成立⎩⎨⎧<<⇔0)(0)(n f m f 结论:若一个不等式中有两个变量,假如已知最高次数是一次变量的范围求另一变量范围的问题构造一次函数例:已知1log 6log )1()(323++⋅--=x a x a x x f ,当]1,0[∈x 时,)(x f 恒为正数,求a 的取值范围。
[3331<<a ]变式:当]4,2[∈x 时,若不等式042)2(2<-+-a a x 恒成立,求实数a 的范围()1,2-∈a变式:已知定义在R 上的奇函数()f x 在()0,+∞上是增函数且(1)(2)f ax f x +≤+对随意1,12x ⎡⎤∈⎢⎥⎣⎦都成立,则实数a 的取值范围 (]2,∞- 利用二次函数的判别式对于二次函数),0()(2R x a c bx ax x f ∈≠++=有①0)(>x f 恒成立⎩⎨⎧<-=∆>⇔0402ac b a②0)(<x f 恒成立⎩⎨⎧<-=∆<⇔0402ac b a 结论:若一个不等式中有两个变量,假如已知高次变量的范围求另一变量范围的问题构造高次函数或分别参数。
不等式恒成立、能成立、恰成立问题
不等式恒建立、能建立、恰建立问题一、不等式恒建立问题的办理方法1、变换求函数的最值:( 1)若不等式 f x A 在区间D上恒建立,则等价于在区间 D 上 f xmin A , f ( x) 的下界大于 A( 2)若不等式 f x B 在区间D上恒建立,则等价于在区间 D 上 f xmax B , f ( x) 的上界小于 A例 1、设 f(x)=x 2-2ax+2, 当 x [-1,+ ] 时,都有 f(x) a 恒建立,求 a 的取值范围。
例 2、已知f x x 2 2x a, 对随意 x 1, , f x 0 恒建立,试务实数 a 的取值范围; x例 3 、 R 上的函数 f x 既是奇函数,又是减函数,且当0,时,有2f cos2 2m sinf 2m 2 0 恒建立,务实数m的取值范围.例 4、已知函数f (x) 4 ln 4 ( 0) 在处获得极值3 c,此中 a 、b为常数.()试ax x bx c x x 1 1确立 a 、b的值;( 2)议论函数 f ( x) 的单一区间;( 3)若对随意x 0 ,不等式 f ( x) 2c 2恒建立,求 c 的取值范围。
2、主参换位法例 5、若不等式ax 1 0对 x 1,2 恒建立,务实数 a 的取值范围例 6、若对于随意 a 1 ,不等式x2(a 4) x 4 2a 0 恒建立,务实数x 的取值范围例 7、已知函数a 3 3 2,此中 a 为实数.若不等式2f ( x) x x (a 1)x 1 f ( x) x x a 1对随意3 2 >a(0, ) 都建立,务实数 x 的取值范围.3、分别参数法( 1)将参数与变量分别,即化为g f x (或 g f x )恒建立的形式;( 2)求f x在x D 上的最大(或最小)值;( 3)解不等式g f ( x) max(或 g f x min),得的取值范围。
合用题型:( 1)参数与变量能分别;(2)函数的最值易求出。
不等式恒成立、能成立、恰成立问题经典教程
不等式恒成立、能成立、恰成立问题一、不等式恒成立问题的处理方法1转换求函数的最值:(1) 若不等式f (X )〉A 在区间D 上恒成立,则等价于在区间 D 上f (x )mi n >A ,二f(x)的下界大于A (2) 若不等式f (x )c B 在区间D 上恒成立,则等价于在区间 D 上f (x )max £ B , f(X)的上界小于A 例1、设f(x)=x -2ax+2,当x = [-1,+::]时,都有f(x) _ a 恒成立,求a 的取值范围。
1, • :: , f X - 0恒成立,试求实数a 的取值范围例 3、 R 上的函数f (x )既是奇函数,又是减函数,且当日€ 0丄[时,有 < 2丿2f c o s 2ms Hn f -2^-2 - 0恒成立,求实数 m 的取值范围.例4、已知函数f (x) = ax 4 In x - bx 4-c(x 0)在x = 1处取得极值-3-c ,其中a 、b 为常数.(1)试确 定a 、b 的值;(2)讨论函数f(x)的单调区间;(3)若对任意x 0,不等式f (x p : -2c 2恒成立,求c 的取值范围。
2、主参换位法例5、若不等式ax -V 0对x • 1,2 ]恒成立,求实数 a 的取值范围例6、若对于任意a 兰1,不等式x 2+(a-4)x+4-2a =0恒成立,求实数 x 的取值范围2x 2x ax例7、已知函数f(x^a x^3x 2(a 1)x1,其中a 为实数•若不等式3 2a (0, •:'-)都成立,求实数x 的取值范围.3、分离参数法(1)将参数与变量分离,即化为 F f x (或g ,< f x )恒成立的形式;(2)求f x 在D 上的最大(或最小)值;(3)解不等式g"「:f(X)max (或g ■乞f x min ),得■的取值范围。
适用题型:(1)参数与变量能分离;(2)函数的最值易求出。
5、高频考点:恒成立、能成立、恰成立
高频考点:恒成立、能成立、恰成立 一、不等式恒成立问题的处理方法1、若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,2、若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,二、不等式能成立问题的处理方法1、若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A>;2、若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上()min f x B<.三、不等式恰成立问题的处理方法1、若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ;2、若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D . 补例:(1)(判别式法)若0122>+-ax x 对R x ∈∀恒成立,求实数a 的取值范围;(11<<-a )变式:若0122>+-ax ax 对R x ∈∀恒成立,求实数a 的取值范围;(10<≤a ) (2)若0122>+-ax x 对]2,1[∈∀x 恒成立,求实数a 的取值范围;(1<a )(函数最值法) (分离系数法)变式:若0122<+-ax x 对]2,1[∈∀x 恒成立,求实数a 的取值范围;(45>a )(3)(构造函数法)若]3,1[∈∃a ,使得不等式02)2(2>--+x a ax 成立,求实数x 的取值范围;(21>-<x x 或)(4)(数形结合法)若0122>+-ax x 对R x ∈∀恒成立,求实数a 的取值范围;(11<<-a )变式:当21<<x 时,不等式xax log )1(2<-恒成立,求a 的取值范围;(21≤<a )(5)思辨:已知两个函数2()816f x x x k =+-,32()254g x x x x =++, 其中k 为实数.①对∀[]33,-∈x ,都有)()(x g x f ≤成立,求k 的取值范围;(45≥k )②对∀[]3321,、-∈x x ,都有)()(21x g x f ≤,求k 的取值范围;(141≥k )③对∀)3,3(2-∈x ,总存在)3,3(1-∈x ,使得)()(21x g x f ≤成立,求k 的取值范围;(13≥k )④对∀1x []3,3∈-,总存在[]03,3x ∈-,使得)()(10x f x g =成立,求k 的取值范围.(913k ≤≤) 【分析及解】 ① 令k x x x x f x g x F +--=-=1232)()()(23, 问题转化为0)(≥x F 在 []3,3-∈x 上恒成立,即0)(min ≥x F 即可 ∵)2(61266)(22'--=--=x x x x x F , 由0)('=x F , 得2=x 或 1-=x .∵(3)45(3)9(1)7(2)20F k F k F k F k -=-=--=+=-,,,, ∴45)(min -=k x F , 由045≥-k , 解得 45≥k .②由题意可知当[]33,-∈x 时,都有min max )()(x g x f ≤. 由01616)('=+=x x f 得1-=x.∵k f k f --=--=-8)1(24)3(,, k f -=120)3(, ∴120)(max +-=k x f .由04106)(2'=++=x x x g 得321-=-=x x 或,∵21)3(-=-g , 111)3(=g , 1)1(-=-g , 2728)32(-=-g ,∴21)(min -=x g .则21120-≤-k , 解得141≥k .③∀)3,3(2-∈x ,使得)()(21x g x f ≤成立等价于)()(21x g x f ≤min:-21 存在)3,3(1-∈x ,使得)()(21x g x f ≤成立等价于)(1x f min )(2x g ≤ 所以218-≤--k 所以13≥k④若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,等价于()f x 的值域是()g x 的值域的子集,由②可知, 2()816f x x x k =+-在[]3,3-的值域为[]8,120k k ---+, 32()254g x x x x =++在[]3,3-的值域为[]21,111-,于是,[][]8,12021,111k k ---+⊆-,即满足 821,120111.k k --≥-⎧⎨-+≤⎩解得913k ≤≤。
“恒成立(任意型)、能成立(存在型)、恰成立”三大问题求解参数取值范围的解题切入点-高一版 - 上传版
对任意的x1、x2∈A,恒有a>| f(x1)-f(x2)|成立;等价于a>| f(x1)-f(x2)|max成立,而| f(x1)-f(x2)|max=f(x)max-f(x)min
4.单一函数、双“存在”型
存在x1、x2∈A,使得|f(x1)-g(x2)|<a等价于|f(x1)-g(x2)|min<a,而|f(x1)-g(x2)|min要通过 与 的值域来得到。
等价于在区间D上函数 和图象在函数 图象上方
(4)∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)=f(x)-g(x)﹤0,F(x)max﹤0
等价于在区间D上函数 和图象在函数 图象下方
(5)∀x1∈D,∀x2∈E,均有f(x1) >g(x2)恒成立,则f(x)min>g(x)max
(6)∀x1∈D,∀x2∈E,均有f(x1) <g(x2)恒成立,则f(x)max<g(x)min
=9a-5;
∴g(a)=
(2)设≤a1<a2≤,则g(a1)-g(a2)
=(a1-a2)(1-)>0,
∴g(a1)>g(a2),
∴g(a)在[,]上是减函数.
设<a1<a2≤1,则g(a1)-g(a2)=(a1-a2)(9-)<0,∴g(a1)<g(a2),
∴g(a)在(,1]上是增函数.
∴当a=时,g(a)有最小值.
4.恒成立与存在性的综合性问题
注意恒成立与存在有解的区别与联系
(1)∀x1∈D,∃x2∈E,使得f(x1) >g(x2)成立,则f(x)min>g(x)min
(2)∀x1∈D,∃x2∈E,使得f(x1) <g(x2)成立,则f(x)max<g(x)max
(不)等式的恒,能,恰成立问题(必修1专用)
(不)等式的恒成立,能成立,恰成立等问题一.知识点:1.恒成立问题不等式(),f x A x D >∈恒成立⇔()min ,f x A x D >∈不等式(),f x B x D <∈恒成立⇔()max ,f x B x D <∈.2. 能成立问题(),x D f x A ∃∈>使⇔()max ,f x A x D >∈.(即()A x f >在区间D 上能成立) (),x D f x B ∃∈<使⇔,()min ,f x B x D <∈.(即()B x f <在区间D 上能成立) (),x D f x m ∃∈=使⇔m N ∈,N 为函数(),y f x x D =∈的值域.(即()f x m =在区间D 上能成立)3. 恰成立问题若不等式()A x f >在区间D 上恰成立⇔不等式()A x f >的解集为D . 若不等式()B x f <在区间D 上恰成立⇔不等式()B x f <的解集为D ,二.题型(一).不等式恒成立问题的处理方法1.转换求函数的最值:例1.(2000年,上海卷)已知()[)220,1,x x a f x x x++=≥∈+∞恒成立,试求实数a 的取值范围;【分析及解】本题是一个恒成立问题。
解法一:分类讨论求函数()f x 的最小值。
当0a >时用对勾函数,当0a <时利用函数的单调性。
解法二:()022≥++=xa x x x f 对任意[)+∞∈,1x 恒成立 等价于()022≥++=a x x x ϕ对任意[)+∞∈,1x 恒成立,又等价于1≥x 时,()x ϕ的最小值0≥成立.由于()()112-++=a x x ϕ在[)+∞,1上为增函数, 则()()31min +==a x ϕϕ,所以 3,03-≥≥+a a . 2.主参换位法例2.若对于任意1a ≤,不等式()24420x a x a +-+->恒成立,求实数x 的取值范围解析:()(),13,x ∈-∞+∞ 3.分离参数法(1) 将参数与变量分离,即化为()()g t f x ≥(或()()g t f x ≤)恒成立的形式;(2) 求()f x 在x D ∈上的最大(或最小)值;(3) 解不等式()()max g t f x ≥ (或()()min g t f x ≤) ,得t 的取值范围.适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出.例3.当()1,2x ∈时,不等式240x mx ++<恒成立,求m 的取值范围 .解析: 当(1,2)x ∈时,由240x mx ++<得24x m x +<-.令244()x f x x x x +==+,则易知()f x 在(1,2)上是减函数,所以[1,2]x ∈时()(1)5max f x f ==,则2min 4()5x x +->-∴5m ≤-.4.数形结合例4 .若对任意x R ∈,不等式x ax ≥恒成立,求实数a 的取值范围. 解析:对∀x R ∈,不等式||x ax ≥恒成立则由一次函数性质及图像知11a -≤≤,即11a -≤≤.例5.当()1,2x ∈时,不等式()21log a x x -<恒成立,求a 的取值范围. 解:1<a ≤2.二.(不)等式能成立问题的处理方法1.转换求函数的最值:例1 若关于x 的不等式23x ax a --≤-的解集不是空集,求实数a 的取值范围.解析:是不等式能成立的问题. 设()a ax x x f --=2.则关于x 的不等式32-≤--a ax x 的解集不是空集()3-≤⇔x f 在()+∞∞-,上能成立()3min -≤⇔x f ,即(),3442min -≤+-=a a x f 解得6a ≤-或2a ≥2.分离参数法求值域例 若关于x 的二次方程()2110x m x +-+=在区间[]0,2上有解,求实数m 的取值范围.解析:解法一:利用根的分布来做.解法二:分离参数法axy x由题意知0x ≠,所以原题等价于()(]2110,0,2x m x x +-+=∈有解,即(]11,0,2m x x x-=+∈有解, 而()(]1,0,2x x x xϕ=+∈的值域是[)2,+∞,所以[)12,m -∈+∞ 解得1m ≤-.三.不等式恰成立问题的处理方法()0f x >在区间[],a b 上恰成立,1. ()21f x ax bx =++恰在区间11,3⎛⎫- ⎪⎝⎭上为正,求,a b解:3,2a b =-=- .2.已知函数()()()lg ,10x x f x a b a b =->>>,是否存在实数,a b ,使得()f x 恰在()1,+∞上取正值,且()3lg 4?f =若存在,求出,a b 的值,若不存在,说明理由.解:假设存在这样的实数,a b .∵()f x 恰在()1,+∞上取正值∴()0f x >的解集是()1,+∞又因为()()lg x x f x a b =-在()0,+∞上单调递增,所以()10f =. 由()()103lg 4f f =⎧⎪⎨=⎪⎩可得331410a b a b a b -=⎧⎪-=⎨⎪>>>⎩,解得12a b ⎧=⎪⎪⎨⎪=⎪⎩ ?※3. (2000年,上海卷) 已知(),22xa x x x f ++=当[)()x f x ,,1+∞∈的值域是[)+∞,0,试求实数a 的值.【分析及解】是一个恰成立问题,?这相当于()022≥++=xa x x x f 的解集是[)+∞∈,1x . 当0≥a 时,由于1≥x 时,()3222≥++=++=xa x x a x x x f ,与其值域是[)+∞,0矛盾, 当0<a 时, ()222++=++=xa x x a x x x f 是[)+∞,1上的增函数. 所以,()x f 的最小值为()1f ,令()01=f ,即.3,021-==++a a解析:当0<a 时函数单调才会是恰成立问题. 练一练:1.已知f (x )=m (x -2m )·(x +m +3),g (x )=2x -2.若∀x ∈R ,f (x )<0与g (x )<0二者至少一个成立,则m 的取值范围是__(-4,0)________.解析:易知1x <时()0g x <,故只需1x ≥时()0f x <即可. 显然0m ≥不满足条件;当0m <时,对称轴302m x -=<,故只需(1)0f <,解得40m -<<. 2.(2005年春,北京理) 若关于x 的不等式02>--a ax x 的解集为),(+∞-∞,则实数a 的取值范围是 ;若关于x 的不等式32-≤--a ax x 的解集不是空集,则实数a 的取值范围是 .【分析及解】第一个填空是不等式恒成立的问题. 设()a ax x x f --=2.则关于x 的不等式02>--a ax x 的解集为),(+∞-∞ ()0>⇔x f 在()+∞∞-,上恒成立()0min >⇔x f ,即(),0442min >+-=a a x f 解得04<<-a 第二个填空是不等式能成立的问题. 设()a ax x x f --=2.则 关于x 的不等式32-≤--a ax x 的解集不是空集 ()3-≤⇔x f 在()+∞∞-,上能成立()3min -≤⇔x f ,即(),3442min -≤+-=a a x f 解得6-≤x 或2≥x .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式恒成立、能成立、恰成立问题一、不等式恒成立问题的处理方法 1、转换求函数的最值:(1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,⇔()f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A 例1、设f(x)=x 2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。
例2、已知(),22xax x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围; 例3、R上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.例4、已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间;(3)若对任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围。
2、主参换位法例5、若不等式a 10x -<对[]1,2x ∈恒成立,求实数a 的取值范围例6、若对于任意1a ≤,不等式2(4)420x a x a +-+->恒成立,求实数x 的取值范围例7、已知函数323()(1)132a f x x x a x =-+++,其中a 为实数.若不等式2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围.3、分离参数法(1) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值;(3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。
适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。
例8、当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .例9、已知函数321()33f x ax bx x =+++,其中0a ≠(1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a ,且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围.4、数形结合例10 、若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是________例11、当x ∈(1,2)时,不等式2(1)x -<log a x 恒成立,求a 的取值范围。
二、不等式能成立问题的处理方法若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <. 例12、已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围______例13、若关于x 的不等式32-≤--a ax x 的解集不是空集,则实数a 的取值范围是 .例14、已知函数()21ln 22f x x ax x =--(0≠a )存在单调递减区间,求a 的取值范围三、不等式恰好成立问题的处理方法例15、不等式2ax bx 10++>的解集为1|13x x ⎧⎫-<<⎨⎬⎩⎭则a b ⋅=___________例16、已知(),22xax x x f ++=当[)()x f x ,,1+∞∈的值域是[)+∞,0,试求实数a 的值.例17、已知两函数f(x)=8x 2+16x-k ,g(x)=2x 3+5x 2+4x ,其中k 为实数。
(1)对任意x ∈[-3,3],都有f (x)≤g(x)成立,求k 的取值范围; (2)存在x ∈[-3,3],使f (x)≤g(x)成立,求k 的取值范围;(3)对任意x 1、x 2∈[-3,3],都有f (x 1)≤g(x 2),求k 的取值范围。
不等式恒成立、能成立、恰成立问题专项练习(请做在另外作业纸上)1、若不等式2(1)(1)3(1)0m x m x m +--+-<对任意实数x 恒成立,求实数m 取值范围2、已知不等式22622kx kx x x ++>++对任意的x R ∈恒成立,求实数k 的取值范围 3、设函数329()62f x x x x a =-+-.对于任意实数x ,()f x m '≥恒成立,求m 的最大值。
4、对于满足|p|≤2的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。
5、已知不等式[]22023x x a x -+>∈对任意实数,恒成立。
求实数a 的取值范围。
6、对任意的[]2,2a ∈-,函数2()(4)42f x x a x a =+-+-的值总是正数,求x 的取值范围7、 若不等式2log 0m x x -<在10,2⎛⎫⎪⎝⎭内恒成立,则实数m 的取值范围 。
8、不等式)4(x x ax -≤在]3,0[∈x 内恒成立,求实数a 的取值范围。
9、不等式220kx k +-<有解,求k 的取值范围。
10、对于不等式21x x a -++<,存在实数x ,使此不等式成立的实数a 的集合是M ;对于任意[05]x ∈,,使此不等式恒成立的实数a 的集合为N ,求集合M N ,.11、①对一切实数x,不等式32x x a --+>恒成立,求实数a 的范围。
②若不等式32x x a --+>有解,求实数a 的范围。
③若方程32x x a --+=有解,求实数a 的范围。
12、 ①若x,y 满足方程22(1)1x y +-=,不等式0x y c ++≥恒成立,求实数c 的范围。
②若x,y 满足方程22(1)1x y +-=,0x y c ++=,求实数c 的范围。
13、设函数432()2()f x x ax x b x R =+++∈,其中,a b R ∈.若对于任意的[]22a ∈-,,不等式()1f x ≤在[]11-,上恒成立,求b 的取值范围.14、设函数321()(1)4243f x x a x ax a =-+++,其中常数1a >,若当0x ≥时,()0f x >恒成立,求a 的取值范围。
15、已知向量=(2x ,x+1),= (1-x ,t)。
若函数x f ⋅=)(在区间(-1,1)上是增函数,求t 的取值范围。
不等式恒成立、能成立、恰成立问题 参考答案 例1、解:a 的取值范围为[-3,1]例2、解:等价于()022≥++=a x x x ϕ对任意[)+∞∈,1x 恒成立,又等价于1≥x 时,()x ϕ的最小值0≥成立.由于()()112-++=a x x ϕ在[)+∞,1上为增函数,则()()31min +==a x ϕϕ,所以 3,03-≥≥+a a 例3、解:由()()022sin 2cos 2>--++m f m f θθ得到:()()22sin 2cos 2--->+m f m f θθ因为()x f 为奇函数,故有()()22sin 2cos 2+>+m f m f θθ恒成立,又因为()x f 为R 减函数,从而有22sin 2cos 2+<+m m θθ对⎪⎭⎫⎝⎛∈2,0πθ恒成立设t =θsin ,则01222>++-m mt t 对于()1,0∈t在设函数()1222++-=m mt t t g ,对称轴为m t =. ①当0<=m t 时,()0120≥+=m g ,即21-≥m ,又0<m ∴021<≤-m (如图1)②当[]1,0∈=m t ,即10≤≤m 时,()012442<+-=∆m m m ,即0122<--m m ,∴2121+<<-m ,又[]1,0∈m ,∴10≤≤m (如图2)③当1>=m t 时,()0212211>=++-=m m g 恒成立.∴1>m (如图3)故由①②③可知:21-≥m .例4、解:(1)(2)略(3)由(2)知,)(x f 在1=x 处取得极小值c f --=3)1(,此极小值也是最小值.要使)0(2)(2>-≥x c x f 恒成立,只需223c c -≥--.即0322≥--c c ,从而0)1)(32(≥+-c c . 解得3≥c 或1-≤c . ∴c 的取值范围为),3[]1,(+∞--∞Y . 例8、解析: 当(1,2)x ∈时,由240x mx ++<得4x m x +<-.令44()x f x x x x +==+,则易知()f x 在(1,2)上是减函数,所以[1,2]x ∈时()(1)5max f x f ==,则2min 4()5x x+->-∴5m ≤-. 例9、解析:(1)2a b >(2))(x f 在区间(0,1]上单调递增⇔2'()210f x ax bx =++≥在(0,1]上恒成立⇔1,(0,1]22ax b x x ≥--∈恒成立⇔max 1()22ax b x≥--,(0,1]x ∈。
设1()22ax g x x =--,2221()1'()222a x a a g x x x-=-+=-,令'()0g x =得x =x =舍去),当1>a 时,101a <<,当x ∈时'()0g x >,1()22ax g x x =--单调增函数;当x ∈时'()0g x <,1()22ax g x x =--单调减函数, ∴ max ()g x=g =∴b ≥ 当01a <≤1≥,此时'()0g x ≥在区间(0,1]恒成立,所以1()22ax g x x =--在区间(0,1]上单调递增,∴max ()g x =1(1)2a g +=-,∴12a b +≥-。
综上,当1>a 时, b ≥ 当01a <≤时,12a b +≥-例10、解析:对∀x R ∈,不等式||x ax ≥恒成立则由一次函数性质及图像知11a -≤≤,即11a -≤≤。
例11、解:1<a ≤2.例12、解:1a >例13、第二个填空是不等式能成立的问题. 设()ax x x f -=23-≤-a ax 的解集不是空集()3-≤⇔x f 在()+∞∞-,上能成立()3min -≤⇔x f 即(),3442min -≤+-=a a x f 解得6a ≤-或2a ≥ 例14、解:x ax x x h b 221ln )(,22--==时,则.1221)(2x x ax ax x x h -+-=--=' 因为函数()h x 存在单调递减区间,所以()0h x '<有解.由题设可知,()x h 的定义域是()+∞,0 ,而()0<'x h 在()+∞,0上有解,就等价于()0<'x h 在区间()+∞,0能成立,即xx a 212->, ()+∞∈,0x 成立, 进而等价于()x u a min >成立,其中()x xx u 212-=. 由()x xx u 212-=1112-⎪⎭⎫⎝⎛-=x 得,()1min -=x u .于是,1->a ,由题设0≠a ,所以a 的取值范围是()()+∞-,00,1Y例15、解:6例16、解:是一个恰成立问题,这相当于()022≥++=xax x x f 的解集是[)+∞∈,1x . 当0≥a 时,由于1≥x 时, ()3222≥++=++=xax x a x x x f ,与其值域是[)+∞,0矛盾, 当0<a 时, ()222++=++=xax x a x x x f 是[)+∞,1上的增函数,所以,()x f 的最小值为()1f ,令()01=f ,即.3,021-==++a a 例17、解析:(1)设h(x)=g(x)-f(x)=2x 2-3x 2-12x+k ,问题转化为x ∈[-3,3]时,h(x)≥0恒成立,故h min (x)≥0.令h′ (x)=6x 2-6x-12=0,得x= -1或2。