(完整word版)高一数学之分离参数法(含答案)
2023届高考数学二轮复习导数经典技巧与方法第02讲分离参数法含解析
第2讲分离参数法知识与方法分离参数法解决恒成立求参问题,可以有两个角度:全分离和半分离.1.全分离参数法将含参表达式中的参数从表达式中完全分离出来,使所研究的函数由动态变为定态,进而可得到新函数的图像、性质(最值),将求参数的范围问题转化为求函数的最值或值域问题.在分离参数时,需点睛意:(1)参数系数的正负是否确定;(2)分参后目标函数的最值是否易解,若不易解,极可能需要洛必达法则辅助.2.半分离参数法其一般步骤为:将不等式变形为aa+a≥a(a)或aa+a≤a(a)的形式(其中a为参数,a为常数),然后画出图像,由图像的上下方关系得到不等式,从而求得参数的取值范围.不等号前后两个函数的图像特征为:直线a=aa+a与曲线a=a(a),而直线a=aa+a过定点(0,a).需要说明的是:半分离参数法一般只适用于客观题,解答题则不宜使用.典型例题全分离参数【例1】已知函数a(a)=e a+aa2−a.(1)当a=1时,讨论a(a)的单调性;(2)当a≥0时,a(a)≥12a3+1,求a的取值范围.【解析】(1)当a=1时,a(a)=e a+a2−a,a′(a)=e a+2a−1.当a<0时,a′(a)<0,a(a)单调递减;当a>0时,a′(a)>0,a(a)单调递增.所以,当a=1时,a(a)在(−∞,0)上单调递减,在(0,+∞)上单调递增.(2)解法1:分离参数法当a=0时,a∈a.当a>0时,a(a)≥12a3+1⇔a≥12a3+a+1−e aa2.记a(a)=12a3+a+1−e aa2(a>0),则a ′(a )=12a 3−a −2+(2−a )e a a 3=(2−a )(e a −12a 2−a −1)a 3.记a (a )=e a −12a 2−a −1(a >0),a ′(a )=e a −a −1,a ′′(a )=e a −1. 因为a >0,所以a ′′(a )=e a −1>0,所以a ′(a )在(0,+∞)上单调递增, 从而a ′(a )>a ′(0)=0,所以a (a )在(0,+∞)单调递增,所以a (a )>a (0)=0. 令a ′(a )=0,解得a =2.当a ∈(0,2)时,a ′(a )>0,a (a )单调递增; 当a ∈(2,+∞)时,a ′(a )<0,a (a )单调递减. 所以a (a )在a =2处取得最大值a (2)=7−e 24,从而a ≥7−e 24. 综上,实数a 的取值范围是[7−e 24,+∞). 解法2:指数找朋友a (a )≥12a 3+1等价于12a 3−aa 2+a +1e a≤1.设a (a )=12a 3−aa 2+a +1e a(a ≥0),则a′(a )=−12a [a 2−(2a +3)a +(4a +2)e a=−12a [a −(2a +1)](a −2)e a.(1)当2a +1≤0,即a ≤−12时,则当a ∈(0,2)时,a ′(a )>0,所以a (a )在(0,2)单调递增,而a (0)=1, 故当a ∈(0,2)时,a (a )>1,不合题意; (2)当0<2a +1<2,即−12<a <12时, 则当a ∈(0,2a +1)∪(2,+∞)时,a ′(a )<0.所以a (a )在(0,2a +1),(2,+∞)单调递减,在(2a +1,2)上单调递增. 由于a (0)=1,所以a (a )≤1.当且仅当a (2)=7−4a e 2≤1,即a ≥7−e 24. 所以当7−e 24≤a <12时,a (a )≤1.(3)若2a +1≥2,即a ≥12时,则a (a )≤12a 3+a +1e a.由于0∈[7−e 24,12),故由(2)可得12a 3+a +1e a≤1.故当a ≥12时,a (a )≤1.综上所述,实数a 的取值范围是[7−e 24,+∞).【点睛】解决本题的关键在于求导数a′(a)=12a3−a−2+(2−a)e aa3后的处理.仔细观察导数式中e a前面的系数为2−a,由此可大胆猜测2−a应该为12a3−a−2的一个因式,从而可设1 2a3−a−2=(2−a)(−12a2+aa+a),将右侧展开,得12a3−a−2=12a3−(a+1)a2+(2a−a)a+2a,比较两侧的系数,可得a=a=−1,从而12a3−a−2=(2−a)(−12a2−a−1).【例2】设函数a(a)=e a−1−a−aa2.(1)若a=0,求a(a)的单调区间;(2)若当a≥0时a(a)≥0,求a的取值范围.【解析】(1)因为a=0时,所以a(a)=e a−1−a,a′(a)=e a−1.当a∈(−∞,0)时,a′(a)<0;当a∈(0,+∞)时,a′(a)>0.故a(a)在(−∞,0)上单调递减,在(0,+∞)上单调递增;(2)解法1:由(1)可得,当a=0时,a(a)≥a(0)=0,即e a≥a+1,当且仅当a=0时等号成立.依题意,当a≥0时a(a)≥0恒成立,当a=0时,a(a)≥0,此时a∈a;当a>0时,a(a)≥0等价于a≤e a−1−aa2,令a(a)=e a−1−aa2(a>0),则a′(a)=(a−2)e a+a+2a3,今a(a)=(a−2)e a+a+2(a>0),则a′(a)=(a−1)e a+1,因为a′′(a)=a e a>0,所以a′(a)在(0,+∞)上为增函数,所以a′(a)>a′(0)= 0,于是a(a)在(0,+∞)上为增函数,从而a(a)>a(0)=0,因此a′(a)>0,a(a)在(0,+∞)上为增函数,由洛必达法则知,lima→0+e a−1−aa2=lima→0+e a−12a=lima→0+e a2=12,所以a≤12.当a>12时,e−a>1−a得a′(a)<e a−1+2a(e−a−1)=e−a(e a−1)(e a−2a),故当a∈(0,ln2a)时,a′(a)<0,而a(0)=0,于是当a∈(0,ln2a)时,a(a)<0. 综上得a的取值范围是(−∞,12].解法2:a′(a)=e a−1−2aa,由(1)知e a≥1+a,当且仅当a=0时等号成立,故a′(a)≥a−2aa=(1−2a)a.当1−2a≥0,即a≤12时,a′(a)≥0(a≥0),所以a(a)在[0,+∞)上单调递增,故a(a)≥a(0)=0,即a≤12符合题意;当a>12时,由e a>1+a(a≠0)可得e−a>1−a(a≠0),所以e−a−1>−a(a≠0),所以a′(a)=e a−1−2aa<e a−1+2a(e−a−1)=e−a(e a−1)(e a−2a), 则当a∈(0,ln2a)时,a′(a)<0,a(a)在(0,ln2a)上单调递减,于是当a∈(0,ln2a)时,a(a)<a(0)=0,故a>12不合题意.综上所述,a的取值范围是(−∞,12].【例3】已知函数a(a)=a(e a+1−a)(a∈a).(1)若a=2,判断a(a)在(0,+∞)上的单调性;(2)若a(a)−ln a−1≥0恒成立,求实数a的取值范围.【解析】(1)若a=2,a(a)=a e a−a,a′(a)=e a+a e a−1=(a+1)e a−1. 当a>0时,a+1>1,e a>1,故(a+1)e a>1,a′(a)=(a+1)e a−1>0,故a(a)在(0,+∞)上单调递增.(2)解法1:分离参数+隐零点求最值由题意可知a e a+(1−a)a−ln a−1≥0在区间(0,+∞)上恒成立,整理得a−1≤e a−ln aa −1a.设a(a)=e a−ln aa −1a,a′(a)=a2e a+ln aa2,设a(a)=a2e a+ln a,则a′(a)=(a2+2a)e a+1a>0, 所以a(a)在(0,+∞)上单调递增,又a(1)=e>0,a(12)=√e4−ln2<0.所以函数a(a)有唯一的零点a0,且12<a0<1.当a∈(0,a0)时,a(a)<0,a′(a)<0,a(a)单调递减;当a∈(a0,+∞)时,a(a)>0,a′(a)>0,a(a)单调递增. 即a(a0)为a(a)在定义域内的最小值.所以a−1≤e a0−ln a0a0−1a0.因为a(a0)=0,得a0e a0=−ln a0a0,12<a0<1(∗)令a(a)=a e a(12<a<1),方程(∗)等价于a(a)=a(−ln a)(12<a<1).而a′(a)=(a+1)e a在(0,+∞)上恒大于零,所以a(a)在(0,+∞)单调递增. 故a(a)=a(−ln a)等价于a=−ln a(12<a<1).设函数a(a)=a+ln a(12<a<1),易知a(a)单调递增.又a(12)=12−ln2<0,a(1)=1>0,所以a0为a(a)的唯一零点.即ln a0=−a0,e a0=1a0.故a(a)的最小值为a(a0)=e a0−ln a0a0−1a0=1a0−−a0a0−1a0=1.所以a−1≤1,即a≤2.综上,实数a的取值范围是(−∞,2].解法2:分离参数+放缩法求最值由题意可知a e a+(1−a)a−ln a−1≥0在区间(0,+∞)上恒成立, 即a−1≤a e a−ln a−1a.利用不等式e a≥a+1(当且仅当a=0时,等号成立),可得a e a−ln a−1a =e a+ln a−ln a−1a≥(a+ln a+1)−ln a−1a=1,当且仅当a+ln a=0时,等号成立.所以a e a−ln a−1a的最小值为1.于是a−1≤1,得a≤2,实数a的取值范围是(−∞,2].【例4】已知函数a(a)=a3e aa−1.(1)讨论a(a)的单调性;(2)若a=2,不等式a(a)≥aa+3ln a对a∈(0,+∞)恒成立,求a的取值范围. 【解析】(1)a′(a)=3a2e aa+aa3e aa=a2e aa(aa+3).①当a=0时,a′(a)≥0恒成立,所以a(a)在R单调递增;②当时,今,得;令,所以a (a )的单调递减区间为(−3a ,+∞),单调递增区间为(−∞,−3a ]. ③当a >0时,今a ′(a )≥0,得a ≥−3a ;令a ′(a )<0,得a <−3a . 所以a (a )的单调递减区间为(−∞,−3a ),单调递增区间为[−3a ,+∞). (2)因为a =2,所以a ≤a 3e 2a −3ln a −1a恒成立. 设a (a )=a −1−ln a (a >0),a ′(a )=a −1a, 令a ′(a )<0,得0<a <1;令a ′(a )>0,得a >1. 所以a (a )min =a (1)=0,所以a −1−ln a ≥0.取a =a 3e 2a ,则a 3e 2a −1−ln (a 3e 2a )≥0,即a 3e 2a −3ln a −1≥2a ,所以a 3e 2a −3ln a −1a≥2aa=2.设a (a )=a 3e 2a ,因为a (0)=0<1,a (1)=e 2>1,所以方程a 3e 2a =1必有解, 所以当且仅当a 3e 2a =1时,函数a =a 3e 2a −3ln a −1a取得最小值2,所以a ≤2,即a 的取值范围为(−∞,2].【点睛】本题在进行分参后,首先证明了一个常用的不等式:当a >0时,有ln a ≤a −1,接下来利用该不等式直接得到a 3e a −3ln a −1≥2a , 从而得出a =a 3e a −3ln a −1a的最小值2.最后证明能够取到最小值.从而得出实数a 的取值范围. 本题也可用同构法解决:a ≤a 3e 2a −3ln a −1a, a 3e 2a −3ln a −1a=e 3ln a +2a −3ln a −1a≥2a +3ln a +1−3ln a −1a=2,故a ≤2,即a 的取值范围为(−∞,2]. 换元后分离参数【例5】已知函数a (a )=a (e a a−2a −2)+a . (1)若a =−1,求a (a )的单调区间和极值点;(2)若a >0时,a (a )>−1(a >0)恒成立,求实数a 的取值范围.【解析】(1)a =−1时a (a )=a e −a −1,a ′(a )=e −a −a e −a =0,所以当a <1,a ′(a )>0,a >1,a ′(a )<0.所以a (a )的单调递减区间为(1,+∞),单调递增区间为(−∞,1),极大值点为a =1,无极小值点.(2)解法1:a (a )>−1⇔a (e aa −2a −2)+a >−1, 即a (e aa −2a −2)+a +1>0, 令aa =a ,则a =aa ,aa e a −(2a +2)a +a +1>0对于a >0恒成立, 即a (a e a −2a +1)>2a −1(∗)易证e a ≥a +1(过程略),则a e a −2a +1≥a (a +1)−2a +1>(a −1)2≥0, 即a e a −2a +1>0. 于是,由(∗)可得a >2a −1a e a −2a +1. 令a (a )=2a −1a e a −2a +1(a>0),则a ′(a )=−(2a +1)(a −1)(a e a −2a +1)2e a(a >0).当a ∈(0,1)时a ′(a )>0,当a ∈(1,+∞)时a ′(a )<0.所以a (a )在(0,1)上单调递增,在(1,+∞)上单调递减,[a (a )]max =a (1)=1e −1, 所以a >1e −1,实数a 的取值范围是(1e −1,+∞). 解法2:a (a )>−1⇔a (e aa −2a−2)+a >−1, 即a (e aa −2a−2)+a +1>0,令aa=a ,则a =aa ,aa e a −(2a +2)a +a +1>0对于a >0恒成立, 即aa +1>2a −1a e a对于a >0恒成立,设a (a )=2a −1a ea ,a ′(a )=−(2a +1)(a −1)a 2e a当a ∈(0,1)时a ′(a )>0,当a ∈(1,+∞)时a ′(a )<0 可得a (a )在(0,1)上递增,在(1,+∞)上递减, 所以a (a )max =a (1)=1e ,则aa +1>1e ,解得a >1e −1. 故实数a 的取值范围是(1e −1,+∞).【点睛】本题第(2)问显然不能直接分离参数,如果利用a ′(a )处理也是十分复杂,于是着眼于简化指数进行换元:令a a =a ,则aa e a −(2a +2)a +a +1>0对于a >0恒成立.换元之后就可以轻松分离参数了,特别是解法2的处理手法值得回味.半分离参数【例6】已知函数a(a)=e a−aa−1(a∈R,其中e为自然对数的底数).(1)若a(a)在定义域内有唯一零点,求a的取值范围;(2)若a(a)≤a2e a在[0,+∞)上恒成立,求a的取值范围.【解析】(1)a′(a)=e a−a,①当a≤0时,a′(a)>0,所以a(a)在R上单调递增;−1+a<0,a(1)=e−a−1>0,又a(−1)=1e由零点存在定理可知,函数a(a)在R上有唯一零点.故a≤0符合题意;②当a>0时,令a′(a)=0得a=ln a,当a∈(−∞,ln a)时,a′(a)<0,a(a)单调递减;a∈(ln a,+∞),a′(a)>0,a(a)单调递增.所以a(a)min=a(ln a)=e ln a−a ln a−1=a−a ln a−1,设a(a)=a−a ln a−1(a>0),则a′(a)=1−(ln a+1)=−ln a,当0<a<1时,a′(a)>0,a(a)单调递增;当a>1时,a′(a)<0,a(a)单调递减,所以a(a)max=a(1)=0,故a=1.综上:实数a的取值范围为{a∣a≤0或a=1}.(2)解法1:a(a)≤a2e a对a∈[0,+∞)恒成立,即(1−a2)e a≤aa+1对a∈[0,+∞)恒成立,即函数a(a)=(1−a2)e a的图像恒在直线a=aa+1的下方.而a′(a)=(1−a2−2a)e a,a′′(a)=(−a2−4a−1)e a<0(a≥0),所以函数a(a)是上凸函数,且在a=0处的切线斜率a=a′(0)=1;直线a=aa+1过定点(0,1),鈄率为a,故a≥1,即a的取值范围为[1,+∞).解法2:a(a)≤a2e a对a∈[0,+∞)恒成立,即(1−a2)e a≤aa+1对a∈[0,+∞)恒成立, 记a(a)=(1−a2)e a=(1+a)(1−a)e a,①当a≥1时,设函数a(a)=(1−a)e a,则a′(a)=−a e a≤0,因此a(a)在[0,+∞)单调递减,又a(0)=1,故a(a)≤1,所以a(a)=(1+a)a(a)≤1+a≤aa+1,故a(a)≤a2e a对a∈[0,+∞)恒成立;②当0<a<1时,设函数a(a)=e a−a−1,则a′(a)=e a−1≥0,所以a(a)在[0,+∞)单调递减,且a(0)=0,故e a≥a+1.当0<a<1时,a(a)>(1−a)(1+a)2,(1−a)(1+a)2−aa−1=a(1−a−a−a2),取a0=−1+√5−4a2,则a0∈(0,1),(1−a0)(1+a0)2−aa0−1=0,所以a(a0)>aa0+1;故0<a<1不合题意.③当a≤0时,取a0=√5−12,则a0∈(0,1),a(a0)>(1−a0)(1+a0)2=1≥aa0+1.故a≤0不合题意.综上,a的取值范围为[1,+∞).【点睛】解法1将不等式进行变形为aa+a≤a(a)(其中a为参数,a为常数),不等号前后两个函数的图像特征为:“一直一曲”,而直线a=aa+a过定点(0,a).半分离参数的方法,通过变形将不等式两边化为一直线与一曲线的形式,再结合图像利用函数凹凸性解决问题,过程简洁快捷.需要指出的是,这种解法只适用于选择题与填空题,不适用于解答题.解法2是不分离参数,直接构造差函数对参数进行讨论,过程更加严谨,理由更加充分,是解答题的一般做法.其中讨论的临界点,可以结合解法1的过程而得到.【例7】已知函数a(a)=a ln a+aa−1,a∈a.(1)求函数a(a)的单调区间;(2)当a=2时,对任意a>1,a(a)>a(a−1)恒成立,求正整数a的最大值.【解析】(1)a(a)的单调递增区间为(e−a−1,+∞),单调递减区间为(0,e−a−1).(2)解法1:全分离a(a)>a(a−1)变形为a<a(a)a−1=a ln a+2a−1a−1,令a(a)=a ln a+2a−1a−1,a′(a)=−ln a+a−2(a−1)2,令a(a)=−ln a+a−2,则a′(a)=−1a +1=a−1a>0,所以a(a)在(1,+∞)单调递增,又a(3)=1−ln3<0,a(4)=2−2ln2>0,所以存在唯一a0∈(3,4),使得a(a0)=0,即ln a0=a0−2.故当a∈(1,a0)时,a(a)<0,a′(a)<0,a(a)单调递减;当a∈(a0,+∞)时,a(a)>0,a′(a)>0,a(a)单调递增.所以a(a)min=a(a0)=a0ln a0+2a0−1a0−1=a02−1a0−1=a0+1,即a<a0+1,又a0∈(3,4),所以a0+1∈(4,5),因为a∈a∗,所以a max=4.解法2:半分离a(a)>a(a−1)恒成立,即a(a)=a ln a+2a−1图像恒在直线a=a(a−1)的上方.因为a′(a)=3+ln a>0,a′′(a)=1a>0,所以a(a)在(1,+∞)单调递增,且下凸; 直线a=a(a−1)过定点(1,0).设过(1,0)的直线与a(a)相切于点(a0,a(a0)),即(a0,a0ln a0+2a0−1).切线斜率为a′(a0),所以a<a′(a0).由a(a0)−0a0−1=a′(a0),得a0ln a0+2a0−1a0−1=3+ln a0,化简整理得ln a0=a0−2,所以a′(a0)=3+ln a0=3+(a0−2)=a0+1.故a<a0+1. 下面估计a0的范围.令a(a)=a−ln a−2,则a′(a)=1−1a =a−1a>0,所以a(a)在(1,+∞)单调递增;又a(3)=1−ln3<0,a(4)=2−2ln2>0,所以a(a)的唯一零点a0∈(3,4).于是a0+1∈(4,5),因为a∈a∗,所以a max=4.【点睛】需要点睛意的是,利用半分离参数求解含参问题,需要结合二阶导数研究函数的凹凸性,在解答题中有“以图代证”的嫌疑,因而这个解法一般只适用于选择题或填空题. 【例8】设函数a(a)=e a(2a−1)−aa+a,其中a<1.若存在在唯一的整数a0使得a(a0)<0.则a的取值范围是()A.[−32e ,1) B.[−32e,34) C.[32e,34) D.[32e,1)【解析】解法1:全分离参数a (a )<0⇔(a −1)a >e a (2a −1)当a >1时,有a >e a (2a −1)a −1>1,这与题设矛盾,舍去; 当a <1时,有a <e a (2a −1)a −1,记a (a )=e a (2a −1)a −1, 则a ′(a )=e a (2a +1)(a −1)−e a (2a −1)(a −1)2=a e a (2a −3)(a −1)2(a <1), 当a <0时,a ′(a )>0;当0<a <1时,a ′(a )<0,故a (a )在(−∞,0)上单调递增,在(0,1)上单调递减,作出其大致图象如图所示.由题意知,存在唯一的整数a 0使得a (a 0)<0,即a <a (a 0),由图易知a 的取值范围是32e =a (−1)≤a <1,选a .解法2:半分离参数设a (a )=e a (2a −1),a (a )=aa −a ,由题意知,存在唯一的整数a 0,使得a (a 0)<a (a 0),a ′(a )=e a (2a +1),当a <−12时,a ′(a )<0,当a >−12时,a ′(a )>0,则a (a )在(−∞,−12)上单调递减,在(−12,+∞)上单调递增.作出a (a )与a (a )的大致图象如图所示.因为a (0)=−1<−a =a (0),故只需a (−1)≥a (−1)即可,解得a ≥32e ,则a 的取值范围是32e ≤a <1,故选a .强化训练1.设函数a (a )=a 2+aa +a ,a (a )=e a (aa +a ).若曲线a =a (a )和曲线a =a (a )都过点a (0,2),且在点a 处有相同的切线a =4a +2.(1)求a ,a ,a ,a 的值;(2)若a ≥−2时,a (a )≤aa (a ),求a 的取值范围.【解析】(1)a =4,a =2,a =2,a =2(过程略).(2)由(1)知,a (a )=a 2+4a +2,a (a )=2e a (a +1),①当a =−1时,a (a )=−1,a (a )=0,此时a (a )≤aa (a )恒成立,则a ∈a ; ②当a ∈[−2,−1)时,a (a )=2e a (a +1)<0,a (a )≤aa (a )可化为:a ≤a 2+4a +22e a (a +1),令a (a )=a 2+4a +22e a (a +1),则a ′(a )=−a (a +2)22e a (a +1)2≥0恒成立,故a (a )在区间[−2,−1)上单调递增,当a =−2时,a (a )取最小值e 2,故a ≤e 2; ③当a ∈(−1,+∞)时,a (a )=2e a (a +1)>0,a (a )≤aa (a )可化为:a ≥a 2+4a +22e a (a +1), 令a (a )=a 2+4a +22e a (a +1),则a ′(a )=−a (a +2)22e a (a +1)2,当a ∈(−1,0)时,a ′(a )>0,当a ∈(0,+∞)时,a ′(a )<0,故当a =0时,a (a )取极大值1,故a ≥1.综上所述:a ∈[1,e 2],即a 的取值范围是[1,e 2].2.设函数a (a )=e a −aa −2.(1)求a (a )的单调区间;(2)若a =1,a 为整数,且当a >0时,(a −a )a ′(a )+a +1>0,求a 的最大值.【解析】(1)当a ≤0时,a (a )在(−∞,+∞)上单调递增,无减区间;当a >0时,a (a )的单调递减区间是(−∞,ln a ),单调递增区间是(ln a ,+∞).(2)(a −a )a ′(a )+a +1>0等价于a <a +1e a −1+a (a >0)(1),令a (a )=a +1e a −1+a ,则a ′(a )=e a (e a −a −2)(e a −1)2, 而函数a (a )=e a −a −2在(0,+∞)上单调递增,a (1)<0,a (2)>0,所以a (a )在(0,+∞)存在唯一的零点.故a ′(a )在(0,+∞)存在唯一的零点.设此零点为a ,则a ∈(1,2).当a∈(0,a)时,a′(a)<0;当a∈(a,+∞)时,a′(a)>0.所以a(a)在(0,+∞)的最小值为a(a).又由a′(a)=0,可得e a=a+2,所以a(a)=a+1∈(2,3).由于(1)式等价于a<a(a),故整数a的最大值为2.3已知函数a(a)=ln2(1+a)−a21+a.(1)求函数a(a)的单调区间;(2)若不等式(1+1a)a+a≤e对任意的a∈N∗都成立(其中e是自然对数的底数).求a的最大值.【解析】(1)函数a(a)的定义域为(−1,+∞),a′(a)=2ln(1+a)1+a−a2+2a(1+a)2=2(1+a)ln(1+a)−a2−2a(1+a)2.设a(a)=2(1+a)ln(1+a)−a2−2a,则a′(a)=2ln(1+a)−2a.令a(a)=2ln(1+a)−2a,则a′(a)=21+a −2=−2a1+a.当−1<a<0时,a′(a)>0,a(a)在(−1,0)上为增函数,当a>0时,a′(a)<0,a(a)在(0,+∞)上为减函数.所以a(a)在a=0处取得极大值,而a(0)=0,所以a′(a)<0(a≠0), 函数a(a)在(−1,+∞)上为减函数.于是当−1<a<0时,a(a)>a(0)=0,当a>0时,a(a)<a(0)=0.所以,当−1<a<0时,a′(a)>0,a(a)在(−1,0)上为增函数.当a>0时,a′(a)<0,a(a)在(0,+∞)上为减函数.故函数a(a)的单调递增区间为(−1,0),单调递减区间为(0,+∞).(2)不等式(1+1a )a+a≤e等价于不等式(a+a)ln(1+1a)≤1.由1+1a >1知,a≤1ln(1+1a)−a.设a(a)=1ln(1+a)−1a,a∈(0,1],则a′(a)=−1(1+a)ln2(1+a)+1a2=(1+a)ln2(1+a)−a2a2(1+a)ln2(1+a).由(1)知,ln2(1+a)−a21+a≤0,即(1+a)ln2(1+a)−a2≤0.所以a′(a)<0,a∈(0,1],于是a(a)在(0,1]上为减函数.−1.故函数a(a)在(0,1]上的最小值为a(1)=1ln2−1.所以a的最大值为1ln2。
(完整word版)高一数学之分离参数法(含答案)
高中重要解题方法——分离变量法分离变量法是近年来发展较快的思想方法之一.高考数学试题中,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系.其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高.随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法.分离变量法:是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知.解决问题的关键: 分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据可以遵循.以下定理均为已知x 的范围,求a 的范围:定理1 不等式()()f x g a ≥恒成立⇔[]min ()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立⇔[]max ()()f x g a ≤(求解()f x 的最大值).定理2 不等式()()f x g a ≥存在解⇔[]max ()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解⇔[]min ()()f x g a ≤(即求解()f x 的最小值).定理3 方程()()f x g a =有解⇔()g a 的范围=()f x 的值域(求解()f x 的值域).解决问题时需要注意:(1)确定问题是恒成立、存在、方程有解中的哪一个;(2)确定是求最大值、最小值还是值域.再现性题组:1、 已知当x ∈R 时,不等式224sin cos sin 5x x x a +-<-+恒成立,求实数a 的取值范围。
2.若f(x)=233x x --在[1,4]x ∈-上有()21f x x a ≥+-恒成立,求a 的取值范围。
【导数经典技巧与方法】第2讲 分离参数法:全分离及半分离-原卷版
第2讲分离参数法:全分离及半分离知识与方法分离参数法解决恒成立求参问题,可以有两个角度:全分离和半分离.1.全分离参数法将含参表达式中的参数从表达式中完全分离出来,使所研究的函数由动态变为定态,进而可得到新函数的图像、性质(最值),将求参数的范围问题转化为求函数的最值或值域问题.在分离参数时,需点睛意:(1)参数系数的正负是否确定;(2)分参后目标函数的最值是否易解,若不易解,极可能需要洛必达法则辅助.2.半分离参数法其一般步骤为:将不等式变形为ax+b≥f(x)或ax+b≤f(x)的形式(其中a为参数,b为常数),然后画出图像,由图像的上下方关系得到不等式,从而求得参数的取值范围.不等号前后两个函数的图像特征为:直线y=ax+b与曲线y= f(x),而直线y=ax+b过定点(0,b).需要说明的是:半分离参数法一般只适用于客观题,解答题则不宜使用.典型例题全分离参数【例1】已知函数f(x)=e x+ax2−x.(1)当a=1时,讨论f(x)的单调性;x3+1,求a的取值范围.(2)当x≥0时,f(x)≥12【例2】设函数f(x)=e x−1−x−ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【例3】已知函数f(x)=x(e x+1−a)(x∈R).(1)若a=2,判断f(x)在(0,+∞)上的单调性;(2)若f(x)−lnx−1≥0恒成立,求实数a的取值范围.【例4】已知函数f(x)=x3e ax−1.(1)讨论f(x)的单调性;(2)若a=2,不等式f(x)≥mx+3lnx对x∈(0,+∞)恒成立,求m的取值范围. 换元后分离参数【例5】已知函数f(x)=x(e xa−2a−2)+a.(1)若a=−1,求f(x)的单调区间和极值点;(2)若x>0时,f(x)>−1(a>0)恒成立,求实数a的取值范围.半分离参数【例6】已知函数f(x)=e x−ax−1(a∈R,其中e为自然对数的底数).(1)若f(x)在定义域内有唯一零点,求a的取值范围;(2)若f(x)≤x2e x在[0,+∞)上恒成立,求a的取值范围.【例7】已知函数f(x)=xlnx+ax−1,a∈R.(1)求函数f(x)的单调区间;(2)当a=2时,对任意x>1,f(x)>b(x−1)恒成立,求正整数b的最大值.【例8】设函数f(x)=e x(2x−1)−ax+a,其中a<1.若存在在唯一的整数x0使得f(x0)<0.则a的取值范围是()A.[−32e ,1) B.[−32e,34) C.[32e,34) D.[32e,1)强化训练1.设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y= g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥−2时,f(x)≤kg(x),求k的取值范围.2.设函数f(x)=e x−ax−2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x−k)f′(x)+x+1>0,求k的最大值.3已知函数f(x)=ln2(1+x)−x21+x.(1)求函数f(x)的单调区间;(2)若不等式(1+1n )n+a≤e对任意的n∈N∗都成立(其中e是自然对数的底数).求a的最大值.。
高考数学导数专项练习之分离参数法
专题12:分离参数法1.已知函数()x x f x e ae -=-,若'()f x ≥a 的取值范围是_______【解析】首先转化不等式,'()x x f x e ae -=+,即x xae e +≥察不等式a 与x e 便于分离,考虑利用参变分离法,使,a x 分居不等式两侧,()2x x a e ≥-+,若不等式恒成立,只需()()2maxx xa e ≥-+,令()()(223x xxg x ee =-+=--+(解析式可看做关于x e 的二次函数,故配方求最值)()max 3g x =,所以3a ≥2.已知函数()ln a f x x x=-,若()2f x x <在()1,+∞上恒成立,则a 的取值范围是_________【解析】恒成立的不等式为2ln a x x x-<,便于参数分离,所以考虑尝试参变分离法233ln ln ln ax x x x a x a x x x x-<⇔-<⇔>-,其中()1,x ∈+∞ ∴只需要()3maxln a x x x >-,令()3ln g x x x x =- '2()1ln 3g x x x =+- (导函数无法直接确定单调区间,但再求一次导即可将ln x 变为1x,所以二阶导函数的单调性可分析,为了便于确定()'g x 的符号,不妨先验边界值)()'12g =-,()2''11660x g x x x x-=-=<,(判断单调性时一定要先看定义域,有可能会简化判断的过程)()'g x ∴在()1,+∞单调递减,()()''10()g x g g x ∴<<⇒在()1,+∞单调递减()()11g x g ∴<=- 1a ∴≥-3.若对任意x R ∈,不等式23324x ax x -≥-恒成立,则实数a 的范围是 .【解析】在本题中关于,a x 的项仅有2ax 一项,便于进行参变分离,但由于x R ∈,则分离参数时要对x 的符号进行讨论,并且利用x 的符号的讨论也可把绝对值去掉,进而得到a 的范围,2233322344x ax x ax x x -≥-⇔≤-+,当0x >时,min 32314a x x ⎛⎫≤-+ ⎪⎝⎭,而3331311244x x x x -+=+-≥= 221a a ∴≤⇒≤;当0x =时, 不等式恒成立;当0x <时,max32314a x x ⎛⎫≥++⎪⎝⎭, 而333113244x x x x ⎛⎫++=--+-≤- ⎪⎝⎭ 221a a ∴≥-⇒≥- 综上所述:11a -≤≤4. 设函数2()1f x x =-,对任意的23,,4()(1)4()2x x f m f x f x f m m ⎡⎫⎛⎫∈+∞-≤-+⎪ ⎪⎢⎣⎭⎝⎭恒成立,则实数m 的取值范围是_______.【解析】先将不等式进行化简可得:()()()222221411141x m x x m m ⎛⎫---≤--+- ⎪⎝⎭,即22221423m x x x m ⎛⎫-≤-- ⎪⎝⎭,便于进行分离,考虑不等式两边同时除以2x ,可得:2222min1234x x m m x ⎛⎫--⎛⎫-≤ ⎪ ⎪⎝⎭⎝⎭,()2222311321x x g x x x x --⎛⎫==--⋅+ ⎪⎝⎭,120,3x ⎛⎤∈ ⎥⎝⎦ 最小值2533g ⎛⎫=- ⎪⎝⎭,2422154125303m m m m ∴-≤-⇒--≥即()()2231430m m +-≥解得:3,,2m ⎛⎡⎫∈-∞+∞ ⎪⎢⎝⎦⎣⎭5.若不等式2322x x x ax ++-≥对()0,4x ∈恒成立,则实数a 的取值范围是 .【解析】2323min2222x x xx x x ax a x ⎛⎫++-++-≥⇒≤⎪ ⎪⎝⎭, 令()2322x x xf x x++-=,对绝对值内部进行符号讨论,即()222242222,0x x x xf x x x x x x x x ⎧++-<<⎪⎪=++-=⎨⎪++-<≤⎪⎩,而222y x x x =++-在)单调递增,222y x x x=++-在(单调递减,∴可求出()min f x f==a ∴≤6.设正数()()2221,x e x e xf xg x x e +==,对任意()12,0,x x ∈+∞,不等式()()121g x f x kk ≤+恒成立,则正数k 的取值范围是( )【解析】先将k 放置不等号一侧,可得()()211kf x g x k ≤+,所以()()21max 1kf x g x k ≥⎡⎤⎣⎦+,先求出()g x 的最大值,()()'21x g x e x e -=⋅-,可得()g x 在()0,1单调递增,在()1,+∞单调递减。
高考数学常用的解题技巧第05讲分离参数法(含答案)
第05讲:分离参数法【知识要点】一、参数在数学问题中经常出现,特别是在最值、值域、取值范围、恒成立和存在性等问题中,经常出现,这时可以考虑是否可以利用分离参数法来解答,即整理成()()k f x k f x 或的形式,再解答.二、分离参数时,一定要判断清楚参数的系数的符号,再除以其系数,如果不能确定其符号,可以分类讨论,也可以寻找其它方法.【方法讲评】【例1】已知函数xx x f ln 1)((1)求曲线)(x f y 在点))2(,2(f 处的切线方程;(2)求函数)(x f 的极值;(3)对(0,),()2x f x bx 恒成立,求实数b 的取值范围.列表:x )1,0(1),1()('x f - 0 +)(x f ↘0↗函数)(x f y 的极小值为0)1(f , 无极大值。
(3)依题意对(0,),()2x f x bx 恒成立等价于2ln 1bx x x 在(0,)上恒成立可得x xx b ln 11在(0,)上恒成立,令21ln ln 2()1()xx g x g x x x x【点评】本题第(2)问是恒成立问题,刚好b 的系数x 是一个正数,知道参数的系数的符号,分离参数很方便,所以可以分离参数求最值,比较简洁. 【反馈检测1】已知函数()ln a f x x x . (1)若0a ,试判断()f x 在定义域内的单调性;(2)若()f x 在1,e 上的最小值为32,求a 的值;(3)若2()f x x 在1,上恒成立,求a 的取值范围.【反馈检测2】已知函数()sin cos f x a x b x (,a b R,且0)的部分图象如图所示.(1) 求,,a b 的值;(2) 若方程23()()0f x f x m 在2(,)33x 内有两个不同的解,求实数m 的取值范围.高中数学常用解题技巧第05讲:分离参数法参考答案【反馈检测1答案】(1) f x 在0,上是单调递增函数;(2)a=-e ;(3)1a .【反馈检测1详细解析】(1)由题意知f x 的定义域为0,,且221f '(x)=+=, a>0,a xax x x ,x2376yO 1。
第6讲 分离参数法在解题中的应用
第6讲 分离参数法在解题中的应用[方法精要] 分离参数法是求参数的取值范围的一种常用方法,通过分离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围,这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决.分离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到,解题的关键是分离出参数之后将原问题转化为求函数的最值或值域的问题.题型一 用分离参数法解决函数有零点问题例1 已知函数g (x )=x 2-ax +4在[2,4]上有零点,求a 的取值范围.破题切入点 函数g (x )=x 2-ax +4在[2,4]上有零点,等价于方程x 2-ax +4=0在[2,4]上有实根,把方程x 2-ax +4=0中的变量a 分离,转化为求函数的值域问题即可求出a 的取值范围.解 ∵函数g (x )=x 2-ax +4在[2,4]上有零点,∴方程x 2-ax +4=0在[2,4]上有实根,即方程a =x +4x在[2,4]上有实根. 令f (x )=x +4x, 则a 的取值范围等价于函数f (x )在[2,4]上的值域.又f ′(x )=1-4x 2=(x +2)(x -2)x 2≥0在x ∈[2,4]上恒成立, ∴f (x )在[2,4]上是增函数,∴f (2)≤f (x )≤f (4),即4≤f (x )≤5.∴4≤a ≤5.题型二 用分离参数法解决不等式恒成立问题例2 已知函数f (x )=ln x -a x, (1)当a >0时,判断f (x )在定义域上的单调性;(2)若f (x )<x 2在(1,+∞)上恒成立,求a 的取值范围.破题切入点 (1)通过判断导数的符号解决.(2)由于参数a 是“孤立”的,可以分离参数后转化为一个函数的单调性或最值等解决.解 (1)由题意:f (x )的定义域为(0,+∞),且f ′(x )=1x +a x 2=x +a x 2. ∵a >0,∴f ′(x )>0,故f (x )在(0,+∞)上是单调递增函数.(2)∵f (x )<x 2,∴ln x -a x<x 2. 又x >0,∴a >x ln x -x 3.令g (x )=x ln x -x 3,h (x )=g ′(x )=1+ln x -3x 2,h ′(x )=1x -6x =1-6x 2x, 当x ≥1时,h ′(x )<0,∴h (x )在[1,+∞)上是减函数,∴h (x )<h (1)=-2,即g ′(x )<0,∴g (x )在[1,+∞)上也是减函数,∴g (x )<g (1)=-1.令a ≥-1得a >g (x ),∴当f (x )<x 2在(1,+∞)恒成立时,a ≥-1.题型三 用分离参数法解决方程中的参数问题例3 若关于x 的方程22x +2x ·a +a +1=0有实根,求实数a 的取值范围.破题切入点 解决方程中的参数问题,需要把方程等价变形,称为一个含参数的函数,将其转化为函数的最值问题.解 原方程变形为a =-22x +12x +1=-(2x +1)2-2(2x +1)+22x +1=-(2x +1+22x +1-2), 因为2x +1>1,所以2x +1+22x +1-2≥2(2x +1)·22x +1-2=22-2, (当且仅当x =log 2(2-1)时取等号),所以a ≤2-2 2.总结提高 分离参数法常用于求参数的取值范围,这是目前新课标高考中常涉及的问题,主要涉及函数、方程、不等式等部分的内容,最终都是转化为函数在给定区间上的最值问题,求一个函数在一个指定的闭区间上的最值的主要思考方向就是考虑这个函数的极值点是不是在这个区间内,结合函数的单调性即可求参数取值范围.1.已知直线l :(2m +1)x +(m +1)y -7m -4=0,m ∈R ,则直线l 恒过定点________. 答案 (3,1)解析 直线l 的方程可化为x +y -4+m (2x +y -7)=0.设直线l 恒过定点M (x ,y ).由m ∈R ,得⎩⎪⎨⎪⎧x +y -4=0,2x +y -7=0⇒M (3,1). 所以直线l 恒过定点(3,1).2.若函数f (x )=x 2+ax +1x 在(12,+∞)是增函数,则a 的取值范围是________. 答案 [3,+∞)解析 由题意知f ′(x )≥0对任意的x ∈(12,+∞)恒成立, 又f ′(x )=2x +a -1x 2, 所以2x +a -1x 2≥0对任意的x ∈(12,+∞)恒成立, 分离参数得a ≥1x 2-2x , 若满足题意,须a ≥(1x 2-2x )max , 令h (x )=1x 2-2x ,x ∈(12,+∞), 因为h ′(x )=-2x 3-2, 所以当x ∈(12,+∞)时,h ′(x )<0, 即h (x )在x ∈(12,+∞)上单调递减, 所以h (x )<h (12)=3,故a ≥3. 3.若不等式x 2+ax +1≥0对一切x ∈(0,12]成立,则a 的最小值是________. 答案 -52解析 由x 2+ax +1≥0,x ∈(0,12], 所以ax ≥-1-x 2,所以a ≥-1x-x , 又因为-1x -x =-(1x +x )≤-52, 所以a ≥-52. 4.已知f (x )=32x -(k +1)3x +2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是________.答案 (-∞,22-1)解析 由f (x )>0得32x -(k +1)·3x +2>0,解得k +1<3x +23x ,而3x +23x ≥22(当且仅当3x =23x , 即x =log 32时,等号成立),∴k +1<22,即k <22-1.5.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.答案 [-83,+∞) 解析 对任意x ∈N *,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3. 设g (x )=x +8x ,x ∈N *,则g (2)=6,g (3)=173. ∵g (2)>g (3),∴g (x )min =173.∴-(x +8x )+3≤-83, ∴a ≥-83,故a 的取值范围是[-83,+∞). 6.已知函数f (x )=mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围为________.答案 [12,+∞) 解析 f ′(x )=2mx +1x-2≥0对一切x >0恒成立, 2m ≥-(1x )2+2x, 令g (x )=-(1x )2+2x, 则当1x=1时,函数g (x )取最大值1, 故2m ≥1,即m ≥12. 7.已知不等式mx 2-2x -m +1<0对满足-2≤m ≤2的所有m 都成立,则x 的取值范围是________________.答案 (-1+72,1+32) 解析 原不等式可化为(x 2-1)m -2x +1<0,此不等式对-2≤m ≤2恒成立.构造函数f (m )=(x 2-1)m -2x +1,-2≤m ≤2,其图象是一条线段.根据题意有⎩⎪⎨⎪⎧ f (-2)=-2(x 2-1)-2x +1<0,f (2)=2(x 2-1)-2x +1<0,即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0. 解得-1+72<x <1+32. 8.已知f (x )=2x 2+ax -2a 2x在[1,+∞)上是单调递增函数,则a 的取值范围是________. 答案 [-1,+∞)解析 ∵f (x )=x -a x +a 2,∴f ′(x )=1+a x2. 又f (x )在[1,+∞)上是单调递增函数,∴f ′(x )≥0.于是可得不等式a ≥-x 2对于x ≥1恒成立.∴a ≥(-x 2)max .由x ≥1,得-x 2≤-1.∴a ≥-1.9.设f (x )=lg 1+2x +4x ·a 3,其中a ∈R ,如果x ∈(-∞,1]时,f (x )有意义,求a 的取值范围. 解 根据题意1+2x +4x ·a >0在x ∈(-∞,1]上恒成立,设t =2x ,则有at 2+t +1>0在t ∈(0,2]上恒成立,分离参数可得a >-1t 2-1t, 即a >(-1t 2-1t)max , 令μ=1t ,则μ∈[12,+∞), 易得二次函数f (μ)=-μ2-μ在μ∈[12,+∞)上的最大值是f (12)=-34, 所以a 的取值范围是a >-34. 10.设0≤θ≤π2,不等式cos 2θ+2m sin θ-2m -2<0恒成立,求m 的取值范围. 解 将已知不等式化为(1-sin θ)2+2(m -1)(1-sin θ)+2>0,①当θ=π2时,不等式显然成立; ②当0≤θ<π2, 即1-sin θ>0有2(1-m )<1-sin θ+21-sin θ, 设t =1-sin θ,则f (t )=t +2t, 其中0<t ≤1,则f (t )=t +2t在0<t ≤1上是减函数, 所以f (t )≥f (1)=3,即f (t )的最小值是3,所以2(1-m )<3,解得m >-12. 综上知,m 的取值范围是m >-12.11.(2014·南京模拟)已知函数f (x )=e x-x 22-ax -1,其中a 为实数. (1)若a =-12时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)当x ≥12时,若关于x 的不等式f (x )≥0恒成立,试求a 的取值范围. 解 (1)当a =-12时, f (x )=e x -x 22+12x -1,f ′(x )=e x -x +12, 从而得f (1)=e -1,f ′(1)=e -12, 故曲线y =f (x )在点(1,f (1))处的切线方程为y -e +1=(e -12)(x -1), 即(e -12)x -y -12=0. (2)由f (x )≥0,得ax ≤e x -12x 2-1, ∵x ≥12,∴a ≤e x -12x 2-1x ,令g (x )=e x -12x 2-1x, 则g ′(x )=e x (x -1)-12x 2+1x 2, 令φ(x )=e x (x -1)-12x 2+1, 则φ′(x )=x (e x -1),∵x ≥12,∴φ′(x )>0, 即φ(x )在[12,+∞)上单调递增. 所以φ(x )≥φ(12)=78-e 2>0, 因此g ′(x )>0,故g (x )在[12,+∞)单调递增. 则g (x )≥g (12)=e 12-12×(12)2-112=2e -94, 因此a 的取值范围是a ≤2e -94. 12.已知函数f (x )=a (x 2+1)+ln x .(1)讨论函数f (x )的单调性;(2)若对任意a ∈(-4,-2)及x ∈[1,3],恒有ma -f (x )>a 2成立,求实数m 的取值范围.解 (1)由已知,得f ′(x )=2ax +1x =2ax 2+1x(x >0). ①当a ≥0时,恒有f ′(x )>0,则f (x )在(0,+∞)上是增函数.②当a <0时,若0<x <-12a,则f′(x)>0,故f(x)在(0, -12a]上是增函数;若x>-12a,则f′(x)<0,故f(x)在[ -12a,+∞)上是减函数.综上,当a≥0时,f(x)在(0,+∞)上是增函数;当a<0时,f(x)在(0, -12a]上是增函数,在[ -12a,+∞)上是减函数.(2)由题意,知对任意a∈(-4,-2)及x∈[1,3],恒有ma-f(x)>a2成立,等价于ma-a2>f(x)max.因为a∈(-4,-2),所以24<-12a<12<1.由(1),知当a∈(-4,-2)时,f(x)在[1,3]上是减函数,所以f(x)max=f(1)=2a,所以ma-a2>2a,即m<a+2.因为a∈(-4,-2),所以-2<a+2<0.所以实数m的取值范围为m≤-2.。
高考数学二轮复习第三篇方法应用篇专题3.4分离常数参数法讲理
方法四分离(常数)参数法
分离(常数)参数法是高中数学中比较常见的数学思想方法,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系,其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高,随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法.
1分离常数法
分离常数法在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求变量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),从而求出变量的取值范围.
1.1 用分离常数法求分式函数的最值(值域)
分离常数法是研究分式函数的一种代数变形的常用方法,主要的分式函数有,
,,等,解题的关键是通过恒等变形从分式函数中分离出常数.
例1. 已知函数(且)是定义在上的奇函数.
(Ⅰ)求的值;
(Ⅱ)求函数的值域;
(Ⅲ)当时,恒成立,求实数的取值范围.
【答案】(Ⅰ);(Ⅱ);(Ⅲ).
【解析】试题分析:
(Ⅰ)由函数为奇函数可得,即,可得.(Ⅱ)分离常数可得,故函数为增函数,再由,可得,即可得函数的值域.(Ⅲ)通过分离参数可得在时恒成立,令,则有
,根据函数的单调性可得函数的最大值,从而可得实数的取值
范围
(Ⅱ)由(Ⅰ)可得,∴函数在上单调递增,
又,
∴,
∴.
∴函数的值域为.
(Ⅲ)当时,.
由题意得在时恒成立,
∴在时恒成立.
令,
则有,
∵当时函数为增函数,。
分离参数法求解参数问题含详解
1.已知函数 f x ax2 x lnx 1 ax2 x . (a∈R). 2
(1)当 a=0 时,求曲线 y=f(x)在(e,f(e)处的切线方程(e=2.718…) (2)已知 x=e 为函数 f(x)的极值点,求函数 f(x)的单调区间. 【答案】(1)x+y﹣e=0.(2)单调递增区间为(0,1)和(e,+∞),单调递减区间为(1,e). 【解析】(1)∵a=0, ∴f(x)=﹣xlnx+x,f′(x)=﹣lnx, 则直线的斜率 k=f′(e)=﹣lne=﹣1, f(e)=﹣elne+e=﹣e+e=0, 故所求切线方程为 x+y﹣e=0. (2)函数的导数 f′(x)=(2ax﹣1)lnx﹣ax﹣1+ax+1=(2ax﹣1)lnx, ∵x=e 为函数 f(x)的极值点,
2 作出函数 u=1+ x 1 (r<x<a-2)的图象,得 a-2=-1,解得:a=1,矛盾.
9
综上,r=1,a=2+ 3 .
10.已知函数 f (x) mx 1 1 (m, n 是常数 ) ,且 f (1) 2 , f (2) 11 .
nx 2
4
(1)求 m,n 的值;
(2)当 x 1, 时,判断 f (x) 的单调性并证明;
(2)若 a= 1 ,并且对区间[3,4]上的每一个 x 的值,不等式 f(x)>( 1 )x+t 恒成立,求实数 t 的取值
2
2
范围.
(3)当 x∈(r,a-2)时,函数 f(x)的值域是(1,+∞),求实数 a 与 r 的值.
【答案】(1)1;(2)
t
9 8
;(3)
2017年高考数学(文)-分离(常数)参数法(练)-专题练习(五)-答案
2017年高考数学(文)专题练习(五)分离(常数)参数法(练)答 案一.练高考1.A2.解:(Ⅰ)由题意知:sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B⎛⎫+=+ ⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=,即()2sin sin sin A B A B +=+因为=πA B C ++,()()sin sin πsin A B C C +=-=.从而sin sin 2sin A B C +=由正弦定理得:2a b c +=. (Ⅱ)由(Ⅰ)知2a b c +=, 所以: 222223112cos 22842a b a b a b c b a C ab ab a b +⎛⎫+- ⎪+-⎛⎫⎝⎭===+-≥ ⎪⎝⎭, 当且仅当a b =时,等号成立.故cos C 的最小值为12. 二.练模拟1.D2.D3.C4.22(1)2x y -+=5.解: (Ⅰ)证明:142n n n a a a +=+Q , 12111442n n n n a a a a ++∴==+,111111222n n a a +⎛⎫∴-=- ⎪⎝⎭又11a =,111122a ∴-= 所以数列112n a ⎧⎫-⎨⎬⎩⎭是以12为首项,12为公比的等比数列 (Ⅱ)解:由(Ⅰ)知,1111112222n n n a -⎛⎫-== ⎪⎝⎭g , 即11122n n a =+ ∴22n nn n n b a =-= 于是231232222n n n S =++++…,① 2321112122222n n n n S +-=++++…,② 由①-②得,211111(1)1111122112222222212n n n n n n n n n n S +++-=+++-=-=---…, 即11222222n n n nn n S -+=--=-, ∴数列{}n b 的前项和222n n n S +=- 三.练原创1.D2.C3.B4.15.8n2017年高考数学(文)专题练习(五)分离(常数)参数法(练)解 析1.练高考1.【解析】由题意知,即,,代入,得.故选A .2.由正弦定理得.由知, 所以 , 当且仅当时,等号成立.故 的最小值为. 2.练模拟1.2211-=+m n 222=+m n 2221222221111()(1)(1)-+=⋅=-+m n e e m n m n 222=+m n 12,1>>m n ee 2a b c +=()∏()I 2a b c +=2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭a b =cos C 12【解析】易得是奇函数,在上是增函数,又 ,故选D . 2.3.4.【解析】由题意得:,当且仅当时取等号,所以半径最大为,所求圆为5.()f x 2()310()fx x f x '=+>⇒R 11(sin )(1)sin 1,0sin 111sin 1sin f m f m m m m m θθθθθ>-⇒>-⇒<<<⇒⇒≤--==1m =r =22(1) 2.x y -+=(II )解:由(I )知,, 即.………………8分 ∴.………………9分 于是,① ,② 由①-②得,,………………11分 即, ∴数列的前项和.………………12分 3.练原创1111111()2222n n n a --==g 11122n n a =+22n n n n n n b a =-=231232222n n n S =++++L 231112122222n n n n n S +-=++++L 211111(1)1111122112222222212n n n n n n n n n n S +++-=+++-=-=---L 11222222n n n n n n S -+=--=-{}n b n 222n n n S +=-2.【解析】根据题意,函数与函数在()0+∞,上有公共点,令2xax e =得:2xe a x =, 设()2x ef x x = 则()222x xx e xe f x x -'=,由()0f x '= 得:2x =, 当02x << 时,()0f x '<,函数()2xe f x x=在区间()0,2上是减函数, 当2x > 时,()0f x '>,函数()2xe f x x=在区间()2,+∞上是增函数, ∴当2x =时,函数()2x e f x x =在()0+∞,上有最小值()224e f =,∴24e a ≥ ,故选C . 3.【解析】令t =则13t ≤≤时,2(t)51g t mt =-+>有解,即4m t t<+在13t ≤≤时成立;而函数4u t t =+在[1,2]是减函数,在[2,3]是增函数,4[4,5]u t t=+∈,所以只需5<m ,故选B . 4.所以8)25()25(=--++-x f x f ,从而令3=x ,得8)325()325(=--++-f f .。
高考数学(理)-分离(常数)参数法(讲)-专题练习(五)(含答案与解析)精选全文完整版
可编辑修改精选全文完整版高考数学(理)专题练习(五)分离(常数)参数法(讲)一.分离常数法1.1.用分离常数法求分式函数的最值例1.函数()(2)1x f x x x =≥-的最大值为_________. 1.2.用分离常数法求函数的值域例2.函数22(1)1x y x x +=>-的最小值是( ) A.2B.2 C. D .21.3.用分离常数法判断分式函数的单调性例3.已知函数()()x a f x a b x b+=≠+,判断函数()f x 的单调性. 例4.已知函数21()=2ln 2f x x ax x +-,若()f x 在区间123⎡⎤⎢⎥⎣⎦,上是增函数,则实数a 的取值范围 _________.二.分离参数法2.1.用分离参数法解决不等式恒成立问题例5.已知数列{}n a 是以为首项,以为公差的等差数列,数列{}n b 满足(1)2n n b n a =+.若对n +∈N 都有 4n b b ≥成立,则实数t 的取值范围是_________.2.2.求定点的坐标例6.已知直线:(21)(1)740l m x m y m ++++--=,m ∈R ,求证:直线l 恒过定点.t 2分离(常数)参数法(讲)答 案例1.2例2.A例3. 解:由已知有()1,x b a b a b y x b x b x b++--==+≠++, ∴当0a b ->时,函数()f x 在(),b -∞-和(),b -+∞是减函数; 当0a b -<时,函数()f x 在(),b -∞-和(),b -+∞上是增函数.例4.43a ≥. 例5.[18,14]-- 例6.解:直线l 的方程可化为4(27)0x y m x y +-++-=, 设直线l 恒过定点(,)M x y ,由m R ∈,得()403,1270x y M x y +-=⎧⇒⎨+-=⎩, ∴直线l 恒过定点()3,1分离(常数)参数法(讲)解 析例1.例2.【解析】 ∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2x -1+3x -1=x -12+2x -1+3x -1=x -1+3x -1+2≥23+2例3. 例4.【解析】∵120f x x a x '()=+-≥在1[2]3,恒成立,即12a x x≥-+在1[2]3,恒成立,∵max 18()3x x -+=,∴823a ≥,即43a ≥。
专题04 分离参数法的运用 Word版含解析
专题04 分离参数法的运用例1.(2018•新课标Ⅱ)已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g′(x)=0,得x=ln2.当x∈(0,ln2)时,g′(x)<0,当x∈(ln2,+∞)时,g′(x)>0,∴g(x)≥g(ln2)=e ln2﹣2•ln2=2﹣2ln2>0,∴f(x)在[0,+∞)单调递增,∴f(x)≥f(0)=1,解:(2)方法一、,f(x)在(0,+∞)只有一个零点⇔方程e x﹣ax2=0在(0,+∞)只有一个根,⇔a=在(0,+∞)只有一个根,即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.G,当x∈(0,2)时,G′(x)<0,当∈(2,+∞)时,G′(x)>0,∴G(x)在(0,2)递减,在(2,+∞)递增,当→0时,G(x)→+∞,当→+∞时,G(x)→+∞,∴f(x)在(0,+∞)只有一个零点时,a=G(2)=.方法二:①当a≤0时,f(x)=e x﹣ax2>0,f(x)在(0,+∞)没有零点..②当a>0时,设函数h(x)=1﹣ax2e﹣x.f(x)在(0,+∞)只有一个零点⇔h(x)在(0,+∞)只有一个零点.h′(x)=x(x﹣2)e﹣x,当x∈(0,2)时,h′(x)<0,当x∈(2,+∞)时,h′(x)>0,∴h(x))在(0,2)递减,在(2,+∞)递增,∴,(x≥0).当h(2)<0时,即a,由于h(0)=1,且当x>0时,e x>x2,可得h(4a)=1﹣==1﹣>0.h(x)在(0,+∞)有2个零点当h(2)>0时,即,h(x)在(0,+∞)没有零点,当h(2)=0时,即a=,h(x)在(0,+∞)只有一个零点,综上,f(x)在(0,+∞)只有一个零点时,a=.例2.(2018•南开区三模)已知函数f(x)=x﹣1e x的定义域为(0,+∞).(Ⅰ)求函数f(x)在[m,m+1](m>0)上的最小值;(Ⅱ)对∀x∈(0,+∞),不等式xf(x)>﹣x2+ax﹣1恒成立,求a的取值范围.【解答】解:(Ⅰ)f′(x)=,令f′(x)=0,解得x=1,当x>1时,f′(x)>0,函数f(x)单调递增,当0<x<1时,f′(x)<0,函数f(x)单调递减,①当m≥1时,函数f(x)在[m,m+1]上单调递增,∴f(x)min=f(m)=,②0<m<1时,函数f(x)在[m,1]上单调递减,在[1,m+1]上单调递增,∴f(x)min=f(1)=e;(Ⅱ)对∀x∈(0,+∞),不等式xf(x)>﹣x2+ax﹣1恒成立,即a<+x+,令g(x)=+x+,∴g′(x)=,由g′(x)>0,可得x>1,函数g(x)在(1,+∞)上单调递增,由g′(x)<0,可得0<x<1,函数g(x)在(0,1)上单调递减,∴g(x)min=g(1)=e+2,∴a<e+2.例3.(2018•湖北模拟)设f(x)=ax3+xlnx(a∈R).(1)求函数的单调区间;(2)若∀x1,x2∈(0,+∞)且x1>x2,不等式恒成立,求实数a的取值范围.【解答】解:(1)g(x)=ax2+lnx(x>0),①当a≥0时,2ax2+1>0恒成立,∴f(x)在(0,+∞)上单调递增;②当a<0时,由2ax2+1>0得,∴f(x)在上单调递增,在上单调递减.(2)∵x1>x2>0,,∴f(x1)﹣f(x2)<2x1﹣2x2,∴f(x1)﹣2x1<f(x2)﹣2x2,即F(x)=f(x)﹣2x在(0,+∞)上为减函数,F(x)=ax3﹣2x+xlnx,F'(x)=3ax2﹣2+1+lnx=3ax2﹣1+lnx≤0,∴,x>0令,,∴当,h'(x)<0,h(x)单调递减,当,h'(x)>0,h(x)单调递增,∴,∴,∴∴a的取值范围是.变式1.(2018春•南通期中)已知f(x)=2x2﹣x+1,g(x)=x.(1)求不等式≥2g(x)的解集;(2)若不等式mg(x)+f(x)≥0对任意x∈(0,2]恒成立,求m的取值范围.【解答】解:(1)不等式≥2g(x),即为≥2x,即≥0,解得x>1或x≤﹣1,则解集为(﹣∞,﹣1]∪(1,+∞);(2)不等式mg(x)+f(x)≥0对任意x∈(0,2]恒成立,即为mx+2x2﹣x+1≥0,可得﹣m≤2x+﹣1在x∈(0,2]恒成立,由2x+﹣1≥2﹣1=2﹣1,当且仅当2x=即x=时,上式取得等号,可得﹣m≤2﹣1,即m≥1﹣2.变式2.(2018春•乐山期中)已知函数f(x)=e x+2x2﹣3x.(1)求证:函数f(x)在区间[0,1]上存在唯一的极值点.(2)当x≥时,若关于x的不等式f(x)≥x2+(a﹣3)x+1恒成立,试求实数a的取值范围.【解答】解:(1)证明:函数f (x)=e x+2x2﹣3x的导数为f′(x)=e x+4x﹣3,在(0,1)递增,可得f′(0)=1﹣3=﹣2<0,f′(1)=e+4﹣3=e+1>0,即有函数f (x)在区间[0,1]上存在唯一的极值点;(2)当x≥时,若关于x的不等式f (x)≥x2+(a﹣3)x+1恒成立,即为a≤﹣x﹣的最小值,由g(x)=﹣x﹣的导数g′(x)=﹣+,由y=e x﹣x﹣1的导数为y′=e x﹣1,可得x>0,函数y=e x﹣x﹣1递增,x<0时,函数y递减,则e x﹣x﹣1≥0,且e x≥x+1>0,则﹣+≥﹣+=>0,则g(x)在[,+∞)递增,可得g()取得最小值,且为2e﹣,则a≤2e﹣.变式3.(2017春•南昌期末)已知函数f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,(1)求不等式g(x)<0的解集;(2)若对一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求实数m的取值范围.【解答】解:由g(x)=2x2﹣4x﹣16<0,得x2﹣2x﹣8<0,即(x+2)(x﹣4)<0,解得﹣2<x<4.所以不等式g(x)<0的解集为{x|﹣2<x<4};(2)因为f(x)=x2﹣2x﹣8,当x>2时,f(x)≥(m+2)x﹣m﹣15成立,则x2﹣2x﹣8≥(m+2)x﹣m﹣15成立,即x2﹣4x+7≥m(x﹣1).所以对一切x>2,均有不等式成立.而(当x=3时等号成立).所以实数m的取值范围是(﹣∞,2].【课堂作业】1.(2017秋•库尔勒市校级期中)设函数f(x)=x2﹣2tx=2,且函数f(x)的图象关于直线x=1对称.(1)求函数f(x)在区间[0,4]上的最小值;(2)设h(x)=,不等式h(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围.【解答】解:(1)因为函数f(x)的图象关于直线x=1对称,所以t=1,故函数f(x)=x2﹣2x=2=(x﹣1)2+1,所以,函数f(x)在[0,1]上单调递减,在[1,4]上单调递增,所以当x=1时,f(x)的最小值为1…5′(2)不等式h(2x)﹣k•2x≥0化为:,化为1+2≥k,令t=,则k≤2t2﹣2t+1,因x∈[﹣1,1]故t∈[,2],记G(t)=2t2﹣2t+1,因为t∈[,2],故G(t)min=,所以k的取值范围是:…12′2.(2017秋•思明区校级期中)已知函数f(x)=3x﹣.(1)若f(x)=0,求x的取值集合;(2)若对于t∈[1,3]时,不等式3t f(2t)+mf(t)≥0恒成立,求实数m的取值范围.【解答】解:(1)当x<0时,f(x)=3x﹣3x=0恒成立;当x≥0时,f(x)=3x﹣=0,解得:x=0;综上所述,x的取值集合为{x|x≤0}.﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)∵t∈[1,3],∴f(t)=3t﹣>0.∴3t f(2t)+mf(t)≥0恒成立可化为:3t(32t﹣)+m(3t﹣)≥0恒成立,即3t(3t+)+m≥0,即m≥﹣32t﹣1恒成立.令g(t)=﹣32t﹣1,则g(t)在[1,3]上递减,∴g(x)max=g(1)=﹣10.∴所求实数m的取值范围是[﹣10,+∞).﹣﹣﹣﹣﹣﹣﹣(12分)3.(2016秋•会宁县校级期中)已知函数f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,(1)求不等式g(x)<0的解集;(2)若对一切x>5,均有f(x)≥(m+2)x﹣m﹣15成立,求实数m的取值范围.【解答】解:(1)由g(x)=2x2﹣4x﹣16<0,得x2﹣2x﹣8<0,即(x+2)(x﹣4)<0,解得﹣2<x<4.所以不等式g(x)<0的解集为{x|﹣2<x<4};(2)因为f(x)=x2﹣2x﹣8,当x>5时,f(x)≥(m+2)x﹣m﹣15成立,则x2﹣2x﹣8≥(m+2)x﹣m﹣15成立,即x2﹣4x+7≥m(x﹣1).所以对一切x>5,均有不等式≥m成立.而=(x﹣1)+﹣2≥2﹣2=2(当x=3时等号成立).因为x=5,所以,=3.实数m的取值范围是(﹣∞,3].【课后练习】1.已知函数f(x)=(a>0,a≠1)是定义在R上的奇函数.(1)求实数a的值;(2)判断f(x)在定义域上的单调性,并用单调性定义证明;(3)当x∈(0,1]时,t•f(x)≥2x﹣2恒成立,求实数t的取值范围.【解答】解:(1)∵f(x)是定义在R上的奇函数,∴f(0)=0,则f(0)==0,得a=2;(2)当a=2时,f(x)====1﹣,则f(x)在定义域R上的单调递增;设x1<x2,则f(x1)﹣f(x2)=1﹣﹣(1﹣)=﹣=,∵x1<x2,∴<,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),即函数f(x)在R上是增函数.(3)当x∈(0,1]时,函数f(x)为增函数,则f(0)<f(x)≤f(1),即0<f(x)≤,则t•f(x)≥2x﹣2恒成立等价为t≥=恒成立设g(x)==2x﹣,下证明g(x)为增函数,设0<x1<x2≤1,则g(x2)﹣g(x1)=﹣﹣+﹣+=(﹣)•(1+)>0,即g(x2)>g(x1),则g(x)在(0,1]上增函数,则g(x)的最大值为g(1)=0,则t≥02.(2018•西安二模)已知函数f(x)=alnx+x2(a为实常数)(Ⅰ)若a=﹣4,求证:函数f(x)在上单调递增(Ⅱ)求函数f(x)在[1,e]上的最小值及相应的x值(Ⅲ)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.【解答】解:(Ⅰ)当a=﹣4时,可得,当x∈(0,)时,f'(x)<0;当x∈(,+∞)时,f'(x)>0.∴f(x)的单调递减区间为(0,),单调递增区间为(,+∞).(Ⅱ)f′(x)=,(x>0)当[1,e],2x2+a∈[a+2,a+2e2].①若a≥﹣2,f′(x)在[1,e]上非负(仅当a=﹣2,x=1时,f′(x)=0,故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1.②若﹣2e2<a<﹣2,当x=时,f′(x)=0;当1时,f′(x)<0,此时f(x)是减函数;当x=时,f′(x)>0,此时f(x)是增函数.故,③若a≤﹣2e2,f′(x)在[1,e]上非正(仅当a=﹣2e2,x=e时,f′(x)=0,故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2.综上可知,当a≥2时,f(x)min=1,此时x=1,当﹣2e2<a<﹣2时,,此时x=.当a<﹣2e2时,,此时x=e,(Ⅲ)不等式f(x)≤(a+2)x,可化为a(x﹣lnx)≥x2﹣2x.∵x∈[1,e],∴lnx≤1≤x且等号不能同时取,所以lnx<x,即x﹣lnx>0,因而a≥,令g(x)=,又g′(x)=,当x∈[1,e]时,x﹣1≥0,lnx≤1,x+2﹣2lnx>0,从而g′(x)≥0(仅当x=1时取等号),所g(x)在[1,e]上为增函数,故g(x)的最小值为g(1)=﹣1,所以a的取值范围是[﹣1,+∞).3.(2018•菏泽一模)已知函数f(x)=lnx,g(x)=xe x﹣x﹣1.(1)若关于x的方程在区间[1,3]上有解,求实数m的取值范围;(2)若g(x)﹣a≥f(x)对∀x∈(0,+∞)恒成立,求实数a的取值范围.【解答】解:(1)方程即为.令,则.令h'(x)=0,则(舍),.当x∈[1,3]时,h'(x)随x变化情况如表:极大值∴当x∈[1,3]时,.∴m的取值范围是.(2)据题意,得g(x)﹣f(x)≥a对∀x∈(0,+∞)恒成立.令F(x)=g(x)﹣f(x)=x•e x﹣lnx﹣x﹣1(x>0),则.令G(x)=x•e x﹣1(x>0),G'(x)=(x+1)•e x>0,∴函数G(x)在(0,+∞)上递增.∵G(0)=﹣1<0,G(1)=e﹣1>0,∴G(x)在(0,1)上存在唯一的零点c,当x∈(0,c)时,G(x)<0;当x∈(c,+∞)时,G(x)>0.∴当x∈(0,c)时,F'(x)<0;当x∈(c,+∞)时,F'(x)>0.∴F(x)在(0,c)上递减,在(c,+∞)上递增,从而F(x)≥c•e c﹣lnc﹣c﹣1.由G(c)=0得c•e c﹣1=0,即c•e c=1,两边取对数得lnc+c=0,∴F(c)=0.∴a≤0,即所求实数a的取值范围是(﹣∞,0].。
分离常数法求函数值域-高中数学解题方法含详解
试卷第1页,总4页分离常数法求函数值域高中数学解题方法一、单选题 1.已知函数2(),[2,6]1x f x x x +=∈-,则函数的值域为( ) A .8,45⎡⎤⎢⎥⎣⎦ B .8,[4,)5⎛⎤-∞⋃+∞ ⎥⎝⎦C .8,[4,)5⎛⎫-∞⋃+∞ ⎪⎝⎭ D .8,45⎛⎫ ⎪⎝⎭2.对于函数31()31x x f x -=+,下列描述正确的选项是( ).A .减函数且值域为(1,1)-B .增函数且值域为(1,1)-C .减函数且值域为(,1)-∞D .增函数且值域为(,1)-∞3.定义:x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为取整函数,例如:[]3.64-=-,[]5.65=,已知函数()23311x x f x -⋅=+,则()y f x ⎡⎤=⎣⎦的值域是( )A .{}0,1B .{}1,1-C .{}1,0,1-D .1,0,1,24.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =成为高斯函数,例如:[ 3.5]4-=-,[2.1]2=,已知函数1()12=-+x xe f x e ,则函数[()][()]y f x f x =+-的值域是( ) A .{1}B .{0,1}C .{1,0}-D .{1,0,1}-5.已知函数()()31(3)33x x f x x a x -⎧≠-⎪=+⎨⎪=-⎩的定义域与值域相同,则常数a =( )A .3B .3-C .13D .13-6.设()34sin 3sin f x xx+=+.若[]x 表示不超过x 的最大整数,则函数()y f x =⎡⎤⎣⎦的值域是( ) A .{}0,1-B .{}0,1C .{}1,1-D .{}1,0,1-7.已知函数1a y ax b =-+-是幂函数,直线20(0,0)mx ny m n -+=>>过点(,)a b ,。
(完整word版)函数恒成立问题——参变分离法
注意:(1)本题的一个重要技巧在于对 零点的“设而不求”,在求得 单调增的前提下,判断 的符号零点必不可少,但方程 无法求出解。那么卡在这一步是否要放弃重来?不然。可暂用一个变量来表示零点,再用特殊点的函数值将零点控制在一个小的范围内。在本题中这种方法带来方法上的两个突破:第一,能够判断 的符号进而得到 的符号,确定了 的单调性,找到最小值。第二,尽管 不可求,但是本身自带一个方程 ,从而达到了一个对数与一次函数的转换。对后面的化简有极大帮助
答案:
例2:已知函数 ,若 在 上恒成立,则 的取值范围是_________
思路:恒成立的不等式为 ,便于参数分离,所以考虑尝试参变分离法
解: ,其中
只需要 ,令
(导函数无法直接确定单调区间,但再求一次导即可将 变为 ,所以二阶导函数的单调性可分析,为了便于确定 的符号,不妨先验边界值)
, ,(判断单调性时一定要先看定义域,有可能会简化判断的过程)
例5:若不等式 对 恒成立,则实数 的取值范围是.
思路: ,令 ,对绝对值内部进行符号讨论,即 ,而 在 单调递增, 在 单调递减, 可求出
答案:
例6:设正数 ,对任意 ,不等式 恒成立,则正数 的取值范围是()
思路:先将 放置不等号一侧,可得 ,所以 ,先求出 的最大值, ,可得 在 单调递增,在 单调递减。故 ,所以若原不等式恒成立,只需 ,不等式中只含 ,可以考虑再进行一次参变分离, ,则只需 , ,
2、如何确定变量与参数:一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数。
3、参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:
(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行。但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法。例如: , 等
分离常数参数法-高考理科数学解题方法讲义
(2)设,求使对任意恒成立的实数的取值范
围.
【答案】(1);(2).
【解析】
(1)因为,所以
所以当时,,
又,满足上式,
所以数列的通项公式
(2)
由对任意恒成立,即使对恒成立
设,则当或时,取得最小值为,所以.
2.2 求定点的坐标
例7.已知直线:,,求证:直线恒过定点.
【答案】.
【反思提升】综合上面的例题,我们可以看到,分离参(常)数是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知,解决问题的关键是分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据需遵循.
(Ⅱ)由(Ⅰ)可得 ,
∴函数 在 上单调递增,
又 ,
∴ ,
∴ .
∴函数 的值域为 .
(Ⅲ)当 时, .
由题意得 在 时恒成立,
∴ 在 时恒成立.
令 ,
则有 ,
∵范围为 .
例2.一种作图工具如图1所示. 是滑槽 的中点,短杆 可绕 转动,长杆 通过 处铰链与 连接, 上的栓子 可沿滑槽AB滑动,且 , .当栓子 在滑槽AB内作往复运动时,带动 绕 转动一周( 不动时, 也不动), 处的笔尖画出的曲线记为 .以 为原点, 所在的直线为 轴建立如图2所示的平面直角坐标系.
例1.已知函数 ( 且 )是定义在 上的奇函数.
(Ⅰ)求 的值;
(Ⅱ)求函数 的值域;
(Ⅲ)当 时, 恒成立,求实数 的取值范围.
【答案】(Ⅰ) ;(Ⅱ) ;(Ⅲ) .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中重要解题方法——分离变量法
分离变量法是近年来发展较快的思想方法之一.高考数学试题中,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系.其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高.随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法.
分离变量法:是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知.
解决问题的关键: 分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据可以遵循.以下定理均为已知x 的范围,求a 的范围:
定理1 不等式()()f x g a ≥恒成立⇔[]min ()()f x g a ≥(求解()f x 的最小值);不等
式()()f x g a ≤恒成立⇔[]max ()()f x g a ≤(求解()f x 的最大值).
定理2 不等式()()f x g a ≥存在解⇔[]max ()()f x g a ≥(求解()f x 的最大值);不
等式()()f x g a ≤存在解⇔[]min ()()f x g a ≤(即求解()f x 的最小值).
定理3 方程()()f x g a =有解⇔()g a 的范围=()f x 的值域(求解()f x 的值域).
解决问题时需要注意:(1)确定问题是恒成立、存在、方程有解中的哪一个;(2)确定是求最大值、最小值还是值域.
再现性题组:
1、 已知当x ∈R 时,不等式224sin cos sin 5x x x a +-<-+恒成立,求实数a 的取值范围。
2.若f(x)=2
33x x --在[1,4]x ∈-上有()21f x x a ≥+-恒成立,求a 的取值范围。
3,、若f(x)=233x x --在[1,4]x ∈-上有2()251f x x a a ≥+--恒成立,求a 的取值范围。
4、若方程42210x x
a -+=g
有解,请求a 的取值范围。
1、 解:原不等式224sin cos sin 5x x x a ⇔+-<-+
当x ∈R 时,不等式max a+5>(4sinx+cos2x)⇔-,设f(x)=4sinx+cos2x 则 22f(x)= 4sinx+cos2x =2sin x+4sinx+1=2(sinx 1)+3 ---
∴a+5>3a<2-∴
2、解:23321x x x a --≥+-恒成立,即2
242a x x ≤--在[1,4]x ∈-上恒成立,
只需2min 2(42)a x x ≤--,解得3a ≤- 3、解:2233251x x x a a --≥+--在[1,4]x ∈-上恒成立⇒ 222542a a x x -≤-- 在[1,4]x ∈-上恒成立⇒2325312a a a -≤-⇒≤≤
4、解:令2x t = (t>0),则21
210221t at a t a t -+=⇒=+≥⇒≥
【例题】
例1. 已知函数()2
1,(0,1]f x x ax x =++∈,且()||3f x ≤恒成立,求a 的取值范围. 【分析】法一(二次函数):问题转化为不等式组2213,(0,1]13
x ax x x ax ⎧++≤⎪∈⎨++≥-⎪⎩恒成立 → 2()1f x x ax =++在(0,1]x ∈上的最大值与最小值 → 以对称轴与定义域端点进行比较分类,研究单调性.正确率较低.
法二(分离变量):问题转化为22
42x x a x x
---≤≤在(0,1]x ∈上恒成立(除x 时注意符号), → 由定理1得22max min
42x x a x x ⎡⎤⎡⎤---≤≤⎢⎥⎢⎥⎣⎦⎣⎦.求相应函数最值,正确率较高.
例2.已知a 是实数,函数2
()223.f x ax x a =+--如果函数()y f x =在区间[1,1]-上有零点,求a 的取值范围.
【分析】方法一(根的分布):这个题目是一个标准的根的分布问题,解题时需要考虑: 开口方向,判别式,对称轴,特殊点的函数值.解题时需要分为大3类,小5类.学生能够部分得分,很难列出所有不等式组.
方法二(分离变量):问题转化为22230ax x a +--=在[1,1]x ∈-上恒有解 → 分离变量得23221
x a x -=-
,[1,(,,1]2222x ∈---U U 有解 → 由定理1.3得只需求函数232()21x g x x -=-
在[1,(,,1]2222x ∈---U U 上的值域即可
, 2
±单独考虑.此法思维两较小,运算量较二次函数略大,得分率略有增加.
通过对上述三道题目解答过程中出现的两种做法的比较,不难体会到,分离变方法的优越性:思维量小,过程简捷明快,思维严谨性的要求有所降低.不足之处:个别时候,分离后产生的函数,在求解其最值或值域时运算量较大.总体来说,多数时候,应优先使用分离变量法。
1、 已知函数()lg 2a f x x x ⎛⎫=+
- ⎪⎝⎭,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。
2、已知(],1x ∈-∞时,不等式()
21240x x a a ++-⋅>恒成立,求a 的取值范围。
3、设124()lg ,3
x x
a f x ++=g 其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。
4、设函数是定义在(,)-∞+∞上的增函数,如果不等式2
(1)(2)f ax x f a --<-对于任意[0,1]x ∈恒成立,求实数a 的取值范围。
练习答案:
1、解:根据题意得:21a x x +
->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立,
设()23f x x x =-+,则()2
3924f x x ⎛⎫=--+ ⎪⎝⎭ 当2x =时,()max 2f x = 所以2a >
2、解:令2x t =,(],1x ∈-∞Q (]0,2t ∴∈ 所以原不等式可化为:221t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()21t f t t +=
在(]0,2t ∈上的最小值即可。
()22211111124
t f t t t t t +⎛⎫⎛⎫==+=+- ⎪ ⎪⎝⎭⎝⎭Q 11,2t ⎡⎫∈+∞⎪⎢⎣⎭Q ()()min 324f t f ∴== 2313422
a a a ∴-<⇒-<< 3、解:如果(.1)x ∈-∞时,()f x 恒有意义1240x x a ⇔++>,对(,1)x ∈-∞恒成立.
212(22)4
x
x x x a --+⇔>-=-+(.1)x ∈-∞恒成立。
令2x t -=,2()()g t t t =-+ 又(.1)x ∈-∞则1(,)2t ∈+∞()a g t ∴>对1(,)2
t ∈+∞恒成立, 又()g t Q 在1[,)2t ∈+∞上为减函数,max 13()()24t g ==-g ,34
a ∴≥-。
4、解:()f x Q 是增函数2
(1)(2)f ax x f a ∴--<-对于任意[0,1]x ∈恒成立 212ax x a ⇔--<-对于任意[0,1]x ∈恒成立
210x ax a ⇔++->对于任意[0,1]x ∈恒成立,
令2
()1g x x ax a =++-,[0,1]x ∈,所以原问题min ()0g x ⇔>, 又min (0),0()(),2022,2g a a g x g a a >⎧⎪⎪=--≤≤⎨⎪ <-⎪⎩即2min 1,0()1,2042,2
a a a g x a a a - >⎧⎪⎪=--+-≤≤⎨⎪ <-⎪⎩ 易求得1a <。