一次函数与反比例函数专题复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与反比例函数综合题训练
1.如图,直线y =k 1x +b 与双曲线y =2
k x
相交于A (1,2)、B (m ,﹣1)两点. (1)求直线和双曲线的解析式;
(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式; (3)观察图象,请直接写出不等式k 1x +b >
2
k x
的解集.
2.如图,在平面直角坐标系xoy 中,函数()4
y=
x 0x
>的图象与一次函数y =kx -k 的图象 交点为A (m ,2).(1)求一次函数的解析式;
(2)设一次函数y =kx -k 的图象与y 轴交于点B ,若P 是x 轴上一点, 且满足△PAB
的面积是4,直接写出点P 的坐标.
3.平行四边形ABCD 在平面直角坐标系中的位置如图所示,其中A (﹣4,0),B (2,0),C (3,3)反比例函数y=
m
x
的图象经过点C . (1)求此反比例函数的解析式;
(2)将平行四边形ABCD 沿x 轴翻折得到平行四边形AD ′C ′B ,请你通过计算说明点D ′在双曲线上;
(3)请你画出△AD ′C ,并求出它的面积.
4.如图,一次函数y 1=﹣x ﹣1的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数2
k
y x
=
图象的一个交点为M (﹣2,m ).(1)求反比例函数的解析式;(2)求点B 到直线OM 的距离.
5.如图,一次函数y =-2x +b (b 为常数)的图象与反比例函数k
y=x
(k 为常数,且k ≠0)的图象交于A ,B 两点,且点A 的坐标为(1-,4).
(1)分别求出反比例函数及一次函数的表达式; (2)求点B 的坐标.
6.如图,直线y =2x +2与y 轴交于A 点,与反比例函数k
y=
x
(x >0)的图象交于点M ,过M 作MH ⊥x 轴于点H ,且tan ∠AHO =2.(1)求k 的值;(2)点N (a ,1)是反比例函数k
y=x (x
>0)图象上的点,在x 轴上是否存有点P ,使得PM +PN 最小?若存有,求出点P 的坐标;若不存有,请说明理由.
7.如图在平面直角坐标系xoy 中,一次函数y x =-的图象与反比例函数k
y x
=
图象交于A 、B 两点. ①根据图像求k 的值; ②点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直
角三角形,试写出点P 所有可能的坐标.
y
O
A B
-1
8.已知一次函数1y x m =+的图象与反比例函数2
6
y x
=
的图象交于A 、B 两点,.已知当x 1>时,12y y >;当0x 1<<时,12y y <.⑴求一次函数的解析式;
⑵已知双曲线在第一象限上有一点C 到y 轴的距离为3,求△ABC 的面积.
9. 如图所示,在直角坐标系中,点A 是反比例函数1k
y x
=
的图象上一点,AB x ⊥轴的正半轴于B 点,C 是OB 的中点;一次函数2y ax b =+的图象经过A 、C 两点,并交y 轴于点()02D -,,若4AOD S =△.(1)求反比例函数和一次函数的解析式; (2)观察图象,请指出在y 轴的右侧,当12y y >时,
x 的取值范围.
10.如图,已知函数43y x =
与反比例函数(0)k y x x
=>的图象交于点A .将43y x =的图象向下平移6个单位后与双曲线k
y x
=交于点B ,与x 轴交于点C .
(1)求点C 的坐标; (2)若
2OA
CB
=,求反比例函数的解析式. y
x
C
B
A
O
11.如图,在平面直角坐标系中,一次函数2(0)y
nx n 的图象与反比例函数
(0)m y
m x
在第一象限内的图象交于点A ,与x 轴交于点B ,线段OA =5,C 为x 轴正半
轴上一点,且s i n ∠AOC =4
5.(1)求一次函数和反比例函数的解析式;
(2)求△AOB 的面积.
y x
C B
A D
O
12.如图,一次函数2y kx =+的图象与反比例函数m
y x
=
的图象交于点P ,点P 在第一象限.P A ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D , 且S △PBD =4,12OC OA
=.(1)求点D 的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当0x >时,一次函数的值大于反比例 函数的值的x 的取值范围.
13.如图,矩形OABC 的顶点,A C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线
(0)k
y x x
=
>的图像经过BC 的中点D ,且与AB 交于点E ,连接DE 。
(1)求k 的值及点E 的坐标;(2)若点F 是边OC 上一点,且FBC DEB ,求直线FB 的解析式
14.如图,已知正比例函数y=2x 和反比例函数的图象交于点A (m ,﹣2). (1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x 的取值范围;(3)若双曲线上点C (2,n )沿OA 方向平移个单位长度得到点B ,判断四边形OABC 的形状并证明你的结论.
x
B
A O
y
C
y x
P
B D
A
O C