初三数学总复习函数及其图象相关定理
中考函数必备知识点归纳
中考函数必备知识点归纳函数是中考数学中的一个重要概念,掌握好函数的知识点对于解决中考数学问题至关重要。
以下是中考必备的函数知识点归纳:1. 函数的概念:函数是一种特殊的关系,它将一个集合中的每一个元素都映射到另一个集合中的一个元素。
在数学中,我们通常用\( y =f(x) \)来表示函数,其中\( f \)是函数名,\( x \)是自变量,\( y \)是因变量。
2. 函数的三要素:定义域、值域和对应法则。
定义域是函数中自变量的所有可能取值的集合;值域是函数中因变量的所有可能取值的集合;对应法则是确定函数值的规则。
3. 函数的表示方法:列表法、图象法和解析法。
列表法通过列出自变量和对应的因变量来表示函数;图象法通过函数的图象来表示函数;解析法通过数学表达式来表示函数。
4. 函数的类型:一次函数、二次函数、反比例函数等。
一次函数的一般形式为\( y = ax + b \);二次函数的一般形式为\( y = ax^2 +bx + c \);反比例函数的一般形式为\( y = \frac{k}{x} \)。
5. 函数的图象:一次函数的图象是直线,二次函数的图象是抛物线,反比例函数的图象是双曲线。
图象的对称性、顶点、焦点等特征是中考中常考的内容。
6. 函数的增减性:函数的增减性是指函数值随自变量变化的趋势。
一次函数和反比例函数具有单调性,即要么一直增加要么一直减少;而二次函数则可能在某个区间内增加,在另一个区间内减少。
7. 函数的极值:极值是指函数在某点的局部最大值或最小值。
二次函数的极值通常出现在对称轴上。
8. 函数的复合:两个函数的复合是指先对自变量进行一个函数的运算,然后再用另一个函数进行运算。
复合函数的求解是中考中的难点。
9. 函数的解析式:解析式是函数的数学表达式,掌握如何根据已知条件求出函数的解析式是中考中的重要技能。
10. 函数的实际应用:函数在实际问题中的应用非常广泛,如速度与时间的关系、成本与产量的关系等,中考中经常会出现将函数应用到实际问题中的题目。
(完整版)初中数学函数知识点归纳
初中数学函数板块的知识点总结与归类学习方法初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。
初中数学从性质上分,可以分为:一次函数、反比例函数、二次函 数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。
一、一次函数1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。
2. 图象及其性质 (1)形状、直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200k y x k y x ><⎧⎨⎪⎩⎪()若直线::3111222l y k x b l y k x b =+=+当时,;当时,与交于,点。
k k l l b b b l l b 121212120===//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。
(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。
(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。
3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。
(二)反比例函数 1. 定义:应注意的问题:中()是不为的常数;()的指数一定为“”y kxk x =-1021 2. 图象及其性质: (1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x==-⎧⎨⎪⎩⎪()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。
初三中考数学二次函数公式、定理汇编
这篇关于初三中考数学⼆次函数公式、定理汇编,是特地为⼤家整理的,希望对⼤家有所帮助!
1 ⼆次函数及其图像
11 ⼆次函数
我们把函数y=ax²+bx+c(a,b,c为常数,且a不等于0)叫做⼆次函数
12 函数y=ax²(a不等于0)的图像和性质
⽤表⾥各组对应值作为点的坐标,进⾏描点,然后⽤光滑的曲线把它们顺次联结起来,就得到函数y=x²的图象这个图象叫做抛物线函数y=x²的图像,以后简称为抛物线y=x²这条抛物线是关于y轴成对称的我们把y轴叫做抛物线y=x²的对称轴对称轴和抛物线的焦点,叫做抛物线的顶点
13 函数y=ax²+bx+c(a不等于0)的图像和性质
抛物线y=ax²+bx+c的顶点坐标是(-b/2a,4ac-b²/4a),对称轴⽅程是x=-b/2a,当a〉0时,抛物线的开⼝向上,并且向上⽆限延伸;当a〈0时,抛物线的开⼝向下,并且向下⽆限延伸
当a〉0时,⼆次函数y=ax²+bx+c在x〈-b/2a时是递减的,在x〉-b/2a时是递增的;在x=-b/2a处取得y最⼩=4ac-b²/4a当a〈0时,⼆次函数y=ax²+bx+c在x〈-b/2a时是递减的;在x=-不/2a处取得y=4ac-b²/4a
2 根据已知条件求⼆次函数
21 根据已知条件确定⼆次函数
22 ⼆次函数的值或最⼩值
23 ⼀元⼆次⽅程的图像解法。
九年级数学--初中各种函数知识点总结
初中各种函数知识点陈述总结知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注重:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0x⇔y,0>>点P(x,y)在第二象限0⇔yx<,0>点P(x,y)在第三象限0⇔yx,0<<点P(x,y)在第四象限0x⇔y,0<>2、坐标轴上的点的特征点P(x,y)在x轴上0⇔y,x为任意实数=点P(x,y)在y轴上0⇔x,y为任意实数=点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y 轴的直线上的各点的横坐标相同。
5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离 点P (x ,y )到坐标轴及原点的距离: (1)点P (x ,y )到x 轴的距离等于y (2)点P (x ,y )到y 轴的距离等于x(3)点P (x ,y )到原点的距离等于22y x +知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析
中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。
5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。
【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。
中考复习二次函数知识点总结
中考复习二次函数知识点总结二次函数是中考数学中的重要知识点之一、下面我将从函数的定义、图像特征、解析式以及一些常见题型进行总结,希望对中考复习有所帮助。
一、函数的定义:函数是数学中最基本的概念之一,它是描述两个集合之间对应关系的规则。
在二次函数中,我们通常用y来表示函数的值,用x表示自变量。
二、图像特征:1.开口方向:二次函数的图像在x轴上开口的方向可以通过二次项的系数(即a的正负性)来判断。
当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
2.对称轴:二次函数的图像总是关于一个垂直于x轴的直线对称。
这条直线称为二次函数的对称轴,它的方程为x=-b/(2a)。
3.顶点坐标:对称轴与二次函数图像的交点称为顶点,它的坐标为:(-b/(2a),f(-b/(2a)))4.单调性:当a>0时,二次函数图像在对称轴左侧递减,在对称轴右侧递增;当a<0时,二次函数图像在对称轴左侧递增,在对称轴右侧递减。
注意:二次函数的图像开口向上时,在对称轴上有一个最小值,反之开口向下时,在对称轴上有一个最大值。
三、解析式:一般情况下,二次函数的解析式可以写成:y=ax^2+bx+c,其中a、b、c为常数,且a≠0。
特殊情况下,二次函数的解析式还有以下两种形式:1.完全平方式:y=a(x-p)^2+q,其中p、q为常数。
此时,二次函数的对称轴的方程为x=p,顶点的坐标为(p,q)。
2.二次项因式可能性:y=a(x-h)(x-k),其中h、k为常数。
此时,二次函数的对称轴的方程为x=(h+k)/2,顶点的坐标为((h+k)/2,a(h+k)/4)。
四、常见题型:1.求顶点坐标:根据二次函数的解析式,可以直接读出顶点的坐标。
2.求对称轴方程:根据二次函数的解析式,可以直接读出对称轴的方程。
3.求图像开口方向:判断二次项的系数a的正负性即可。
4.求单调性:根据图像特征可以判断。
5. 求零点:令y=0,解方程ax^2+bx+c=0即可。
初中知识点归纳——函数图像篇
初中知识点归纳——函数图像篇函数图像是初中数学中的重要内容之一。
通过函数图像的形状、特点以及变化规律,可以深入理解函数的性质和作用。
本文将从函数图像的基本形状与分类、常见函数图像的特点及其变化规律等方面进行归纳与总结。
一、函数图像的基本形状与分类函数图像的形状可以分为线性函数、二次函数、指数函数和对数函数等几种常见类型。
1. 线性函数图像线性函数的特点是图像为一条直线。
直线的斜率表示了函数的增减趋势,当斜率为正时,函数图像呈上升趋势;当斜率为负时,函数图像呈下降趋势;斜率为0时,函数图像为水平直线。
2. 二次函数图像二次函数的图像通常为抛物线形状。
抛物线的开口方向由二次项的系数决定,当二次项的系数为正时,抛物线开口向上;当二次项的系数为负时,抛物线开口向下。
二次函数的图像还受到常数项的影响,常数项决定了抛物线的位置。
3. 指数函数图像指数函数的图像为指数曲线,呈现上升或下降的趋势。
指数函数的底数决定了曲线在坐标系中的位置和形状。
当底数大于1时,指数曲线呈现上升趋势;当底数小于1但大于0时,指数曲线呈现下降趋势。
4. 对数函数图像对数函数的图像为对数曲线,也呈现上升或下降的趋势。
对数函数的底数决定了曲线在坐标系中的位置和形状。
当底数大于1时,对数曲线呈现上升趋势;当底数小于1但大于0时,对数曲线呈现下降趋势。
二、常见函数图像的特点与变化规律1. 线性函数的特点与变化规律线性函数的图像为一条直线,具有以下特点和变化规律:(1)斜率决定了线性函数图像的倾斜程度和方向,斜率越大图像越陡峭,斜率为正表示函数图像上升,斜率为负表示函数图像下降。
(2)截距决定了线性函数图像与纵轴的交点位置,截距为正表示交点在纵轴上方,截距为负表示交点在纵轴下方。
2. 二次函数的特点与变化规律二次函数的图像为抛物线,具有以下特点和变化规律:(1)开口方向由二次项的系数决定,正系数表示抛物线开口向上,负系数表示抛物线开口向下。
(2)顶点是抛物线的最高点或最低点,在坐标系中的横坐标为顶点的x坐标,纵坐标为顶点的y坐标。
初三数学知识点全总结
初三数学知识点全总结初三数学是初中数学学习的重要阶段,知识点繁多且复杂,需要我们认真梳理和掌握。
以下是对初三数学知识点的全面总结。
一、函数1、一次函数一次函数的表达式为 y = kx + b(k、b 为常数,k ≠ 0)。
当 b = 0 时,函数为正比例函数y =kx。
我们需要掌握一次函数的图像和性质,例如斜率 k 决定了函数图像的倾斜程度,k > 0 时函数单调递增,k <0 时函数单调递减。
同时,要能根据给定的条件求出函数的解析式,并解决与一次函数相关的实际问题。
2、反比例函数反比例函数的表达式为 y = k/x(k 为常数,k ≠ 0)。
反比例函数的图像是以原点为对称中心的两条曲线,当 k > 0 时,图像在一、三象限,在每个象限内 y 随 x 的增大而减小;当 k < 0 时,图像在二、四象限,在每个象限内 y 随 x 的增大而增大。
3、二次函数二次函数的一般式为 y = ax²+ bx + c(a ≠ 0),顶点式为 y =a(x h)²+ k,交点式为 y = a(x x₁)(x x₂)。
二次函数的图像是一条抛物线,对称轴为 x = b/2a,顶点坐标为(b/2a,(4ac b²)/4a)。
我们要学会求二次函数的解析式、顶点坐标、对称轴,掌握二次函数的图像和性质,并能利用二次函数解决最值问题和实际应用题。
二、几何图形1、圆圆的相关概念包括圆心、半径、直径、弧、弦、圆心角、圆周角等。
圆的性质有:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;直径所对的圆周角是直角;圆的切线垂直于过切点的半径等。
我们要掌握圆的周长和面积公式,以及弧长和扇形面积的计算方法,并能解决与圆有关的证明和计算问题。
2、相似三角形相似三角形的判定方法有:两角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似。
相似三角形的性质有:对应边成比例,对应角相等;相似三角形的周长比等于相似比,面积比等于相似比的平方。
九年级函数知识点归纳
九年级函数知识点归纳函数是数学中非常重要的概念,在九年级数学课程中也有着重要的地位。
为了帮助大家对九年级函数的知识点有更清晰的理解,下面将对函数的定义、函数的性质以及函数的图像等几个方面进行归纳总结。
1. 函数的定义函数是一种数学关系,它将一个集合中的每一个元素都对应到另一个集合中唯一的元素上。
函数通常用符号表示,如 y=f(x)。
其中,x是自变量,y是因变量,f表示函数的规则。
2. 函数的性质(1) 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
(2) 单调性:函数可以是递增的(随着自变量的增加,因变量增加)、递减的(随着自变量的增加,因变量减小)或者常数函数(因变量保持不变)。
(3) 奇偶性:如果函数满足 f(-x)=-f(x),则函数为奇函数;如果函数满足 f(-x)=f(x),则函数为偶函数。
(4) 周期性:如果存在正数T,使得对于任意x,有f(x+T)=f(x),则函数是周期函数。
3. 函数的图像函数的图像是了解函数性质的一种重要方式。
(1) 直角坐标系中的图像:在直角坐标系中,自变量x位于横轴上,因变量y位于纵轴上,通过将各个自变量对应的因变量连接起来,可以得到函数的图像。
(2) 坐标轴上的特殊点:对于函数图像上的特殊点,如最大值、最小值、切线与坐标轴的交点等,可以通过求导数来判断。
(3) 函数的变化趋势:通过观察函数图像的上升下降、拐点等特点,可以判断函数的单调性、极值点等性质。
4. 常见函数类型(1) 一次函数:y=ax+b,其中a和b为常数,a为斜率,b为截距。
(2) 二次函数:y=ax^2+bx+c,其中a、b和c为常数,a不等于0,其图像为抛物线。
(3) 绝对值函数:y=|x|,该函数的图像为以原点为对称轴的V 字形。
(4) 幂函数:y=x^a,其中a为常数,具体形态根据a的值的正负和大小而定。
(5) 反比例函数:y=k/x,其中k为常数,该函数的图像为双曲线。
九年级上册数学函数知识点总结
九年级上册数学函数知识点总结一、二次函数。
1. 二次函数的定义。
- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数叫做二次函数。
其中x是自变量,a、b、c分别是二次函数的二次项系数、一次项系数和常数项。
- 例如y = 2x^2+3x - 1是二次函数,这里a = 2,b = 3,c=-1。
2. 二次函数的图象。
- 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 抛物线y = ax^2+bx + c(a≠0)的对称轴为直线x =-(b)/(2a),顶点坐标为(-(b)/(2a),frac{4ac - b^2}{4a})。
3. 二次函数的性质。
- 当a>0时:- 在对称轴左侧,即x<-(b)/(2a)时,y随x的增大而减小;- 在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大;- 函数有最小值,当x =-(b)/(2a)时,y_min=frac{4ac - b^2}{4a}。
- 当a < 0时:- 在对称轴左侧,即x<-(b)/(2a)时,y随x的增大而增大;- 在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小;- 函数有最大值,当x =-(b)/(2a)时,y_max=frac{4ac - b^2}{4a}。
4. 二次函数图象的平移。
- 抛物线y = a(x - h)^2+k(a≠0)的图象可以由y = ax^2(a≠0)的图象平移得到。
- 向左平移m个单位时,h的值增加m;向右平移m个单位时,h的值减少m;向上平移n个单位时,k的值增加n;向下平移n个单位时,k的值减少n。
- 例如,将y = 2x^2的图象向右平移3个单位,再向下平移2个单位,得到y = 2(x - 3)^2-2的图象。
5. 二次函数与一元二次方程的关系。
中考数学总复习第一部分基础知识复习函数及其图象反比例函数PPT
★考点2 ★考点2 ★知识点2 ★考点2 ★考点2 ★知识点2 ★考点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★知识点2 ★考点2 ★考点2 ★考点2 ★考点2
★考点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★考点3
★知识点3 ★知识点3 ★考点3 ★知识点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3 ★考点3 ★知识点3 ★考点3 ★考点3 ★考点3 ★知识点3
★知识点4 ★知识点4 ★知识点4 ★知识点4
★知识点4 ★知识点4
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4
★知识要点导航 ★热点分类解析
初三数学函数及其图象知识点总结
初三数学函数及其图象知识点总结数学是被很多人称之拦路虎的一门科目,同学们在掌握数学知识点方面还很欠缺,为此为大家整理了初三数学函数及其图象知识点总结,希望能够帮助到大家。
★重点★正、反比例函数,一次、二次函数的图象和性质。
☆内容提要☆一、平面直角坐标系1.各象限内点的坐标的特点2.坐标轴上点的坐标的特点3.关于坐标轴、原点对称的点的坐标的特点4.坐标平面内点与有序实数对的对应关系二、函数1.表示方法:⑴解析法;⑵列表法;⑶图象法。
2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有意义。
3.画函数图象:⑴列表;⑵描点;⑶连线。
三、几种特殊函数(定义图象性质)1.正比例函数⑴定义:y=kx(k0)或y/x=k。
⑵图象:直线(过原点)⑶性质:①k0,②k0,2.一次函数⑴定义:y=kx+b(k0)⑵图象:直线过点(0,b)与y轴的交点和(-b/k,0)与x轴的交点。
⑶性质:①k0,②k0,⑷图象的四种情况:3.二次函数⑴定义:特殊地,都是二次函数。
⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。
用配方法变为,则顶点为(h,k);对称轴为直线x=h;a0时,开口向上;a0时,开口向下。
⑶性质:a0时,在对称轴左侧,右侧a0时,在对称轴左侧,右侧。
4.反比例函数⑴定义:或xy=k(k0)。
⑵图象:双曲线(两支)用描点法画出。
⑶性质:①k0时,图象位于,y随x②k0时,图象位于,y随x③两支曲线无限接近于坐标轴但永远不能到达坐标轴。
四、重要解题方法1.用待定系数法求解析式(列方程[组]求解)。
对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。
如下图:2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。
六、应用举例(略)。
初中数学公式定理之函数与图像解析
初中数学公式定理之函数与图像解析初中数学公式定理集锦之函数与图像解析1数轴11 有向直线在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相规定了正方向的直线,叫做有向直线,读作有向直线l12 数轴我们把数轴上任意一点所对应的实数称为点的坐标对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值2 平面直角坐标系21 平面的直角坐标化在平面内任取一点o为作为原点(基准点),过o引两条互相垂直的,以o为公共原点的数轴,一般地,两个数轴选取相同的单位长度这样就构成了一个平面直角坐标系x轴叫横轴,y轴叫纵轴,它们都叫直角坐标系的坐标轴;公共原点o称为直角坐标系的原点;我们把建立了直角坐标系的平面叫直角坐标平面简称坐标平面两坐标轴把坐标平面分成四个部分,它们叫做四个象限22 两点间的距离23 中点公式3 函数31 常量,变量和函数在某一过程中可以去不同数值的量,叫做变量在整个过程中保持统一数值的量或数,叫做常量或常数一般地,设在变活过程中有两个互相关联的变量x,y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,那么就称y是x的函数,x叫做自变量1. 函数的定义域2. 对应法则(1) 解析法就是用等式来表示一个变量是另一个变量的函数,这个等式叫做函数的解析表达式(函数关系式)(2) 列表法(3) 图像法3 函数的值域一般的,当函数f(x)的自变量x去定义域D中的一个确定的值a,函数有唯一确定的对应值这个对应值,称为x=a时的函数值,简称函数值,记作:f(a)32 函数的图像若把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在直角坐标平面上描出一个点(x,f(x))的集合构成一个图形F,而集F成为函数y=f(x)的图像知道函数的解析式,要画函数的图像,一般分为列表,描点,连线三个步骤4 正比例函数41 正比例函数一般地,函数y=kx(k是不等于零的常数)叫做正比例函数,其中常数k叫做变量y与x之间的比例函数确定了比例函数k,就可以确定一个正比例函数正比例函数y=kx有下列性质:(3) 当k>0时,它的图像经过第一,三象限,y随着x的值增大而增大;当k<0时,他的图像经过第二,四象限,y随着x的增大而减小(2)随着比例函数的绝对值的.增加,函数图像渐渐离开x轴而接近于y轴,因此,比例系数k和直线y=kx与x轴正方向所成的角有关据此,k 叫做直线y=kx的斜率42 反比例函数一般地,函数y=k/x(k是不等于0的常数)叫做反比例函数反比例函数y=k/x有下列性质:(7) 当k>0时,他的图像的两个分支分别位于第一,三象限内,在每一个象限内,y随x的值增大而减小;当k<0时,它的图像的两个分支分别位于第二、四象限内,在每一个象限内,y随x的增大而增大(8) 它的图像的两个分支都无限接近但永远不能达到x轴和y轴5 一次函数及其图像51 一次函数及其图像如果k=0时,函数变形为y=b,无论x在其定义域内取何值,y都有唯一确定的值b与之对应,这样的函数我们称它为常函数直线y=kx+b与y轴交与点(0,b),b叫做直线y=kx+b在y轴上的截距,简称纵截距52 一次函数的性质函数y=f(小),在a〈x〈b上,如果函数值随着自变量x的值增加而增加,那么我们说函数f(x)在a〈x如果分别画出两个二元一次方程所对应的一次函数图像,交点的坐标就是这个方程组的解,这种求二元一次方程组的解法叫图像法初中数学正方形定理公式关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。
第10课时 一次函数的图象及其性质 课件 2025年中考数学一轮总复习
么过原点O且将△AOB的面积平分的直
线l2的解析式为( D )
D
A. y= x
B. y=x
C. y= x
D. y=2x
(2)如图2,已知一条直线经过点A
(0,2),点B(1,0),将这条直线
向左平移与x轴、y轴分别交于点C,D.
若DB=DC,则直线CD的函数解析式
y= x-
考点三 一次函数与方程(组)、不
等式
例3 (1)(2024·广东)已知不等式
kx+b<0的解集是x<2,则一次函数y
=kx+b的图象大致是( B )
B
A B C D
一、
二、三
一、
三
一、
三、四Βιβλιοθήκη 一、 二、四
二、
四
二、
三、
四
增大
减小
(1)k的符号决定直线的增减性;
的大小决定直线的倾斜程度,即 越
大,直线与x轴相交的锐角的度数越大
(直线越 ); 越小,直线与x
轴相交的锐角的度数越小(直线越 ).(2)b(称为截距)表示直线y=kx+
图象
关系
一次函数y=kx+b的图象可由正
比例函数y=kx的图象平移得到.
当b>0时,向上平移b个单位长
度;当b<0时,向下平移 个单
位长度
(0,b)
(- ,0)
知识点2 一次函数y=kx+b(k≠0)的
图象与性质
函
数
y=kx+b(k,b为常数,且k≠0)
k>0
k<0
b>0
b=0
b<
0
b>0
b=0
为 ;
初中数学函数图像知识点汇总
初中数学函数图像知识点汇总函数是数学中的重要概念,而函数图像则是理解函数性质的重要工具之一。
在初中数学中,学习函数图像有助于学生理解函数的变化规律、性质和应用。
下面将对初中数学函数图像的知识点进行详细总结。
1. 基本函数图像:(1) 常数函数 f(x)=a : 这是一条平行于x轴的直线,横坐标不变,纵坐标为常数a。
(2) 一次函数 f(x)=kx+b : 这是一条斜率为k的直线,纵截距为b。
(3) 平方函数 f(x)=x^2 : 这是一条开口向上的抛物线,对称轴是y轴。
(4) 绝对值函数 f(x)=|x| : 这是一条以原点为顶点的V字形折线。
2. 函数的变换:(1) 平移:将函数图像沿x轴或y轴平行地移动。
当函数图像向右平移h单位时,函数表示形式为f(x-h);当函数图像向上平移k单位时,函数表示形式为f(x)+k。
(2) 翻折:将函数图像沿x轴或y轴翻转。
当函数图像关于x轴对称时,函数表示形式为-f(x);当函数图像关于y轴对称时,函数表示形式为f(-x)。
(3) 压缩与拉伸:将函数图像沿x轴或y轴进行扩大或缩小。
当函数图像水平方向压缩为原来的1/a倍,纵轴方向拉伸为原来的a倍时,函数表示形式为f(ax);当函数图像水平方向拉伸为原来的a倍,纵轴方向压缩为原来的1/a倍时,函数表示形式为f(x/a)。
3. 常见函数图像特征:(1) 斜率:一次函数的斜率代表了函数图像的倾斜程度。
斜率越大,函数图像越陡峭。
(2) 零点:函数图像与x轴相交的点称为零点。
零点对应于函数的解,即f(x)=0。
(3) 最值:函数图像的最高点称为最大值,最低点称为最小值。
(4) 对称中心:若函数图像关于某一点对称,则该点为对称中心。
常见对称中心有原点和y轴。
(5) 单调性:函数图像在某一区间上递增或递减称为函数的单调性。
4. 常用函数图像的特点:(1) 常数函数 f(x)=a : 函数图像平行于x轴,斜率为0,没有零点,单调性为常数。
九年级数学函数常考知识点
九年级数学函数常考知识点在九年级数学学习中,函数是一个常见且重要的概念。
理解函数的性质、性质和应用是九年级数学学习的关键之一。
本文将介绍九年级数学中常考的函数知识点,帮助同学们更好地掌握这一知识。
一、函数的定义和性质1. 函数的定义:函数是一个或多个数域上的元素之间的对应关系,每个自变量对应唯一的一个函数值。
2. 定义域和值域:函数的定义域是所有可能的自变量的取值范围,值域是函数所有可能函数值的集合。
3. 函数的图象:函数的图象是在直角坐标系上表示函数各个自变量和函数值之间对应关系的图形。
4. 奇偶性:如果对于函数中任意一个自变量x,有f(-x) = f(x),则该函数是偶函数;如果对于函数中任意一个自变量x,有f(-x) = -f(x),则该函数是奇函数。
5. 单调性:函数的单调性指的是函数值随自变量增大或减小而增大或减小的趋势。
二、函数的表示和运算1. 函数的表示:函数可以通过函数解析式或函数关系式来表示。
- 函数解析式是用代数表达式表示的函数形式,常见的有一次函数y = kx + b和二次函数y = ax^2 + bx +c。
- 函数关系式是通过函数的定义关系来表示的,常见的有反比例函数y = k/x和平方根函数y = √x。
2. 函数的运算:函数之间可以进行四则运算,包括函数的加、减、乘和除。
- 函数的加法: (f + g)(x) = f(x) + g(x),即将两个函数在同一个自变量x上的函数值相加。
- 函数的减法: (f - g)(x) = f(x) - g(x),即将两个函数在同一个自变量x上的函数值相减。
- 函数的乘法: (f × g)(x) = f(x) × g(x),即将两个函数在同一个自变量x上的函数值相乘。
- 函数的除法: (f ÷ g)(x) = f(x) ÷ g(x),即将两个函数在同一个自变量x上的函数值相除,其中除数的函数值不能为零。
初三数学重要知识点
初三数学重要知识点一览初三数学重要知识点一、反比例函数1、形如y=k/x(k≠0)或y=kx^—1的函数叫做反比例函数,k叫做反比例系数。
它的图像是双曲线。
^—1表示负一次。
2、在函数y=k/x(k≠0),当k>0时,表达式中的想x、y符号相同,点(x,y)在第一、三象限,所以函数y=k/x(k≠0)的图像位于第一、三象限;当k<0时,表达式中的想x、y符号相反,点(x,y)在第二、四象限,所以函数y=k/x(k≠0)的图像位于第二、四象限。
3、在y=k/x(k≠0)中,当k>0时,在第一象限内,y随着x的增大而减小;若y 的值随着x的值的增大而增大,则k的取值范围是k<0。
4、设P(a,b)是反比例函数y=k/x(k≠0)上任意一点,则ab的值等于k。
经过反比例函数上的任意一点P,分别向x轴、y轴作垂线段,则所成的矩形面积为k;过P点向x轴或y轴作垂线段,连接OP,则所成的三角形面积为k/2。
二、二次函数1、形如y=ax^2+bx+c(a≠0,a、b、c为常数)。
的函数叫做二次函数,它的图像是一条抛物线。
2、二次函数y=ax^2+bx+c(a≠0)的顶点坐标为(—b/2a,4ac—b^2/4a),对称轴是直线x=—b/2a。
3、对于二次函数y=ax^2+bx+c(a≠0),当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
图像与y轴的交点的坐标是(0,c)。
4、一元一次方程ax^2+bx+c=0(a≠0)的解,可以看成函数y=ax^2+bx+c(a≠0)的图像与x轴交点的横坐标。
当b^2—4ac>0时,函数图像与x轴有两个交点。
当b^2—4ac=0时,函数图像与x轴有一个交点。
当b^2—4ac<0时,函数图像与x轴没有交点。
5、当a>0,且x=—b/2a时,函数y=ax^2+bx+c(a≠0)取得最小值,这个值等于4ac—b^2/4a;当a<0,且x=—b/2a时,函数y=ax^2+bx+c(a≠0)取得值,这个值等于4ac—b^2/4a。
九年级各种函数知识点
九年级各种函数知识点一、一次函数一次函数也称为线性函数,是数学中最简单的一种函数。
它的图像为一条直线,表达式通常为y = kx + b,其中k和b都是常数。
1. 定义一次函数的定义可以表述为:对于任意实数x,函数f(x)的取值等于k乘以x再加上常数b,即f(x) = kx + b。
2. 斜率一次函数的斜率k表示了直线的倾斜程度。
当k为正数时,直线上升;当k为负数时,直线下降;当k为零时,直线为水平线。
3. 截距一次函数的截距b表示了直线与y轴的交点在y轴上的纵坐标。
当x为0时,f(x)的值为b。
4. 图像性质一次函数的图像是一条直线,具有以下特点:- 当斜率k为正数时,直线向右上方倾斜;- 当斜率k为负数时,直线向右下方倾斜;- 当斜率k为零时,直线为水平线;- 直线的截距决定了直线与y轴的交点位置;- 不同的斜率和截距会使得直线的位置和角度不同。
二、二次函数二次函数是一种具有抛物线图像的函数,形式为y = ax² + bx + c,其中a、b、c都是常数,a不等于零。
1. 定义二次函数的定义可以表述为:对于任意实数x,函数f(x)的取值等于a乘以x的平方再加上b乘以x再加上常数c,即f(x) = ax²+ bx + c。
2. 抛物线二次函数的图像为抛物线,具有以下特点:- 当a大于零时,抛物线开口向上;- 当a小于零时,抛物线开口向下;- 抛物线的顶点是最高点(或最低点),在坐标系中为(x₀, y₀);- 抛物线在顶点处对称分布,左右两侧的形状相同。
3. 判别式二次函数的判别式Δ(delta)用于判断抛物线与x轴的交点情况。
当Δ大于零时,抛物线与x轴有两个交点;当Δ等于零时,抛物线与x轴有一个交点;当Δ小于零时,抛物线与x轴没有交点。
三、指数函数指数函数是以一个正常数为底的自然指数幂函数,形式为y =aⁿ,其中a为底数,n为指数。
1. 定义指数函数的定义可以表述为:对于任意正实数x,函数f(x)的取值等于以底数a为底、指数为x的次幂,即f(x) = aⁿ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学总复习教案(五)函数及其图象相关定理1. 一一对应:① 数轴上的点与实数一一对应。
② 坐标平面上的与有序实数对一一对应。
2.特殊位置的点的坐标特征:① 横坐标上的点⇔纵坐标为零。
② 纵坐标上的点⇔横坐标为零。
③ 平行于x 轴的直线上的点⇔纵坐标相等。
④ 平行于y 轴的直线上的点⇔横坐标相等。
⑤ 第一、三象限角平分线上的点⇔横、纵坐标相等[设A 点的坐标为(x,y )有x=y].⑥ 第二、四象限角平分线上的点⇔横、纵坐标互为相反数[设A 点的坐标为(x,y )有x= - y].2. 每一象限内点的坐标特征:设A (x,y )有① 第一象限内的点⇔x >0,y >0.② 第二象限内的点⇔x <0,y >0.③ 第三象限内的点⇔x <0, y <0.④ 第四象限内的点⇔x >0, y <0.3. 设平面上点A (x A ,y A ),点B (x B ,y B ):① AB 在x 轴上或平行于x 轴⇔AB=|x A - x B |。
② AB 在y 轴上或平行于y 轴⇔AB=|y A - y B |。
③ 点A 到原点的距离⇔OA=22A A y x +。
④ 平面上任意两点AB 的距离⇔AB=22)()(B A B A y y x x -+-。
4. 对称的点的坐标特征:① 点P (a,b )关于x 轴的对称点的坐标P 1(a,-b )。
即:点P 、P 1关于x轴对称⇔横坐标相同、纵坐标互为相反数。
② 点P (a,b )关于y 轴的对称点的坐标P 2(-a,b )。
即:点P 、P 2关于x轴对称⇔纵坐标相同、横坐标互为相反数。
③ 点P (a,b )关于原点对称的点的坐标P 3(-a,-b )。
即:点P 、P 3关于原点对称⇔横、纵坐标均互为相反数。
5.函数:设在一个变化过程中有两个变量x 、y ,对于x 的每一个值,y 都有唯一的值与它相对应,则y 叫做x 的函数。
其中x 是自变量。
6.函数的表示方法:解析法、图像法、列表法。
7.一次函数⇔一条直线⇔y=kx+b(k,b 是常数,k ≠0)。
8.正比例函数⇔直线过原点⇔y=kx(k 是常数,k ≠0)。
9. 反比例函数⇔双曲线⇔y=xk (k 是常数,k ≠0) ⇔y=kx 1-(k 是常数,k ≠0) ⇔xy=k(k 是常数,k ≠0)10. 二次函数⇔抛物线⇔y=ax 2+bx+c(a 、b 、c 是常数,且a ≠0)。
11. 一次函数y=kx+b(k,b 是常数,k ≠0)的性质:① 一次函数与y 轴的交点为(0,b ),与x 轴的交点为(-kb ,0)。
② k >0时⇔y 随x 的增大而增大,减小而减小。
⇔从左到右在上坡。
③ k <0时⇔y 随x 的增大而减小,减小而增大。
⇔从左到右在下坡。
④ b >0时⇔直线与y 轴的交点在原点的上方。
⑤ b <0时⇔直线与y 轴的交点在原点的下方。
⑥ b=0时⇔直线经过原点。
⑦ 直线m ∥n ⇔k 1=k 2⑧ 直线m 、n 交于x 轴上同一点⇔(2211k b k b =,0) 12. 一次函数y=kx+b(k,b 是常数,k ≠0)的图像:⇔ k >0, b >0⇔图像过一、二、三象限。
⇔ k >0, b=0⇔图像过一、三象限。
④0⇔图像过一、三、四象限。
0⇔图像⑥x x⇔ k <0, b=0⇔图像过二、四象限。
⇔ k <0, b <0⇔图像过二、三、四象限。
13. 自变量的取值范围:① 自变量所在的式子为整式时,自变量取全体实数。
② 自变量所在的式子含有分式时,则要求分母不为零。
③ 自变量所在的式子含有二根式(偶次方根)时,则要求二次根式(偶次方根)的被开方数为非负数。
④ 自变量所在的式子含有奇次方根时,则奇次方根的被开方数自变量取全体实数。
14. 反比例函数的性质:① k >0⇔图象在第一、三象限内,在每一个象限内,y 随x 的增大而减小。
② k <0⇔图象在第二、四象限内,在每一个象限内,y 随x 的增大而增大。
③ 反比例函数图像的两个分支关于原点成中心对称。
15. 二次函数y=ax 2+bx+c(a 、b 、c 是常数,且a ≠0)的性质,设抛物线与x 轴的交点为A (x 1,0)、B (x 2,0);与y 轴的交点C (0,c )有:① a >0⇔抛物线的开口方向向上。
② a <0⇔抛物线的开口方向向下。
③ |a |越大⇔抛物线的开口越小; |a |越小⇔抛物线的开口越大。
④ c >0⇔抛物线与y 轴的交点在原点的上方。
⑤ c <0⇔抛物线与y 轴的交点在原点的下方。
⑥ c=0⇔抛物线过原点。
⑦ a 、b 共同确定对称轴的位置的情况:(1)a 、b 同号,对称轴在y 轴的左边;(2)a 、b 异号,对称轴在y 轴的右边。
简记:同号左,异号右。
⑧ △>0⇔抛物线与x 轴有两个交点。
⑨ △=0⇔抛物线与x 轴有一个交点。
⑩ △<0⇔抛物线与x 轴没有交点。
⑪ 二次函数y=ax 2+bx+c=a (x+2)2a b +ab ac 442-的顶点坐标为(a b 2-,ab ac 442-),对称轴为x=a b 2-。
⑫ a >0有:x >a b 2-⇔y 随x 的增大而增大; x <ab 2-⇔y 随x 的增大而减小。
y ≥ab ac 442-有最小值。
⑬ a <0有:x >a b 2-⇔y 随x 的增大而减小; x <ab 2-⇔y 随x 的增大而增大。
Y ≤ab ac 442-有最大值。
⑭ AB=|x 1-x 2|=aac b 42-。
⑮ 对称轴⇔过最低点或最高点的直线⇔过顶点的直线(平行于y 轴)。
⑯ 顶点横坐标⇔对称轴所在的直线⇔最值⇔顶点纵坐标。
16. 二次函数的三种表示方法:① y=ax 2+bx+c(a 、b 、c 是常数,且a ≠0)。
② y=a(x -h)2+k(a 、h 、k 是常数,且a ≠0)。
③ y=a(x — x 1)(x -x 2)(a 是常数,且a ≠0)。
17. 二次函数y=ax 2+bx+c(a 、b 、c 是常数,且a ≠0)的图象,设抛物线与x 轴的交点为A (x 1,0)、B (x 2,0),并设x 1<x 2有:xx xx x x①⇔△>0,a >0,b <0,c <0。
y=ax2+bx+c >0⇔x <x 1或x >x 2;y=ax 2+bx+c <0⇔ x 1<x <x 2. ④⇔△>0,a <0,b >0,c >0。
y=ax 2+bx+c >0⇔x 1<x <x 2; y=ax 2+bx+c <0⇔ x <x 1或x >x 2.②⇔△=0, a >0,b <0,c >0。
y=ax2+bx+c >0⇔x ≠ab 2-的实数;y=ax 2+bx+c <0⇔无实数解。
⑤⇔△=0, a <0,b >0,c <0。
y=ax 2+bx+c >0⇔无实数解;y=ax 2+bx+c <0⇔x ≠a b 2-的实数。
③⇔△<0,a >0,b <0,c >0。
y=ax 2+bx+c >0⇔全体实数; y=ax 2+bx+c <0⇔无实数解。
⑥⇔△<0,a <0,b >0,c <0。
y=ax 2+bx+c >0⇔无实数解;y=ax 2+bx+c <0⇔全体实数。
18. 设f (x )= ax 2+bx+c,一元二次方程ax 2+bx+c=0.的根的分布(a >0):① 一根为零⇔过原点⇔c=0。
② 有一个正根和一个负根⇔f (0)<0。
③ 有一根大于a,一根小于a ⇔f (a )<0。
④ 有两个正根⇔△≥0,ab 2->0, f (0)>0。
⑤ 有两个负根⇔△≥0,ab 2-<0, f (0)>0。
⑥ 有一个正根和一个负根,并且正根的绝对值大于负根的绝对值⇔△≥0,ab 2->0, f (0)<0。
⑦ 有一个正根和一个负根,并且正根的绝对值小于负根的绝对值⇔△≥0,ab 2-<0, f (0)<0。
⑧ 两根都大于m⇔△≥0,ab 2->m, f (m)>0。
⑨ 两根都小于m⇔△≥0,ab 2-<m, f (m)>0。
⑩ 一根在a 、b 之间,另一根在c 、d 之间(a<b<c<d )⇔f (a) >0,f (b) <0,f (c) <0,f (d) >0.⑪ 两根互为相反数⇔对称轴为x=0⇔b=0。
19. 绝对值不等式的解法:①|x |>a (a>0)⇔x<-a 或x > a ,若a<0则x 取全体实数。
②|x |< a (a>0)⇔-a<x<a,若a<0则x 无解。
20.练习:① 抛物线通过(1,1),(-1,3),(2,23)三点,求解析式。
② 抛物线的顶点是(1,3),且抛物线通过点(2,1),求解析式。
③ 抛物线通过(-2,0)与(3,0)两点,并且与y 轴的交点的纵坐标为-2,求解析式。
④ 一个一次函数的图象与一个反比例函数的图象相交于点A (1,2),此一次函数的图象还经过点B (3,2)。
求这两个函数的解析式。
⑤ 已知y+5与x+3成正比例,且当x=1时,y=3。
(1)求y与x的函数关系式;(2)作出此函数的图象。
⑥ 已知抛物线y=ax 2+bx+c 与y轴交于点C ,与x轴交于点A (x 1,0),B (x 2,0)(x 1<x 2,顶点M 的纵坐标为-4,若x 1,x 2是方程x 2-2(m -1)x+m 2-7的两根,且x 12+x 22=10. (1)求A 、B 两点的坐标; (2)求抛物线的解析式及点C 的坐标;(3)在抛物线上是否存在点P ,使三角形PAB 的面积等于四边形ACMB 的面积的2倍?若存在,求出符合条件的点的坐标若不存在,说明理由。
⑦ 已知抛物线y=-x 2+2x+3与x 轴的交点为A,B,与y 轴的交点为C ,顶点为P 。
(1) 求经过P ,C 的直线与x 轴交点Q 的坐标;(2) 求tan ∠PQB 的值。
⑧ 已知抛物线y= x 2+5x+k 与x 轴两个交点间的距离等于3,与y 轴交点为点C 。
直线y=kx+10与抛物线交A,B 两点。
求三角形ABC 的面积。
⑨ 已知二次函数y=(m+2)x 2-(2m -1)x+m -3.(1) 求证:无论m 取任何实数,此二次函数的图象与x 轴都有两个交点。
(2) 当m 取何值时,二次函数的图象与x 轴两个交点之间的距离等于2。
(3) 当m 取何值时,二次函数的图象与x 轴两个交点分布在y 轴两侧。
⑩ 已知抛物线y= x 2-(m 2+8)x+2 m 2+12,(1) 这个抛物线与x 轴有几个交点?如果没有交点,请说明理由;如果有交点,能否判断交点的位置。
(2) 由(1)中若能得出抛物线与x 轴有两个交点A,B 且与y 轴交于点C,如果△ABC的面积=80,能否求出m的值?(3)抛物线顶点为点P,是否存在实数m使△APB为等腰直角三角形?如果不存在,请说明理由。