高频电子线路实验二

合集下载

高频实验指导书

高频实验指导书

高频实验指导书《高频电子线路II》实验指导书撰写人:粟建新李志军审核人:湘潭大学信息工程学院2007年11月23日前言一、实验总体目标《高频电子线路》是电子信息工程和通信工程专业的学科基础课,也是一门工程性和实践性很强的课程。

实验教学的目的是:利用典型实际高频电子线路,运用高频实验仪器,验证《高频电子线路》课程中各单元电路的工作原理,综合运用各单元电路完成模块化功能的学习,达到掌握和巩固所学基本概念和提高自行研究分析设计类似电路的能力。

在实验中要熟悉各典型高频线路的组成,元件及参数的选择,熟悉高频实验仪器的原理和使用方法,掌握使用高频实验仪器进行电路参数测试的方法,在实验中学会运用理论知识分析和解决各种实际问题,实现理论与实践相结合,提高工程应用能力。

二、适应专业年级适应全日制本科电子信息工程、通信工程专3年级学生。

三、先修课程开设本课程之前,学生必须修完电路理论、模拟电子技术基础及实验、数字电子技术基础及实验、高频电子线路相关理论课程。

四、实验项目及课时分配实验是学习电子技术的一个重要环节。

对巩固和加深课堂教学内容,提高学生实际工作技能,培养科学作风,为学习后续课程和从事实践技术工作奠定基础具有重要作用。

为适应电子科学技术的迅猛发展和教学改革不断深入的需要,我们在教学实践的基础上,运用多年从事教学仪器产品研制生产的经验,研制生产了TPE-GP系列高频电路实验学习机。

其中,TPE-GP2型高频电路实验学习机由试验机箱与单元电路板构成,可完成下述属于模拟电路范畴的实验,即:单、双调谐回路谐振放大(小信号选频放大电路);丙类高频功率放大电路;LC电容反馈三点式振荡器;石英晶体振荡器;低电平振幅调制与解调电路,高电平集电极调幅与发射电路;变容二极管调频与相位鉴频电路;集成电路(压控振荡器)构成的频率调制器;集成电路(锁相环)构成的频率解调器;利用二极管函数电路实现的波形转换电路;晶体管混频电路实验;调幅、调频接受实验等。

高频电子线路实验课件

高频电子线路实验课件

| 1 | 10 | 1 | 10 | 0.8 | | 3 | 30 | 1 | 30 | 0.4 |
实验结果分析与讨论
实验结果分析
VS
根据实验数据记录,当输入信号频率 增加时,输出信号幅度逐渐减小。这 表明滤波器对高频信号的抑制作用较 强,而对低频信号的抑制作用较弱。 因此,该滤波器为高通滤波器。
系统集成与优化
未来的高频电子线路实验将更加注重系统集成和优化,将 不同的器件和电路模块进行整合,实现更高效、更可靠的 高频电子系统。
实验方法创新
未来的高频电子线路实验将不断创新实验方法,引入新的 实验技术和工具,提高实验的效率和精度。
结合实际应用
未来的高频电子线路实验将更加注重与实际应用的结合, 通过实验研究高频电子线路在各个领域中的应用,提高实 验的应用价值。
05
高频电子线路实验项目三 :滤波器
实验目的与原理
01
实验目的
02
1. 掌握滤波器的原理及设计方法;
03
2. 了解滤波器对信号频率成分的影响;
实验目的与原理
• 学会使用示波器和信号发生器等设备进行实验操作。
实验目的与原理
实验原理
滤波器是一种频率选择性器件,它可以通过抑制某些频率成分、而允许其他频率成分通过。在高频电 子线路中,滤波器常用于减小信号中的噪声、提取有用信号等。根据频率响应的不同,滤波器可分为 低通、高通、带通和带阻等类型。
• 讨论:调谐放大器在通信、雷达等高频电子系统中具有广泛应用。本实 验通过探究其工作原理及性能特点,为实际应用提供理论支持和实践经 验。同时,实验中可能存在的误差来源也需要进行讨论并加以修正,以 提高实验的准确性和可靠性。
04
高频电子线路实验项目二 :混频器

高频电子线路实验指导书(八个实验)

高频电子线路实验指导书(八个实验)

目录实验一调谐放大器(实验板1) (1)实验二丙类高频功率放大器(实验板2) (4)实验三 LR电容反馈式三点式振荡器(实验板1) (6)实验四石英晶体振荡器(实验板1) (8)实验五振幅调制器(实验板3) (10)实验六调幅波信号的解调(实验板3) (13)实验七变容二极管调频管振荡器(实验板4) (16)实验八相位鉴频器(实验板4) (18)实验九集成电路(压控振荡器)构成的频率调制器(实验板5) (20)实验十集成电路(锁相环)构成的频率解调器(实验板5) (23)实验十一利用二极管函数电路实现波形转换(主机版面) (25)实验一调谐放大器(实验板1)一、预习要求1、明确本实验的目的。

2、复习谐振回路的工作原理。

3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。

4、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内),计算回路中心频率f0。

二、实验目的1、熟悉电子元器件和高频电路实验箱。

2、熟悉谐振回路的幅频特性分析—通频带预选择性。

3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。

4、熟悉和了解放大器的动态范围及其测试方法。

三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、毫秒仪5、万用表6、实验板1图 1-1 单调谐回路谐振放大器原理图四、实验内容(一)单调谐回路谐振放大器1、实验电路图见图1-1(1)按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。

(2)接线后,仔细检查,确认无误后接通电源。

2、静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1-1*V E ,V B 是三极管的基极和发射极对地电压。

3.动态研究(1)测放大器的动态范围V i ~V 0(在谐振点)选R = 10K ,R 0 = 1K 。

把高频信号发生器接到电路输入端,电路输出端接毫伏表,选择正常放大区的输入电压V i ,调节频率f 使其为10.7MHZ ,调节C T 使回路谐振,使输出电压幅度为最大。

高频电子线路实验指导书V2[1][1].4

高频电子线路实验指导书V2[1][1].4

高频电子线路C4型实验箱总体介绍一、概述本高频电子线路C4型实验箱的实验内容及实验顺序是根据高等教育出版社出版的〈〈高频电子线路〉〉(作者为张肃文)一书而设计的。

本实验箱设置了十个实验,分别是:高频小信号调谐放大器实验、二极管开关混频器实验、高频谐振功率放大器实验、正弦波振荡器实验、集电极调幅及大信号检波实验、变容二极管调频实验、集成电路模拟乘法器应用实验、模拟锁相环应用实验、小功率调频发射机设计和调频接收机设计。

其中前八个实验是为配合课程而设计的,主要帮助学生理解课堂所学的内容。

后两个实验是系统实验,能让学生了解每个复杂的无线收发系统都是由一个个单元电路组成的。

实验板配有有机玻璃罩,以保护实验板上的元件。

可调电阻如果用手调节不方便,可用实验箱配置的无感批调节。

二、整机介绍本实验箱为整板式结构,实验板的右侧至上而下分别为实验所需的频率计、低频信号源和高频信号源。

它们不作为实验内容,属于实验工具。

频率计、低频信号源和高频信号源的使用方法说明如下:1、频率计使用方法本实验箱提供的频率计是基于本实验箱实验的需要而设计的。

它只适用于频率低于15MHz,信号幅度Vp-p=100mV~5V的信号。

KG1是频率计的电源开关,ING1为频率计的输入端,JG2、JG3和JG4为输入信号通道选择跳线。

当所测信号频率低于100KHz时,连接JG3、JG4(此时JG2断开)。

当所测信号频率高于100KHz时连接JG2(此时JG3、JG4断开),一般情况下都连接JG2,断开JG3、JG4。

所测信号的频率通过8个数码管显示,其中前6个数码管显示有效数字,第8个数码管显示10的幂,单位为Hz(如显示10.7000-6,则频率为10.7MHz)。

频率计的使用方法如下:使用时,首先按下开关KG1,然后用实验箱附带的连接线将所要测量的信号与频率计的输入端ING1相连,按要求确定JG2、JG3和JG4的连接方式,则数码管显示所测信号的频率。

高频电子线路(通信电子线路)实验指导书

高频电子线路(通信电子线路)实验指导书

实验一 函数信号发生实验一、实验目的1)、了解单片集成函数信号发生器ICL8038的功能及特点。

2)、掌握ICL8038的应用方法。

二、实验预习要求参阅相关资料中有关ICL8038的内容介绍。

三、实验原理(一)、ICL8038内部框图介绍ICL8038是单片集成函数信号发生器,其内部框图如图2-1所示。

它由 恒流源I 2和I 1、电压比较器A 和B 、触发器、缓冲器和三角波变正弦波电路等组成。

外接电容C 可由两个恒流源充电和放电,电压比较器A 、B 的阀值分别为总电 源电压(指U CC +U EE )的2/3 和1/3。

恒流源I 2和I 1的大 小可通过外接电阻调节,但 必须I 2>I 1。

当触发器的输出为低电平时,恒流源I 2断开 图2-1 ICL8038原理框图,恒流源I 1给C 充电,它的两端电压u C 随时间线性上升,当达到电源电压的确2/3时,电压比较器A 的输出电压发生跳变,使触发器输出由低电平变外接电容E E为高电平,恒流源I 2接通,由于I 2>I 1(设I 2=2I 1),I 2将加到C 上进行反充电,相当于C 由一个净电流I 放电,C 两端的电压u C 又转为直线下降。

当它下降到电源电压的1/3时,电压比较器B 输出电压便发生跳变,使触发器的输出由高电平跳变为原来的低电平,恒流源I 2断开,I 1再给C 充电,……如此周而复始,产生振荡。

若调整电路,使I 2=2I 1,则触发器输出为方波,经反相缓冲器由引脚9输出方波信号。

C 上的电压u c ,上升与下降时间相等(呈三角形),经电压跟随器从引脚3输出三角波信号。

将三角波变为正弦波是经过一个非线性网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波电位向两端顶点摆动时,网络提供的交流通路阻抗会减小,这样就使三角波的两端变为平滑的正弦波,从引脚2输出。

1、ICL8038引脚功能图图2-2 ICL8038引脚图供电电压为单电源或双电源: 单电源10V ~30V 双电源±5V ~±15V2、实验电路原理图如图2-3 所示。

高频电子线路实验报告

高频电子线路实验报告

南京信息工程大学高频电子线路实验报告实验一高频小信号放大器 (3)一、实验原理 (3)二、实验内容 (4)实验二振幅调制实验 (6)一、实验原理 (6)二:实验结果: (7)实验三调幅信号的解调 (9)一、实验原理 (9)二.实验内容 (12)实验四混频器 (14)一、实验原理 (14)二、实验内容 (15)实验一 高频小信号放大器一、实验原理高频小信号放大器的作用就是放大无线电设备中的高频小信号, 以便作进一步变换或处理。

所谓“小信号”,主要是强调放大器应工作在线性范围。

高频与低频小信号放大器的基 本构成相同,都包括有源器件(晶体管、集成放大器等)和负载电路,但有源器件的性能及负载电路的形式有很大差异。

高频小信号放大器的基本类型是以各种选频网络作负载的频带 放大器,在某些场合,也采用无选频作用的负载电路,构成宽带放大器。

频带放大器最典型的单元电路如图 1-1 所示, 由单调谐回路做法在构成晶体管调谐放大器。

图 1-1 电路中,晶体管直流偏置电路与低频放大器电路相同,由于工作频率高,旁路电 容C b.、C e 可远小于低频放大器中旁路电容值。

调谐回路的作用主要有两个:图 1-1 晶体管单调谐回路调谐放大器第一、选频作用,选择放大0f f =的信号频率,抑制其它频率信号。

第二、提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。

高频小信号频带放大器的主要性能指标有:(1)中心频率 0f :指放大器的工作频率。

它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。

(2)增益:指放大器对有用信号的放大能力。

通常表示为在中心频率上的电压增益和 功率增益。

电压增益 /VO O i A V V = (1—1)功率增益 /PO O i A P P = (1—2)式中 O V 、i V 分别为放大器中心频率上的输出、输入电压幅度, O P 、i P 分别为放大器中心频率上的输出、输入功率。

增益通常用分贝表示。

高频电子线路实验2

高频电子线路实验2

实验二 三点式LC 振荡器及压控振荡器一. 实验目的1. 了解三点式LC 振荡器的基本原理;2. 了解反馈系数对幅度与频率的影响;二. 实验内容1. 测量振荡器的信号幅度与频率.2. 观察反馈系数对输出强度与频率的影响;3. 测量振荡器的频率稳定度.三. 实验仪器(略) 四. 实验原理1. 三点式LC 振荡器三点式LC 振荡器的实验原理图如图2-1所示.图 2-1 三点式LC 振荡器实验原理图图中, T2为可调电感, Q1组成振荡器, Q2组成隔离器, Q3组成放大器. C6=100pF, C7=200pF, C8=330pF, C40=1nF. 通过改变K6. K7. K8的拨动方向, 可改变振荡器的反馈系数. 设C7. C8. C40的组合电容为C ∑, 则振荡器的反馈系数F =C6/ C ∑.反馈电路不仅把输出电压的一部分送回输入端产生振荡, 而且把晶体管的输入电阻也反映到LC 回路两端. F 大, 使等效负载电阻减小, 放大倍数下降, 不易起振. 另外, F 的大小还影响波形的好坏, F 过大会使振荡波形的非线性失真变得严重. 通常F 约在0.01~0.5之间.同时, 为减小晶体管输入输出电容对回路振荡频率的影响, C6和C ∑取值要大. 当振荡频率较高时, 有时可不加C6和C ∑, 直接利用晶体管的输入输出电容构成振荡电容, 使电路振荡. 忽略三极管输入输出电容的影响, 则三点式LC 振荡器的交流等效电路图如图 2-2所示.C6图2-2 三点式LC 振荡器交流等效电路图图2-2中, C5=33pF, 由于C6和C ∑均比C5大的多, 则回路总电容C 0可近似为:450C C C += (2-1)则振荡器的频率f 0可近似为:)(2121452020C C T C T f +==ππ (2-2)实际中C6和C ∑也往往不是远远大于C5, 且由于三极管输入输出电容的影响, 在改变C ∑, 即改变反馈系数的时候, 振荡器的频率也会变化.五. 实验步骤1. 三点式LC 振荡器 (1)连接实验电路在主板上正确插好正弦波振荡器模块, 开关K1, K9, K10, K11, K12向左拨, K2, K3, K4, K7, K8向下拨, K5, K6向上拨. 主板GND 接模块GND, 主板+12V 接模块+12V . 检查连线正确无误后, 打开实验箱左侧的船形开关, K1向右拨. 若正确连接, 则模块上的电源指示灯LED1亮.(2)测量LC 振荡器的幅度与振荡频率稳定度.用示波器(或高频毫伏表)在三极管Q2的发射极(军品插座处)观察反馈输出信号的峰峰值(或有效值), 记录下来. 然后每隔 10秒记录一次频率计读数, 填表2-1.表2-1(3)观察反馈系数对输出信号的幅度与频率的影响用示波器在三极管Q2的发射极观察并记录反馈输出信号V o 的波形. 改变反馈系数F 的大小 (通过选择K6, K7, K8的拨动方向来改变), 测量V o 峰峰值V op-p . 和有效值V rms , 通过频率计测量振荡器频率的变化情况, 填表2-2.表2-2调试时, 先使反馈系数F=1/2, 记录Q2发射极处信号的频率和峰峰值和有效值. 然后改变反馈系数的大小, 记录Q2发射极处信号的频率和峰峰值和有效值, 直至F=1/2. F=1/3. F=1/5. F=1/10的情况都做完.六. 实验报告1. 画出三点式LC 振荡器和压控振荡器的交流等效电路图, 按步实验并完成表2-1. 2-2并对数据进行处理, 计算频率稳定度.。

《高频电子线路》实验指导书

《高频电子线路》实验指导书
整理并分析原因。 5.本放大器的动态范围是多少(放大倍数下降 1dB 的折
弯点 V0 定义为放大器动态范围),讨论 IC 对动态范围的影响。
五、预习要求、思考题 1.复习谐振回路的工作原理。了解谐振放大器的电压放大
倍数、动态范围、通频带及选择性相互之间关系。
-3-
2.谐振放大器的工作频率与哪些参数有关? 3.实验电路中, 若电感量 L=1μH,回路总电容 C=220pf (分布电容包括在内),计算回路中心频率 f0 。
-1-
表 1.1
实测
VB
VE
实测计算
根据 VCE 判断 V 是否工作在 放大区
IC
VCE


原因
* VB,VE 是三极管的基极和发射极对地电压。
3.动态研究 (1). 测放大器的动态范围 Vi~V0(在谐振点) 选 R=10K,Re=1K。把高频信号发生器接到电路输入端,电 路输出端接毫伏表,选择正常放大区的输入电压 Vi,调节频率 f 使其为 10.7MHz,调节 CT 使回路谐振,使输出电压幅度为最 大。此时调节 Vi 由 0.03 伏变到 0.6 伏,逐点记录VO 电压,并 填入 表 1.2。Vi 的各点测量值可根据(各自)实测情况来振荡器
实验项目名称:LC 电容反馈式三点式振荡器 实验项目性质:验正性实验 所属课程名称:高频电子线路 实验计划学时:2 学时
一、实验目的 1.掌握 LC 三点式振荡电路的基本原理,掌握 LC 电容反馈
式三点振荡电路设计及电参数计算。 2.掌握振荡回路 Q 值对频率稳定度的影响。 3.掌握振荡器反馈系数不同时,静态工作电流 IEQ 对振荡器
《高频电子线路》 实验指导书
桂玉屏
广东工业大学信息工程学院 二0一五年十一月印刷

高频电子线路实验报告2——高频丙类功率放大器

高频电子线路实验报告2——高频丙类功率放大器

高频电子线路实验报告2——高频丙类功率放大器实验目的:1. 学习高频丙类功率放大器的基本原理。

2. 掌握高频丙类功率放大器的设计方法。

3. 验证高频丙类功率放大器的工作性能。

实验原理:丙类功放器是一种在放大器的输出段设有截止偏压的放大器。

其主要特点是效率高、失真小、输出功率大,因此,在广播、通信、雷达等领域被广泛应用。

实验步骤:1. 按照图1所示连接电路。

2. 调整可变电容器C1的值,使电路在工作频率上谐振。

3. 将信号源接入电路的输入端,调整可变电阻R3的值,使输出端的电压最大。

4. 在三极管的发热体上放置热敏电阻,测量其电阻值,计算其温度。

5. 调整信号源输出频率,测量输出端的电压值,记录数据。

6. 计算电路的功率增益、效率、输出功率等参数。

1. 电源电压:12V2. 工作频率:1MHz3. 可变电容器C1的值:10pF4. 可变电阻R3的值:10kΩ5. 发热体上的热敏电阻电阻值:100Ω6. 发热体温度:25℃7. 输出功率:2.5W8. 功率增益:6dB9. 效率:65%实验分析:1. 在C1的值确定的情况下,可通过变频电源调整工作频率,使电路在工作频率上谐振,从而提高电路的效率。

2. 随着输出功率的增加,三极管发热体的温度也会相应升高,从而导致热敏电阻的电阻值发生变化。

可以通过测量热敏电阻的电阻值,计算发热体的温度。

3. 在理论分析的基础上,通过实验数据对电路性能进行评估,验证了丙类功率放大器的工作性能良好,可以满足实际应用需求。

通过本次实验,我学习了丙类功率放大器的基本原理和设计方法,并通过实验数据验证了其工作性能。

这对我今后从事电子工程相关的工作具有很大的参考价值。

同时,我也意识到在实验过程中需要仔细操作、认真记录数据,以确保实验结果的准确性。

高频电子线路与原理实验

高频电子线路与原理实验

实验一正弦波振荡器第一部分LC 振荡器一、实验容1. 根据图2-1 在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2. 研究振荡器静态工作点对振荡幅度的影响。

(1)将开关S2 的1 拨上,构成LC 振荡器。

(2)改变上偏置电位器R A1,记下发射极电流Ieo (=V e/R10)填入表中,并用示波器测量对应点的振荡幅度V P-P(峰—峰值)填于表中,记下停振时的静态工作点电流值。

分析输出振荡电压和振荡管静态工作点的关系。

分析思路:静态电流I CQ会影响晶体管跨导gm,而放大倍数和gm 是有关系的。

在饱和状态下(I CQ过大),管子电压增益A V 会下降,一般取I CQ =(1~5mA)为宜。

3. 测量振荡器输出频率围。

用万用表测量J1 ,任意改变CCI,用示波器从TH1 处观察波形,并观察输出频率的变化。

二、实验仪器1. 高频实验箱HD-GP- Ш 1 台2. 双踪示波器 1 台三、实验数据记录静态工作点VQ=2.35V ,F=4.02MHz,停振I=3.93mA,Vpp=480mV,振荡频率f0=4.202MHz四、实验结果分析1.分析静态工作点、反馈系数F 对振荡器起振条件和输出波形振幅的影响。

晶体管的振荡条件是基极-发射极间电压是-0.1——-0.4V,如果达不到这个条件,是不会起振的。

所以静态工作点要接近这个电压,然后加上正反馈后才可起振。

正反馈放大器产生振荡的条件是AF=1,反馈系数完全是由线性网络所决定的比例系数,与振荡幅度大小无关。

由于放大器的放大倍数随振幅的幅度增大而下降,为了维持一定的振幅的振荡,反馈系数F要比AF=1中的F大一些。

这样,就可以使得在AF>1情况下起振,而后随着振幅的增强A0就向A过渡,直到振幅增大到某一程度,出现AF=1时,振幅就达到平衡状态。

因此,振荡器的起振条件为AF>1。

振荡器的平衡条件为AF=1。

2.计算实验电路的振荡频率f o ,并与实测结果比较。

高频电子线路实验指导书(精)

高频电子线路实验指导书(精)

高频电子线路实验指导书(精)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高频电子线路实验指导书(精))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高频电子线路实验指导书(精)的全部内容。

《高频电子线路》实验指导书吴琼编沈阳大学信息学院目录实验一:高频电子仪器使用练习 2 实验二:单调谐回路谐振放大器及通频带展宽实验实验三:幅度调制器实验9 实验四:小功率功率调频发射、接收实验13课程编号:11271141 课程类别:学科必修适用层次:本科适用专业:电子信息科学与技术课程总学时:64 适用学期:第5学期实验学时:16 开设实验项目数:4撰写人:吴琼审核人:张明教学院长:范立南实验一:高频电子仪器使用练习一、实验目的与要求了解高频信号发生器基本结构及用途,学习该仪器的使用方法。

二、实验原理及说明本系统由实验箱和外接实验模块两部分组成,其中外接模块采用插拔式结构设计,便于功能的扩展。

实验箱带有一个0Hz~120KHz的低频信号源、一个20KHz~10MHz的高频信号源、一个音频接口单元。

实验箱可使用自带电源,也可通过右上角的4针电源接口从外部引入。

高频电路单元采用模块式设计,将有关联的单元电路放在一个模块内.高频模块可插在实验箱的4个固定孔上,配合高、低频信号源和频率计即可进行高频电路实验.三、实验内容和步骤1、电源接口测试实验箱提供的五组电源(-8V、+5V、—5V、-12V、+12V输出。

当电源正常时,各组电源对应的指示灯均被点亮。

用万用表测量各输出点的电压值,与电源标准值相对照,填表1—12、低频信号源本实验箱采用集成函数发生器ICL8038产生正弦波、方波和三角波,频率为0Hz—120KHz连续可调。

通信电子线路-高频实验2

通信电子线路-高频实验2

在射极电阻Re上产生的 压降来提供的,故称为
自给偏压电路。
CE
RE2
厚德博学 追求卓越
三、实验应知知识
(2)高功放的主要技术指标与外部特性 1)高功放的主要技术指标
输出功率 高频功放的输出功率是指放大器的负载RL上得到的最大不失真功
率。也就是集电极的输出功率,即
Po1 2VClIm Clm 1 2IC 2 lR m 01 2VR C 201m
逐渐减小量程。
厚德博学 追求卓越
四、实验内容与操作步骤
、甲类/丙类放大器直流工作状态与特点的测定
测试电路框图如图所示。 .适当调整RW1,使缓冲级VEQ=2.2V

选定并插上实验电路模块
验 准
连接+12V电源与地

连接“K1、K2、K3”与
RL=470Ω(SW1“4”ON
. 按下表所列要求,用万用表分别测量Q1、Q2管的各极静态直流电压,并将测量数 填入表中
③ 适当调整高频信号发生器的输出信号幅度, 使放大器处于过压工作状态,即使Ie出现双 峰,并记录此时的电流波形。
④ 改变负载(用连接线),使负载电阻依
次变为470 → 240 → 75Ω→51Ω。观察
并记录不同负载时的IC电流波形。
厚德博学 追求卓越
根据实验测量的结果,体会高功放的
最佳工作状态?
5、丙类功率放大器放大特性测定
C
U•BZ
与输入信号相比 完i全c 失真.
uBE C C
功放输出的Ic为一
C
连串不连续的余弦
脉冲
Ubm
ub
厚德博学 追求卓越
高功放为什么能不失真地放大信号呢?
尖顶余弦脉冲的数学表达式

高频电子线路实验心得

高频电子线路实验心得

高频电子线路实验总结20091103655 王志爽实验一 高频小信号调谐放大器实验1-1a 1-1b1. 单调谐放大器的作用:不仅可以用于高级小信号或微弱信号的先行放大,而且还有一定得选频作用。

2.2.双调谐放大器的频带宽,选择性较好。

双调谐回路谐振放大器是将单调谐回路放大器的单调谐回路改为双调谐回路。

3.电压放大倍数:放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大的电压放大倍数。

A V0的表达式为Gg p g p y p p g y p p v v A ie oe fe fei V ++-=-=-=∑22212121004.调谐放大器的各项性能指标:(1)调谐频率(2)电压放大倍数(3)通频带(4)矩形数5.通频带BW :由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为BW = 2△f 0.7 = f 0/Q L 式中,Q L 为谐振回路的有载品质因数。

实验二 集成选频放大器R72.7R62.7TH31TP11. 原理重点:跨接于运放U 1B 的输出端与反相输入端的电容C 18,其作用是进一步滤除控制信号中的调制频率分量。

二极管D 3可对U 1B 输出控制电压进行限幅。

W 2提供比较电压,反相放大器U 1A 的2,3两端电位相等(虚短),等于W 2提供的比较电压,只有当U 1B 输出的直流控制信号大于此比较电压时,U1A 才能输出AGC 控制电压。

2.简易图:3.测量电压增益A v0将拨码开关S1的1、2全拨下,将4.5M 左右的高频小信号从J2输入(V p-p ≈50mV ,在TH3处观测),调节W1,用示波器观测J3输出幅度,使输出幅度最大不失真。

用示波器分别观测输入和输出信号的幅度大小,则A v0即为输出信号与输入信号幅度之比。

南昌大学高频电子线路实验报告

南昌大学高频电子线路实验报告

南昌大学高频电子线路实验报告篇一:高频电子线路实验报告实验报告实验课程:高频电子线路学生姓名:学号:专业班级:指导教师:目录实验一、仪器的操作使用………………………………………实验二、高频小信号调谐放大器………………………………实验三、功率放大器设计………………………………………实验四、LC正弦波振荡器………………………………………实验五、晶体振荡器设计………………………………………实验六、集成模拟乘法器混频…………………………………实验七、二极管双平衡混频器…………………………………实验八、集电极调幅……………………………………………实验九、基极调幅电路…………………………………………实验十、模拟乘法器调幅(AM,DSB,SSB )……………………实验一仪器的操作使用一、实验目的1.学会高频实验室基本仪器的使用与操作,并能够运用仪器进行简单的实验;2.运用仪器调出相应要求的信号,并进行测试。

二、实验仪器示波器,信号发生器,频率特性测试仪三、实验内容1.用信号发生器产生所需要的信号,通过示波器的信号输入线加入到示波器,按一下AUTO SET键,示波器自动识别,显示出信号波形,在按一下Measure键,示波器出现信号频率、幅度等参数。

2.设置高频正弦波信号的频率为10.8MHz,按照表格分别设置信号的幅度,测出对应的输出信号的峰峰值。

3.按调幅键键,进行调幅波信号的产生和观测。

四、实验数据实验误差:接负载:(1)×1档 100mv 22.1 % 150mv 19% 200mv 16% 250mv 15.3%(2)×10档 100mv 1.4% 150mv 1.9%200mv 1.6%250mv 1.8%空载:(1)×1档 100mv 6.0 % 150mv 15.4% 200mv 14.1% 250mv 12.2%(2)×10档 100mv:7150mv 9.1% 200mv 8.1%250mv 6.3%实验二高频小信号调谐放大器实验五、实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

高频电子线路实验指导书(八个实验)(精)

高频电子线路实验指导书(八个实验)(精)

目录实验一调谐放大器(实验板1 (1实验二丙类高频功率放大器(实验板2 (4实验三LR电容反馈式三点式振荡器(实验板1 (6实验四石英晶体振荡器(实验板1 (9实验五振幅调制器(实验板3 (11实验六调幅波信号的解调(实验板3 (14实验七变容二极管调频管振荡器(实验板4.............................. 错误!未定义书签。

实验八相位鉴频器(实验板4...................................................... 错误!未定义书签。

实验九集成电路(压控振荡器构成的频率调制器(实验板5 (17实验十集成电路(锁相环构成的频率解调器(实验板5 (20实验十一利用二极管函数电路实现波形转换(主机版面 ....... 错误!未定义书签。

实验一调谐放大器(实验板1一、预习要求1、明确本实验的目的。

2、复习谐振回路的工作原理。

3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。

4、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内,计算回路中心频率f0。

二、实验目的1、熟悉电子元器件和高频电路实验箱。

2、熟悉谐振回路的幅频特性分析—通频带预选择性。

3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。

4、熟悉和了解放大器的动态范围及其测试方法。

三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、毫秒仪5、万用表6、实验板1图1-1 单调谐回路谐振放大器原理图四、实验内容(一单调谐回路谐振放大器1、实验电路图见图1-1(1按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线。

(2接线后,仔细检查,确认无误后接通电源。

2、静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1-1表 1-1E B 3.动态研究(1测放大器的动态范围V i ~V 0(在谐振点选R = 10K ,R 0 = 1K 。

高频电子线路实验指导书

高频电子线路实验指导书

实验一高频小信号调谐放大器实验一、实验目的1、掌握谐振放大器静态工作点、电压增益、通频带及选择性的测试、计算;2、掌握高频小信号放大器动态范围的测试方法;3、熟悉高频实验箱、示波器、信号源及万用表的使用方法。

二、实验仪器高频实验箱1台;双踪示波器1台;数字万用表1块;高频信号发生器1台;G1实验板一块。

三、实验内容及步骤(一)、单调谐回路谐振放大器1、电路连线根据电路原理图弄清实验板电路,并在电路板上找出与原理图相对应的的各测试点及可调器件,电路原理图参见图1。

图1单调谐回路谐振放大器电路图2、静态测量选Re = 1K,在不加输入信号时用万用表测量各静态工作点,将测量数据填入表1中。

根据表1测试结果判断三极管(9018)是否工作在放大区并说明原因。

提示:I CQ ≈I EQ;I EQ = V E / Re (Re = 1K)。

3、输入动态范围和Re变化对放大性能影响的测试(1)将谐振回路电阻R(10K)接入谐振回路,选R e = 1k。

将高频信号发生器输出接到电路输入端(IN段),高频信号发生器波形选择正弦波,频率调整到10.7MHz(谐振回路的谐振频率),把示波器探头接到电路的输出端(OUT端)。

(2)从小到大调整高频信号发生器输出信号,观察示波器显示波形,分别记下开始出现正常信号(正弦波)和最后出现失真时的输入信号值,将出现最小信号的输入信号值填入表2输入电压(U i)栏的第一个格里,出现失真时的电压值填入最后一个格里(两者之差即为放大器的输入动态范围),中间的格按等分填入。

(3)用信号源输入表2中输入电压(U i)的值,在Re为1K、500Ω、2K时将示波器显示的输出值(U o)填入表2中。

(4)根据测试结果分析Re变化对放大性能的影响。

4、放大器频率特性测试(1)选回路电阻R=10K,输入电压Ui取表2中的中间值,将高频信号发生器输出端接至电路输入端。

调节频率f使其为10.7MHz,调节C T(微调电容器)使回路谐振(输出电压幅度为最大),此时的回路谐振频率为f0=10.7MHz(为中心频率)。

高频电子线路实验报告

高频电子线路实验报告

高频实验报告2013年12月实验一、调幅发射系统实验、实验目的与内容:通过实验了解与掌握调幅发射系统,了解与掌握LC 三点式振荡器电路、三极 管幅度调制电路、高频谐振功率放大电路。

二、实验原理:1、LC 三点式振荡器电路:曲0KSA匡T3-1 H 嫌斎戎验或幣隔吨堕原理:LC 三点式振荡器电路是采用LC 谐振回路作为相移网络的LC 正弦波振 荡器,用来产生稳定的正弦振荡。

图中5R5, 5R6, 5W2和5R8为分压式偏置电阻, 电容5C7或5C8或5C9或5C10或5C11进行反馈的控制。

5R3 5W1 5L2以及5C4 构成的回路调节该电路的振荡频率,在V5-1处输出频率为30MHZE 弦振荡信号。

原理:三极管幅度调制电路是通过输入调制信号和载波信号,在它们的共同 作用下产生所需的振幅调制信号。

图中7R1, 7R4, 7W1和7R3为分压式偏置电阻, 电容7C10 7C2以及电感7L1构成的谐振滤波网络,7W2控制输出幅度,在信号 输出处输出所需的振幅调制信号。

3、高频谐振功率放大电路:V5-1—1廿4FilKrT、ITl “I .-------osc IP 5UTSG TU J 曰r I —RKI二乍工 朋U 2SI * o J I ---- (SClO-Ll cH __.5C1J-IWSCJ印會艸:I 1UUKETt3sr 2原理:高频谐振功率放大电路是工作频率在几十放大电路。

图中前级高频功放电路中,6R2和6R3分压式偏置电阻,供给三极管 6BG1偏置电压,输出采用6C5 6C6 6L1构成的T 型滤波匹配网络,末级高频 功放电路中,基极采用由6R4产生偏置电压供给电路,输出采用 6C13 6C13 6L3和6L4构成的T 型滤波匹配网络。

4、调幅发射系统:原理:首先LC 振荡电路产生一个频率为30MHZ 幅度为lOOmV 的信号源,然 后加入频率为1KHZ 幅度为lOOmV 的本振信号,通过三极管幅度调制,再经过 咼频谐振功率放大器输出稳定的最大不失真的正弦波。

高频电子线路实验报告

高频电子线路实验报告

《高频电子线路》课程实验报告学院: 信息学院专业: 电子信息科学与技术班级:姓名学号:指导教师:实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1.掌握高频小信号调谐放大器的工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。

二、实验内容1.测量各放大器的电压增益;2.测量放大器的通频带与矩形系数(选做);3.测试放大器的频率特性曲线(选做)。

放大器:V i1p-p(V)0.4 2.54 4 32.5 16 18单级双调谐放大器高频小信号放大器的主要技术指标有那些?主要有谐振频率, 谐振增益, 通频带, 增益带宽积, 矩形系数.实验二场效应管谐振放大器一、实验目的1.了解双栅场效应管放大器的工作原理;2.了解场效应管调谐放大器与三极管放大器的优缺点。

二、实验内容1.观察场效应管调谐放大器的输出波形;2.测量场效应管放大器的电压增益。

三、实验结果数据和截图V ip-p(V)V op-p(V)电压增益(dB)0.5 5.92 21讨论场效应管调谐放大器与晶体管放大器的优缺点。

场效应晶体管放大器是电压控制器件, 具有输入阻抗高、噪声低、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,的优点, 被广泛应用在电子电路中。

场效应管可应用于放大, 由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。

场效应管可以用作电子开关, 场效应管很高的输入阻抗非常适合作阻抗变换, 常用于多级放大器的输入级作阻抗变换。

场效应管可以用作可变电阻,场效应管可以方便地用作恒流源.调谐放大器以电容器和电感器组成的回路为负载, 增益和负载阻抗随频率而变的放大电路。

这种回路通常被调谐到待放大信号的中心频率上。

由于调谐回路的并联谐振阻抗在谐振频率附近的数值很大, 放大器可得到很大的电压增益。

而在偏离谐振点较远的频率上, 回路阻抗下降很快, 使放大器增益迅速减小;因而调谐放大器通常是一种增益高和频率选择性好的窄带放大器。

高频功率放大器(丙类)

高频功率放大器(丙类)

实验报告课程名称高频电子线路实验名称高频功率放大器(丙类)实验类型验证(验证、综合、设计、创新)学院名称电子与信息工程学院专业电子信息工程年级班级2012级电信3 班开出学期2014-2015上期学生姓名学号指导教师蒋行达成绩2014 年11 月22 日实验二高频功率放大器(丙类)一、实验目的1、了解丙类功率放大器的基本工作原理,三种工作状态,功率、效率计算。

2、掌握丙类功率放大器性能的测试方法。

3、观察集电极负载、输入信号幅度与集电极电压EC对功率放大器工作情况的影响。

二、实验仪器1、示波器2、高频信号发生器3、万用表4、实验板2三、预习要求1、复习功率放大器原理及特点。

2、分析图2-2所示的实验电路,说明各元器件作用。

四、实验内容1、用示波器观察功率放大器工作状态,尤其是过压状态时的集电极电流凹陷脉冲。

2、观察并测量集电极负载变化对功率放大器工作的影响。

3、观察并测量输入信号幅度变化对功率放大器工作的影响。

4、观察并测量集电极电源电压变化对功率放大器工作的影响。

五、基本原理及实验电路高频功率放大器是通信系统中发送装置的重要组件。

它的作用是放大信号,使之达到足够功率输出,以满足天线发射或其他负载的要求。

它的主要技术指标有:输出功率、效率、功率增益、带宽和谐波抑制度(或信号失真度)。

1、基本原理功率放大器的效率是一个最突出的问题,其效率高低与放大器的工作状态有直接的关系。

放大器工作状态可分为甲类、乙类和丙类等。

图2-1 表示了不同Ube时,谐振功率放大器不同工作状态的基极电压和集电极电流波形。

当工作点在Q 和Q/输入Ub1m、Ub2m时,工作点Q 和Q/在转移特性的线性段,调谐功率放大器工作在甲类。

甲类工作状态理想效率为50%。

此时晶体管需要正偏置。

当工作点在移至Q//输入Ub3m时,晶体管只在输入信号的正半周时导通,集电极电流是周期性电流脉冲,调谐功率放大器工作在乙类。

乙类工作状态理想效率为78.5%。

高频实验报告实验二 单调谐高频小信号谐振放大器

高频实验报告实验二 单调谐高频小信号谐振放大器

单调谐高频小信号谐振放大器目录一、实验原理 (2)二、仿真分析 (8)2.1 实验一 (8)2.2 实验二 (14)三、单调谐放大电路设计实例 (22)3.1电路选择与参数计算 (23)3.1.1选定电路形式 (23)3.1.2设置静态工作点 (24)3.1.3谐振回路参数计算 (24)3.1.4确定耦合电容与高频滤波电容: (24)一、实验原理调谐放大器的主要特点是晶体管的集电极负载不是纯电阻,而是由 L 、C 组成的并联谐振回路,由于L 、C 并联谐振回路的阻抗随频率而变化,在谐振频率处、其阻抗是纯电阻,且达到最大值。

因此,用并联谐振回路作集电极负载的调谐放大器在回路的谐振频率上具有最大的放大系数,稍离开此频率放大系数就迅速减小。

因此用这种放大器就可以只放大我们所需要的某些频率信号,而抑止不需要的信号或外界干扰信号。

正因如此,调谐放大器在无线电通讯等方面被广泛地用作高频和中频选频放大器。

调谐放大器的电路形式很多,但基本的电路单元只有两种:一种是单调谐放大器,一种是双调谐放大器。

这里先讨论单调谐放大器。

(—) 单调谐放大器的基本原理典型的单调谐放大器电路如图1.1所示。

图中R 1, R 2 是直流偏置电阻;LC 并联谐振回路为晶体管的集电极负载,R e 是为提高工作点的稳定性而接入的直流负反馈电阻, C b 和C e 是对信号频率的旁路电容。

输入信号V s ’经变压器耦合至晶体管发射结,放大后再由变压器耦合到外接负载R L ,C L 上。

为了减小晶体管输出导纳对回路的影响,晶体管T 1采用抽头接入。

L LV s ’图1.1高频小信号谐振放大器电路在低频电子电路中,我们经常采用混合π模型来描述晶体管。

把晶体管内部的物理过程用集中元器件RLC 表示。

用这种物理模型的方法所涉及到的物理等效电路就是所谓的π参数等效电路。

混合π 参数是晶体管物理参数,与频率无关,物理概念清楚。

但是由于输入输出相互牵制,在高频分析时不太方便。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 高频功率放大器
一、 实验目的
1.通过实验,加深对于功率放大器工作原理的理解。

2.探讨丙类谐振高频放大器的激励大小对工作状态的影响,观察三种状态的脉冲电流波形。

3.了解基极偏置电压、集电极电压、负载的变化对于工作状态的影响。

二、 实验设备
1. Multisim1
2.0 电路仿真软件 2.双踪示波器 3.高频信号发生器 4. 万用表
三、 实验说明与内容 实验原理
高频功率放大器主要用于放大高频信号或高频窄带(或已调波)信号。


于采用谐振回路做负载,解决了大功率放大时的效率、失真、阻抗变换等问题,因此高频功率放大器又称为谐振功率放大器,就放大过程而言,电路中的功率管是在截止、放大至饱和等区域中工作,变现出了明显的非线性特性,其效果一方面可以对窄带信号实现不失真放大,另一方面又可以使电压增益随输入信号大小变化,实现非线性放大。

1、 高频功率放大电路的仿真分析
高频功率放大电路的仿真测试电路如图1所示,要求画出高频功率放大器输 入、输出电压波形,其参数如图2所示。

(提示:使用示波器)
1)高频功率放大器原理仿真,电路如图1所示:
H
图1 高频功率放大电路
2)输入、输出电压波形参数设置,如图2所示。

图2 输入、输出电压波形设置
3)利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

(提示:单击菜单栏中的“仿真”,下拉菜单中的“分析”选项下的“瞬态分析”命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为0.03s,终止时间设置为0.030005s。

点击“输出”菜单页中设置输出节点变量时选择v中的所有节点,回到“分析参数”页,点击仿真即可。

观察各个节点的波形并分析。


2、高频功率放大器电流、电压波形
为了观察到高频功率放大器输出电流波形,在三极管的发射极串联一个很小的电阻R1(0.2欧),测量R1上的电压波形,即高频功率放大器输出电流波形。

构建的仿真电路测试图,见图3所示。

示波器一端接入输入信号,一端
接R1上。

H
图3
打开示波器的显示面板,并按下仿真开关,示波器上的参数设置如图4所示,其中上部为( 正玄 )波形,下部为( 失真的正玄 )波形,即高频功率放大器输出电流波形,是一脉冲串,与理论上的结论是否吻合?改变其R1电阻,观察其输出波形的变化,说明原因。

改变R1的值为20欧
图4
3、高频功率放大器馈电电路
高频功率放大器馈电电路有基极馈电电路和集电极馈电电路,而馈电电路又分为串馈电路和并馈电路,所有高频功率放大器馈电电路种类有:基极:串馈电路,并馈电路
集电极:串馈电路,并馈电路
以一个基极是串馈电路、集电极是并馈电路的高频功率放大器电路为例,如
图5所示。

H
图5 仿真得到基极串馈、集电极并馈电路的输入、输出波形,其参数如图6所示。

图6
通过傅里叶分析图分析以上三种仿真电路的波形。

并加以说明。

相关文档
最新文档