四边形知识题型总结
苏教二年级数学-四边形知识点及题型汇总
认识图形一、按要求分一分.1.把下面的图形分成三角形.2.把下面的图形分成两个四边形.3.把下面的图形分成一个三角形、一个四边形.二、在下面的点子图上画一个平行四边形和一个正方形.·········································································································1. 右图中有()个三角形;有()个平行四边形.2.下列图形中;是平行四边形的有(填序号).(1)(2)(3(4)(5)(6)(7)3.按要求在每个图形上画一条线;把它分成两个指定的图形.(1)两个三角形(2)一个三角形和一个五边形(3)两个四边形4.想一想;填一填.摆一个三角形至少要用()根小棒;摆一个四边形至少要用()根小棒;摆二个三角形至少要用()根小棒;摆二个四边形至少要用()根小棒.5.数一数;下面的图形中有()个四边形.6.剪一剪.(1)在一张正方形的纸片上剪去一个三角形;有()种剪法.1、长方形的对边(),四个角都是()。
最新八下平行四边形所有知识点总结和常考题型练习题
平行四边形知识点一、四边形相关1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n 边形的内角和等于∙-)2(n 180°; 多边形的外角和定理:任意多边形的外角和等于360°。
2、多边形的对角线条数的计算公式设多边形的边数为n ,则多边形的对角线条数为2)3(-n n 。
3.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半. 二、平行四边形1.定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义既是平行四边形的一条性质,又是一个判定方法.2.平行四边形的性质:平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的.(1)角:平行四边形的对角相等,邻角互补; (2)边:平行四边形两组对边分别平行且相等; (3)对角线:平行四边形的对角线互相平分;(4)面积:①S ==⨯底高ah ; ②平行四边形的对角线将四边形分成4个面积相等的三角形. 3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形 ②方法1:两组对边分别相等的四边形是平行四边形 ③方法2:一组对边平行且相等的四边形是平行四边形 ④方法3:两组对角分别相等的四边形是平行四边形 ⑤方法4: 对角线互相平分的四边形是平行四边形 三、矩形1. 矩形定义:有一个角是直角的平行四边形是矩形。
2. 矩形性质①边:对边平行且相等; ②角:对角相等、邻角互补,矩形的四个角都是直角; ③对角线:对角线互相平分且相等; ④对称性:轴对称图形(对边中点连线所在直线,2条). 3. 矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形; ②对角线相等的平行四边形; ③四个角都相等 识别矩形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的任意一个角为直角. ② 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的对角线相等. ③ 说明四边形ABCD 的三个角是直角. 4. 矩形的面积① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab . 四、菱形1. 菱形定义:有一组邻边相等的平行四边形是菱形。
四边形题型归纳
A B CD B ()E A BC DE F 2()1()F ED ABC AB CD EF四边形题型归纳题型一:翻折问题(特殊四边形的折叠问题)1、沿特殊四边形的对角线折叠【例1】如图,矩形纸片ABCD ,AB=2, ∠ADB=30°,沿对角线BD 折叠(使△ABD 和△EBD 落在同一平面内),则A 、E 两点间的距离为____________.2、沿特殊四边形的对称轴折叠【例2】如图,已知矩形ABCD 的边AB=2,AB≠BC ,矩形ABCD 的面积为S ,沿矩形的对称轴折叠一次得到一个新的矩形,则这个新矩形对角线长为__________.3.使特殊四边形的对角顶点重合折叠【例3】如图,梯形纸片ABCD , ∠B=60°,AD ∥BC ,AB=AD=2,BC=6,将纸片折叠,使点B 与点D 重合,折痕为AE ,则CE=___________.4.使特殊四边形一顶点落在其一边上而折叠【例4】如图,折叠矩形的一边CD ,使点C 落在AB 上的点F 处,已知AB=10cm , BC=8cm ,则EC 的长为________.KE FGBDACPQABCDN MEE 'A 'ABC DD 'C 'A BCD E F 5.使特殊四边形两顶点落在其一边上而折叠【例5】如图,在梯形ABCD 中,DC ∥AB ,将梯形对折,使点D 、C 分别落在AB 上的D ′、C ′处,折痕为EF ,若CD=3cm ,EF=4cm ,则AD ′+BC ′=________cm.6.使特殊四边形一顶点落在其对称轴上而折叠(1)【例6】如图,已知EF 为正方形ABCD 的对称轴,将∠A 沿DK 折叠,使它的顶点A 落在EF 上的G 点处,则∠DKG=_____.7.使特殊四边形一顶点落在其对称轴上而折叠(2)【例7】如图,有一块面积为1的正方形ABCD ,M 、N 分别为AD 、BC 边的中点,将C 点折至MN 上,落在点P 的位置,折痕为BQ ,连结PQ.(1)求MP 的长度; ⑵求证:以PQ 为边长的正方形的面积等于13.8.两次不同方式的折叠【例8】如图,将一矩形形纸片按如图方式折叠,BC 、BD 为折痕,折叠后AB 与EB 在同一条直线上,则∠CBD 的度数为( )A.大于90°B.等于90°C.小于90°D.不能确定【变式1】在矩形ABCD中AB=4,BC=3,按下列要求折叠,试求出所要求结果(1)如图,把矩形ABCD沿着对角线BD折叠得△EBD,BE交CD于点F,求S△BFD;(2)如图,折叠矩形ABCD,使AD与对角线BD重合,求折痕DE的长;(3)如图,折叠矩形ABCD,使点D与点B重合,求折痕EF的长;(4)如图,E是AD上一点,把矩形ABCD沿着BE折叠,若点A恰好落在CD上的点F处,求AE的长。
中点四边形模型(4种题型)-2023年新九年级数学核心知识点与常见题型(北师大版)(解析版)
重难点专项突破:中点四边形模型(4种题型)【知识梳理】【考点剖析】题型一、利用中点求长度例1.如图,某花木场有一块四边形ABCD的空地,其各边的中点为E、F、G、H,测得对角线AC=11米,BD=9米,现想用篱笆围成四边形EFGH场地,则需篱笆总长度是()A.20米B.11米C.10米D.9米【答案】A【解析】∵E 、F 、G 、H 分别为四边形ABCD 各边的中点,∴EF 、FG 、GH 、HE 分别为△ABC 、△BCD 、△CDA 、△ABD 的中位线, ∴EF =12AC =112(米),FG =12BD =92(米),HG =12AC =112(米), HE =12BD =92(米),∴四边形EFGH 总长度=EF +FG +GH +HE =20(米), 故选:A .【变式1】在四边形ABCD 中,8AC BD ==,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则22EG FH +的值为( )A .18B .36C .48D .64【答案】D【解析】连接EF 、FG 、GH 、EH ,∵E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点, ∴11//,//,,22EF AC HG AC EF AC FG BD ==,∴//EF HG ,同理//EH FG , ∴四边形EFGH 为平行四边形,∵AC BD =,∴EF FG =,∴平行四边形 EFGH 为菱形, ∴EG FH ⊥,2EG OG =,2FH OH =,()2222222221(2)(2)4448642EG FH OE OH OE OH EH BD ⎛⎫+=+=+==⨯== ⎪⎝⎭故选:D .【变式2】如图,已知矩形ABCD 的对角线AC 的长为10cm ,连结矩形各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( )cm .A .20B .C .D .25【答案】A 【解析】连接BD ,∵H 、G 是AD 与CD 的中点,∴HG 是△ACD 的中位线, ∴HG=12AC=5cm ,同理EF=5cm , ∵四边形ABCD 是矩形,∴根据矩形的对角线相等,即BD=AC=10cm , ∵H 、E 是AD 与AB 的中点,∴EH 是△ABD 的中位线, ∴EH=12BD=5cm ,同理FG=5cm ,∴四边形EFGH 的周长为20cm . 故选A .【变式3】如图,点O 为四边形ABCD 内任意一点,E ,F ,G ,H 分别为OA ,OB ,OC ,OD 的中点,则四边形EFGH 的周长为( )A .9B .12C .18D .不能确定【答案】C【解析】∵E ,F 分别为OA ,OB 的中点,∴EF 是△AOB 的中位线,∴EF=12AB=3, 同理可得:FG=12BC=5,HG=12DC=6,EH=12AD=4,∴四边形EFGH 的周长为=3+5+6+4=18, 故选C .题型二、利用中点求面积例2.如图,四边形ABCD 中,点E 、F 、G 分别为边AB 、BC 、CD 的中点,若△EFG 的面积为4,则四边形ABCD 的面积为( )A .8B .12C .16D .18【答案】C【解析】记△BEF ,△DGH ,△CFG ,△AEH 的面积分别为1234,,,S S S S ,四边形ABCD 的面积为S .连接AC .∵BF =CF ,BE =AE ,CG =DG ,AH =DH ,∴EF ∥AC ,1,2EF AC =GH ∥AC ,12GH AC =,∴EF ∥GH ,EF =GH ,∴四边形EFGH 是平行四边形,∴S 平行四边形EFGH =2S △EFG =8,∵△BEF ∽△BAC ,∴11,4S S ABC =同理可得214S S ACD ,= ∴1211()44ABC ACD S S S S S +=+=, 同法可得3414S S S +=,∴123412S S S S S ,+++= ∴S 四边形EFGH =12S , ∴S =2S 四边形EFGH =16.故选C.【变式1】定义,我们把对角线互相垂直的四边形叫做和美四边形,对角线交点作为和美四边形的中心.(1)写出一种你学过的和美四边形______;(2)顺次连接和美四边形四边中点所得四边形是( ) A .矩形 B ,菱形 C .正方形 D .无法确定(3)如图1,点O 是和美四边形ABCD 的中心,E F G H 、、、分别是边AB BC CD DA 、、、的中点,连接OE OF OG 、、OH 、,记四边形AEOH BEOF CGOF DHOG 、、、的面积为1234S S S S 、、、,用等式表示1234S S S S 、、、的数量关系(无需说明理由)(4)如图2,四边形ABCD 是和美四边形,若4,2,5AB BC CD ===,求AD 的长.【答案】(1)正方形;(2)A ;(3)S 1+S 3=S 2+S 4;(4 【解析】(1)正方形是学过的和美四边形,故答案为:正方形; (2)顺次连接和美四边形四边中点所得四边形是矩形, 如图,四边形ACBD 中,对角线AB ⊥CD ,即为“和美四边形”, 点E 、F 、G 、H 分别是AC 、AD 、BD 、BC 的中点, ∴EF ∥CD ∥HG ,且EF=HG=12CD ,EH ∥FG ∥AB ,且EH=FG=12AB , ∴四边形EFGH 为平行四边形,∵AB ⊥CD ,∴EF ⊥EH ,∴平行四边形EFGH 是矩形;故选:A .(3)连接AC 和BD ,由和美四边形的定义可知,AC ⊥BD ,则∠AOB=∠BOC=∠COD=∠DOA=90°, 又E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,∴△AOE 的面积=△BOE 的面积,△BOF 的面积=△COF 的面积,△COG 的面积=△DOG 的面积,△DOH 的面积=△AOH 的面积,∴S 1+S 3=△AOE 的面积+△COF 的面积+△COG 的面积+△AOH 的面积=S 2+S 4;(4)如图,连接AC 、BD 交于点O ,则AC ⊥BD , ∵在Rt △AOB 中,AO 2=AB 2-BO 2,Rt △DOC 中,DO 2=DC 2-CO 2,AB=4,BC=2,CD=5,∴可得AD 2=AO 2+DO 2=AB 2-BO 2+DC 2-CO 2=AB 2+DC 2-BC 2=42+52-22=37,即可得AD =.【变式2】如图,在四边形ABCD 中,对角线AC BD ⊥,且8AC =,6BD =,E ,F ,G ,H 分别是四边的中点,则四边形EFGH 的面积为__________.【答案】12【解析】∵点E 、F 分别为边AB 、BC 的中点,∴EF ∥AC ,EF=12AC , ∵AC=8,∴EF=4,同理,HE ∥BD ,HE=1BD 32=, ∴四边形EFGH 是平行四边形, ∵EH ∥BD ,AC ⊥BD ,∴EH ⊥AC ,∵EF ∥AC ,∴EF ⊥HE ,∴四边形EFGH 是矩形, ∴矩形EFGH 的面积=HE ×EF=12. 故答案为:12.题型三、找规律问题例3.如图,四边形ABCD 中,对角线AC BD ⊥,且8AC =,4BD =,各边中点分别为1A 、1B 、1C 、1D ,顺次连接得到四边形1111D C B A ,再取各边中点2A 、2B 、2C 、2D ,顺次连接得到四边形2222A B C D ,……,依此类推,这样得到四边形n n n n A B C D ,则四边形n n n n A B C D 的面积为( )A .162n−B .182n − C .412n −−D .不确定【答案】B【解析】∵四边形A 1B 1C 1D 1的四个顶点A 1、B 1、C 1、D 1分别为AB 、BC 、CD 、DA 的中点,∴A 1B 1∥AC ,A 1B 112=AC ,∴△BA 1B 1∽△BAC .∴△BA 1B 1和△BAC 的面积比是相似比的平方,即14. 即1114BA B S=S △ABC ,同理可证:1114DD C S =S △ADC , 1114AD A S =S △ABD ,S △CB 1C 114=S △BDC ,∴111112A B C D S =四边形S 四边形ABCD ,同法可证2222111112A B C D A B C D S S =四边形四边形,又四边形ABCD 的对角线AC =8,BD =4,AC ⊥BD ,∴四边形ABCD 的面积是16.∴四边形A n B n ∁n D n 的面积116822n n −==.故选:B .【变式1】如图1,1A ,1B ,1C ,1D 分别是四边形ABCD 各边的中点,且AC BD ⊥,6AC =,10BD =.(1)试判断四边形1111D C B A 的形状,并证明你的结论;(2)如图2,依次取11A B ,11B C ,11C D ,11D A 的中点2A ,2B ,2C ,2D ,再依次取22A B ,22B C ,22C D ,22D A 的中点3A ,3B ,3C,3D ……以此类推,取11n n A B −−,11n n B C −−,11n n C D −−,11n n D A −−的中点n A ,n B ,n C ,n D ,根据信息填空:①四边形1111D C B A 的面积是__________; ②若四边形n n n n A B C D 的面积为1516,则n =________; ③试用n 表示四边形n n n n A B C D 的面积___________. 【答案】(1)矩形,见解析;(2)①15,②5,③1152n − 【解析】(1)四边形1111D C B A 是矩形,证明:∵1A ,1B ,1C ,1D 分别是四边形ABCD 各边的中点, ∴11A B AC ,11C D AC ,∴1111A B C D ,同理可得1111A D B C ∥,∴四边形1111D C B A 是平行四边形,又∵AC BD ⊥,易得1111A B B C ⊥,∴四边形1111D C B A 是矩形; (2)①由题意可知:A 1B 1=12AC=3,A 1D 1=12BD=5,四边形1111D C B A 的面积=3×5=15;②由构图过程可得:A 2D 2=B 2C 2=12B 1D 1=12C 2D 2=B 2A 2=12A 1C 1=12可知四边形2222A B C D 为菱形,∴2222A B C D S =222212A C B D ⨯=111112A B B C ⨯=152;同理可求:3333A B C D S =154,4444A B C D S =158,…,n n n n A B C D S =1152n −,故当四边形n n n n A B C D 的面积为1516时,1152n −=1516,解得:n=5;③由②可知:用n 表示四边形n n n n A B C D 的面积为1152n −.故答案为:(1)矩形,见解析;(2)①15,②5,③1152n −题型四、中点综合问题例4.通过解方程(组)使问题得到解决的思维方式就是方程思想,已学过的《勾股定理》及《一次函数》都与它有密切的联系,最近方程家族的《一元二次方程》我们也学习了它的求解方法和应用。
初二数学平行四边形7大常见题型+知识点+误区
初二数学平行四边形7大常见题型+知识点+误区平行四边形是初二数学必考内容,甚至于中考卷里也时常出现它的身影,而且所占分值还不少。
为此,特意给大家整理了初二数学下册必考之【平行四边形】,7大常见题型+知识点+误区!平行四边形定义:有两组对边分别平行的四边形是平行四边形。
表示:平行四边形用符号“□”来表示。
平行四边形性质:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分平行四边形的面积等于底和高的积,即S□ABCD=ah,其中a可以是平行四边形的任何一边,h必须是a边到其对边的距离,即对应的高。
平行四边形的判定:两组对边分别平行的四边形是平行四边形两组对角分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形从对角线看:对角钱互相平分的四边形是平行四边形从角看:两组对角分别相等的四边形是平行四边形。
若一条直线过平行四边形对角线的交点,则直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积。
7大常见题型分析(1)利用平行四边形的性质,求角度、线段长、周长等例题1:如图,E、F在ABCD的对角线AC上,AE=EF=CD,∠ADF=90°,∠BCD=54°,求∠ADE的度数分析:直角三角形斜边上的中线等于斜边的一半,由此可以得到DE=AE=EF=CD,多条线段相等,可设最小的角为x,即设∠EAD=∠ADE=x,根据外角等于不相邻的内角和,得到∠DEC=∠DCE=2x,由平行四边形的性质得出∠DCE=∠BCD-∠BCA=54°-x,得出方程,解方程即可。
例题2:如图,已知四边形ABCD和四边形ADEF均为平行四边形,点B,C,F,E在同一直线上,AF交CD于O,若BC=10,AO=FO,求CE的长。
分析:根据平行四边形的性质得出AD=BC=EF,AD∥BE,从而得到∠DAO=∠CFO,再加上对顶角相等,可以得到△AOD≌△FOC,根据全等三角形的性质得到AD=CF,即AD=BC=EF=CF,从而得到线段CE的长度。
(完整版)四边形知识点总结(已整理)
四边形知识点总结6.等腰梯形的性质:因为ABCD 是等腰梯形⇒⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)( 等腰梯形的判定:⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321⇒ABCD 是等腰梯形 7.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半. 注:被中位线分成的三角形的周长是原三角形的1/2 被中位线分成的三角形的面积是原三角形的1/48.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半. 注:梯形的面积等于中位线乘高.第二部分、常用的辅助线技巧1.平行四边形与特殊的平行四边形常见的辅助线:①.平行四边形:(1)连对角线或平移对角线 (2)过顶点作对边的垂线构造直角三角形 ②.菱形:(1)作菱形的高;(2)连结菱形的对角线.注意:当菱形有一个内角为60°或有一条高垂直平分底边时连接对角线即可得到等边三角形。
③.矩形:计算题型(翻折问题),一般通过作辅助线(垂线等)构造直角三角形借助勾股定理解题 证明题型(探究问题),一般连接对角线借助对角线相等来解决问题注意:当矩形的对角线与一边(或另一条对角线)的夹角为60°时,其对角线与边长围成的三角形是等边三角形。
④.正方形:连接对角线 2.梯形中常见的辅助线:①.延长两腰交于一点(使梯形问题转化为三角形问题。
若是等腰梯形则得到等腰三角形。
)②.平移一腰(使梯形问题转化为平行四边形及三角形问题。
)③.作高(使梯形问题转化为直角三角形及矩形问题。
)④.平移一条对角线(得到平行四边形ACED ,使CE=AD ,BE 等于上、下底的和,S 梯形ABCD =S DBE )⑤.当有一腰中点时,连结一个顶点与一腰中点并延长交一个底的延长线。
(可得△ADE ≌△FCE ,所以使S 梯形ABCD =S △ABF .)。
(完整版)八年级下四边形知识点经典题型要点总结
朔州市文曲星教育文化培训中心中考四边形与三角形复习要求是,能运用这些图形进行镶嵌,你必须会计算特殊的初中数学四边形,能根据图形的条件把四边形面积等分。
能够对初中数学特殊四边形的判定方法与联系深刻理解。
掌握平行四边形、矩形、菱形、正方形、等腰梯形的概念、性质和常用判别方法,特别是梯形添加辅助线的常用方法.掌握三角形中位线和梯形中位线性质的推导和应用。
会画出四边形全等变换后的图形,会结合相关的知识解题.结合几何中的其他知识解答一些有探索性、开放性的问题,提高解决问题的能力·(一)、平行四边形的定义、性质及判定.1:两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4·对称性:平行四边形是中心对称图形.(二)、矩形的定义、性质及判定.1-定义:有一个角是直角的平行四边形叫做矩形.2·性质:矩形的四个角都是直角,矩形的对角线相等3.判定:(1)有一个角是直角的平行四边形叫做矩形;(2)有三个角是直角的四边形是矩形:(3)两条对角线相等的平行四边形是矩形.4·对称性:矩形是轴对称图形也是中心对称图形.(三)、菱形的定义、性质及判定.1·定义:有一组邻边相等的平行四边形叫做菱形.(1)菱形的四条边都相等;。
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角(3)菱形被两条对角线分成四个全等的直角三角形.(4)菱形的面积等于两条对角线长的积的一半:s 菱=争6(n、6 分别为对角线长).3.判定:(1)有一组邻边相等的平行四边形叫做菱形(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.4.对称性:菱形是轴对称图形也是中心对称图形.(四)、正方形定义、性质及判定.'1.定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.性质:(1)正方形四个角都是直角,四条边都相等;(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形;(4)正方形的对角线与边的夹角是45。
平行四边形知识点归纳和题型归类
平行四边形知识点归纳和题型归类平行四边形知识点归纳和题型归类要点梳理】要点一、平行四边形1.定义:有两组对边分别平行的四边形叫做平行四边形。
2.性质:(1)对边相等;(2)同位角相等;(3)相邻角互补;(4)是中心对称图形。
3.面积:S = 底 ×高。
4.判定:边:(1)有两组对边分别平行的四边形是平行四边形;(2)对边相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形。
角:(4)有一组对边平行,且同位角相等的四边形是平行四边形。
对角线:有一组对边相等,且互相平分的四边形是平行四边形。
要点诠释:平行线的性质:(1)平行线间的距离相等;(2)等底等高的平行四边形面积相等。
要点二、矩形1.定义:有四个角都是直角的平行四边形叫做矩形。
2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。
3.面积:S = 长 ×宽。
4.判定:有四个角都是直角的平行四边形是矩形。
要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半。
要点三、菱形1.定义:有四个边都相等的平行四边形叫做菱形。
2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。
3.面积:S = 对角线之积的一半。
4.判定:有一组对边平行且相等的四边形是菱形。
要点四、正方形1.定义:四条边都相等,四个角都是直角的平行四边形叫做正方形。
2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形;(5)两条对角线把正方形分成四个全等的等腰直角三角形。
3.面积:S = 边长的平方,也可以用对角线的平方的一半求解。
4.判定:(1)有一组对边平行且相等的菱形是正方形;(2)有四个角都是直角的矩形是正方形;(3)对角线互相垂直平分且相等的四边形是正方形;(4)四条边都相等,四个角都是直角的四边形是正方形。
平行四边形知识点总结及分类练习题
平行四边形知识点总结及分类练习题一、知识点总结平行四边形是几何学中一个重要的概念,其性质和判定方法对于理解几何学中的其他问题有着至关重要的作用。
以下是对平行四边形知识点的总结:1、定义:平行四边形是一个四边形,其中相对的两边平行且相等。
可以用符号“▭”表示。
2、性质:1)对边平行:平行四边形的对边平行且相等。
2)对角相等:平行四边形的对角相等,邻角互补。
3)平行四边形的面积等于其底乘高。
3.判定方法:1)两组对边分别平行的四边形是平行四边形。
2)两组对边分别相等的四边形是平行四边形。
3)一组对边平行且相等的四边形是平行四边形。
4)对角线互相平分的四边形是平行四边形。
5)邻角互补的四边形是平行四边形。
4.特殊平行四边形:矩形、菱形和正方形都是特殊的平行四边形,它们分别具有以下性质:1)矩形:对角线相等,四个角都是直角。
2)菱形:对角线垂直且平分,四边相等。
3)正方形:对角线垂直且相等,四个角都是直角。
二、分类练习题1、选择题:1)下列哪个条件可以判定一个四边形为平行四边形?A.一组对边相等,一组对角相等B.一组对边平行,另一组对边相等C.一组对角相等,另一组对边平行D.一组对角相等,一组邻角互补答案:(C)一组对角相等,另一组对边平行。
因为一组对角相等,另一组对边平行的四边形可以由一组对边平行,另一组对边相等的四边形经过平移得到,因此选项C正确。
其他选项都不满足平行四边形的定义或判定方法。
2)下列哪个条件可以判定一个四边形为矩形?A.三个内角都是直角B.对角线相等且互相平分C.对角线互相垂直且平分D.一组对边平行且相等,一组邻角互补答案:(B)对角线相等且互相平分的四边形是矩形。
因为矩形的定义是对角线相等的平行四边形,而对角线相等且互相平分的四边形是平行四边形,因此选项B正确。
其他选项分别是矩形的定义或判定方法的一部分,但不足以单独判定一个四边形为矩形。
特殊平行四边形知识点总结及题型一、平行四边形的性质:1、平行四边形的对边平行且相等;2、平行四边形的对角相等;3、平行四边形的对角线互相平分。
四边形题型总结
四边形题型总结四边形是指具有四个边的几何图形,由四条线段组成,它们相交于四个点,这些点被称为顶点。
根据四边形的性质和特点,可以将四边形题型进行总结。
下面是关于四边形题型的详细总结:一、按边长分类:1. 等边四边形:四条边的边长相等,如正方形、菱形。
2. 等腰四边形:具有两对对边的边长相等,如矩形、正方形、菱形。
3. 矩形:具有四个直角的四边形。
4. 平行四边形:具有两对对边分别平行的四边形。
5. 梯形:具有一对对边平行的四边形。
6. 正方形:具有四个直角和四条边相等的四边形。
二、按角度分类:1. 直角四边形:具有一个直角(90°)的四边形,如矩形、正方形。
2. 钝角四边形:具有一个内角大于90°的四边形。
3. 锐角四边形:具有四个内角都小于90°的四边形,如菱形、正方形。
三、按对角线分类:1. 对角线相等的四边形:具有两条对角线相等的四边形,如菱形、矩形、正方形。
2. 对角线不相等的四边形:具有两条对角线不相等的四边形,如梯形、平行四边形。
四、按内角和外角和分类:1. 内角和等于360度的四边形:比如凸四边形,所有内角的和等于360度。
2. 内角和小于360度的四边形:比如凹四边形,所有内角的和小于360度。
五、按特殊位置分类:1. 对脚四边形:由四条线段组成,其中两条相邻线段相互垂直。
2. 等腰梯形:具有一对对边平行且两条斜边相等的四边形。
3. 等腰直角梯形:具有一对对边平行且两条斜边相等且内角为直角的四边形。
4. 等腰平行四边形:具有一对对边平行且两条斜边相等的四边形。
以上总结了四边形题型的多个分类,每个分类都有其独特的性质和特点。
在解题过程中,需要根据题目所给条件和要求,运用相关的知识和定理,找出相应的解题思路。
为了更好地理解和应用这些知识,下面将结合具体的例子进行解析:例1:已知ABCD是一个梯形,AB∥CD,AB=3cm,CD=7cm,BC=5cm,求AD的长度。
(完整版)特殊平行四边形知识点总结及题型
新天宇教育授课讲义授课科目初三上册授课时间(2016.9.11)授课内容特殊的平行四边形1基础知识1.基础知识点(概念、公式)1.菱形菱形定义:有一组邻边相等的平行四边形叫做菱形.(1)是平行四边形;(2)一组邻边相等.菱形的性质性质1菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.菱形判定方法2:四边都相等的四边形是菱形.2.矩形矩形定义: 有一个角是直角的平行四边形叫做矩形(通常也叫长方形或正方形).矩形是中心对称图形,对称中心是对角线的交点,矩形也是轴对称图形,对称轴是通过对边中点的直线,有两条对称轴;矩形的性质:(具有平行四边形的一切特征)矩形性质1: 矩形的四个角都是直角.矩形性质2: 矩形的对角线相等且互相平分.矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.矩形判定方法3:有一个角是直角的平行四边形是矩形.矩形判定方法4:对角线相等且互相平分的四边形是矩形.2.正方形正方形是在平行四边形的前提下定义的,它包含两层意思:①有一组邻边相等的平行四边形(菱形②有一个角是直角的平行四边形(矩形)正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.正方形定义:有一组邻边相等.......的平行四边形.....叫做正方形.正方形是中心对称......并且有一个角是直角图形,对称中心是对角线的交点,正方形又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有四条对称轴;因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,正方形的性质总结如下:边:对边平行,四边相等;角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.正方形具有矩形的性质,同时又具有菱形的性质.正方形的判定方法:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.注意:1、正方形概念的三个要点:(1)是平行四边形;(2)有一个角是直角;(3)有一组邻边相等.2、要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形.2.本节课的重点、难点(1)对平行四边形和特殊的几种图形的性质要注意理解(2)对证明特殊平行四边形的方法进行掌握3.学生容易混淆的知识点(1)各种四边形对角线的特点。
平行四边形及特殊平行四边形题型总结(解析版)
平行四边形及特殊平行四边形题型总结题型解读|模型构建|通关试练本专题主要通过上一专题三角形知识的学习路径,类比学习平行四边形,构建知识树;掌握平行四边形、矩形、菱形、正方形的定义、性质和判定.清楚平行四边形、特殊平行四边形(矩形、菱形、正方形)的特征以及彼此之间的关系.经历从平行四边形到矩形、菱形、正方形的研究过程,体验“从一般到特殊”的研究方法;通过猜想、验证、归纳的过程,掌握矩形、菱形、正方形的性质定理,感悟类比思想;在考试中能利用它们的性质和判定进行推理和计算,提高主动探究的习惯和意识.模型01中心对称与轴对称图形模型02平行四边形的性质与判定性质/图形平行四边形边两组对边平行且相等角对角相等、邻角互补对角线互相平分对称性中心对称图形判定方法:(1)与边有关的判定:两组对边分别平行的四边形是平行四边形两组对边分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(2)与角有关的判定:两组对角分别相等的四边形是平行四边形(3)与对角线有关的判定:对角线互相平分的四边形是平行四边形模型03三角形的中位线中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.如图,在△ABC 中,∵DE 是△ABC 的中位线,∴DE ∥BC ,DE =12BC .◆与三角形中位线有关的结论:三角形的中位线平行于第三边,并且等于第三边的一半.(1)三角形的三条中位线把原三角形分成4个全等的小三角形,每个小三角形的周长为原三角形周长的12,面积为原三角形面积的14;(2)三角形的一条中位线与第三边上的中线互相平分.模型04菱形的性质与判定性质/图形菱形边四条边相等角对角相等、邻角互补对角线对角线互相垂直且平分对称性既是轴对称,又是中心对称判定方法:(1)先证平行四边形,再证一组邻边相等;(2)先证平行四边形,再证对角线互相垂直;(3)证四条边都相等的四边形;(4)证对角线互相垂直且平分的四边形;模型05矩形的性质与判定性质/图形矩形边对边平行且相等角四个角都是90°对角线相等且互相平分对称性既是轴对称,又是中心对称判定方法:(1)先证平行四边形,再证一个内角是直角;(2)先证平行四边形,再证对角线相等;(3)证三个角为直角;模型06正方形的性质与判定性质/图形正方形边四条边相等角四个角都是90°对角线对角线互相垂直、平分且相等对称性既是轴对称,又是中心对称判定方法:由菱形到正方形(1)有一个内角是直角的菱形是正方形;(2)对角线相等的菱形是正方形;由矩形到正方形:(1)邻边相等的矩形是正方形;(2)对角线互相垂直的矩形是正方形.模型01中心对称与轴对称图形考|向|预|测中心对称与轴对称图形该题型近年主要以选择形式出现,难度系数较小,在各类考试中基本为送分题型.解这类问题的关键是了解中心对称与轴对称图形的定义,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形. 这个点就是它的对称中心.答|题|技|巧第一步:首先判断一个图形绕着某一点旋转180°,看它是否能够和另一个图形重合;第二步:能够重合即为中心对称,否则看是否具有对称轴;第三步:根据选项做出选择;1(2022•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A. B.C. D.【答案】B【 详解】解:A选项是原图形的对称图形,故A不正确;B选项是Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,故B正确;C选项旋转后的对应点错误,即形状发生了改变,故C不正确;D选项是按逆时针方向旋转90°,故D不正确;故选:B.2(2023•安徽)对称美是美的一种重要形式,它能给与人们一种圆满、协调和平的美感,下列图形属于中心对称图形的是()A. B. C. D.【答案】A【详解】解:A、是中心对称图形,故选项符合题意;B、是轴对称图形,不是中心对称图形,故选项不符合题意;C、是轴对称图形,不是中心对称图形,故选项不符合题意;D、是轴对称图形,不是中心对称图形,故选项不符合题意.故选:A.模型02平行四边形的性质与判定考|向|预|测平行四边形的性质与判定该题型主要以选择、填空形式出现,难度系数不大,在各类考试中得分率较高.掌握平行四边形、矩形、菱形、正方形的定义、性质和判定.清楚平行四边形、特殊平行四边形(矩形、菱形、正方形)的特征以及彼此之间的关系.能用平行四边形的判定定理和性质定理进行几何证明和计算是考试的重点.答|题|技|巧第一步:理解题意;第二步:根据题意,利用平行四边形的判定定理和性质定理进行几何证明和计算;第三步:注意是否引入其它知识点,例如三角形、平面直角坐标系、函数等;第四步:利用相关的性质和判定进行推理和计算.1如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点E处.若∠1=56°,∠2=40°,则∠A的度数为()A.68°B.70°C.110°D.112°【答案】D【详解】解:根据折叠可知,∠EDB=∠2=40°,∠EBD=∠ABD,∵四边形ABCD为平行四边形,∴AB∥CD,∴∠CDB=∠ABD,∴∠EBD=∠CDB=∠ABD,∵∠1=∠EBD+∠CDB,∴2∠EBD=56°,∴∠EBD=28°,∴∠ABD=28°,∴∠A=180°-∠ABD-∠2=180°-28°-40°=112°,故选:D.2(2023•山东)如图,点E,F是平行四边形ABCD对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥BF,AB=16,BF=12,AC=24.求线段EF的长.【答案】(1)证明过程见解答;(2)16.【详解】(1)证明:如图,连接BD交AC于点O,∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵AE=CF,∴OA-AE=OC-CF,∴OE=OF,∵OB=OD,∴四边形BEDF是平行四边形;(2)解:∵AB⊥BF,AB=16,BF=12,∴AF=AB2+BF2=162+122=20,∵AC=24,∴AE=CF=AC-AF=4,∴EF=AC-AE-CF=24-4-4=16.模型03三角形的中位线考|向|预|测三角形的中位线该题型近年在中点型问题中考试较多,在各类考试中以辅助形式出现,很少有单独考某一个具体知识点的.解这类问题的关键是正确理解三角形中位线的性质,把握题中的关键信息.中位线的考法一般情况是描述出多个中点,另外根据题意条件学会构建出存在中位线的三角形也是至关重要的.答|题|技|巧第一步:分析题目中是一个中点还是多个中点的问题;第二步:单中点问题观察是否为直角三角形,多中点型问题注意中位线的应用;第三步:根据中位线的性质解题,注意是否需要重新构造中位线所在的三角形;第四步:结合其它相关几何知识解题;1(2023•陕西)如图,A,B两地被池塘隔开,小明先在AB外选一点C,然后测出AC,BC的中点M,N.若MN的长为18米,则A,B间的距离是()A.9米B.18米C.27米D.36米【答案】D【详解】解:∵点M,N分别是AC,BC的中点,∴MN是△ABC的中位线,∴AB=2MN,∵MN=18米,∴AB=36米,故选:D.2(2023•河南)如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是()A.2B.3C.4D.5【答案】B【详解】解:∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∵BC=14,BC=7,∴DE=12∵∠AFB=90°,AB=8,∴DF=1AB=4,2∴EF=DE-DF=7-4=3,故选:B.模型04菱形的性质与判定考|向|预|测菱形的性质与判定该题型主要是在综合性大题中考试较多,一般情况下出现在与圆结合或者利用相似求长度、类比探究题型,具有一定的综合性和难度.掌握菱形的性质与判定,菱形的面积公式,及一些特殊的菱形是解答本题的关键.注意菱形与平行四边形的区别,菱形与正方形的联系与区别,利用数形结合及方程的思想解题.答|题|技|巧第一步:理解题意;第二步:根据题意,利用菱形的判定定理和性质定理进行几何证明和计算;第三步:注意菱形面积的求解,菱形与动点问题、圆及平面直角坐标系的结合;第四步:利用相关的性质和判定进行推理和计算.1(2023·湖南)如图,菱形ABCD 中,连接AC ,BD ,若∠1=20°,则∠2的度数为()A.20°B.60°C.70°D.80°【答案】C【详解】解:∵四边形ABCD 是菱形∴BD ⊥AC ,AB ∥CD ,∴∠1=∠ACD ,∠ACD +∠2=90°,∵∠1=20°,∴∠2=90°-20°=70°,故选:C .2(2023·浙江)如图,在菱形ABCD 中,AB =1,∠DAB =60°,则AC 的长为()A.12B.1C.32D.3【答案】D【详解】解:连接BD 与AC 交于O .∵四边形ABCD 是菱形,∴AB ∥CD ,AB =AD ,AC ⊥BD ,AO =OC =12AC ,∵∠DAB =60°,且AB =AD ,∴△ABD 是等边三角形,∵AC ⊥BD ,∴∠OAB =12∠BAD =30°,∠AOB =90°,∴OB =12AB =12,∴AO =AB 2-OB 2=12-12 2=123,∴AC =2AO =3,故选:D .模型05矩形的性质与判定考|向|预|测矩形的性质与判定该题型近年主要以填空及综合性大题的形式出现,一般属于多解型问题,难度系数较大.矩形或其它特殊平行四边形的折叠问题注意折叠前后对应边相等、对应角相等,在多解题型中,准确画出折叠后的图形是我们解题的关键.结合矩形的相关性质及判定定理与推论和其它几何的相关知识点进行解题.答|题|技|巧第一步:确定试题考点方向,折叠、旋转、判定等;第二步:应用矩形相关的性质与判定进行解题第三步:注意矩形的折叠、旋转、矩形与坐标系结合等题型的解法;第四步:进行相关计算解决问题.1(2023•安徽)如图,在矩形ABCD 中,BE ⊥AC ,DF ⊥AC ,垂足分别为E 、F .求证:AF =CE .【答案】过程见详解;【详解】证明:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,∴∠BAE =∠DCF .又BE ⊥AC ,DF ⊥AC ,∴∠AEB =∠CFD =90°.在△ABE 与△CDF 中,∠AEB =∠CFD ∠BAE =∠DCF AB =CD,∴△ABE≌△CDF(AAS),∴AE=CF,∴AE+EF=CF+EF,即AF=CE.2(2023•杭州)如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则ABBC=()A.12B.3-12C.32D.33【答案】D【详解】解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOB=60°,∴△ABO是等边三角形,∴∠BAO=60°,∴∠ACB=30°,∴BC=3AB,∴AB BC =33,故选:D.模型06正方形的性质与判定考|向|预|测正方形的性质与判定该题型主要以解答题的形式出现,综合性较强,有一定难度,本专题重点分析正方形与平面直角坐标系相结合、正方形的折叠等题型.结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力.答|题|技|巧第一步:确定正方形所考查知识点;第二步:利用正方形的特殊性分析题目信息,根据已知条件得出相关结论;第三步:结合各类模型中解题技巧和方法,综合运用;第四步:结合其它几何的相关知识点进行解题;1(2023•湖南)如图,点E、F为正方形ABCD边的点,CE⊥DF,点G、H分别为线段CE、DF的中点,连接GH ,若CF =2,GH =32,则AB 的长为.【答案】8【详解】解:连接CH 并延长交AD 于P ,连接PE ,∵四边形ABCD 是正方形,∴∠A =90°,AD ⎳BC ,∴∠DPH =∠FCH ,在ΔPDH 和ΔCFH 中,∠DPH =∠FCH∠DHP =∠FHC PH =FH,∴ΔPDH ≅ΔCFH (AAS ),∴PD =CF =2,CH =PH ,∵点G 为线段CE 的中点,∴PE =2HG =62,∵DF ⊥CE ,∴∠BCE +∠CEB =∠FCG +∠CFD ,∴∠CFD =∠CEB ,在ΔBCE 与ΔCDF 中,∠B =∠DCFBC =CD ∠BEC =∠CFD,∴ΔBCE ≅ΔCDF (ASA ),∴BE =CF =2,∵AB =AD ,∴AE =AP =22PE =6,∴AB =AE +BE =8,故答案为:8.2(2023•广东)如图,ABCD 是正方形,G 是BC 上任意一点,DE ⊥AG 于E ,BF ⊥AG 于F .求证:AE =BF .【答案】证明见解析.【解析】解:∵ABCD 是正方形,∴AB =AD ,∠BAD =90°,∴∠BAF +∠DAE =90°,∵DE ⊥AG ,BF ⊥AG ,∴∠DEA =∠AFB =90°,∴∠DAE +∠ADE =90°,∴∠BAF =∠ADE ,在△ABF 与△DAE 中,∠BAF =∠ADE∠AFB =∠DEA AB =DA,∴△ABF ≌△DAE ,∴BF =AE.3(2023•北京)如图所示,DE 为ΔABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =6,BC =8,则EF 的长为()A.1B.2C.1.5D.2.5【答案】A 【详解】解:∵DE 是ΔABC 的中位线,BC =8,∴DE =12BC =4,D 是AB 的中点,∵∠AFB =90°,∴DF =12AB =3,∴EF =DE -DF =1,故选:A .4(2023•江苏)如图,在矩形AOBC 中,点A 的坐标是(-2,1),点C 的纵坐标是4,则B 、C 两点的坐标分别是()A.(32,3)、(-23,4)B.(32,3)、(-12,4)C.(74,72)、(-23,4) D.(74,72)、(-12,4)【详解】解:过点A 作AD ⊥x 轴于点D ,过点B 作BE ⊥x 轴于点E ,过点C 作CF ∥y 轴,过点A 作AF ∥x 轴,交点为F ,延长CA 交x 轴于点H ,∵四边形AOBC 是矩形,∴AC ∥OB ,AC =OB ,∴∠CAF =∠BOE =∠CHO ,在△ACF 和△OBE 中,∠F =∠BEO =90°∠CAF =∠BOE AC =OB,∴△CAF ≌△BOE (AAS ),∴BE =CF =4-1=3,∵∠AOD +∠BOE =∠BOE +∠OBE =90°,∴∠AOD =∠OBE ,∵∠ADO =∠OEB =90°,∴△AOD ∽△OBE ,∴AD OE =OD BE ,即1OE =23,∴OE =32,即点B (32,3),∴AF =OE =32,∴点C 的横坐标为:-(2-32)=-12,∴点C (-12,4).故选:B .5(2023•四川)如图,顺次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,应添加的条件是()A.AB ∥DCB.AC =BDC.AC ⊥BDD.AB =DC【详解】解:依题意得,四边形EFGH是由四边形ABCD各边中点连接而成,连接AC、BD,故EF∥AC∥HG,EH∥BD∥FG,所以四边形EFGH是平行四边形,要使四边形EFGH为矩形,根据矩形的判定(有一个角为直角的平行四边形是矩形)故当AC⊥BD时,∠EFG=∠EHG=90度.四边形EFGH为矩形.故选:C.6(2023•福建)如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN=45°下列三个结论:①当MN=2MC时,则∠BAM=22.5°;②2∠AMN-∠MNC=90°;③△MNC的周长不变.其中正确结论的个数是()A.0B.1C.2D.3【答案】D【详解】解:①:∵正方形ABCD中,∠C=90°,∴MN=MC2+NC2,∴MN2=MC2+NC2.当MN=2MC时,MN2=2MC2,∴MC2=NC2∴MC=NC.∴BM=DN易证△ABM≌△ADN(SAS).∴∠BAM=∠DAN,∵∠MAN=45°,∴∠BAM=22.5°,故①正确;②:如图,将△ABM绕点A顺时针旋转90°得△ADE,则∠EAN =∠EAM -∠MAN =90°-45°=45°,则在△EAN 和△MAN 中,AE =AM ∠EAN =∠MAN AN =AN∴△EAN ≌△MAN (SAS ),∴∠AMN =∠AED ,∴∠AED +∠EAM +∠ENM +∠AMN =360°,∴2∠AMN +90°+(180°-∠MNC )=360°,∴2∠AMN -∠MNC =90°,故②正确;③:∵△EAN ≌△MAN ,∴MN =EN =DE +DN =BM +DN ,∴△MNC 的周长为:MC +NC +MN =(MC +BM )+(NC +DN )=DC +BC ,∵DC 和BC 均为正方形ABCD 的边长,故△MNC 的周长不变.综上①②③都正确.故选:D .7(2023•贵州)如图所示,在正方形ABCD 中,O 是对角线AC 、BD 的交点,过O 作OE ⊥OF ,分别交AB 、BC 于E 、F ,若AE =4,CF =3,则EF 的长为()A.3B.4C.5D.6【答案】C 【详解】解:∵四边形ABCD 是正方形,∴OB =OC ,∠OBE =∠OCF =45°,AC ⊥BD ,又∵OE ⊥OF ,∴∠EOB +∠BOF =90°=∠BOF +∠COF ,∴∠EOB =∠COF ,∴△BEO ≌△CFO (ASA ),∴BE=CF=3,又∵AB=BC,∴AE=BF=4,∴Rt△BEF中,EF=BE2+BF2=32+42=5.故选:C.8(2023•南京)如图,在▱ABCD中,AE是∠BAD的平分线,AB=6,AD=4,则CE=.【答案】2【详解】解:∵四边形ABCD是平行四边形,AB=6,AD=4,∴CD⎳AB,CD=AB=6,∴∠DEA=∠BAE,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∴∠DAE=∠DEA,∴ED=AD=4,∴CE=CD-ED=6-4=2,故答案为:2.9(2023•深圳)如图所示,在RtΔABC中,∠C=90°,∠ABC=30°,AB=4,点D为线段AB上的一个动点,以BD为腰,作一个顶角为30°的等腰ΔBDE,其中P为DE的中点,连接CP,则线段CP的最小值为.【答案】6【详解】解:如图所示,连接BP,在等腰ΔBDE中,P是DE的中点,∴BP⊥DE,BP平分∠DBE,∴∠DBP=15°,即点P在∠DBE的角平分线上运动,∴当点D在CP上时,∠CPB=90°,根据垂线段最短可知,此时CP最短,又∵∠ABC=30°,∴∠CBP=45°,∵∠ACB=90°,∠ABC=30°,AB=4,AB=23,∴BC=32=6,∴RtΔBCP中,CP=BC×sin∠CBP=23×2∴线段CP 的最小值为6.故答案为:6.10(2023•陕西)如图,△ABC 是以AB 为斜边的直角三角形,AC =4,BC =3,P 为AB 上一动点,且PE ⊥AC 于E ,PF ⊥BC 于F ,则线段EF 长度的最小值是.【答案】125【详解】解:连接PC .∵PE ⊥AC ,PF ⊥BC ,∴∠PEC =∠PFC =∠C =90°;又∵∠ACB =90°,∴四边形ECFP 是矩形,∴EF =PC ,∴当PC 最小时,EF 也最小,即当CP ⊥AB 时,PC 最小,∵AC =4,BC =3,∴AB =5,∴12AC •BC =12AB •PC ,∴PC =125.∴线段EF 长的最小值为125;故答案为:125.11(2023•湖南)如图,在四边形ABCD 中,AD ⎳BC ,∠B =80°.(1)求∠BAD 的度数;(2)若AE 平分∠BAD 交BC 于点E ,∠BCD =50°,求证:四边形AECD 是平行四边形.【答案】(1)100°;(2)答案见详解;【详解】(1)解:∵AD ⎳BC ,∴∠BAD +∠B =180°,∵∠B =80°,∴∠BAD =180°-∠B =180°-80°=100°,∴∠BAD 的度数是100°.(2)证明:∵AE 平分∠BAD 交BC 于点E ,∠BAD =100°,∴∠DAE =∠BAE =12∠BAD =12×100°=50°,∵AD ⎳BC ,∴∠AEB =∠DAE =50°,∵∠BCD =50°,∴∠AEB =∠BCD ,∴AE ⎳CD ,∵AD ⎳EC ,AE ⎳CD ,∴四边形AECD 是平行四边形.12(2023•山东)在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:△AEF ≌△DEB ;(2)证明:四边形ADCF 是菱形;(3)若AB =6,AC =8,求菱形ADCF 的面积.【答案】(1)过程见详解;(2)过程见详解;(3)24【详解】((1)证明:∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 是AD 的中点,∴AE =DE ,在△AEF 和△DEB 中,∠AFE =∠DBE ∠AEF =∠DEB AE =DE,∴△AEF ≌△DEB (AAS );(2)证明:如图,由(1)知,△AFE ≌△DBE ,∴AF =DB ,∵AD 为BC 边上的中线,∴DB =DC ,∴AF =CD ,∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =12BC =CD ,∴平行四边形ADCF 是菱形;(3)解:∵D 是BC 的中点,∴S 菱形ADCF =2S △ADC =S △ABC =12AB •AC =12×6×8=24.13(2023•重庆)如图,在正方形ABCD 中,E ,F 分别是AB ,BC的中点,CE ,DF 相交于点G ,连接AG ,求证:(1)CE ⊥DF .(2)∠AGE =∠CDF .【答案】(1)见解析过程;(2)见解析过程.【详解】证明:(1)∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =90°,∵E ,F 分别是AB ,BC 的中点,∴BE =12AB ,CF =12BC ,∴BE =CF ,在△CBE 与△DCF 中,BC =CD∠B =∠BCD BE =CF,∴△CBE ≌△DCF (SAS ),∴∠ECB =∠CDF ,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF;(2)延长CE交DA的延长线于H,∵点E是AB的中点,∴AE=BE,∵∠AHE=∠BCE,∠AEH=∠CEB,AE=BE,∴△AEH≌△BEC(AAS),∴BC=AH=AD,∵AG是斜边的中线,∴AG=12DH=AD,∴∠ADG=∠AGD,∵∠AGE+∠AGD=90°,∠CDF+∠ADG=90°,∴∠AGE=∠CDF.1顺次连接对角线相等且垂直的四边形四边中点所得的四边形一定是() A.平行四边形 B.矩形 C.菱形 D.正方形【答案】D【详解】解:∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EF∥AC∥HG,EF=12AC,FG=12BD,∴四边形EFGH是平行四边形,∵AC⊥BD,AC=BD,∴EF⊥FG,FE=FG,∴四边形EFGH是正方形,故选:D.2(2023·浙江杭州)菱形不一定具有的性质是()A.对角线互相平分B.是轴对称图形C.对角线相等D.对角线互相垂直【答案】C【详解】解:A、菱形的对角线互相平分,此选项正确,不符合题意;B、菱形是轴对称图形,此选项正确,不符合题意;C、菱形的对角线不一定相等,此选项错误,符合题意;D、菱形的对角线互相垂直,此选项正确,不符合题意;故选:C.3如图,在平行四边形ABCD中,在不添加任何辅助线的情况下,添加以下哪个条件,能使平行四边形ABCD是矩形()A.AD⊥ABB.AB=BCC.AB∥CDD.∠A=∠C【答案】A【详解】∵四边形ABCD是平行四边形;且AD⊥AB∴四边形ABCD是矩形故选A4(2023•江西)如图,▱ABCD中,AB=22cm,BC=82cm,∠A=45°,动点E从A出发,以2cm/s 的速度沿AB向点B运动,动点F从点C出发,以1cm/s的速度沿着CD向D运动,当点E到达点B时,两个点同时停止.则EF的长为10cm时点E的运动时间是()A.6sB.6s或10sC.8sD.8s或12s【答案】C【详解】解:在▱ABCD中,CD=AB=22cm,AD=BC=82cm,如图,过点D作DG⊥AB于点G,∵∠A=45°,∴△ADG是等腰直角三角形,AD=8,∴AG=DG=22过点F作FH⊥AB于点H,得矩形DGHF,∴DG=FH=8cm,DF=GH,∵EF=10cm,∴EH=EF2-FH2=6cm,由题意可知:AE=2tcm,CF=tcm,∴GE=AE=AG=(2t-8)cm,DF=CD-CF=(22-t)cm,∴GH=GE+EH=(2t-8)+6=(2t-2)cm,∴2t-2=22-t,解得t=8,当F点在E点左侧时,由题意可知:AE=2tcm,CF=tcm,∴GE=AE-AG=(2t-8)cm,DF=CD-CF=(22-t)cm,∴GH=GE-EH=(2t-8)-6=(2t-14)cm,∴2t-14=22-t,解得t=12,∵点E到达点B时,两点同时停止运动,∴2t ≤22,解得t ≤11.∴t =12不符合题意,舍去,∴EF 的长为10cm 时点E 的运动时间是8s ,故选:C .5如图,矩形ABCD 中,AB =2,BC =4,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,则△DCE 的面积为()A.52B.32C.2D.1【答案】B【详解】∵四边形ABCD 是矩形,∴CD =AB =2,AD =BC =4,∠D =90°,∵EO 是AC 的垂直平分线,∴AE =CE ,设CE =x ,则ED =AD -AE =4-x ,在Rt △CDE 中,CE 2=CD 2+ED 2,即x 2=22+(4-x )2,解得:x =52,即CE 的长为52,DE =4-52=32,所以△DCE 的面积=12×32×2=32,故选B .6如图,以正方形ABCD 的对角线AC 为一边作菱形AEFC ,则∠FAB =()A.20°B.30°C.50°D.22.5°【答案】D【详解】∵四边形ABCD 是正方形,AC 是对角线,∴∠CAB =12∠DAB =45°,∵四边形AEFC 是菱形,AF 是对角线,∴∠FAB =12∠CAB =22.5°.故选:D .7如图,在矩形ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD 的中点,连接GH ,若AB =6,BC =10,则GH 的长度为()A.32B.292C.342D.2【答案】C【详解】解:连接CH 并延长交AD 于P ,连接PE ,∵四边形ABCD 是矩形,∴∠A =90°,AD ∥BC ,∵E ,F 分别是边AB ,BC 的中点,AB =6,BC =10,∴AE =12AB =12×6=3,CF =12BC =12×10=5,∵AD ∥BC ,∴∠DHP =∠FHC ,在△PDH 与△CFH 中,∠DPH =∠FCH ∠DHP =∠FHC DH =FH,∴△PDH ≌△CFH (AAS ),∴PD =CF =5,CH =PH ,∴AP =AD -PD =5,∴PE =AP 2+AE 2=52+32=34,∵点G 是EC 的中点,∴GH =12EP =342,故选:C.8如图,∠MEN =90°,矩形ABCD 的顶点B ,C 分别是∠MEN 两边上的动点,已知BC =10,CD =5,点D ,E 之间距离的最大值是.【答案】5+52.【详解】解:∵∠MEN =90°,F 是BC 中点,∴EF=1BC=5.2如图:ED≤EF+DF,当点D,E,F三点共线时,取等号.此时F是BC的中点,∵四边形ABCD是矩形,∴∠BCD=90°,∴FD=CF2+CD2=52+52=52.∴ED最大=EF+DF=5+52.故答案为:5+52.9如图,E是正方形ABCD的边BC延长线上一点,且CE=AC,AE交CD于点F,则∠E=.【答案】22.5°【详解】解:正方形对角线平分直角,故∠ACD=45°,已知DC⊥CE,则∠ACE=∠135°,又∵CE=AC,∴∠E=180°-135°=22.5°.2故答案为:22.5°.10如图,矩形ABCD中,AB=8,AD=12,E为AD中点,F为CD边上任意一点,G,H分别为EF,BF中点,则GH的长是.【答案】5【详解】解:连接BE,如图,∵四边形ABCD是矩形,∴∠A=90°,∵E为AD中点,AD=12,∴AE=12AD=6,则在直角三角形ABE中,根据勾股定理可得:BE=AB2+AE2=10,∵G,H分别为EF,BF中点,∴GH=12BE=5;故答案为:5.11如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC交CD于点F,求证:DE=BF.【答案】见解析【详解】证明:∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,∠ADC=∠CBA.∵DE平分∠ADC,BF平分∠ABC,∴∠ADE=12∠ADC,∠CBF=12∠CBA,∴∠ADE=∠CBF.∴△ADE≌△CBF ASA,∴DE=BF.12如图,在矩形ABCD中,O为BD的中点,过点O作EF⊥BD分别交BC,AD于点E,F.求证:四边形BEDF是菱形.【答案】证明见解析【解析】证明:如图,∵四边形ABCD是矩形,∴AD∥BC∴∠1=∠2∵O为BD的中点∴BO=DO∵∠BOE=∠DOF∴△OBE≌△ODF(ASA)∴BE =DF∴四边形BEDF 是平行四边形又∵EF ⊥BD∴四边形BEDF 是菱形.13如图,已知正方形ABCD ,点E 、F 分别是AB 、BC 边上,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:△EDF ≌△MDF ;(2)若正方形ABCD 的边长为5,AE =2时,求EF 的长?【答案】(1)答案见解析;(2)297【详解】(1)证明:∵四边形ABCD 是正方形,∴∠A =∠B =∠DCF =90°,AD =AB =BC =5,由旋转得:∠A =∠DCM =90°,DE =DM ,∠EDM =90°,∴∠DCF +∠DCM =180°,∴F 、C 、M 三点在同一条直线上,∵∠EDF =45°,∴∠FDM =∠EDM -∠EDC =45°,∴∠EDF =FDM ,∵DF =DF ,∴△EDF ≌△MDF (SAS );(2)设CF =x ,∴BF =BC -CF =5-x ,由旋转得:AE =CM =2,∴BE =AB -AE =3,FM =CF +CM =2+x ,∵△EDF ≌△MDF ,∴EF =FM =2+x ,在Rt △EBF 中,BE 2+BF 2=EF 2,∴9+(5-x )2=(2+x )2,∴x =157,∴EF =2+x =297,∴EF 的长为297.14如图,在▱ABCD 中,CE 平分∠BCD ,交AD 于点E ,DF 平分∠ADC ,交BC 于点F ,CE 与DF交于点P,连结EF,BP.(1)求证:四边形CDEF是菱形.(2)若AB=2,BC=3,∠A=120°,求BP的值.【答案】(1)见解析;(2)7.【详解】(1)∵在▱ABCD中,CE平分∠BCD,∴∠BCE=∠DCE,∠BCE=∠DEC,∴∠DCE=∠DEC,∴DE=DC,∵DF平分∠ADC,∴∠ADF=∠CDF,∠ADF=∠DFC,∴∠CDF=∠DFC,∴CF=DC=DE,∵ED∥FC,∴四边形CDEF是菱形;(2)作PH⊥BC于点H,∵∠BAD=120°,∴∠PCH=60°,∵四边形CDEF是菱形,AB=2,∴CE=2,∴CP=1,∴CH=12,PH=3 2,∵BC=3,∴BH=52,∴BP=322+52 2=7.15已知:如图,在正方形ABCD中,BD为对角线,E、F分别是AD,CD上的点,且AE=CF,连接BE、BF、EF.(1)求证:EM=FM;(2)若DE:AE=2:1,设S△ABE=S,求S△BEF(用含S的代数式表示).【答案】(1)见解析;(2)83 S【解析】(1)∵四边形ABCD是正方形,∴AD=CD,又∵AE=CF,∴DE=DF,∴△DEF是等腰三角形,又∵∠ADB=∠CDB=45°,∴EM=FM;(2)∵DE:AE=2:1,∴设AE=CF=x,DE=DF=2x,AB=AD=3x,∴S△BCF=S△ABE=12×AE•AB=12•x•3x=32x2=S,∴x2=23S,同理可求得:S△DEF=12×DE•DF=12•2x•2x=2x2=2×23S=43S,∴S ABCD=AB2=3x2=9x2=9×23S=6S,∴S△BEF=S□ABCD-S△ABE-S△CBF-S△DEF=6S-S-S-43S=83S.。
特殊平行四边形知识点总结及题型
特殊平行四边形知识点总结及题型特殊平行四边形知识点总结及题型特殊平行四边形是几何学中的重要概念,它包括矩形、菱形和正方形。
这些特殊平行四边形具有一些独特的性质和特征,它们在几何学、晶体学和工程学等领域都有广泛的应用。
本文将总结特殊平行四边形的定义、性质、判定方法和典型题型,以帮助读者更好地理解和掌握这些知识。
一、定义1、矩形:一个内角为直角的平行四边形叫做矩形。
2、菱形:一个内角为锐角的平行四边形叫做菱形。
3、正方形:内角均为直角的平行四边形叫做正方形。
二、性质1、对边平行且相等。
2、对角线互相平分且相等。
3、四个内角均为90度。
4、邻角互补。
5、对角线与邻边组成的三角形为等腰直角三角形。
三、判定方法1、矩形 (1) 内角为直角。
(2) 对边平行且相等。
2、菱形 (1) 内角为锐角。
(2) 对边平行且相等。
3、正方形 (1) 内角均为直角。
(2) 对边平行且相等。
四、典型题型1、求特殊平行四边形的角度和周长。
2、证明特殊平行四边形的性质和判定方法。
3、解决与特殊平行四边形相关的实际问题。
五、扩展知识1、空间几何中的特殊平行四边形,如空间双面平行四边形等。
2、立体几何中的特殊平行四边形,如平行六面体等。
3、相关知识点,如三角函数、向量等在特殊平行四边形中的应用。
总之,特殊平行四边形是一个具有丰富内容和广泛应用的知识点。
理解和掌握这些特殊形状的特点和性质,对于解决相关问题以及进一步学习几何学、物理学等学科都具有重要意义。
希望读者通过阅读本文,能够对这些特殊平行四边形的定义、性质、判定方法和典型题型有更深入的理解和掌握,为进一步学习打下坚实的基础。
平行四边形知识点总结平行四边形知识点总结一、定义平行四边形是一种几何图形,具有两条相互平行的对边和两条对角线。
它是人类生活中常见的形状,具有广泛的应用价值。
二、性质1、平行四边形的对边平行且相等。
2、平行四边形的对角相等。
3、平行四边形的内角和为360度。
初二数学八下平行四边形所有知识点总结和常考题型练习题
平行四边形知识点一、四边形相关1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的外角和定理:。
推论:多边形的内角和定理:多边形的外角和定理:。
2、多边形的对角线条数的计算公式设多边形的边数为n ,则多边形的对角线条数为___________。
二、平行四边形1.定义: 2.平行四边形的性质: 平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的.(1)角:(2)边:(3)对角线:(4)面积:①_________________; ②平行四边形的对角线将四边形分成_____个面积相等的三角形.3.平行四边形的判别方法三、矩形1. 矩形定义:2. 矩形性质3. 矩形的判定:4. 矩形的面积四、菱形 1. 菱形定义:2. 菱形性质3. 菱形的判定:.4. 菱形的面积五、正方形1. 正方形定义:它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形。
2. 正方形性质3. 正方形的判定:4. 正方形的面积平行四边形练习2.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( )A .75º B.115º C.65º D.105ºA BDO C C DB A O 12(第2题图) 第3题图 第4题图B (第7题图)3.如图3,在□ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,▱ABCD 的周长是在14,则DM 等于)是( )6.过□ABCD 对角线交点O 作直线m ,分别交直线AB 于点E ,交直线CD 于点F ,若AB=4,AE=6,则DF 的长是 .7. 如图7,□ABCD 中,∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE∥BD,EF⊥BC ,DF=2,则EF= .8. 在□ABCD 中,AD=BD ,BE 是AD 边上的高,∠EBD=20°,则∠A 的度数为 .9. 在□ABCD 中,AB <BC ,已知∠B=30°,AB=2,将△ABC 沿AC 翻折至△AB ′C ,使点B ′落在□ABCD 所在的平面内,连接B ′D .若△AB ′D 是直角三角形,则BC 的长为.10.如图,已知:□ABCD 中,∠BCD 的平分线CE 交AD 于点E ,∠ABC 的平分线BG 交CE 于点F ,交AD 于点G .求证:AE=DG .11.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE=∠BAD ,AE ⊥AC .(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.C . 36D . 3613.如图,将矩形纸带ABCD ,沿EF 折叠后,C 、D 两点分别落在C ′、D′的位置,经测量得∠EFB=65°,第12题图 第14题图 第5题图 第13题图 第15题图A B C DEF G14.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则的16.如图,已知在梯形ABCD 中,AD ∥BC ,BC=2AD ,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作S 1、S 2、S 3、S 4,那么下列结论中,不正确的是( )A .S 1=S 3B .S 2=2S 4C .S 2=2S 1 D.S 1•S 3=S 2•S 417.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE=1,F 为AB 上一点,AF=2,P 为AC 上一点,则PF+PE 的最小值为 .18.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为 或 秒时.△ABP 和△DCE 全等.19.已知,如图,在四边形ABCD 中,AB∥CD,E ,F 为对角线AC 上两点,且AE=CF ,DF∥BE,AC平分∠BAD.求证:四边形ABCD 为菱形.20.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB ,AD=CD .对角线AC ,BD 相交于点O ,OE⊥AB,OF⊥CB,垂足分别是E ,F .求证OE=OF .21. 如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,第17题图 第16题图 第18题图然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.22. 如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.。
苏教八下数学《平行四边形》知识梳理及重点题型
平行四边形知识点讲解【学习目标】1.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.3. 能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.【要点梳理】要点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.要点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.要点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.要点四、平行线间的距离1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.(2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的.2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.【典型例题】类型一、平行四边形的性质1、如图,平行四边形ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC•的周长大8cm,求AB,BC的长.【答案与解析】解:∵四边形ABCD是平行四边形.∴ AB=CD,AD=BC,AO=CO,∵□ABCD的周长是60.∴2AB+2BC=60,即AB+BC=30,①又∵△ AOB的周长比△BOC的周长大8.即(AO+OB+AB)-(BO+OC+BC)=AB-BC=8,②由①②有解得∴AB,BC的长分别是19cm和11cm.【总结升华】根据平行四边形对角线互相平分,利用方程的思想解题.类型二、平行四边形的判定2、如图所示,ABCD中,延长AB到E,延长CD到F,使得BE=DF.求证:AC与EF互相平分.【思路点拨】要证明AC、EF互相平分,只需证明AC、EF是某一平行四边形的两条对角线即可,这样,本题就转化为证明四边形AECF是平行四边形的问题了.【答案与解析】证明:方法一:连接AF、CE,ABCD中,AB=DC,AE∥CF.∴∠CFE=∠AEF.又∵ DF=BE,∴ CF=AE,而EF=FE,∴△CFE≌△AEF,∴∠CEF=∠AFE,∴ CE∥AF,∴四边形AECF是平行四边形.即AC与EF互相平分.方法二:连接AF、CE,在ABCD中,DC AB.∵ DF=BE,∴ CF=AE,∴ CF AE,∴四边形AECF为平行四边形,即AC、EF互相平分.【总结升华】(1)本题也可直接证△COF≌△AOE,利用其他的判定方法来证,在本题中,证法二相对来说比较简单.(2)由于平行四边形的判定方法较多,所以经常出现可用多种方法证明,此时应选择简单的方法.3、(2017秋•海宁市校级月考)如图,口ABCD中,∠ABC=60°,E、F分别在CD和BC 的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是___________.【思路点拨】根据直角三角形性质求出CE长,利用勾股定理即可求出AB的长.【答案】.【解析】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,设CF=x,则CE=2x,勾股定理得,x2+32=(2x)2,解得x=3,∴CE=23,∴AB=,故答案为:.【总结升华】本题考查了平行线性质,勾股定理,含30度角的直角三角形性质等知识点的应用,此题综合性比较强.类型三、构造平行四边形,应用性质4、在等边三角形ABC中,P为ΔABC内一点,PD∥AB,PE∥BC,PF//AC,D,E,F分别在AC,AB和BC上,试说明:PD+PF+PE=BA.【答案与解析】解:延长FP交AB于G, 延长DP交BC于H,∵四边形AGPD,EBHP为平行四边形,∴PD=AG,PH=BE.ΔGEP,ΔPHF为等边三角形∴PF=PH=BE, PE=GE,∴PD+PF+PE=AG+BE+GE=AB.【总结升华】添加辅助线构造平行四边形是当题目中有平行关系的条件时经常使用的方法。
特殊的平行四边形专题(题型详细分类)要点
特殊的平⾏四边形专题(题型详细分类)要点特殊的平⾏四边形讲义知识点归纳矩形,菱形和正⽅形之间的联系如下表所⽰:四边形分类专题汇总专题⼀:特殊四边形的判定矩形菱形正⽅形性质边对边平⾏且相等对边平⾏,四边相等对边平⾏,四边相等⾓四个⾓都是直⾓对⾓相等四个⾓都是直⾓对⾓线互相平分且相等互相垂直平分,且每条对⾓线平分⼀组对⾓互相垂直平分且相等,每条对⾓线平分⼀组对⾓判定 ·有三个⾓是直⾓; ·是平⾏四边形且有⼀个⾓是直⾓; ·是平⾏四边形且两条对⾓线相等. ·四边相等的四边形;·是平⾏四边形且有⼀组邻边相等;·是平⾏四边形且两条对⾓线互相垂直。
·是矩形,且有⼀组邻边相等; ·是菱形,且有⼀个⾓是直⾓。
对称性既是轴对称图形,⼜是中⼼对称图形(1)______________ (2)______________ (3)______________ (4)______________ (5)______________2.矩形的判定⽅法:(1)______________ (2)______________ (3)______________3.菱形的判定⽅法:(1)______________ (2)______________ (3)______________4.正⽅形的判定⽅法:(1)______________ (2)______________ (3)______________5.等腰梯形的判定⽅法:(1)______________ (2)______________ (3)______________【练⼀练】⼀.选择题1.能够判定四边形ABCD是平⾏四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平⾏四边形的为().A.相邻的⾓互补 B.两组对⾓分别相等C.⼀组对边平⾏,另⼀组对边相等 D.对⾓线交点是两对⾓线中点3.下列条件中,能判定四边形是平⾏四边形的条件是( )A.⼀组对边平⾏,另⼀组对边相等B.⼀组对边平⾏,⼀组对⾓相等C.⼀组对边平⾏,⼀组邻⾓互补D.⼀组对边相等,⼀组邻⾓相等4.如下左图所⽰,四边形ABCD的对⾓线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平⾏四边形;B.若AC=BD,则ABCD是平⾏四边形;C.若AO=BO,CO=DO,则ABCD是平⾏四边形;D.若AO=OC,BO=OD,则ABCD是平⾏四边形5.不能判定四边形ABCD是平⾏四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC6.四边形ABCD的对⾓线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD7.四边形ABCD的对⾓线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.在四边形ABCD中,O是对⾓线的交点,下列条件能判定这个四边形是正⽅形的是()A、AC=BD,AB∥CD,AB=CDB、AD∥BC,∠A=∠CC、AO=BO=CO=DO,AC⊥BDD、AC=CO,BO=DO,AB=BC9.在下列命题中,真命题是()A.两条对⾓线相等的四边形是矩形B.两条对⾓线互相垂直的四边形是菱形C.两条对⾓线互相平分的四边形是平⾏四边形D.两条对⾓线互相垂直且相等的四边形是正⽅形10.在下列命题中,正确的是()11.如图,已知四边形ABCD 是平⾏四边形,下列结论中不正确的是() A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形D .当AC=BD 时,它是正⽅形12.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平⾏四边形B .如果90BAC ∠=o ,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形 13.下列条件中不能判定四边形是正⽅形的条件是()。
四边形整章知识题型总结【经典】
四边形第十九章四边形知识与题型总结一.本章知识要求和结构1.在关系.(1(2)从属关系(依据演变关系图,将四边形,平行四边形,梯形,矩形,菱形,正方形,等腰梯形,直角梯形填入下面的从属关系图中,其中每一个圆代表一种图形)2. 探索并掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和常用判别方法,并能运用这些知识进行有关的证明和计算.图2FE D CBA 图1FEDCBA 30︒60︒60︒3. (1)平行四边形的面积等于它的底和该底上的高的积.如图1, ABCD S Y =BC·AE=CD·BF(2)同底(等底)同高(等高)的平行四边形面积相等.如图2,ABCD S Y =BCFE S Y4.三角形中位线定理定义:叫做三角形中位线(与中线的区分); 定理: 作用:可以证明两条直线平行;线段的相等或倍分.拓展:三角形共有三条中位线,并且它们将原三角形分割成四个 的小三角形,其面积和周长分别为原三角形面积和周长的 和 ; (4)直角三角形的性质 定理: 直角三角形斜边上的中线 5.正方形:(1)对角线:若正方形的边长为a ;正方形的一条对角线上的一点到另一条对角线的两个端点的距离相等(3)面积:正方形的面积等于边长的平方; 等于两条对角线的乘积的一半.周长相等的四边形中, 正方形的面积最大.6. ※梯形的中位线(1)定义:连结梯形两腰中点的线段叫做梯形的中位线(2)梯形的中位线定理:梯形的中位线平行于两底,且等于两底和的一半.CFBE DA60︒60︒ADCBFE(3)梯形的面积S=12×(上底+下底)×高=中位线×高7.几种特殊四边形的对角线① 矩形对角线交角为60(120)时,可得:等边三角形和含30角直角三角形② 菱形有一个角为60时, 可得: ③ 正方形中可得: 含30角的四个全等直角三角形 四大四小等腰直角三角形(①图) (②图) (③图)④ 对角线互相垂直的梯形, ⑤ 对角线互相垂直的等腰梯形 平移腰可得:双垂图 可得:等腰直角三角形(④图) (⑤图)8. 中点四边形: (顶点为各边的中点,需讨论对角线&中位线)(1) 顺次连结任意四边形各边中点构成的四边形是_______________ (2) 顺次连结对角线相等的四边形的各边中点, 构成的四边形是__________ (3) 顺次连结对角线互相垂直的四边形的各边中点构成的四边形是_______ (4) 顺次连结平行四边形各边中点构成的四边形是_________ 顺次连结矩形各边中点构成的四边形是_________ 顺次连结菱形各边中点构成的四边形是_________ 顺次连结直角梯形各边中点构成的四边形是__________ 顺次连结等腰梯形各边中点构成的四边形是__________二.典型题型归纳(一)概念题1.ABCD 中,∠A 的平分线分BC 成4cm 和3cm 两条线段, 则ABCD 的周长为 .2.在ABCD 中,∠C=60º,DE ⊥AB 于E,DF ⊥BC于F . (1)则∠EDF= ;(2)如图,若AE=4,CF=7,AB CDCBEA FD 则ABCD 周长= ;(3) 若AE=3,CF=7,请作出对应图形,并求ABCD 周长.3.(1)在平行四边形ABCD 中,若∠C=∠B+∠D ,则∠A= . (2)已知在ABCD ,∠A 比∠B 小20º,则∠C 的度数是 .(3)在ABCD 中,周长为100cm ,AB-BC=20cm ,则AB= , BC= . (4)在ABCD 中,周长为30cm ,且AB :BC=3:2,则AB= cm. (5)(2007河北省)如图,若□ABCD 与□EBCF 关于BC 所在直线对称,∠ABE =90°,则∠F = °.4.(2007福建福州)下列命题中,错误的是( )A .矩形的对角线互相平分且相等B .对角线互相垂直的四边形是菱形C .等腰梯形的两条对角线相等D .等腰三角形底边上的中点到两腰的距离相等 5.(2007浙江义乌)在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形6.(2007甘肃陇南)顺次连结任意四边形各边中点所得四边形一定是 ( )A .平行四边形B .菱形C .矩形D .正方形 7.(2007四川眉山)下列命题中的假命题是( ) A .一组邻边相等的平行四边形是菱形 B .一组邻边相等的矩形是正方形C . 一组对边平行且相等的四边形是平行四边形D .一组对边相等且有一个角是直角的四边形是矩形 8.(2007四川成都)下列命题中,真命题是( )A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形9.(2007浙江嘉兴)如图,在菱形ABCD 中,不一定成立的( ) A.ABCD B.AC ⊥BD C.等边△ABD D.∠CAB =∠CAD(二)图形的性质和判定方法10.如图,已知四边形ABCD 是正方形,分别过A 、C 两点作1l //2l ,作BM ⊥2l 于M ,DN ⊥2l 于N ,直线MB 、ND 分别交1l 、2l 于Q 、P ,试判断四边形PQMN 的形状.11.如图,在正方形ABCD 中,E 、F 、G 、H 分别为正方形边上的点,而且AE=BF=CG=DH ,求证:四边形EFGH 为正方形.12.如图,在矩形ABCD 中,E 是CD 边上一点, AE=AB ,AB=2AD ,求∠EBC 的度数(三)转化的思想——将梯形问题通过化归、分割、拼接转化成三角形和平行l 2l 1QBAMNDC PEHGDA四边形问题.如图所示:13.填空(1)等腰梯形上底长为3cm,腰长为4cm,其中锐角等于60º,则下底长是.(2)等腰梯形一个底角是60º,它的上、下底分别是8和18,则这梯形的腰长是,高是,面积是.(3)在直角梯形中,垂直于底的腰长5cm,上底长3cm,另一腰与下底的夹角为30º,则另一腰长为,下底长为.(4)等腰梯形两对角线互相垂直,一条对角线长为6,则高为,面积为.(5)已知在梯形ABCD中,AD//BC,若两底AD、BC的长分别为2、8,两条对角线BD=6,AC=8,则梯形的面积为.(四)推理论证的进一步巩固14.(2007恩施自治州)如图,平行四边形ABCD的对角线AC、BD相交于点O,E、F是直线AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.15.如图,在平行四边形ABCD中,E、F分别是直线AB、CD的中点,AF、DE相交于点G,CE、BF交于点H.求证:四边形GEHF是平行四边形.HGFAB CEE16.平行四边形ABCD 中,点E 、F 分别在BC 、AD 上,且AF=CE ,,求证:四边形AECF 是平行四边形.17.求证:正方形的两条对角线将之分成四个全等的等腰直角三角形.18.已知点E 、F 在正方形ABCD 的边BC 、CD 上, (1)若BE=CF ,如图13(1).求证:AE=BF 并且AE ⊥BF ;(2)若E 、F 分别是BC 、EF 的中点,如图13(2),求证:GD=AD .19.(2007浙江金华)国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB EF DC ∥∥,法中错误的是( )A .红花、绿花种植面积一定相等BG F EDCBA ACD EFGE FBCNED AB .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等 20.(06盐城)已知ABCD 的面积为4,对角线交于O ,则S △A OB = .21.若A,B,C 三点不共线,则以其为顶点的平行四边形共有( ) A .1个 B .2个 C .3个 D .4个22.平行四边形一边长为10,一条对角线长为6,则它的另一条对角线a 的取值范围是( )A.4<a <16B.4<a <26C. 12<a <20D.8<a <32 23.平行四边形中一边长为10cm ,那么两条对角线的长度可以是( ) A .4cm 和6cm B .6cm 和8cm C .8cm 和12cm D .20cm 和30cm24.(07北京市23)如图,已知ABC △.(1)请你在BC 边上分别取两点D E ,(BC 的中点除外),连结AD AE ,,写出使此图中只存在两对.....面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(1)成立的相应条件,证明AB AC AD AE +>+.25.如图已知ABC △,过顶点A 作∠B 、∠C 的平分线的 垂线,AD ⊥BD 于D ,AE ⊥CE 于E .求证:ED//BC .26.如图,已知BD 、CE 是⊿ABC 的两条高,M 、N 分别是BC 、DE 的中点.AB CyA 1求证:(1)EM=DM ;(2)MN ⊥DE .27.(1)如图27(1),正方形ABCD ,E 、F 分别为BC 、CD 边上一点.①若∠EAF=45º.求证:EF=BE+DF . ②若⊿AEF 绕A 点旋转,保持∠EAF=45º,问⊿CEF 的周长是否随⊿AEF 位置的变化而变化?(2)如图27(2),已知正方形ABCD 的边长为1, BC 、CD 上各有一点E 、F ,如果⊿CEF 的周长为2.求∠EAF 的度数.(3)如图27(3),已知正方形ABCD ,F 为BC 中点 E 为CD 边上一点,且满足∠BAF=∠FAE . 求证:AE=BC+CE .(五)知识的联系与综合28.已知ABCD 的顶点A 、B 、C 的坐标为(-2,3),(-5,-4),(1,-4),则D 点坐标为 29. 如图,已知ABCD 的两条对角线AC 与BD 交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为( )(-2,-3) C 、(3,-2) D 、(2,-3)Bα图27(3)FEDCBAF E D CBA图27(1)FEDCA第35题图K N M QP D CBA第32题图30.如图,两平面镜αβ、的夹角为θ,入射光线AO 平行于β入射到α,两次反射后的光线O`B 平行于α,则角θ等于 .31.已知矩形的对角线长为13,周长为34,则这个矩形的面积为 . 32.(05,潍坊)如图,在直角坐标系中,将长方形OABC 沿OB 对折,使点A 落在A 1处,已知OA=3,AB=1,则点A 1的坐标是( ) A.(33,22) B.(3,32) C.(33,22) D.(13,22) (六)面积的问题:各种四边形面积的求法和等积变换33.如图,E 为ABCD 边CD 上一点,ABCD 的面积为S ,则△ABE的面积为( )A 、SB 、12SC 、13SD 、14S34.如图,在ABCD 中,AD ⊥BD ,∠A=12∠ABC,如果AD=2, 那么ABCD 的周长是 ,面积是 .35.如图,在矩形ABCD 中,过BD 上一点K 分别作矩形两边的平行线MN 和PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2 (填“>”、“=”或“<”)36.如图,在ABCD 中,点P 在BC 上,PQ ∥BD 交CD 与Q ,则图中和△ABP面积相等的三角形有 个,它们分别是: . .如图,E 是平行四边形ABCD 的边AB 延长线上一点,DE 交BC 于F .求证:ABF EFC S S ∆∆=38.如图,点E 、F 分别在ABCD 的边DC 、CB 上,EDCBA 第33题图D BA第34题图QPD CBA第36题图E B FDA第37题图第39题图2第39题图1图41(3)DAB CFE且AE=AF ,DG ⊥AF ,BH ⊥AE ,G 、H 是垂足. 求证:DG=BH .(七)运动变换的思想在本章中的应用.39.(希望杯第9届初二第二试)已知ABCD 的周长为52,自顶点D 作DE ⊥AB ,DF ⊥BC ,E 、F 为垂足,若DE=5,DF=8,求BE+BF 的值.40.在矩形ABCD 中,AB=3,AD=4,P 是AD 边上的动点,PE ⊥AC 于E ,PF BD 于F ,则PE+PF= .41.(1)如图41(1)(2),已知⊿ABD,⊿BCE,⊿ACF 是等边三角形, 求证:四边形ADEF 是平行四边形.(2)如图41(3),已知⊿ABC,以AB 、AC 为边分别作等边三角形⊿ABD,⊿ACF ,再以AD 、AF 为邻边作平行四边形ADEF ,求证:三角形BCE 是等边三角形.F GHE CBD A第38题图图41(1)DACF E图41(2)DACEO FEP D AO FEP AEFCB AD图42(4)(3)如图41(4),已知⊿ABD,⊿BCE 是等边三角形,A,F 是CE ,EB 上一点,且CA=EB ,求证:四边形ADFC 是平行四边形.42、(2007浙江台州)把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.43、(2007江苏扬州)如图,正方形ABCD 绕点A 逆时针旋转n o后得到正方形AEFG ,边EF 与CD 交于点O .(1)以图中已标字母的点为端点连结两条线段(正方形的对角线除外),要求所连结的两条线段相交且互相垂直.......,并说明这两条线段互相垂直的理由; (2)若正方形的边长为2cm ,重叠部分(四边形AEOD )的面积为243cm 3,求旋转的角度n .44.(2007甘肃陇南)四边形ABCD 、DEFG 都是正方形,连接AE 、CG .(1)求证:AE =CG ;(2)观察图形,猜想AE 与CG 之间的位置关系,并证明你的猜想.DC ABGHFE 第42题图DC ABGHF E第42题图第44题图GD O CF EA第43题图45.(2007淄博)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAMCE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.46.(05,青岛)如图,在等腰梯形ABCD中,AD∥BC,M、N分别为AD、BC的中点,E、F分别是BM、CM的中点.⑴求证:△ABM≌△DCM;⑵四边形MENF是什么图形?请证明你的结论;⑶若四边形MENF是正方形,则梯形的高与底边BC有何数量关系?并请说明理由.47.(2007四川资阳)如图47(1),已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.N 第45题图第47题图2第47题图1(1) 求证:BP =DP ;(2) 如图47(2),若四边形PECF 绕点C 旋转,在旋转过程中是否总有BP =DP ?若是,请证明之;若不是,请举出反例;(3) 试选取正方形ABCD 的两个顶点,分别与四边形PECF 的两个顶点连结,使得到的两条线段在旋转的过程中长度始终相等,并证明之.(八)函数的思想在本章中的运用48、(2007南充改编)等腰梯形ABCD 中,AB =15,AD =20,∠C =30º. M 、N 同时以相同速度分别从点A 、点D 开始在AB 、AD (包括端点)上运动.(1)设ND 为x ,用x 表示出点N 到AB 的距离,并写出x 的取值范围. (2)设t=10-x ,用t 表示△AMN 的面积.(3)求△AMN 的面积的最大值,并判断取最大值时△AMN 的形状.49.(2006泰州)将一矩形纸片OABC 放在直角坐标系中,O 为原点, C 在x 轴上,OA=6,OC=10.(1)如图1,在OA 上取一点E ,将△EOC 沿EC 折叠,使O 点落在AB 边上的D 点,求E 点的坐标;(2)如图2,在OA ′、OC ′边上选取适当的点E ′、F ,将△E ′OF 沿E ′F 折叠,使O 点落在A ′B ′ 边上的D ′点,过D ′作D 'G//A ′O 交E ′F 于T 点,交OC ′于G 点,求证:TG=A ′E ′.(3)在(2)的条件下,设T (x ,y ),探求:y 与x 之间的函数关系式.并指ADCBMNDCBM NA P第50题图F ED C CD FO A ''B ''C ''D ''E ''F ''G 'T 'T O O yx x y(1)(2)G A 'B 'C 'D 'E 'F EB ACD GE C ()D A出变量x 的取值范围.(4)如图3,如果将矩形OABC 变为平行四边形OA "B "C ",使OC "=10, OC "边上的高等于6,其他条件均不变,探求:这时T (x ,y )的坐标y 与 x 之间是否仍然满足(3)中所得的函数关系,若满足,请证明之;若不满足,写出你认为正确的函数关系式.50.(08通州22改编)如图,在ABCD 中,AB=8 cm ,AD=6 cm ,∠DAB=60°,点M 是边AD 上一点,且DM=2 cm ,点E 、F 分别是边AB 、BC 上的点,EM 、CD 的延长线交于G ,GF 交AD 于O ,设AE=CF=x , ⑴试用含x 的代数式表示△CGF 的面积; ⑵当GF ⊥AD 时,求AE 的值.(九)翻折问题(特殊四边形的折叠问题)51.沿特殊四边形的对角线折叠(06.浙江嘉兴)如图,矩形纸片ABCD ,AB=2, ∠ADB=30°,沿对角线BD 折叠(使△ABD 和△EBD 落在同一平面内),则A 、E 两点间的距离为____________.FQ D第51题图第52题图52.沿特殊四边形的对称轴折叠如图,已知矩形ABCD的边AB=2,AB≠BC,矩形ABCD的面积为S,沿矩形的对称轴折叠一次得到一个新的矩形,则这个新矩形对角线长为__________.53.使特殊四边形的对角顶点重合折叠(05,山东威海)如图,梯形纸片ABCD,∠B=60°,AD∥BC,AB=AD=2,BC=6,将纸片折叠,使点B与点D重合,折痕为AE,则CE=___________.第53题图第54题图第55题图54.使特殊四边形一顶点落在其一边上而折叠如图,折叠矩形的一边CD,使点C落在AB上的点F处,已知AB=10cm,BC=8cm,则EC的长为________.55.使特殊四边形两顶点落在其一边上而折叠(崇文)如图,在梯形ABCD中,DC∥AB,将梯形对折,使点D、C分别落在AB上的D′、C′处,折痕为EF,若CD=3cm,EF=4cm,则AD′+BC′=________cm.56.使特殊四边形一顶点落在其对称轴上而折叠(1)如图,已知EF为正方形ABCD的对称轴,将∠A沿DK折叠,使它的顶点A 落在EF上的F第56题图第57题图57.使特殊四边形一顶点落在其对称轴上而折叠(2)如图,有一块面积为1的正方形ABCD,M、N分别为AD、BC边的中点,将C点折至MN上,落在点P的位置,折痕为BQ,连结PQ.(1)求MP的长度; ⑵求证:以PQ为边长的正方形的面积等于13.58.两次不同方式的折叠(06.淄博市)如图,将一矩形形纸片按如图方式折叠,BC、BD为折痕,折叠后AB与EB在同一条直线上,则∠CBD的度数为()A.大于90°B.等于90°C.小于90°D.不能确定59.三次不同方式的折叠(03,山西)如图,取一张矩形的纸片进行折叠,具体操作过程如下:第一步:先把矩形ABCD对折,折痕为MN,如图①;第二步:再把B点叠在折痕MN上,折痕为AE,点B在MN上的对应点为B′,得Rt△AB′E,如图②;第三步:沿EB′线折叠得折痕EF,如图④. 利用展开图③探究:⑴△AEF是什么三角形?证明你的结论;⑵对于任意的矩形,按照上述方法是否都能折出这种三角形? 并证明之.(4)(2)⑴NNCB图2图1(十)动手操作实践60.(2007湖南怀化)如图,将一张等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请画出所有可能四边形并写出的它的名称61.(05枣庄,9分)如图1,四边形ABCD 是等腰梯形,AB∥DC,由四个这样的等腰梯形可以拼出图2所示的平行四边形. (1)求出梯形ABCD 四个内角的度数;(2)试探究梯形ABCD 四条边之间存在的等量关系,并证明之; (3)现有图1 中的等腰梯形若干个,利用它们你能拼出一个菱形吗?62.(06.宁波)如图,剪四刀把等腰直角三角形分成五块,请用这五块拼成一个平行四边形或梯形(请按1:1的比例画出所拼的图形)第62题图第63题图(十一)动点问题63.如图所示,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动, 点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t表示运动的时间(0≤t≤6),那么:(1)当t为何值时,△QAP为等腰三角形?(2)求四边形QAPC的面积;提出一个与计算结果有关的结论.64.如图,矩形ABCD的边AC在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向运动,同时点P从A点出发以每秒1个单位长度沿A-B-C-D的路线运动,当P点运动到D点时停止运动,矩形ABCD 也停止运动.(1)求P点从A点运动到D点所需的时间;(2)设P点运动时间为t(秒);①当t=5时,求出点P的坐标;②若△OAP的面积为S,试求S与t之间的函数关系式.(并写出相应的自变量t的取值范围).(十二)开放探究65.(2005 资阳)如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”.如图1矩形ABEF即为△ABC的“友好矩形”.(1)(2)(3)CBACBA显然,当△ABC 是钝角三角形时,其“友好矩形′只有一个. (1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”.(2)如图2,若△ABC 为直角三角形,且∠C=90°,在图2中画出△ABC 的所有“友好矩形” ,并比较这些矩形面积的大小.(3)若△ABC 是锐角三角形,且BC>AC>AB ,在图3中画出△ABC 的所有“友,指出其中周长最小的矩形并证明之.。
(完整版)四边形题型归纳
四边形题型归纳题型一:翻折问题(特殊四边形的折叠问题)1沿特殊四边形的对角线折叠【例1】如图,矩形纸片ABCD,AB=2, / ADB=30,沿对角线BD折叠(使△ ABD和2、沿特殊四边形的对称轴折叠【例2】如图,已知矩形ABCD的边AB=2 , AB^ BC ,矩形ABCD的面积为S,沿矩形的对称轴折叠一次得到一个新的矩形,则这个新矩形对角线长为3•使特殊四边形的对角顶点重合折叠【例3】如图,梯形纸片ABCD , / B=60 , AD // BC, AB=AD=2 , BC=6,将纸片折叠,使点B与点D重合,折痕为AE,贝U CE= ___________ .4•使特殊四边形一顶点落在其一边上而折叠【例4】如图,折叠矩形的一边CD,使点C落在AB上的点F处,已知AB=10cm , BC=8cm ,贝U EC 的长为______ •D] ] CE、百fA F B△ EBD落在同一平面内),则A、E两点间的距离为_______________D F C D CA B2B E C5•使特殊四边形两顶点落在其一边上而折叠【例5】如图,在梯形ABCD中,DC // AB,将梯形对折,使点D、C分别落在AB上的D、C处,折痕为EF,若CD=3cm , EF=4cm,则AD +BC = ________ cm.6•使特殊四边形一顶点落在其对称轴上而折叠(1)EF上的G点处,则/ DKG= _____7.使特殊四边形一顶点落在其对称轴上而折叠(2)点折至MN上,落在点P的位置,折痕为BQ,连结PQ.(1)求MP的长度;⑵求证:以PQ为边长的正方形的面积等于I .8.两次不同方式的折叠【例8】如图,将一矩形形纸片按如图方式折叠,BC、BD为折痕,折叠后AB与EB在同一条直线上,则/ CBD的度数为()A.大于90 °B.等于90 °C.小于90 °D.不能确定【例6】如图,已知EF为正方形ABCD的对称轴,将/ A沿DK折叠,使它的顶点A落在【例7】如图,有一块面积为1的正方形ABCD , M、N分别为AD、BC边的中点,将CDIAC E<\JA BD【变式1】在矩形ABCD中AB=4, BC=3按下列要求折叠,试求出所要求结果(1)如图,把矩形ABCD沿着对角线BD折叠得△ EBD BE交CD于点F,求出BFD;(2)如图,折叠矩形ABCD使AD与对角线BD重合,求折痕DE的长;(3)如图,折叠矩形ABCD使点D与点B重合,求折痕EF的长;(4)如图,E是AD上一点,把矩形ABCD沿着BE折叠,若点A恰好落在CD上的点F处, 求AE的长。
八年级下册四边形经典题型要点总结
图13-4O DCBA四边形经典题型1.如果一个四边形内角之比是2∶2∶3∶5,那么这四个内角中( )A.有两个钝角B.有两个直角C.只有一个直角D.只有一个锐角 2.一个多边形的外角和是内角和的一半,则它是边形( )3.若多边形的每个内角都为150°,则从一个顶点引的对角线有 ( )条条条条 4.一个多边形的内角和是外角和的212倍,则边数是 ( )B.75.一个多边形的每个内角都等于144°,这个多边形的边数是 ( )B.96.∠A 的两边分别垂直于∠B 的两边,且∠A 比∠B 大60°,则∠A 等于 ( )°°°° 7.若等角n 边形的一个外角不大于40°,则它是边形 ( )=8=9>9≥98.每个内角都相等的多边形,它的一个外角等于一个内角的32,则这个多边形是 边形. 9.两个多边形的边数之比为1∶2,内角和的度数之比为1∶3,求这两个多边形的边数. 10.已知线段AC=8,BD=6。
(1)已知线段AC 垂直于线段BD 。
设图13―1、图13―2和图13―3中的四边形ABCD 的面积分别为S 1、S 2和S 3,则S 1= ,S 2= ,S 3= ;(2)如图13―4,对于线段AC 与线段BD 垂直相交(垂足O 不与点A ,C ,B ,D 重合)的任意情形,请你就四边形ABCD 面积的大小提出猜想,并证明你的猜想;(3)当线段BD 与AC (或CA )的延工线垂直相交时,猜想顺次连接点A ,B ,C ,D ,A 所围成的封闭图形的面积是多少?经典1:如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:∠BAE =∠DCF.经典2:如图,在□ABCD中,O是对角线AC和BD的交点,OE⊥AD于E,OF⊥BC于F.求证:OE=OF.经典3:如图,在平行四边形ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,求证:四边形KLMN是平行四边形.经典4:已知如图:在平行四边形ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF 是否互相平分?说明理由.注意:其他还有一些判定平行四边形的方法,但都不能作为定理使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为四边形两组对边平行一个内角R t∠一个内角为Rt∠, 一组邻边相等一组邻边相等一组对边平行且另一组对边不平行一个内角为Rt∠一组邻边相等四边形知识与题型总结一.本章知识要求和结构1. 掌握平行四边形、矩形、菱形、正方形、梯形的概念,了解它们之间的内在关系.(1)演变关系图:(2)从属关系(依据演变关系图,将四边形,平行四边形,梯形,矩形,菱形,正方形,等腰梯形,直角梯形填入下面的从属关系图中,其中每一个圆代表一种图形)2. 探索并掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和常用判别方法,并能运用这些知识进行有关的证明和计算.名称平行四边形矩形菱形正方形定义的四边形是平行四边形的平行四边形是矩形的平行四边形是菱形的平行四边形是正方形性质边角对角线判定边角对角线面积周长图2FE D CBA 图1FED CBA3. (1)平行四边形的面积等于它的底和该底上的高的积.如图1, ABCD S=BC·AE=CD·BF(2)同底(等底)同高(等高)的平行四边形面积相等.如图2,ABCD S=BCFES4.三角形中位线定理定义: 叫做三角形中位线(与中线的区分); 定理: 作用:可以证明两条直线平行;线段的相等或倍分.拓展:三角形共有三条中位线,并且它们将原三角形分割成四个 的小三角形,其面积和周长分别为原三角形面积和周长的 和 ; (4)直角三角形的性质 定理: 直角三角形斜边上的中线60︒60︒A DCB FE30︒60︒60︒5.正方形:(1)对角线:若正方形的边长为a,则对角线的长为2a;正方形的一条对角线上的一点到另一条对角线的两个端点的距离相等(3)面积:正方形的面积等于边长的平方; 等于两条对角线的乘积的一半.周长相等的四边形中,正方形的面积最大.6. ※梯形的中位线(1)定义:连结梯形两腰中点的线段叫做梯形的中位线(2)梯形的中位线定理:梯形的中位线平行于两底,且等于两底和的一半. (3)梯形的面积S=12×(上底+下底)×高=中位线×高7.几种特殊四边形的对角线①矩形对角线交角为60︒(120︒)时,可得:等边三角形和含30︒角直角三角形(①图)②菱形有一个角为60︒时, 可得:③正方形中可得:含30︒角的四个全等直角三角形四大四小等腰直角三角形(②图)(③图)④对角线互相垂直的梯形, ⑤对角线互相垂直的等腰梯形平移腰可得:双垂图可得:等腰直角三角形(④图)(⑤图)CFBE D A CBEA FD 8. 中点四边形: (顶点为各边的中点,需讨论对角线&中位线) (1) 顺次连结任意四边形各边中点构成的四边形是_______________ (2) 顺次连结对角线相等的四边形的各边中点, 构成的四边形是__________ (3) 顺次连结对角线互相垂直的四边形的各边中点构成的四边形是_______ (4) 顺次连结平行四边形各边中点构成的四边形是_________ 顺次连结矩形各边中点构成的四边形是_________ 顺次连结菱形各边中点构成的四边形是_________ 顺次连结直角梯形各边中点构成的四边形是__________ 顺次连结等腰梯形各边中点构成的四边形是__________二.典型题型归纳(一)概念题1.ABCD 中,∠A 的平分线分BC 成4cm 和3cm 两条线段, 则ABCD 的周长为 . 2.在ABCD 中,∠C=60º,DE ⊥AB 于E,DF ⊥BC 于F .(1)则∠EDF= ; (2)如图,若AE=4,CF=7,则ABCD 周长= ; (3) 若AE=3,CF=7,请作出对应图形,并求ABCD 周长. 3.(1)在平行四边形ABCD 中,若∠C=∠B+∠D ,则∠A= . (2)已知在ABCD ,∠A 比∠B 小20º,则∠C 的度数是 . (3)在ABCD 中,周长为100cm ,AB-BC=20cm ,则AB= , BC= . (4)在A B C D 中,周长为30cm ,且AB :BC=3:2,则AB= cm. (5)(2007河北省)如图,若□ABCD 与□EBCF 关于BC 所在直线对称,∠ABE =90°,则∠F = °.4.(2007福建福州)下列命题中,错误的是( )A .矩形的对角线互相平分且相等B .对角线互相垂直的四边形是菱形C .等腰梯形的两条对角线相等D .等腰三角形底边上的中点到两腰的距离相等AB C D 5.(2007浙江义乌)在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形 6.(2007甘肃陇南)顺次连结任意四边形各边中点所得四边形一定是 ( )A .平行四边形B .菱形C .矩形D .正方形 7.(2007四川眉山)下列命题中的假命题是( ) A .一组邻边相等的平行四边形是菱形 B .一组邻边相等的矩形是正方形C . 一组对边平行且相等的四边形是平行四边形D .一组对边相等且有一个角是直角的四边形是矩形 8.(2007四川成都)下列命题中,真命题是( )A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形 9.(2007浙江嘉兴)如图,在菱形ABCD 中,不一定成立的( ) A.ABCD B.AC ⊥BD C.等边△ABD D.∠CAB =∠CAD(二)图形的性质和判定方法10.如图,已知四边形ABCD 是正方形,分别过A 、C 两点作1//2,作BM ⊥2于M ,DN ⊥2于N ,直线MB 、ND 分别交1、2于Q 、P ,试判断四边形PQMN 的形状.11.如图,在正方形ABCD 中,E 、F 、G 、H 分别为正方形边上的点,而且AE=BF=CG=DH ,求证:四边形EFGH 为正方形.l 2l 1QB A M N D CPE H G FD C B A12.如图,在矩形ABCD 中,E 是CD 边上一点, AE=AB ,AB=2AD ,求∠EBC 的度数(三)转化的思想——将梯形问题通过化归、分割、拼接转化成三角形和平行四边形问题. 如图所示:13.填空(1)等腰梯形上底长为3cm ,腰长为4cm ,其中锐角等于60º,则下底长是 . (2)等腰梯形一个底角是60º,它的上、下底分别是8和18,则这梯形的腰长是 ,高是 ,面积是 . (3)在直角梯形中,垂直于底的腰长5cm ,上底长3cm ,另一腰与下底的夹角为30º,则另一腰长为 ,下底长为 . (4)等腰梯形两对角线互相垂直,一条对角线长为6,则高为 ,面积为 .(5)已知在梯形ABCD 中,AD//BC ,若两底AD 、BC 的长分别为2、8,两条对角线BD=6,AC=8,则梯形的面积为 .ECD AB(四)推理论证的进一步巩固14.(2007恩施自治州)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O,E 、F 是直线AC 上的两点,并且AE=CF,求证:四边形BFDE 是平行四边形.15.如图,在平行四边形ABCD 中,E 、F 分别是直线AB 、CD 的中点,AF 、DE 相交于点G ,CE 、BF 交于点H .求证:四边形GEHF 是平行四边形.16.平行四边形ABCD 中,点E 、F 分别在BC 、AD 上,且AF=CE ,,求证:四边形AECF 是平行四边形.17.求证:正方形的两条对角线将之分成四个全等的等腰直角三角形.H GF A DBCEFA DB C EG E D H C FB 黄 蓝 紫 橙红绿 A18.已知点E 、F 在正方形ABCD 的边BC 、CD 上,(1)若BE=CF ,如图13(1).求证:AE=BF 并且AE ⊥BF ;(2)若E 、F 分别是BC 、EF 的中点,如图13(2),求证:GD=AD .19.(2007浙江金华)国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB EF DC ∥∥,BC GH AD ∥∥,那么下列说法中错误的是( ) A .红花、绿花种植面积一定相等 B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等20.(06盐城)已知ABCD 的面积为4,对角线交于O , 则S △AOB = .GF E DC B A A B C DE F GE FAB C21.若A,B,C 三点不共线,则以其为顶点的平行四边形共有( ) A .1个 B .2个 C .3个 D .4个22.平行四边形一边长为10,一条对角线长为6,则它的另一条对角线a 的取值范围是( )A.4<a <16B.4<a <26C. 12<a <20D.8<a <3223.平行四边形中一边长为10cm ,那么两条对角线的长度可以是( ) A .4cm 和6cm B .6cm 和8cm C .8cm 和12cm D .20cm 和30cm24.(07北京市23)如图,已知ABC △.(1)请你在BC 边上分别取两点D E ,(BC 的中点除外),连结AD AE ,,写出使此图中只存在两对.....面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(1)成立的相应条件,证明AB AC AD AE +>+.25.如图已知ABC △,过顶点A 作∠B 、∠C 的平分线的 垂线,AD ⊥BD 于D ,AE ⊥CE 于E .求证:ED//BC .26.如图,已知BD 、CE 是⊿ABC 的两条高,M 、N 分别是BC 、DE 的中点.AB C求证:(1)EM=DM;(2)MN⊥DE.27.(1)如图27(1),正方形ABCD,E、F分别为BC、CD边上一点.①若∠EAF=45º.求证:EF=BE+DF.②若⊿AEF绕A点旋转,保持∠EAF=45º,问⊿CEF的周长是否随⊿AEF位置的变化而变化?(2)如图27(2),已知正方形ABCD的边长为1,BC、CD上各有一点E、F,如果⊿CEF的周长为2.求∠EAF的度数.(3)如图27(3),已知正方形ABCD,F为BC中点E为CD边上一点,且满足∠BAF=∠FAE .FED CBA图27(1)FED CB A图27(2)yx A 1O A B C 求证:AE=BC+CE .(五)知识的联系与综合28.已知ABCD 的顶点A 、B 、C 的坐标为(-2,3),(-5,-4),(1,-4),则D 点坐标为 29. 如图,已知ABCD 的两条对角线AC 与BD 交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为( )A 、(-3,2)B 、(-2,-3)C 、(3,-2)D 、(2,-3)第32题图 30.如图,两平面镜αβ、的夹角为θ,入射光线AO 平行于β入射到α,两次反射后的光线O`B 平行于α,则角θ等于 .31.已知矩形的对角线长为13,周长为34,则这个矩形的面积为 . 32.(05,潍坊)如图,在直角坐标系中,将长方形OABC 沿OB 对折,使点A 落在A 1处,已知OA=3,A B=1,则点A 1的坐标是( ) A.(33,22) B.(3,32) C.(33,22) D.(13,22)(六)面积的问题:各种四边形面积的求法和等积变换O DCB A yx 第29题图 θBA OO 'βα第30题图第35题图 K N M Q P D C B A 33.如图,E 为ABCD 边CD 上一点,ABCD 的面积为S ,则△ABE 的面积为( ) A 、S B 、12S C 、13S D 、14S34.如图,在ABCD 中,AD ⊥BD ,∠A=12∠ABC ,如果AD=2, 那么ABCD 的周长是 ,面积是 . 35.如图,在矩形ABCD 中,过BD 上一点K 分别作矩形两边的平行线MN 和PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2 (填“>”、“=”或“<”)36.如图,在ABCD 中,点P 在BC 上,PQ ∥BD 交CD 与Q ,则图中和△ABP 面积相等的三角形有 个,它们分别是: . 37.如图,E 是平行四边形ABCD 的边AB 延长线上一点,DE 交BC 于F .求证:ABF EFC S S ∆∆=38.如图,点E 、F 分别在ABCD 的边DC 、CB 上, 且AE=AF ,DG ⊥AF ,BH ⊥AE ,G 、H 是垂足. 求证:DG=BH . EDCBA 第33题图CDBA第34题图Q PD C B A 第36题图EBFCDA 第37题图 FGHE C BD A第38题图第39题图 2第39题图1(七)运动变换的思想在本章中的应用.39.(希望杯第9届初二第二试)已知ABCD 的周长为52,自顶点D 作DE ⊥AB ,DF ⊥BC ,E 、F 为垂足,若DE=5,DF=8,求BE+BF 的值.40.在矩形ABCD 中,AB=3,AD=4,P 是AD 边上的动点,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF= .41.(1)如图41(1)(2),已知⊿ABD,⊿BCE,⊿ACF 是等边三角形, 求证:四边形ADEF 是平行四边形. DAFE第40题图O F EP D C B A 第40题图O F EP D CB AEF CB A D图42(4) 图41(3) D AB CFE(2)如图41(3),已知⊿ABC,以AB 、AC 为边分别作等边三角形⊿ABD,⊿ACF ,再以AD 、AF 为邻边作平行四边形ADEF ,求证:三角形BCE 是等边三角形.(3)如图41(4),已知⊿ABD,⊿BCE 是等边三角形,A,F 是CE ,EB 上一点,且CA=EB ,求证:四边形ADFC 是平行四边形.42、(2007浙江台州)把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.图41(2) D A B CFE43、(2007江苏扬州)如图,正方形ABCD 绕点A 逆时针旋转n 后得到正方形AEFG ,边EF 与CD 交于点O .(1)以图中已标字母的点为端点连结两条线段(正方形的对角线除外),要求所连结的两条线段相交且互相垂直.......,并说明这两条线段互相垂直的理由; (2)若正方形的边长为2cm ,重叠部分(四边形AEOD )的面积为243cm 3,求旋转的角度n .44.(2007甘肃陇南)四边形ABCD 、DEFG 都是正方形,连接AE 、CG . (1)求证:AE =CG ;DC ABGHFE 第42题图DC ABGHF E第42题图第44题图G DOC F EBA第43题图NMA B CDEF(2)观察图形,猜想AE 与CG 之间的位置关系,并证明你的猜想.45.(2007淄博)已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E ,(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形 ADCE 是一个正方形?并给出证明.46.(05,青岛)如图,在等腰梯形ABCD 中,AD ∥BC ,M 、N 分别为AD 、BC 的中点,E 、F 分别是BM 、CM 的中点. ⑴求证:△ABM ≌△DCM;⑵四边形MENF 是什么图形?请证明你的结论; ⑶若四边形MENF 是正方形,则梯形的高与底边 BC 有何数量关系?并请说明理由.47.(2007四川资阳)如图47(1),已知P 为正方形ABCD 的对角线AC 上一A B C DM N E 第45题图第47题图2第47题图1点(不与A 、C 重合),PE ⊥BC 于点E ,PF ⊥CD 于点F . (1) 求证:BP =DP ;(2) 如图47(2),若四边形PECF 绕点C 旋转,在旋转过程中是否总有BP =DP ?若是,请证明之;若不是,请举出反例; (3) 试选取正方形ABCD 的两个顶点,分别与四边形PECF 的两个顶点连结,使得到的两条线段在旋转的过程中长度始终相等,并证明之.(八)函数的思想在本章中的运用OA ''B ''C ''D ''E ''F ''G 'T 'TOOyxxy(1)(2)(3)GA 'B 'C 'D 'E 'F E BA CD 48、(2007南充改编)等腰梯形ABCD 中,AB =15,AD =20,∠C =30º. M 、N 同时以相同速度分别从点A 、点D 开始在AB 、AD (包括端点)上运动. (1)设ND 为x ,用x 表示出点N 到AB 的距离,并写出x 的取值范围. (2)设t=10-x ,用t 表示△AMN 的面积.(3)求△AMN 的面积的最大值,并判断取最大值时△AMN 的形状.49.(2006泰州)将一矩形纸片OABC 放在直角坐标系中,O 为原点, C 在x 轴上,OA=6,OC=10.(1)如图1,在OA 上取一点E ,将△EOC 沿EC 折叠,使O 点落在AB 边上的D 点,求E 点的坐标;(2)如图2,在OA ′、OC ′边上选取适当的点E ′、F ,将△E ′OF 沿E ′F 折叠,使O 点落在A ′B ′ 边上的D ′点,过D ′作D 'G//A ′O 交E ′F 于T 点,交OC ′于G 点,求证:TG=A ′E ′.(3)在(2)的条件下,设T (x ,y ),探求:y 与x 之间的函数关系式.并指出变量x 的取值范围.(4)如图3,如果将矩形OABC 变为平行四边形OA "B "C ",使OC "=10, OC "边上的高等于6,其他条件均不变,探求:这时T (x ,y )的坐标y 与 x 之间是否仍然满足(3)中所得的函数关系,若满足,请证明之;若不满足,写出你认为正确的函数关系式.A D CB M ND C B M N A P第50题图2()1()F ED ABC ABCDEFG FE C ()DCBA 50.(08通州22改编)如图,在ABCD 中,AB=8 cm ,AD=6 cm ,∠DAB=60°,点M 是边AD 上一点,且DM=2 cm ,点E 、F 分别是边AB 、BC 上的点,EM 、CD 的延长线交于G ,GF 交AD 于O ,设AE=CF=x , ⑴试用含x 的代数式表示△CGF 的面积; ⑵当GF ⊥AD 时,求AE 的值.(九)翻折问题(特殊四边形的折叠问题)51.沿特殊四边形的对角线折叠(06.浙江嘉兴)如图,矩形纸片ABCD ,AB=2, ∠ADB=30°,沿对角线BD 折叠(使△ABD 和△EBD 落在同一平面内),则A 、E 两点间的距离为____________.第51题图 第52题图ABC DE F D 'C 'A BCD E F A B CD B ()E52.沿特殊四边形的对称轴折叠如图,已知矩形ABCD 的边AB=2,AB ≠BC ,矩形ABCD 的面积为S , 沿矩形的对称轴折叠一次得到一个新的矩形,则这个新矩形对角线长为__________.53.使特殊四边形的对角顶点重合折叠(05,山东威海)如图,梯形纸片ABCD , ∠B=60°,AD ∥BC ,AB=AD=2, BC=6,将纸片折叠,使点B 与点D 重合,折痕为AE ,则CE=___________.第53题图 第54题图 第55题图54.使特殊四边形一顶点落在其一边上而折叠如图,折叠矩形的一边CD ,使点C 落在AB 上的点F 处,已知AB=10cm , BC=8cm ,则EC 的长为________.55.使特殊四边形两顶点落在其一边上而折叠(崇文)如图,在梯形ABCD 中,DC ∥AB ,将梯形对折,使点D 、C 分别落在AB 上的D ′、C ′处,折痕为EF ,若CD=3cm ,EF=4cm ,则AD ′+BC ′=________cm.KEFGBD A CP QA BCD N M56.使特殊四边形一顶点落在其对称轴上而折叠(1)如图,已知EF 为正方形ABCD 的对称轴,将∠A 沿DK 折叠,使它的顶点A落在EF 上的G 点处,则∠DKG=_____.第56题图 第57题图57.使特殊四边形一顶点落在其对称轴上而折叠(2)如图,有一块面积为1的正方形ABCD ,M 、N 分别为AD 、BC 边的中点,将C 点折至MN 上,落在点P 的位置,折痕为BQ ,连结PQ. (1)求MP 的长度; ⑵求证:以PQ 为边长的正方形的面积等于13.EE 'A 'A BCD58.两次不同方式的折叠(06.淄博市)如图,将一矩形形纸片按如图方式折叠,BC 、BD 为折痕,折叠后AB 与EB 在同一条直线上, 则∠CBD 的度数为( )A.大于90°B.等于90°C.小于90°D.不能确定 59.三次不同方式的折叠(03,山西)如图,取一张矩形的纸片进行折叠,具体操作过程如下: 第一步:先把矩形ABCD 对折,折痕为MN ,如图①;第二步:再把B 点叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为B ′,得Rt △AB ′E ,如图②;第三步:沿EB ′线折叠得折痕EF ,如图④. 利用展开图③探究: ⑴△AEF 是什么三角形?证明你的结论;⑵ 对于任意的矩形,按照上述方法是否都能折出这种三角形? 并证明之.(4)(3)(2)P B '⑴AB 'C DEB 'E AB C DN M N C C AB ADN EFD ENFQ PCBAD图2图1ABCD(十)动手操作实践60.(2007湖南怀化)如图,将一张等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请画出所有可能四边形并写出的它的名称61.(05枣庄,9分)如图1,四边形ABCD 是等腰梯形,AB ∥DC,由四个这样的等腰梯形可以拼出图2所示的平行四边形. (1)求出梯形ABCD 四个内角的度数;(2)试探究梯形ABCD 四条边之间存在的等量关系,并证明之; (3)现有图1 中的等腰梯形若干个,利用它们你能拼出一个菱形吗?62.(06.宁波)如图,剪四刀把等腰直角三角形分成五块,请用这五块拼成一个平行四边形或梯形(请按1:1的比例画出所拼的图形)第62题图第63题图(十一)动点问题63.如图所示,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B 以2cm/s的速度移动, 点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t表示运动的时间(0≤t≤6),那么:(1)当t为何值时,△QAP为等腰三角形?(2)求四边形QAPC的面积;提出一个与计算结果有关的结论.yxO (A)B CD64.如图,矩形ABCD 的边AC 在x 轴上,点A 在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x 轴正方向运动,同时点P 从A 点出发以每秒1个单位长度沿A-B-C-D 的路线运动,当P 点运动到D 点时停止运动,矩形ABCD 也停止运动.(1)求P 点从A 点运动到D 点所需的时间; (2)设P 点运动时间为t (秒);①当t=5时,求出点P 的坐标;②若△OAP 的面积为S ,试求S 与t 之间的函数关系式. (并写出相应的自变量t 的取值范围).(1)(2)(3)FE CBACBACBA(十二)开放探究65.(2005 资阳)如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”.如图1矩形ABEF 即为△ABC 的“友好矩形”.显然,当△ABC 是钝角三角形时,其“友好矩形′只有一个. (1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”. (2)如图2,若△ABC 为直角三角形,且∠C=90°,在图2中画出△ABC 的所有“友好矩形” ,并比较这些矩形面积的大小.(3)若△ABC 是锐角三角形,且BC>AC>AB ,在图3中画出△ABC 的所有“友好矩形”,指出其中周长最小的矩形并证明之.。