螺旋板式换热器三维数值模拟

螺旋板式换热器三维数值模拟
螺旋板式换热器三维数值模拟

基于UG二次开发的船用螺旋桨参数化建模方法与实现

SHIP ENGINEERING 船舶工程 V ol.32 No.4 2010 总第32卷,2010年第4期基于UG二次开发的船用螺旋桨参数化 建模方法与实现 唐英1,王志坚1,杨凯2 (1.北京科技大学机械工程学院,北京 100083;2.中国电子科技集团公司第45研究所,三河 065201) 摘 要:船用螺旋桨的建模方法是将二维初始型值点导入通用CAD软件,通过多步操作得出三维空间数据,完成整个造型过程.这种方法不但操作繁琐,而且效率低.在研究了船用螺旋桨参数化建模方法的基础上,采用对UG进行二次开发的方法,编制出船用螺旋桨参数化建模的功能模块.通过给定船用螺旋桨的主要几何参数,计算出初始型值点,进行坐标变换,将其从平面坐标系还原到空间真实位置.另外给出桨叶叶梢缺失部分数据的NURBS拟合补充方法,并在进行光顺处理后,最终生成船用螺旋桨的三维模型. 关键词:船用螺旋桨;UG二次开发;自由曲面;参数化建模 中图分类号:U664.33 文献标志码:A 文章编号:1000-6982 (2010) 04-0052-04 Parametrical Modeling Method and Implementation of Marine Propeller Based on UG Software TANG Ying1, W ANG Zhi-jian1, Y ANG Kai2 (1.School of Mechanical Engineering, Beijing Science and Technology University, Beijing 100083, China; 2.The 45th Research Institute of China Electronics Technology Group Corporation, Sanhe 065201, China) Abstract:Marine propeller is a type of part with free-form surface. Traditional modeling method of marine propeller needs to export the origin data into CAD software, converting the origin 2D point data to the 3D point data after several steps and then complete the modeling process. This method is time-consuming and inefficiency. With parametrical modeling technology, functional package for marine propeller modeling based on UG software is developed and introduced in the paper. In the developed package, some key structural parameters of marine propeller are inputted firstly and then the 2D point data and the 3D surface data are calculated automatically. To build the 3D model of the propeller part, firstly the coordinate transformation operation from a 2D coordinate system to a 3D reference system is needed to recover the points in its 2D drawing to their true position in 3D model. And then, point data at the tip of propeller are added with NURBS fitting method. After smoothing calculation of the surface, the 3D model of the marine propeller is completed. Key words: marine propeller; UG Software; free-form surface; parametrical modeling 0 引言 船用螺旋桨是典型的自由曲面类零件,一般由桨叶和桨毂两部分构成.桨毂外形通常较为简单,是近似的圆锥体或圆柱体,而桨叶形状非常复杂.除极少数情况外,桨叶形状无法用简单数学公式进行描述,而是用许多离散点的坐标值来表示,这种用来表示形状的离散点称为型值点.每个桨叶叶片的型值点通常多达数百个,有时甚至更多.从二维图纸的型值点到最终三维模型的建立,其间需经过偏移、旋转、生成曲线、生成曲面等多步操作.大量数值的计算处理工作和繁冗复杂的操作过程使船用螺旋桨建模过程不仅费时费力,且容易出现差错.鉴于目前针对船用螺旋桨设计建 收稿日期:2009-10-27;修回日期:2010-01-20 作者简介:唐英(1967-),女,副教授,博士后,主要从事机械制造与自动化方面的科研与教学工作.

螺旋板式换热器结构及性能

螺旋板式换热器结构及性能 1、本设备由两张卷制而成,形成了两个均匀的螺旋通道,两种传热介质可进行全逆流流动,大大增强了换热效果,即使两种小温差介质,也能达到理想的换热效果。 2、在壳体上的接管采用切向结构,局部阻力小,由于螺旋通道的曲率是均匀的,液体在设备内流动没有大的转向,总的阻力小,因而可提高设计流速使之具备较高的传热能力。 3、I型不可拆式螺旋板式换热器螺旋通道的端面采用焊接密封,因而具有较高的密封性。 4、II型可拆式螺旋板换热器结构原理与不可拆式换热器基本相同,但其中一个通道可拆开清洗,特别适用有粘性、有沉淀液体的热交换。 5、III型可拆式螺旋板换热器结构原理与不可拆式换热器基本相同,但其两个通道可拆开清洗,适用范围较广。 6、单台设备不能满足使用要求时,可以多台组合使用,但组合时必须符合下列规定:并联组合、串联组合、设备和通道间距相同。混合组合:一个通道并联,一个通道串联。 螺旋板式换热器的基本参数: 1.螺旋板式换热器的公称压力PN规定为0.6,1,1.6、 2.5Mpa(即原6、10、16、25kg/cm)(系指单通道的最大工作压力)试验压力为工作压力的1.25倍。 2.螺旋板式换热器与介质接触部分的材质,碳素钢为Q235A、Q235B、不锈钢酸港为SUS321、SUS304、3161。其它材质可根据用户要求选定。 3.允许工作温度:碳素钢的t=0-+350℃。不锈钢酸钢的t=-40-500℃。升温降压范围按压力容器的有关规定,选用本设备时,应通过恰当的工艺计算,使设备通道内的流体达到湍流状态。(一般液体流速1m/Sec气体流速10m/Sec).设备可卧放或立放,但用于蒸气冷凝时只能立放;用于烧碱行业必须进行整体热处理,以消除应力。 螺旋板式换热器防堵塞原理 螺旋板式换热器与一般列管式换热器相比是不容易堵塞的,尤其是泥沙、小贝壳等悬浮颗粒杂质不易在螺旋通道内沉积,主要体现在: 1.因为它是单通道杂质在通道内的沉积一形成周转的流还就会提高至把它冲掉; 2.因为螺旋通道内没有死角,杂质容易被冲出。 螺旋板换热器的分类 螺旋板换热器分为可拆分螺旋板换热器和不可拆分螺旋板换热器。不可拆式螺旋板换热器的结构比较简单,螺旋通道的两端全部焊死。可拆式螺旋板换热器.除螺旋通道两端的密封结构以外,其他与不可拆式完全相同。为达到机械清洗的目的,可拆式螺旋通道,一端敞开,用平板盖和垫片密封,以防止流体漏到大气中或同一通道内的流体短路。为了提高螺旋板的承压能力,在板与板之间用定距柱支撑。筒体上的流体进出口有法向接管和切向接管两种。中国普遍使用切向接管,它的流体阻力小,杂质容易被冲出。使用回转支座比较方便,可使换热器立放或卧放。换热的A、B流体分别流过螺旋板的两侧,其中的一种流体沿螺旋通道由外向内,至中心出口流出;而另一种流体则沿螺旋通道由中心进口,由内向外流出。两种流体呈纯逆流方式流动。螺旋板换热器最大结构尺寸为:板宽1800毫米,外径1700毫米,传热面积250米,板与板之间的距离20毫米。允许最高操作压力可达 2.5兆帕。工作温度由选用的材料而定,材料大多用碳钢、不锈钢、铝、铜和钛。

中央空调常用管道保温厚度数据表

hvacrbk制冷百科是制冷快报旗下专业的制冷技术知识分享公众号,制冷百科将为您提供最全面、最实用、最前沿的暖通、空调、制冷技术知识。一、冷冻水管道(≥5℃) 柔性泡沫橡塑管壳(mm)玻璃棉管壳(mm) 管道公称直 径厚度 管道公称直 径 厚度 房间吊顶内、机房15~252515~2525 32~803032~8030≥10035≥10035 室外 15~253515~2530 32~804032~8035 ≥10050≥10040二、热水、冷热合用管(5~60℃) 柔性泡沫橡塑管壳(mm)玻璃棉管壳(mm) 管道公称直径厚度管道公称直径厚度 房间吊顶内、机房 ≤5030≤4035 70~1503050~10040≥20035125~25045 ≥30050 室外 ≤5035≤4040 70~1503550~10045≥20040125~25050

≥30055三、热水、冷热合用管(0~95℃) 聚氨酯硬质泡沫(直埋)(mm)玻璃棉管壳(mm) 管道公称直 径厚度 管道公称直 径 厚度 房间吊顶内、机房 ≤3230≤5050 40~2003570~15060≥25045≥20070 室外 ≤3235≤5060 40~2004070~15070 ≥25050≥20080四、蓄冰管道(≥-10℃) 柔性泡沫橡塑(mm)聚氨酯发泡(mm) 室内 15~403530 50~1004040≥1255050板式换热器35-槽、罐6050 室外 15~404040 50~1005050 ≥1256060 槽、罐7070五、空调凝结水管道

柔性泡沫橡塑管壳(mm)玻璃棉管壳(mm) 空调房间吊 顶内 1010 非空调房间1515 六、空调风管道 柔性泡沫橡塑板(mm)玻璃棉板、毡(mm) 送风温度≥14℃在非空调房间内2040在空调房间内2030 送风温度≥4℃在非空调房间内2550在空调房间内2540 七、冷媒管道(分体空调,VRV) 安装说明要求的保温层的最小厚度 1、通过空调空间19mm 2、通过非空调空间19mm 3、贯穿浴室吊顶空间25mm 八、导热系数 离心玻璃棉λ=0.031+0.00017tmW/m.K 柔性泡沫橡塑λ=0.03375+0.000125tmW/m.K 聚氨酯λ=0.0275+0.0009tmW/m.K 聚氨酯硬质泡沫(直埋)λ=0.02+0.00014tmW/m.K

基于CATIA的船用螺旋桨三维建模方法

第47卷一第4期2018年8月一一一一一一一一一一一船海工程SHIP&OCEANENGINEERING一一一一一一一一一一一一一 Vol.47一No.4 Aug.2018 一一一 DOI:10.3963/j.issn.1671 ̄7953.2018.04.020 基于CATIA的船用螺旋桨三维建模方法 刘勇杰1?徐青2?胡勇1?郑绍春1 (1.武汉理工大学交通学院?武汉430063?2.广州文冲船厂有限责任公司?广州510727) 摘一要:针对船用螺旋桨三维外形较复杂的特点?提出一种基于CATIA平台的坐标变换的船用螺旋桨三维建模方法?给出由叶切面局部坐标系到全局坐标系的变换公式?采用Excel快速完成数据处理?用VB.net语言对CATIA进行二次开发?完成桨叶曲面型值数据的读取与批量导入?最终快速得到螺旋桨三维模型?该方法柔性好二效率高?可以根据不同设计参数快速得到对应的螺旋桨三维模型?并对模型进行优化处理? 关键词:船用螺旋桨?三维建模?CATIA?Excel?二次开发 中图分类号:U664.33一一一一文献标志码:A一一一一文章编号:1671 ̄7953(2018)04 ̄0084 ̄04 收稿日期:2017-10-17修回日期:2017-11-15 基金项目:国家自然科学基金项目(51379167)第一作者:刘勇杰(1992 )?男?硕士生研究方向:船舶先进制造技术 一一为了满足设计中不断改进?制造中节约成本?一次成型的需求?关于快速有效的船用螺旋桨三维建模方法研究集中在不需要计算?完全利用二维图 缠绕 变换来生成螺旋桨三维曲面[1]?基于CATIA软件平台?将二维图进行 逆向投影 的螺旋桨三维曲面建模[2]?通过坐标变换将变换后的螺旋桨曲面型值点导入Pro/E中得到光滑曲面?进而得到螺旋桨实体模型[3 ̄4]?设计螺旋桨二维图形和三维实体之间转换的代码[5]?等方面?为了避免传统几何建模方法的手工操作量大的缺点? 结合坐标变换自动化的思想?提出一种基于CAT ̄IA二次开发和坐标变换的船用螺旋桨三维建模新方法? 1一CATIA软件平台概述 CATIA软件提供了多种二次开发的接口?其 中包括自动化对象编程(V5Automation)和开放的基于构件的应用编程接口(CAA)?其中?Auto ̄ mation开发模式可以完成绝大部分开发工作?只有少部分不足之处才采取CAA开发方式进行补充?Automation开发模式又可分为以下几种? 1)VBAProject?采用CATIA提供的VBA集成开发环境进行程序设计?属于CATIA进程内?能够设计窗体界面?且可以方便地把生成的程序 添加到CATIA工具条中? 2)CATIA宏脚本?采用VBScript语言编写 代码?可以把程序集成到CATIA工具条中?但脚本程序的输入输出功能较弱?无法实现复杂的交互界面? 3)其他脚本语言?采用VBScript二JavaS ̄ cript二Python等语言编写代码?在CATIA以外执行(进程外)?可以写成短小灵活的代码集成到其他应用中? 4)高级语言?采用VB.net二C#等高级语言编 写代码?可以制作比较复杂的交互界面?利用.net优势简化复杂业务流程设计任务? 2一螺旋桨建模 螺旋桨的主要参数包括纵斜角(后倾角)二螺 距比二盘面比二母线到叶片随边的距离二母线到叶片导边的距离二叶片宽度二叶片厚度二导边至最厚点的距离和螺旋桨叶切面尺寸表等? 2.1一二维型值点计算 以直径为0.25m的MAU4-40型的模型螺旋桨为实例?根据MAU型螺旋桨桨叶轮廓尺寸表(见表1)计算得到模型螺旋桨的伸张轮廓尺寸?包括叶片宽度W(以最大叶片宽度的%表示)二母线到叶片随边的距离L1二母线到叶片导边的距离L2二叶片厚度T(以螺旋桨直径的%表示)二导边至最厚点的距离L3(以叶片宽度%表示)等?根据MAU型叶切面尺寸表(见表2)计算得到不同半径叶切面的二维型值点?以上数据组成了传统二维图纸中的数据信息? 由表1二2中参数的排布规律可知?选择Excel 4 8

螺旋板式换热器

螺旋板式换热器 螺旋板式换热器:主要由两张平行的薄钢板卷制而成,构成一对相互隔开的螺旋形流道。冷热两流体以螺旋板为传热面相间流动,两板之间焊有定距柱以维持流道间距,同时也可以增加螺旋板的刚度。在换热器中心设有中心隔板,使得两个螺旋通道隔开。在顶部和底部分别焊有盖板或封头和两流体的出、入接管。一般有一对进出口是设在圆周边上(接管可以为切向或径向),而另外一对则设在圆鼓的轴心上。 螺旋板式换热器是一种高效换热设备,适用汽-汽、汽-液、液-液,对液传热。它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。由于用途不同,螺旋板换热器的流道布置和封盖形式有以下几种结构型式。不可拆式(I型)螺旋板式及可拆式(II型、III型)螺旋板式换热器。 “I”型结构:两个螺旋流道的两侧完全焊接密封,所以又称为不可拆结构,因而具有较高的密封性。两流体在流道长均作螺旋流动。冷流体从外流向中心,热流体从中心流向外,完全是逆流。由于流体是在单流道中流动,流动分布情况良好,这种形式主要用于液体与液体。 “II”型结构:在这种型式中,一种流体在螺旋流道中进行螺旋流动,另一种则在另一螺旋流道中进行轴向流动。所以轴向流道的两侧是敞开的,螺旋流道两侧则焊接密封。这种型式适用于两种介质流率差别很大的情况,通常用作冷凝器、气体冷却器等。 “III”型结构:在这种型式中,一种流体进行螺旋流动,另一种则进行轴向流动和螺旋流动的组合。适用于蒸汽的冷凝冷却,蒸汽先进入轴流部分,当冷凝后体积减小时,才转入螺旋流道以进一步冷却。 其特点是有一端管板不与外壳相连,可以沿轴向自由伸缩。这种结构不但完全消除了热应力,而且由于固定端的管板用法兰与壳体连接,整个管束可以从壳体中抽出,便于清洗和检修。螺旋板换热器的直径一般在1.6m以内,板宽200~1200mm,板厚2~4mm。两板间的距离由预先焊在板上的定距撑控制,相邻板间的距离为5~25mm。常用材料为碳钢和不锈钢。

不可拆式螺旋板式换热器

不可拆式螺旋板式换热器 螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。按结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。 螺旋板式换热器通过多年实践使用证明,确是一种高效换热设备,它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业中应用。换热器吸取当代国际先进技术,经独特的优化设计制造的液-液、汽-水热交换器。产品结构工艺按瑞典“阿尔法拉代”公司标准,螺旋板端面采用折边氩弧焊,“顶距柱”专用工艺为电容蓄电接触器,提高了内在和外表的质量得到“宝钢”认可,能取代进口。 不可拆式螺旋板式换热器是按-机部标准JB/TQ724-89不可拆式螺旋板式换热器形式,基本参数与尺寸的规定而进行设计的,它具备制造简单,成本低,体积小和传热性能好等优点,但也有它的不足之处,例如不能进行机械清洗,坏了不易检修等,选用者应根据工程的实际情况选取具体的设备使之最为有效。结构及性能 1、本设备适用于:液-液,气-气,气-液对流传热可用于蒸汽冷凝和液体蒸发传热,化工,石油,医药,机械,电力,轻工和纺织等工业部门均可选用。 2、本设备由两张钢板卷制而成,形成了两个均匀的螺旋通道,两种传热截止可进行全逆流流动,适用小温差传热,便于回收低温热源并可准确地控制出口温度。 3、在壳体上的接管是切向结构,局部阻力小,螺旋通道的曲率是均匀的,流体在设备内流动没有大的换向,总的阻力小,因而可提高设计流速使之具备较高的传热能力。 4、螺旋通道的端面是焊接密封的,密封性能好,结构可靠。 5、不易检修,尤其是内部板出现问题时极难修理,有些厂把设备两端焊缝全部车掉,重新将板展平补焊后再卷制,这样做消耗的工时太大,因选用螺旋板式换热器防腐是十分重要的。 6、不能进行机械清洗,生产实践证明,螺旋板换热器与一般列管式换热器相比是不容易堵塞的,尤

螺旋桨UG建模

由桨叶截面尺寸表得到三维建模坐标 直径D 螺距P 后倾角θ 螺距角φ 1、 计算出0.2R 、0.3R …… 2、 利用反正切函数计算出螺距角:以0.2R 举例 φ-0.2R=ATAN(P/(2*π*0.2R)),弧度表示 φ-0.2R/π*180°或用=DEGREES(φ-0.2R)函数,角度表示 3、 中心线距导边-最厚点距导边=中心线距最厚点=H X 4、 h X =最厚点距导边-X 5、 计算0.2R-0坐标 注:h X =最厚点距导边-X ;H X =中心线距导边-最厚点距导边=中心线距最厚点

6、叶梢坐标 7、通过延伸插值得到0.1R处的叶宽、最大叶厚、最大叶厚至导边、中心线至导 边,再用第5步计算。

螺旋桨UG中建模 1、导入三维坐标 2、连接样条曲线,随边点-导边点-随边点;连接螺旋桨轮廓 3、将螺旋桨轮廓打断于叶梢点:编辑-曲线-分割曲线,类型选“在结点处”,选 择曲线,结点方法选“选择结点”,确定。 或者采用添加点然后重新绘制两条样条曲线的方式,添加点:插入-基准/点,选择几何体中选择要添加点的样条曲线,等弧长定义中点数输入需要的点即可。 4、建立螺旋桨包面:主曲线—叶梢点+桨叶切面;次曲线—随边+导边+随边。 5、将桨叶表面封闭起来:插入-网格曲面-N边曲面-外环选择曲线即可 裁去上述封闭曲面多余部分:修剪片体-目标选择片体-边界对象选择边界曲线-选择区域保留! 6、桨叶片体缝合:插入-组合-缝合,选择需要缝合的片体即可 7、阵列桨叶:阵列特征-选择特征(选桨叶包面)-布局(选圆形)-旋转轴(选 桨榖对称轴)-角度方向(间距选数量和节距,数量选叶数,节距角为360/n),确定。阵列后可能所有桨叶多余的片体都要修剪—此功能好像不成功 或者采用旋转功能:编辑-移动对象-运动选角度-角度72°-结果复制原先的-非关联副本数4 8、建立桨榖。目测回转的曲线为拍照CAD得到。回转-选择曲线-指定矢量(选 桨榖对称轴)-其他默认即可。 此处可能涉及到显示/隐藏功能,可用快捷键Ctrl+shift+k,可用功能编辑-显示和隐藏-全部显示 9、将桨叶与桨榖求和:求和-选择体即可 10、螺旋桨建模完成。据说导出为iges格式。

SS型螺旋板式换热器使用性能表及尺寸表

SS型螺旋板式换热器使用性能表及尺寸表 螺旋板式换热器适用于多行工业生产中,可进行液-液,气-液,气-气对流传热,废热回收,蒸汽冷凝或液体蒸发,其热效率一般为列管式的1-3倍,污洁自清能力强,节能效果好,占地面积小。(一)结构形式 不可拆式(Ⅰ型)螺旋板式换热器(JB/1287-73标准),型号见表: “Ⅱ、Ⅲ”型为可拆式,咱们可设计制造。结构原理与基本不可拆式换热器基本相同,但其中有一通道或二通道可拆开清洗,两端加封头或法兰盖密封。特别适用有粘性、有颗粒沉淀的液--交换,以及气--液,蒸汽冷凝。 SS型螺旋板式换热器使用性能表 型号换热量 Q104[K al/h] 设计压力 P [MPa] 一次水(130→80)二次水(70→95) 流量V1 [m3/h] 通道截面 积F1[m2] 流速 W1[m/ s] 阻力降 △P1 [MPa] 流量V1 [m3/cm] 通道截 面积 f1[m2] 流速 W1[m /s] 阻 力 降 △P 1 [MP a] SS50- 1050 1.010.40.00370.780.1620.60.005 1.020.2 8 SS75- 1075 1.015.60.0060.720.16310.00810.20.2 8

SS100- 10100 1.020.70.0080.720.1641.20.011 1.05 0.3 1 SS150- 10150 1.031.10.010.860.26620.013 1.22 0.4 6 SS200- 10200 1.041.50.0130.890.27830.019 1.15 0.4 8 SS250- 10250 1.051.90.0160.90.321030.023 1.19 0.5 5 SS50- 1650 1.610.40.00370.780.7720.60.005 1.020.2 98 SS75- 1675 1.615.60.0060.720.17310.0078 1.20.2 09 SS100- 16100 1.620.70.0080.720.1741.20.011 1.05 0.3 2 SS15016 - 150 1.631.10.010.860.27620.013 1.22 0.4 9 SS200- 16200 1.641.50.0130.890.29830.019 1.15 0.5 2 SS250- 16250 1.651.90.0160.90.341030.023 1.19 0.5 8 SS型螺旋板式换热器基本尺寸及重量表 型号 计算换 热面积 F(m2) 通道间距 板宽H (mm) 设备直 径 Dg(mm ) 接管公 称 直径 Dg(mm ) 支座及地脚 螺栓孔直径 n-φ(mm) 设备重量 W(kg) B1 (mm) B2 (mm) SS50-1015.510144001000802-φ241180 SS75-1024.3101460010001002-φ241420 SS100-1034101480010501002-φ241870 SS150-1049.21014100011001252-φ242820 SS200-1068.91420100014801502-φ244550 SS250-1088.91420120015001502-φ244700 SS50-1615.510144001000802-φ241235

基于ProE的螺旋桨设计与实体建模

第6期(总第175期) 2012年12月机械工程与自动化 MECHANICAL ENGINEERING & AUTOMATIONNo.6 Dec. 文章编号:1672-6413(2012)06-0056-0 2基于Pro/E的螺旋桨设计与实体建模 张沛强,李文英,周晓萍 (太原理工大学机械电子工程研究所,山西 太原 030024 )摘要:螺旋桨是船用推进器中应用最广的一种。对螺旋桨的参数计算设计思路以及实体建模方法进行了详细介绍,为螺旋桨的初学设计人员提供了一般性的思路,便于依据实际参数要求,便捷地设计螺旋桨和运用Pro/E软件进行螺旋桨的三维实体建模。关键词:螺旋桨;参数计算;实体建模;设计 中图分类号:U661.33+ 6∶TP391.7 文献标识码:A 收稿日期:2012-05-07;修回日期:2012-06-2 9作者简介:张沛强(1987-) ,男,山西汾阳人,在读硕士研究生,研究方向:煤矿机械。0 引言 近年来,随着我国海洋经济的发展,近海经济型船只和水下航行器的设计制造需求不断提高。对于大量使用的内河及近海船用小型螺旋桨的加工,传统的手工操作方式越来越多地被具有良好加工精度的数控加工方式取代。螺旋桨的数控加工编程首先需要对螺旋桨进行三维实体建模,而实体建模又需要对螺旋桨参数有个初步的拟定。本文结合工程实际情况,先对螺旋桨的设计思路进行简要介绍,再使用计算机辅助设计软件生成实体,从而提供了一种简便实用的螺旋桨三维建模方法。1 螺旋桨设计1.1 螺旋桨的选型 船用螺旋桨使用的图谱桨一般以荷兰的B型桨和日本的AU型桨为主。AU型桨为等螺距桨,叶切面为机翼型;B型桨根部叶切面为机翼型,梢部为弓形,除四叶桨0.6R(R为螺旋桨的梢圆半径)至叶根处为线性变螺距外,其余均为等螺距,桨叶有15° 的后倾。某船主机最大持续功率为6 180kW,转速为160r/min。根据船型资料,选取伴流分数ω=0.35,按经验公式决定推力减额分数t=0.74ω=0.21,取相对旋转效率ηR=1.0,船身效率ηH=(1-t)/(1-ω)=1.215 4,则螺旋桨选用AU3型。1.2 负荷系数Bp的计算 按图谱设计最佳螺旋桨是从“最佳效率曲线”着 手。对于一定的盘面比,给定一个负荷系数Bp,就有一个最佳效率及与其对应的螺距比P/D(P为螺距,D为螺旋桨的梢圆直径)和直径系数δ,而且这些对应关系是唯一的。在设计的过程中,我们一般会先选定船体的航行速度vS。 Bp的计算公式为:Bp=nP0.5D/v2.5 A 。其中:vA为螺旋桨前进速度,vA=vS(1-ω);n为螺旋桨转速,r/min;PD为螺旋桨收到的功率,kW。 在设定好船体航速和了解到螺旋桨收到的功率后, 就能通过相关公式计算出该螺旋桨的负荷系数。1.3 螺旋桨梢圆直径D和螺距比P/D的计算 螺旋桨的选型已经确定,负荷系数Bp已经计算出, 在螺旋桨最佳要素计算式及回归系数表中找到对应的系数a、b、c三值,然后将a、b、c三值代入对应的公式中,螺旋桨的最佳效率η0、 螺距比P/D、直径系数δ都可计算出。D的计算公式为: D=δvA /n。计算出直径D后,根据已经算得的螺距比P/D,可将螺距P也计算出来。 2 螺旋桨实体建模原理 根据螺旋桨的选型,依据对应的叶切面尺寸表,可计算出各半径柱面切平面上对应的叶背、叶面坐标值;将该叶背、叶面坐标值描点连线生成曲线,再将生成的曲线旋转,包络到相应半径柱面上,旋转角度值为螺旋桨的螺旋倾角;最后通过边界混合命令将柱面上的曲

螺旋板式换热器工作原理、构造及特点

螺旋板式换热器的换热原理、构造原理、特点 螺旋板式换热器是用薄金属板压制成具有一定波纹形状的换热板片,然后叠装,用夹板、螺栓紧固而成的一种换热器。工作流体在两块板片间形成的窄小而曲折的通道中流过。冷热流体依次通过流道,中间有一隔层板片将流体分开,并通过此板片进行换热。 螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。按结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。 螺旋板换热器的结构及换热原理决定了其具有结构紧凑、占地面积小、传热效率高、操作灵活性大、应用范围广、热损失小、安装和清洗方便等特点。两种介质的平均温差可以小至1℃,热回收效率可达99%以上。在相同压力损失情况下,螺旋板式换热器的传热是列管式换热器的3~5倍,占地面积为其的1/3,金属耗量只有其的2/3。因螺旋板式换热器是一种高效、节能、节约材料、节约投资的先进热交换设备。所以目前已广泛用于化工、石化、食品饮料、机械、集中供热、冶金、动力、船舶、造纸、纺织、医药、核工业和海水淡化及热电联产等工业领域,可满足各类冷却、加热、冷凝、浓缩、消毒和余热的回收等工艺的要求。 板式换热器的构造原理、特点: 板式换热器由高效传热波纹板片及框架组成。板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内部就构成了许多流道,板与板之间用橡胶密封。压紧板上有本设备与外部连接的接管。板片用优质耐腐蚀金属薄板压制而成,四角冲有供介质进出的角孔,上下有挂孔。人字形波纹能增加对流体的扰动,使流体在低速下能达到湍流状态,获得高的传热效果。并采用特殊结构,保证两种流体介质不会串漏。 小结: 总体来讲,板式换热器的换热系数要比螺旋板的高,但是螺旋板换热器造价低廉,更加适合工艺要求不严的水水换热! 另外板式换热器分为可拆卸和全封闭型,前者可以通过拆卸进行清洗和维修,但是每次拆卸肯定要更换胶条,需要进行二次投资!而后者则应用于介质叫洁净的工况,无法拆卸。螺旋板式换热器它是由两张互相平行的薄金属板,卷制成同心的螺旋形通道。在其中央设置隔板将两通道隔开,两板间焊有定距柱以维持通道间距,螺旋板两侧焊有盖板和接管。两流体分别在两通道内流动,通过螺旋板进行换热。 (1)总传热系数高由于流体在螺旋形通道内受到惯性离心力的作用和定距柱的干扰,低雷诺数(Re=1400~1800)下即可达到湍流,允许流速大(液体为2m/s,气体为20m/s),故传热系数大。如水对水换热过程K=2000~3000W/m2?K。 (2)不易结垢和堵塞由于流速较高且在螺旋形通道中流过,有自行冲刷作用,故流体中的悬浮物不易沉积下来。 (3)能利用低温热源由于流道长而且两流体可达到完全逆流,因而传热温差大,能充分利用温度较低的热源。 (4)结构紧凑由于板薄2~4mm,单位体积的传热面积可达到150~500m2/m3。 `主要缺点是操作压强不能超过2MPa,操作温度在300~400℃以下,另外因整个换热器焊为一体,一旦损坏检修困难。螺旋板换热器直径在1.5m之内,板宽200~1200mm,板厚2~4mm,两板间距5~25mm,可用普通钢板和不锈钢制造,目前广泛用于化工、轻工、食品等行业。 板式和螺旋式的区别,螺旋使用在温度高,压力大,粘度大的场合,而板式用天温度小于160,压力小于1.6MPA,粘度不是很大的场合,螺旋板的传热系数比板换低一半左右,具体得看介质参数来定。

利用catia建立螺旋桨的方法

螺旋桨的一体化设计 (1)打开Catia 用户界面,点击“开始”>“外形”>“创成式外形设计”,单击xy 平面再点击进入草图工作界面,如图5.1示。 图5.1草图直线 (2)在草图编辑窗口中点按钮,按照翼型数据将各点输入,如图5.2所示。 图5.2创建点 (3)点击“样条线”命令,将Z=0mm处CLARK Y翼型设计的螺旋桨截面的Y正坐标截面的各点连接起来,如图5.3所示。 图5.3样条线定义

移动翼型,将翼型的下翼边线的中点转移到坐标原点,点击草图界面的 命令,单击下翼边线,再单击下翼边线的中点,移动到坐标原点处,再移动上翼型边,结果如图5.4 图5.4移动后的翼型位置 (4)按退出草图编辑界面,单击命令,选择刚刚移动的翼型上下边线,单击确定,完成翼型的结合,接下来点击构成翼型的点,单击鼠标右键选择隐藏命令,结果如图5.5所示。 图5.5创建直线 (5)创建翼型各截面的引导线,选择与翼型厚度方向相垂直的平面,单击 进入引导线创建草图界面,单击命令,起点选在坐标原点(0.0)处,选好直线方向,确定引导线长度,此处长度740mm,退出草图编辑界面,结果如图5.6

图5.6 创建偏移平面 (6)平移出螺旋桨的各个翼型界面,单击平移命令,元素选择初始翼型方向选择引导线方向,距离写入92.5mm,勾选确定后重复对象,如图5.7所示,单击确定会弹出图5.8式对话框,实例写入7,得图5.9所示结果。 图5.7 投影定义 图5.8 对象复制命令框

图5.9 翼型阵列 依次方法创建参考点建立如图5.10所示。 图5.10 各翼型截面参考点建立 (7)翼型截面的角度设定,隐藏不用的平面,单击命令,元素选择翼型,轴线选择引导线,角度按计算值填入,点击隐藏/显示初始元素,如图5.11,接着单击确定,同样命令旋转建立引导线的那一平面,与翼型旋转角度一致, 但不按隐藏/显示初始元素命令条,点击旋转后的平面,再点击,建立下一 步的参考元素,草图编辑界面中单击,再单击翼型的边线,得到一条黄色直线,以此直线上面端点为起点画一条与其共线的直线,如图5.12,之后删掉 黄色投影线,单击退出草图编辑窗口。

板式换热器设计计算与校核计算

题目:板式换热器设计及其选用 目录 一、说明书 (2) 二、设计方案 (3) 三、初步选定 (4) (1)已知两流体的工艺参数 (2)确定两流体的物性数据 (3)计算热负荷和两流体的质量流速 (4)计算两流体的平均传热温差 (5)初选换热器型号 四、验证 (6) (1)算两流体的流速u (2)算雷诺数Re (3)计算努塞尔特数Nu (4)求两流体的传热系数α (5)求污垢热阻R (6)求总传热系数K,并核算 五、核算 (7) (1)压强降△P核算 (2)换热器的换热量核算 六、结论 (7) 七、设计结果 (8) 八、附录 (9) 表1:板式换热器的污垢热阻 图1:多程流程组合的对数平均温差修正系数 九、参考文献 (9)

一、说明书 现有一块建筑用地,建筑面积为12500 m2,采用高温水在板式换热器中加热暖气循环水。高温水进入板式换热器的温度为100℃,出口的温度为75℃;循环水进入板式换热器的温度为65℃,出口的温度为90℃。供暖面积热强度为293 kJ/(m2·h)。要求高温水和循环水经过板式换热器的压强降均不大于100 kPa。请选择一台型号合适的板式换热器。(假设板壁热阻和热损失可以忽略) 已知的工艺参数: 二、设计方案 (1) 根据热量平衡的关系,求出未知的换热量和质量流量,同时算出两流体的平均温度差; (2) 参考有关资料、数据,设定总传热系数K,求出换热面积S,根据已知数据初选换热器的型号; (3) 运用有关关联式验证所选换热器是否符合设计要求;

(4) 参考有关资料、数据,查出流体的污垢热阻; (5) 根据式???? ??++++=2211111 αλδαR R K O O 求得流体的总传热系数,该值应不 小于初设的总传热系数,否则改换其他型号的换热器,由(3)开始重新计算; (6) 如果大于初设值,则再进一步核算两流体的压强降和换热量,是否满足设计要求,否则改换其他型号的换热器,由(3)开始重新计算; (7) 当所选换热器均满足设计要求时,该换热器才是合适的。 三 、初步选定 (1) 已知两流体的工艺参数 高温水 t 1′= 100℃ t 1〞= 75℃ △P 1≤100 kPa 循环水 t 2′= 65℃ t 2〞= 90℃ △P 2≤100 kPa (2) 确定两流体的物性数据 高温水的定性温度为:C t ?=+=5.872 751001 循环水的定性温度为:C t ?=+= 5.77290652 根据定性温度,分别查取两流体的有关物性数据: ① 热的一侧(高温水)在87.5℃下的有关数据如下: 密度 ρ1 = 970.17 kg /m 3 定压比热容 c p 1 = 4.196 kJ /(kg ·℃)

螺旋板式换热器特点

螺旋板式换热器性能简介 螺旋板式换热器是传热元件由螺旋形板组成的换热器,是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。 相比较其他种类的换热器,螺旋板式换热器具有以下特点: 1、传热效率高(性能好)。一般认为螺旋板式换热器的传热效率为列管式换热器的1-3倍。等截面单通道不存在流动死区,定距柱及螺旋通道对流动的扰动降低了流体的临界雷诺数,水水换热时螺旋板式换热器的传热系数最大可达3000W/(㎡.K)。 2、有效回收低温热能。螺旋板式换热器由两张卷制而成,形成了两个均匀的螺旋通道,两种传热介质可进行全逆流流动,大大增强了换热效果,即使两种小温差介质,也能达到理想的换热效果,进行余热回收,充分利用低温热能。 3、运行可靠性强。不可拆式螺旋板式换热器螺旋通道的端面采用焊接密封,因而具有较高的密封性,保证两种工作介质不混合。 4、阻力小。在壳体上的接管采用切向结构,局部阻力小,由于螺旋通道的曲率是均匀的,液体在设备内流动没有大的转向,总的阻力小,因而可提高设计流速使之具备较高的传热能力。比较低的压力损失,处理大容量蒸汽或气体;有自清刷能力,因其介质呈螺旋型流动,污垢不易沉积;清洗容易,可用蒸汽或碱液冲洗,简单易行,适合安装清洗装置;介质走单通道,允许流速比其他换热器高。

5、可多台组合使用。单台设备不能满足使用要求时,可以多台组合使用,但组合时必须符合下列规定:并联组合、串联组合、设备和通道间距相同。混合组合:一个通道并联,一个通道串联。 螺旋板式换热器的主要技术参数: 1.螺旋板式换热器的公称压力规定为0.6,1,1.6, 2.5Mpa(即原6、10、16、25kg/cm)(系指单通道的最大工作压力)试验压力为工作压力的1.25倍。 2.螺旋板式换热器与介质接触部分的材质,碳素钢为Q235A、Q235B,不锈钢为SUS321、SUS304、316L。其它材质可根据用户要求选定。 3.允许工作温度:碳钢为-20-3500C,不锈钢为-20-3500C 4.选用设备时,应通过适当的工艺计算,使设备通道内的液体达到湍流状态(一般液体速度≥0.5m/s;气体≥10m/s) 5.设备可卧放或立放,但用于蒸汽冷凝时只能立放。 6.用于烧碱行业必须进行整体热处理,以消除应力。 7.当通道两侧流量值差较大时,可采用不等间距通道来优化工艺设计。

基于UGGrip的船用螺旋桨三维建模关键技术

第35卷 第4期大连海事大学学报Vol.35 N o.4 2009年11月Journal of Dalian Maritime University N ov., 2009 文章编号:1006-7736(2009)04-0121-03 基于UG Grip的船用螺旋桨三维建模关键技术 程 东1,朱新河1,邓金文2 (1.大连海事大学轮机工程学院,辽宁大连 116026; 2.中国船级社广州分社,广州 510000) 摘要:为建立精确的船用螺旋桨三维模型,采用UG Grip二次开发技术探讨了船用螺旋桨三维建模的关键技术,实现了对桨叶叶尖、导(随)边缘过渡、防鸣音随边、根部过渡等关键部位的合理处理,建立了精确的三维螺旋桨模型. 关键词:船用螺旋桨;三维模型;UG G rip;防鸣音 中图分类号:U664.31 文献标志码:A Key technologies for3D modeling of marine propeller based on UG Grip CHENG Dong,ZHU Xin-he,DENG Jin-wen (1.Marine Eng ineering College,Dalian M aritime University, Dal ian116026,China;2.Guangzhou B ranch,China Classification Society,Guangzhou510000,China) A bstract:T o establish a precise3D model of marine propeller, the key technolo gies fo r3D modeling of marine propeller were studied by using UG G rip seco ndary development,and a precise 3D model with co rrect treatment of blade tip,fillets of leading edge and trailing edge,anti-singing edge and blade root fillets w as established. Key words:marine propeller;3D mo del;UG G rip;anti-sing ing 0 引 言 建立完善的船用螺旋桨三维模型是实现螺旋桨铸造过程模拟、铸造砂型制作、数控加工等工艺过程的关键和难点,也是实现螺旋桨强度分析、特性分析的基础.国内不少学者对螺旋桨的三维造型方法进行了研究[1-4],但所建模型均未涉及叶尖、导(随)边缘过渡、防鸣音处理、根部过渡等关键技术.目前常用的三维模型设计软件主要有Pro E、UG NX、MDT 等.其中,UG NX(UG)是当今世界上先进的、紧密集成的、面向制造业的三维CAD CAM CAE高端软件之一,被众多制造商广泛应用于工业设计、工程仿真和数字化制造等领域.尤其是UG Grip的二次开发功能为用户提供了方便和功能扩展的空间.因此,本文拟采用UG Grip的二次开发技术自动实现螺旋桨的三维建模,并对桨叶的边缘和根部等关键部位进行合理处理,以建立精确的船用螺旋桨三维模型. 1 船用螺旋桨三维建模的关键技术 1.1 螺旋桨三维造型方法 螺旋桨三维建模时,通常先建立桨叶的模型,再进行桨毂的造型,然后进行两者之间的过渡连接.桨叶的形状由轮廓参数和型值参数决定.桨叶轮廓参数主要包括截面半径、螺距、后倾值(角)等 . 图1 桨叶截面参数 图1为桨叶截面型值参数示意图.图中C为叶截面型宽,CLE为导边到基线的距离(辐射参考系的距离),SS为吸力面型值点到螺距线的距离,PS 为压力面型值点到螺距线距离.造型时先构造出压力面和吸力面曲线,再对导边和随边进行过渡圆角处理.其中RLE、R TE为导边和随边的过渡圆角半径,Y TE、Y LE为过渡圆圆心到螺距线的距离. 建立三维模型时,需将二维型值点转换为三维空间坐标点,再在立体空间中构造出桨叶的各个截面轮廓,然后利用BSURF命令构造出整个桨叶的外表面.三维空间坐标转换公式如下[5]: x=r cos( (l-h tan)cos r ) 收稿日期:2009-08-25. 作者简介:程 东(1972-),男,安徽宿州人,博士,副教授,E-mail:chddmu@https://www.360docs.net/doc/4c9344654.html,.

相关文档
最新文档