煤基直接还原炼铁技术及非高炉炼铁能耗分析
非高炉炼铁法

非高炉炼铁法简介非高炉炼铁法以不用焦煤为主要特征,按其工艺特征、产品类型及用途分为直接还原法和熔融还原法两大类。
直接还原法以气体、液体燃料及非焦煤为能源,在铁矿石或含铁团块呈固态的软化温度下进行还原获得直接还原铁(DRI)或海绵铁,其产品低密度多孔呈海绵状结构,含碳低,未排除脉石杂质。
熔融还原法则以非焦煤为能源,产品类似高炉的铁水。
目前,非高炉炼铁法以直接还原工艺为主,该方法对铁原料要求高,TFe>66%,酸性脉石含量(SiO2+Al23)<5.5%(但不宜过低),一般S含量<0.03%,P<0.02%,其它有害元素尽可能低,各种工艺对原料粒度要求不一。
铁原料和煤灰分的软化温度决定了直接还原工艺的作业温度。
在燃料方面,当前各种工艺中,以使用天然气为主,能量利用率高、生产率高,但我国天然气资源缺乏。
国内直接还原厂以使用非焦煤(褐煤、烟煤、无烟煤)为主,现在世界各国也以发展煤基直接还原为主。
直接还原工艺的主要方法有:1. 回转窑直接还原法:回转窑结构是一个可转动的筒形高温反应器。
含铁原料与还原煤从窑尾连续加入,排料端设置主燃烧喷嘴和还原煤喷入装置,沿窑身长度方向装有若干供风管或燃料喷嘴,随窑体转动,固体物料在翻滚移动过程中,被高温气流加热,进行物料的干燥、预热、碳酸盐的分解、铁氧化物还原及渗碳反应从而得到DRI。
比较有代表的是SL-RN 法、DRC法、Krupp-Codir法等。
2. 竖炉直接还原法:竖炉法目前占直接还原铁产量的90%左右,其中以Midrex和MYL为主,工艺成熟,占直接还原工艺的主导地位。
竖炉的反应条件与高炉上部间接还原区相似,不出现熔化现象的还原冶炼过程,使用单一矿石料,没有造渣过程。
以前竖炉的燃料和还原剂是天然气,近年出现了煤制气以及使用焦炉煤气竖炉直接还原工艺,这扩大了竖炉工艺的使用范围,但目前煤基竖炉工艺还不成熟,生产成本偏高,工艺还需进一步完善。
3. 罐式直接还原法:以HYL为代表,用H2、CO或其混合气将装于移动或固定容器内的铁团还原成DRI的方法。
低能耗的炼铁工艺流程

低能耗的炼铁工艺流程——我国煤基直接还原铁发展现状及前景(一)前言钢铁工业是众所周知的高能耗,高排放的支柱产业。
在今天能源资源短缺环境保护要求日益提高的前提下,对钢铁工艺的各个流程进行节能减排、优化设计、技术改进已经刻不容缓。
直接还原可以说是对原有的焦炭还原的一大突破,然而高炉炼铁在当今仍属主流,不难想象其中存在的诸多技术难题。
其体现出来的低能耗,低污染自不待言,但其产品质量是否稳定却是人们急待了解的。
这也就使得人们对直接还原的关注提升到了一个新的高度。
下面就对低能耗炼铁工艺的一种,煤基直接还原铁做个介绍。
(二)正文直接还原铁是铁矿在固态条件下直接还原为铁,可以用来作为冶炼优质钢、特殊钢的纯净原料,也可作为铸造、铁合金、粉末冶金等工艺的含铁原料。这种工艺不用焦炭炼铁,原料也是使用冷压球团不用烧结矿,所以是一种优质、低耗、低污染的炼铁新工艺,也是全世界钢铁冶金的前沿技术之一。直接还原炼铁工艺有气基法和煤基法两种,按主体设备可分为竖炉法、回转窑法、转底炉法、反应罐法、罐式炉法和流化床法等。目前,世界上90%以上的直接还原铁是用气基法生产出来的。但是天然气资源有限、价高,使生产量增长不快。用煤作还原剂在技术上也已过关,可以用块矿、球团矿或粉矿作铁原料(如竖炉、流化床、转底炉和回转窑等。但是,因为要求原燃料条件高(矿石含铁品位要大于66%,含Si02+A1203杂质要小于3%,煤中灰分要低等),规模小,设备寿命低,生产成本高和某些技术问题等原因,致使直接还原铁生产在全世界没有得到迅速发展。因此,高炉炼铁生产工艺在较长时间内仍将占有主导地位。我国天然气缺乏,但煤炭资源丰富的特点,决定了煤基直接还原技术是我国发展直接还原铁的首选工艺。
1、煤基直接还原铁生产现状煤基直接还原是指直接以煤作还原剂的工艺,是相对于气基直接还原工艺而言。
目前世界直接还原铁生产中,主要分为气基法和煤基法,表1为2003~200 7年世界几种直接还原工艺的产量构成。
国内外高炉炼铁系统的能耗分析

表12005年浦项制铁盒光阳厂炼铁有关能耗指标
项目工序能耗Kgce/t
烧结
66
57.4焦化
129.7
131.9炼铁
462.5
441.1入炉焦比Kgce/t炉料结构%
烧结比
76.4
70.9球团比
7.8
11.1块矿比
15.8
18.0xx
光阳494.7
492.1
表2全国重点钢铁企业能耗对比(单位Kgce/t)
高热值煤气回收利用率低是非高炉炼铁能耗高的“瓶颈”
2007年,我国重点钢铁企业的烧结、炼铁工序能耗与2006年相比进一步降低,炼铁生产部分工序能耗指标见表2。
2007年,全国重点钢铁企业高炉炼铁燃料比是529kg/t,浦项FINEX燃料比是740kg/t~750kg/t,澳大利亚Hismelt的煤耗在900kg/t(尚需1200℃风温和350kWh/t的电力)。这说明目前非高炉炼铁的能耗高于高炉冶炼生产工艺。
国内外高炉炼铁系统的能耗分析
炼铁系统的能耗占钢铁联合企业总能耗70%,
吨铁产生1.5 tco2,3.08kgso2,50mg粉尘,95%的二恶英,约350kg/t的炉渣。
1、根据中国钢铁工业协会2007年发布的全国重点钢铁企业有关能耗数据来进行分析,有关人士总结了重点钢铁企业高炉每生产一吨铁的能耗状况:
非高炉炼铁

非高炉炼铁一、非高炉炼铁的发展高炉炼铁是炼铁生产的主题,经过长期的发展,它的技术已经非常成熟。
但它也存在固有的不足,即对冶金焦的强烈依赖。
但随着焦煤资源的日渐贫乏,冶金焦价格越来越高。
因此,使炼铁生产摆脱对冶金焦的依赖是开发非高炉炼铁的原动力。
经过数百年的发展,至今已形成了以直接还原和熔融还原为主的现代化非高炉炼铁工业体系。
现代化钢铁工艺流程主体由四部分构成,焦炉、造块设备(例如烧结机)、高炉和转炉。
高炉使用冶金焦为主题能源,他是由焦煤经炼焦得到。
高炉的产品是液态生铁,它经转炉冶炼成转炉钢。
熔融还原的产品相当于高炉铁水。
高炉使用冶金焦,熔融反应则使用非焦煤。
这样就使炼铁摆脱了对冶金焦的依赖。
直接还原的产品是在熔点以下还原得到固态金属铁,称为直接还原铁(DRI),又称海绵铁。
直接还原的流程可分为煤基直接还原、气基直接还原和电热直接还原三大类。
煤基直接还原以煤为主要能源,主要是使用回转炉为主体设备的流程。
气基直接还原以天然气为主题能源。
包括竖炉、反应罐和流化床流程。
电热直接还原以电力为主要能源,是使用电热竖炉直接还原流程。
熔融还原的主体能源主要分为三种:非焦煤,焦炭和电力。
熔炼设备是熔融还原流程的精华。
还原设备决定了适用原料的性质。
例如流化床可直接处理粉料,竖炉则适用于处理块状炉料。
二、重点设备分析直接还原的核心装置是一个还原单元。
占有重要地位的还原设备有竖炉,反应罐,回转炉和流化床。
熔融还原的核心装置时一个还。
原单元和一个熔炼造气单元。
最受重视的还原设备是竖炉和流化床,最重要的熔炼造气设备是煤炭流化床和铁浴炉。
竖炉是一种成熟的还原设备。
除了产量在海绵铁工业中高居榜首外,熔融还原也将它作为还原单元最实际的选择。
目前唯一的工业化二步法熔融还原流程COREX即使用竖炉还原单元。
作为还原设备,流化床的地位非常微妙。
海绵铁工业中流化床的生产能力并不大。
但他具有一个竖炉无法比拟的优点:可直接使用粉矿。
这个特点使流化床成为熔融还原中最受青睐的还原设备。
6-非高炉炼铁

6非高炉炼铁6.l概述非高炉炼铁法是高炉炼铁法之外,不用焦炭炼铁的各种工艺方法的总称。
按工艺特征,产品类型和用途,主要分为直接还原法和熔融还原法两大类。
6.1.1直接还原法与熔融还原法直接还原(DirectReduction)法是指不用高炉而将铁矿石炼制成海绵铁的生产过程。
直接还原铁是一种低温下固态还原的金属铁。
它未经熔化而仍保持矿石外形,但由于还原失氧形成大量气孔,在显微镜下观察形似海绵,因此也称海绵铁。
直接还原铁的含碳量低(〈2%),不含硅锰等元素,还保存了矿石中的脉石。
因此不能大规模用于转炉炼钢,只适于代替废钢作为电炉炼钢的原料。
熔融还原(SmeltingReduction)法指在熔融状态下把铁矿石还原成融态铁水的非高炉炼铁法。
它以非焦煤为能源,得到的产品是一种与高炉铁水相似的高碳生铁。
适合于作氧气转炉炼钢的原料。
近年来,非高炉炼铁法发展比较快,其原因是:(1)不用焦炭炼铁。
高炉冶炼需要高质量冶金焦,而从世界矿物燃料的总储量来看,煤炭占92%左右,而焦煤只占煤炭总储量的5%,且日渐短缺,价格越来越高。
非高炉炼铁可以使用非炼焦煤和天然气作燃料与还原剂,对缺少焦煤资源的国家和地区提供了发展钢铁工业的巨大空间。
(2)高炉炼铁要求强度好的焦炭和块状铁料。
必须有炼焦和铁矿粉造块等工艺配套,工艺环节多,经济规模大,需要大的原料基地和巨额投资。
非高炉炼铁法使用非焦煤或天然气,可使用矿块或直接使用粉矿,市场适应性强。
(3)科学技术的进步,对钢材质量和品种提出了更高的要求。
现代电炉炼钢技术为优质钢的生产提供了有效手段,但由于废钢的循环使用,杂质逐渐富集,而一些杂质元素在炼钢过程又很难去除,无法保证钢的质量,并限制了电炉法冶炼优质钢种的优势。
非高炉炼铁法能为炼钢提供成分稳定、质量纯净的优质原料,为炼钢设备潜能的发挥,提高企业的经济效益,提供了有力的支持。
(4)随着钢铁工业的发展,氧气转炉和电炉炼钢逐渐取代平炉,废钢消耗量迅速增加,废钢供用量日感紧张,非高炉生产的海绵铁、粒铁等是废钢的极好替代品。
非高炉炼铁

3.二步法-KR法(COREX法)工艺介绍
二步法: 将熔融还原
过程分为固相预还 原及熔态终还原并 分别在两个反应器 中完成; 优点:
改善了能量 利用,降低了渣中 FeO浓度。
12
六、非高炉炼铁技术经济指标
1.单位容积利用系数:
每立方米反应器有效容积每天的产品量,即 η=Q/Vu, t/(m3.d)
8
3.使用气体还原剂举例(Midrex法)
工艺过程: 天 然 气 + 净 化 炉 顶 气 (300-
400℃)→混合室→重整炉 (Ni 催 化 剂 ) →900-950 ℃反应:
CH4+H2O=CO+3H2 CH4+CO2=2CO+2H2 还原气→竖炉(炉料炉顶加入) →停留6h →冷却带N2冷却 至100℃ →炉料排出
主要内容
一、概 述 二、非高炉炼铁的特点 三、非高炉炼铁分类 四、直接还原法 五、熔融还原法 六、非高炉炼铁技术经济指标
1
一、概 述
1.概 念 非高炉炼铁法是高炉法之外,不用焦炭
炼铁的各种工艺方法的统称。
2.发展史 1770 年 第 一 个 直 接 还 原 法 专 利 诞 生
→1857 年 提 出 完 整 的 近 代 直 接 还 原 (Chenot)构思→1873建成第一座非高炉 装置→上世纪20年代电炉(矿热炉)炼铁 →70年代具备一定规模→近期又重新成为 研究热点
高炉流程: 矿石A在高炉内升温、
还原、熔化为铁水B→[C] 已达到饱和→在炼钢过程 脱C→再去除多余氧成为成 品钢液; 非高炉流程:
矿石被升温、还原为 海绵铁→在电炉中熔化还 原未还原部分→得到成品 钢液
4
钢铁生产过程产品中氧量、碳量的变化
高炉炼铁过程中的能源消耗与管理

高炉炼铁过程中的能源消耗与管理一、前言与背景高炉炼铁作为现代钢铁工业的基础,自19世纪末以来,一直是铁钢生产的主要方法。
高炉炼铁技术的出现和发展,对社会、经济和科技产生了深远影响。
它使得钢铁生产实现了规模化、低成本,极大地促进了工业革命和现代工业社会的形成。
同时,高炉炼铁过程也伴随着能源的消耗,据统计,能源消耗占到了高炉炼铁成本的很大一部分。
因此,研究和分析高炉炼铁过程中的能源消耗和管理,对于提高我国钢铁工业的能源利用效率,降低生产成本,提升竞争力具有重要意义。
二、高炉炼铁行业/领域的核心概念与分类高炉炼铁的概念高炉炼铁是一种利用焦炭和氧气反应产生的高温,将铁矿石还原成铁的过程。
其基本原理是在高温下,铁矿石中的氧化铁与一氧化碳反应,生成铁和二氧化碳。
高炉炼铁过程中,能源主要用于提供热能和动力能,其中热能主要用于维持高炉内的温度,动力能主要用于推动炉内物质的流动和完成各项机械作业。
高炉炼铁的分类高炉炼铁可以根据炉型、操作方式、燃料种类等不同标准进行分类。
按炉型可分为小型高炉、中型高炉和大型高炉;按操作方式可分为连续操作高炉和间歇操作高炉;按燃料种类可分为焦炭高炉和煤气高炉。
高炉炼铁的特征与应用领域高炉炼铁具有生产规模大、原料利用率高、产品品质好、能耗高等特征。
其应用领域广泛,几乎涵盖了所有钢铁生产领域。
高炉炼铁与其他领域的交叉与融合随着科技的发展,高炉炼铁技术与自动化、信息化、环保等领域日益交叉与融合。
例如,高炉炼铁过程的自动化控制,使得生产过程更加稳定,效率更高;信息化技术的应用,使得高炉炼铁过程的监测和控制更加精细;环保技术的应用,则有助于降低高炉炼铁过程中的污染排放。
三、关键技术或性能原理剖析高炉炼铁的关键技术高炉炼铁的关键技术主要包括燃料燃烧技术、还原反应技术、热量交换技术、原料处理技术等。
其中,燃料燃烧技术是高炉炼铁过程中能源消耗的主要部分,其效率的高低直接影响到高炉炼铁的能耗。
高炉炼铁的最新技术突破与创新成果近年来,高炉炼铁技术取得了许多重要突破和创新成果,如低焦比炼铁技术、高风温技术、煤气净化技术等。
非高炉炼铁-直接还原

5
直接还原技术概况
直接还原炼铁工艺分为气基和煤基直接还原两大类,其 产品是固态海绵铁,主要供电炉炼钢用。
气基直接还原是用天然气经裂化产出的H2和CO作为还 原剂在竖炉、固定床罐式炉或流化床内将铁矿石中的氧化 铁还原成海绵铁。主要有Midrex法和HYL法。
煤基直接还原是用煤作还原剂在回转窑或转底炉内将矿 石中的氧化铁还原。
生产块矿矿山 Aguas Claras
Alegria Bailadila Bellary Hospet Brumadinho
Caue Cerro Bolivar
Conceica Corumba CVRD
El Pao Esperanza
Ferteco Feijao
表10 Midrex工厂曾使用的商品块矿石
15
MIDREX工艺过程
16
MIDREX流程图
17
18
2 Midrex直接还原工艺的原燃料
2.1 Midrex用燃料与还原剂
Midrex属于气基直接还原流程,还原气使用天然气经催化 裂化制取,裂化剂采用炉顶煤气。炉顶煤气含CO与H2约70%。 经洗涤后,约60%~70%加压送入混合室与当量天然气混合 均匀。混合气首先进入一个换热器进行预热。换热器热源是 转化炉尾气。预热后的混合气送入转化炉中的镍质催化反应 管组,进行催化裂化反应,转化成还原气。还原气含 (CO+H2)95%左右,温度为850~900℃。
>2500
小于500N/个/wt%
<5.0
<2.0
23
对于Midrex工艺直接还原来说,含铁原料的高温特性,如还原 速率、还原粉化性能、粘结趋势和高温还原强度等,对整个竖炉 生产的顺行以及技术经济指标都非常关键。表8列出了Midrex工 艺对球团矿和块矿高温冶金性能的要求。
非高炉炼铁技术概述

非高炉炼铁技术概述摘要:随着焦煤资源日益减少,高炉炼铁技术发展受到限制,非高炉炼铁成为了日益关注的冶炼技术。
文章阐述了非高炉炼铁技术的发展现状、分类,工艺流程及特点,同时展望了其未来的发展前景。
关键词:非高炉炼铁直接还原熔融还原非焦煤一、引言目前,生铁主要来源于高炉冶炼产品,高炉炼铁技术成熟,具有工艺简单,产量高,生产效率大等优点。
但其必须依赖焦煤,而且其流程长,污染大,设备复杂。
因此,世界各国学者逐渐着手研究和改进非高炉炼铁技术。
二、非高炉炼铁工艺非高炉炼铁是指以铁矿石为原料并使用高炉以外的冶炼技术生产铁产品的方法。
在当今焦煤资源缺乏,非焦煤资源丰富的情况下,非高炉炼铁以非焦煤为能源,不但环保,而且省去了烧结、球团等工序,缩短了流程。
因此非高炉炼铁一直被认为是一种环保节能、投资小、生产成本低的生产工艺。
非高炉炼铁可分为直接还原炼铁工艺和熔融还原炼铁工艺两种。
1.直接还原炼铁工艺直接还原炼铁工艺是一种以天然气、煤气、非焦煤粉为能源和还原剂,在铁矿石软化温度下,将铁矿石中铁氧化物还原成铁的生产工艺。
据统计直接还原冶炼工艺多达40余种,大部分已经实现了大规模工业化生产[1]。
目前,直接还原炼铁工艺主要有气基直接还原、煤基直接还原两大类。
1.1气基直接还原气基直接还原是指用CO或H2等还原气体作还原剂还原铁矿石的炼铁方法。
具有生产效率高、容积利用率高、热效率高、能耗低、操作容易等优点,是DRI(directly reduced iron)生产最主要的方法,约占DRI总产量的90%以上[2]。
气基直接还原代表工艺有HYL反应罐法、Midrex-竖炉法、流化床法等[3]。
HYL反应罐法是由墨西哥希尔萨(HojalataYLamina,HYLSA)公司于20世纪50年代初开发的,其工业化标志着现代化直接还原的开始。
HYL反应罐法具有作业稳定,设备可靠等优点,但其作业不连续,还原气利用差,能耗高及产品质量不均匀。
非高炉炼铁--重点设备介绍

非高炉炼铁--重点设备介绍
非高炉炼铁是指利用非高炉工艺进行炼铁的一种方法。
相比传统高炉炼铁,非高炉炼铁具有投资少、技术先进、环保等优点,因此受到了广泛关注和应用。
在非高炉炼铁的重点设备中,有几个主要的设备需要特别介绍。
首先是直接还原炼铁炉。
直接还原炼铁炉是非高炉炼铁的核心设备,其工作原理是将矿石和还原剂在高温下进行化学反应,最终得到铁水和渣。
这种炉子通常采用旋转式炉体结构,能够高效地进行还原反应,大大提高了炼铁效率。
其次是连续铁水生产系统。
这种系统主要由连续铁水生产装置和相关辅助设备组成,能够实现铁水的连续生产和输送。
相比传统的间歇式炼铁方法,连续铁水生产系统能够更加高效地进行生产,降低能耗和污染物排放。
此外,还有磁选设备。
磁选设备主要用于对原料进行磁选,将其中的铁矿石进行分离。
这些铁矿石经过磁选后可以直接用于炼铁,不需要经过破碎和磨矿等环节,节约了能源和原材料,也减少了对环境的污染。
最后是烧结设备。
烧结设备用于对铁矿石和其他原料进行烧结处理,增加其强度和耐高温性,以便于后续的炼铁过程。
总的来说,非高炉炼铁的重点设备主要包括直接还原炼铁炉、连续铁水生产系统、磁选设备和烧结设备等。
这些设备的运用
使得非高炉炼铁在提高炼铁效率、降低成本、减少环境污染等方面具有显著优势。
随着科技的不断发展,相信非高炉炼铁的设备和工艺会更加完善,为炼铁行业的可持续发展做出更大的贡献。
中国新形势下非高炉炼铁的技术发展

C over Report封面报道中国新形势下非高炉炼铁的技术发展张文来(唐钢国际工程技术股份有限公司,河北 唐山 063000)摘 要:在中国当前的冶金新形势下,近些年非高炉炼铁技术在中国得到了较快发展。
非高炉炼铁技术是中国当前较为重要的一项科学技术。
非高炉炼铁技术是除开高炉技术外,不使用焦炭等各种工艺炼铁技术的统称,根据相应产品的形态,非高炉炼铁技术可以分为直接还原炼铁技术和熔融还原炼铁技术。
非高炉炼铁技术具有一定的优势所在,具体来讲其能够有效节约能源,同时投资低、生产成本低,因此能够满足当前炼铁技术发展的基本需求。
关键词:新形势;非高炉炼铁;技术发展中图分类号:P632 文献标识码:A 文章编号:11-5004(2019)03-0001-3收稿日期:2019-03作者简介:张文来,男,生于1968年,汉族,河北唐山人,本科,高级工程师,研究方向:钢铁冶金。
众所周知,我国钢铁工业在历史发展过程中,一直都使用的是高炉炼铁工艺技术,但是高炉炼铁工艺技术具有一个非常明显的特征,这个特征表现为它必须要使用储量有限的炼焦煤为主要燃料,且需要以一定粒径的块状铁矿石进行炼铁工作,所以也就造成了能源、环境、投资等多方面的困扰。
然而在新形势下,炼铁工艺应当更加符合时代发展下对节约能源提出的要求,如此才能进一步提升我国的炼铁技术水平,同时提升资源的利用率。
1 关于非高炉炼铁工艺技术的总体分析在非高炉炼铁工艺技术当中,其中具有两种最为重要的炼铁思路,其分别是直接还原和熔融还原,这两种非高炉炼铁工艺技术具有较多的优势所在,所以整体上的发展空间较大。
直接还原炼铁技术还分为气基和煤基直接还原技术,气基直接还原技术在炼铁过程中,采用的主要方法是气基竖炉法、气基流化床法,它还可以利用天然气经裂化产出的H 2和co 作为还原剂,并且在竖炉当中将已有的铁矿石在固态温度下直接还原成海绵铁,当前所应用的方法主要有Midrex 和HYL 法两种。
直接还原炼铁分析

一 直接还原炼铁简介
7、世界直接还原铁生产概况 2012年,全球直接还原铁产量达到7402万吨,其中 印度位居第一,2005万吨。伊朗第二,1158万吨。
全球主要直接还原铁生产大国/MT
国家 印度
伊朗 墨西 哥 委内 瑞拉 中国
2004 9.37
6.41 6.54 7.83 0.43
2005 12.04
HYL-ZR是在原HYL工艺系列上发展起来的一种新型气基自 重整直接还原工艺,HYL-ZR技术可在其工艺和设备无任何改 动情况下使用焦炉煤气、Corex熔融还原炉产生的煤气或者 合成气 ,而其他技术大都需要对其基本配置进行重大改动。 目前开始在我国和印度等地区应用。 在竖炉内通过对还原气进行控制而产生合乎要求的还原气 体 ,其还原气体经过不完全燃烧 ,以及在还原反应器内经 过金属铁的催化作用在现场重整而生成 ,从而对铁矿石进 行还原;而传统HYL-Ⅲ 工艺是在添加蒸汽条件下使天然气 在催化重整装置中裂解。
2.2 HYL-III(Energiron)法工艺
HYL-III是墨西哥某公司开发成分的连续式移动床罐式法, 这一工艺的前身是该公司早期 开发的间歇式固定床罐式法 (HYL-I、HYL-II)。以水蒸气为裂化气(这是与MIDERX的 最大区别),以天然气为原料通过催化反应制取。还原气 转化炉以天然气和部分炉顶煤气味燃料。 主要设备由两部分 ①制气部分(转化炉):炉内有许多不锈钢管,管内涂有 催化剂 ②还原部分
2.1 Midrex(米德兰)法工艺
炉内压力: 250KPa左右 天然气能耗: 10.2~11t/GJ 炉料在整个炉内停 留时间:10h左右 还原区温度: 850℃左右 金属化率:>92%
H 2 CO 1
CH 4 1/2O2 催化剂 CO 2H 2 CH 4 CO2 催化剂 2CO 2H 2
煤基直接还原铁生产技术的发展

一、工艺流程
Fastmelt 工艺是 Fastmet 工艺和炼铁电炉的综合。来自回 转窑的直接还原铁在炼铁电炉中熔化生产铁水。
ITmk3 工艺是在回转窑中生产粒状铁。团块在回转炉中 加热到 1450℃, 在还原和熔化之后, 炉渣在回转窑中分离。铁 水和炉渣被冷却并从回转窑中排出。
0.00 GJ
2.47 GJ
4.10 GJ
燃气
( 0 kg- CO2 ) ( 141 kg- CO2 ) ( 234 kg- CO2 )
1.54 GJ
2.95 GJ
0.00 GJ
电能
( 103 kg- CO2 ) ( 198 kg- CO2 ) ( 0 kg- CO2 )
0.00 GJ
0.07 GJ
表 8 研究 A 研究结果概括
高炉( 50 万吨 / Fastmelt 工艺( 50 ITmk3 工艺( 50
年铁水) 万吨 / 年铁水) 万吨 / 年粒状铁)
消耗
31.47GJ
14.26 GJ
14.09 GJ
煤
( 2936kg- CO2 ) ( 1330kg- CO2) ( 1314kg- CO2)
技术与装备纵横
煤基直接还原铁生产
技术的发展
□袁 文
目前, 世界炼铁生产的主流是高炉工艺, 但该工艺需要 一些原料准备设备, 如焦炉、烧结设备等, 而其会给环境带来 很大影响。气基直接还原铁如 MIDREX 工艺是高炉炼铁工艺 的替代方法之一, 然而, 该工艺受到以经济方式获得天然气 的限制。在这一背景下, 对可以使用更广泛的原料和燃料, 且 对环境更加友好的新炼铁工艺的需求日益增加。为了满足这 种 需 求 , 人 们 开 发 出 3 种 煤 基 直 接 还 原 铁 生 产 工 艺— —— Fastmet 工艺、Fastmelt 工艺和 ITmk3 工艺。采用这些工艺可以 通过粉矿和煤生产出高质量的铁, 如直接还 原 铁 、铁 水 和 粒 状铁。而且, 这 3 种工艺在能耗和环保方面可以与高炉竞争。
我国煤基直接还原炼铁工艺发展

我国煤基直接还原炼铁工艺发展摘要:对我国目前主要应用的直接还原工艺—回转窑、隧道窑、转底炉以及新发展的直接还原技术做了简要的介绍,分析了各种工艺的优缺点;针对钒钛磁铁矿冶炼,攀钢采取了转底炉—电炉联合使用的直接还原工艺,并新建一条年处理能力10万t钒钛矿的生产试验线.关键词:直接还原;转底炉;回转窑;隧道窑0 引言直接还原法是以气体燃料、液体燃料或非焦煤为能源,在铁矿石(或含铁团块)软化温度以下进行还原得到金属铁的方法.其产品呈多孔低密度海绵状结构,被称为直接还原铁(DRI)或海绵铁.直接还原实现了无焦炼铁,比高炉炼铁碳耗低、CO2排放少,有利于节省能源、保护环境.海绵铁杂质成分低,是冶炼优质钢的原料,也可作为高炉炼铁、转炉炼钢、铸铁、铁合金、粉末冶金的原料,有色冶金的置换剂、水处理的脱氧剂等,应用范围广、需求量大[1].2008年我国直接还原铁消费量为260 万t,但产量仅为60多万吨,远不能满足国内需求.随着我国电炉炼钢规模的不断扩大,废钢价格不断攀升,直接还原铁供不应求,市场潜力巨大,因此,在我国因地制宜发展直接还原工艺势在必行.直接还原按照还原剂的不同分为气基还原和煤基还原两大类,气基还原主要包括Midrex法和HYL—Ⅲ法,具有生产规模大、成本低、环境影响小等优点[2].煤基直接还原包括回转窑法、转底炉法等,与气基还原相比,生产规模较小、产量较低.虽然气基直接还原工艺占据了大部分的直接还原生产能力,但其需用天然气做燃料.在我国,由于天然气相对缺乏,使气基发展受到限制,而我国的煤炭储量却较为丰富,这一资源条件决定了现阶段我国以煤基直接还原法为主,因此,深入研讨煤基直接还原的生产工艺对我国的直接还原工业发展具有深远的意义.1 直接还原工艺简介1.1 回转窑回转窑直接还原主要有三种工艺方案,一步法:精矿配加粘结剂制成生球铺布在移动的链篦机上,利用回转窑高温废气进行干燥预热后直接进入回转窑生产DRI,所有工序在一条流水线上连续完成;二步法:先用精矿烧制成氧化球团再将其送入回转窑生产DRI,造球和还原分别独立进行,故称"二步法";冷固球团法:与一步法相似,先将精矿配加特殊粘结剂造球,在较低温度下(200 ℃)干燥固结,然后送入回转窑还原,省略了高温焙烧氧化固结的过程[3].回转窑工艺具有代表性的SL/RN法流程如图1所示.铁矿石、煤粒、熔剂等原料从窑尾加入回转窑中,窑体缓慢旋转使炉料在升温和反应的同时向出料端移动.窑头外设有烧嘴燃烧燃料,形成的废气则由窑尾排除.炉料与炉气逆向运动,炉料在预热段被加热,使水分蒸发和石灰石分解,达到800 ℃后,煤中的固体碳开始还原铁矿石中的氧化铁,直到获得海绵铁或铁料,而碳则转变成CO气体,CO在氧化区被燃烧成CO2,放出热量以满足还原反应的要求.回转窑内反应温度控制在1 100 ℃以下,经8~10 h完成还原反应后出窑.产品排出窑后进入回转冷却筒冷却得到海绵铁或粒铁,也可以送电炉直接炼钢.与高炉工艺相比较,回转窑工艺设备简单,投资少,适用于地方钢铁工业,弥补了高炉—转炉工艺的不足,此外,回转窑还适用于复合矿冶炼,冶金灰尘及各种工业废渣的回收利用,减少环境污染,降低了钢铁生产能耗.同时,回转窑工艺也存在一些缺点,包括窑内结圈、还原温度低(1 100 ℃以下)、流程长、对块矿或球团矿冷强度要求高、要求使用低硫煤等[4].我国山东鲁中矿山公司通过采取提高冷固烧结球团的冷热态强度、加强还原煤的选择和管理、优化回转窑的送风、抛煤、控温温度等措施,预防并降低回转窑结圈,取得了较好的收效.图1 SL/RN法工艺流程1.2 隧道窑隧道窑工艺即将精矿粉、煤粉、石灰石粉,按照一定的比例和装料方法,分别装入还原罐中,然后把罐放在罐车上,推入条形隧道窑中或把罐直接放到环形轮窑中,料罐经预热到1 150 ℃加热焙烧和冷却之后,得到直接还原铁.目前江苏永钢集团拥有两条260 m长煤气隧道窑,为亚洲最长隧道窑.隧道窑生产海绵铁工艺流程如图2所示.图2 隧道窑生产海绵铁工艺流程煤基隧道窑直接还原工艺具有技术成熟、作简单的特点,可因地制宜采用此工艺,利用当地小型分散的铁矿及煤矿资源优势,发展直接还原铁生产,为电炉提供优质原料.但是,总体上讲,我国隧道窑直接还原中存在生产规模较小、能耗高、污染严重、缺乏稳定的原料供应渠道等问题[5],所以,提高机械化程度、改变原料入炉方式、改进燃料及其燃烧、增设余热回收等成为各厂家不断努力改进工艺的方向.我国已建成或正在建设的隧道窑有100多座,约70多个单位规划建设产能5~30 万t/a的隧道窑直接还原铁厂,在不断总结实践经验的基础上,改进现行工艺,开发出诸如大型隧道窑直接还原、AMR—CBI隧道窑直接还原工艺、宽体球状海绵铁隧道窑、L-S快速还原工艺等多种新技术,掀开了隧道窑工艺规模扩大、产能提高、机械及自动化提升的序幕.1.3 转底炉转底炉煤基直接还原是最近几十年间发展起来的炼铁新技术,代表工艺为Fastmet,它由美国Midrex公司与日本神户制钢于20世纪60年发,是采用环形转底炉生产直接还原铁的一种方法.经过多年的半工业性试验和深入的可行性研究,现已完成工艺作参数和装置设计的优化.Fastmelt和ITmk3工艺是在此基础上增加对直接还原铁的处理.图3显示了这三种以转底炉为主体的直接还原工艺流程.图3 转底炉直接还原工艺流程煤粉与铁精粉按比例混匀制成球团,干燥后以1~3层球铺放在转底炉床面,随着炉底的旋转,炉料依次经过预热区、还原区和冷却区.还原区内球团被加热到1 250~1 350 ℃,由于煤粉与铁氧化物紧密接触,铁氧化铁被碳迅速还原成DRI,成品在800~1 000 ℃左右连续从转底炉卸出.球团矿在炉底停留8~30 min,这取决于原料特性、料层厚度及其他因素,成品可作电炉热装炉料或者转炉炉料,也可冷却或生产热压块(HBI).Fastmet工艺技术特点:①在高温敞焰下加热实现快速还原,反应时间只需10~20 min,生产效率高;②原料来源广泛,铁原料方面,除使用高品位粉矿、精矿外,还可用氧化铁皮、代油铁泥、炼钢粉尘、含En、Pb、As等有害杂质的铁矿等;还原剂方面,除煤以外焦末、沥青均可利用,不必担心出现结圈问题;③炉料相对炉底静止,对炉料强度要求不高;④废气中含有大量显热,可用作预热空气、干燥原料等[6]. Fastmelt工艺流程基本与Fastmet一致,只是在后续添加一个熔炉来生产高质量的液态铁水.Itmk3工艺是使金属化球团在转底炉中还原时熔化,生成铁块(Nuggets),同时脉石也熔化,形成渣铁分离.当然转底炉也存在着设备复杂、炉内气氛难控制、传热效率低以及对还原剂硫含量要求严格的缺点.就目前转底炉工艺开发的水平和规模而论,与高炉还有较大差距,但仍存在发展的广阔空间,天津荣程联合钢铁集团已兴建一条100万t级Fastmet生产线,建成目前世界最大的转底炉.另外,用转底炉可处理一些特殊铁矿,如含锌、铅、砷等有害杂质,或含镍、钒、钛等有用元素,均可利用转底炉的工艺优势,或高温挥发,或选择性还原,配合后续工艺,实现资源综合利用.马钢尘泥脱锌转底炉工程项目于2008年5月开工建设,2009年7月6日正式竣工投产,建成了整套转底炉(RHF)脱锌工艺技术装置,不仅解决了含锌尘泥循环利用的后顾之忧,而且将综合利用技术上升到高品质资源化水平.1.4 其他新工艺1.4.1 PF法煤基竖炉直接还原工艺中冶集团北京冶金设备研究设计总院,结合国内情况创新发明了PF法竖炉直接还原工艺.PF法是在吸收K-M法外热式竖炉煤基直接还原工艺的经验基础上,设计的以一种中国特色的罐式还原炉为主反应器的直接还原法.这种工艺技术可靠,技术经济指标在各种煤基直接还原工艺中属先进水平.PF法直接还原工艺流程如图4所示.图4 PF法直接还原工艺流程PF法直接还原工艺主要特点[1]:1)主体设备选用外热式竖炉,预热、还原、冷却三段根据不同的作用和温度选用不同材质和结构,便于传热和化学反应进行,提高热效率和设备寿命.2)原燃料适用性强,对精矿、还原剂和燃料没有特殊要求.3)采用外配碳工艺,还原剂适当过量,扩大了煤的选用范围,造球工艺也因不定量配入煤粉而简化,球团强度较高,DRI质量较好.4)多个反应罐可并列组成任意规模的还原设备,设计和组织生产灵活.1.4.2 低温快速还原新工艺2004年钢铁研究总院提出了低温快速冶金新工艺.新工艺利用纳米晶冶金技术的特点将铁矿的还原温度降低到700 ℃以下.新流程分为气基和煤基两种方法,工艺流程如图5、图6所示.图5 煤基低温快速还原新工艺图6 气基低温快速还原新工艺煤基法使用煤粉为还原剂,在700℃左右快速还原铁精矿粉;气基法使用还原性气体还原铁精矿粉,还原温度可低于600℃.新工艺具有能耗低、环境友好等特点,省去了烧结或造球工艺,缓解了钢铁行业对焦煤的依赖,符合我国国情[7].2 攀钢现状钒钛磁铁矿是攀西地区的特色资源,与普通矿相比,钒钛矿直接还原温度较高、还原时间较长,还原过程产生特有的膨胀粉化现象,因此,存在竖炉结瘤、流化床失流和黏结、回转窑结圈等技术难题.高炉流程冶炼钒钛矿,只回收了铁和钒,钛进入高炉渣没有回收,造成钛资源的大量流失.2005年以来,攀钢科研人员在充分吸收、借鉴新流程及相关研究成果的基础上,通过大量的试验研究,针对钒钛磁铁矿特点,提出并验证了钒钛磁铁矿"转底炉直接还原—电炉深还原—含钒铁水提钒—含钛炉渣提钛"工艺路线,彻底打通了钒钛矿资源综合利用新工艺流程,稳定获得了质量满足要求的低碳生铁、达到GB3283-87要求的片状V2O5和PTA121质量要求的钛白产品.依托该研究成果,攀钢集团攀枝花钢铁研究院于2008年5月4日正式启动了攀钢10 万t/a钒钛矿资源综合利用新工艺中试线工程项目,新建一条转底炉—熔分电炉联合使用,年处理能力10万t钒钛矿的试验生产线,为更深入地研究实践,实现转底炉处理钒钛矿的规模化生产提供了广阔的平台.中试线工艺流程如图7所示.本流程采用硫含量较低的白马铁精矿,还原剂采用无烟煤煤粉,粘结剂为有机粘结剂,原料混合后经高压压球机压球,生球烘干后进入转底炉系统.球团在转底炉内停留10~30 min后出料,金属化球团直接热装进入熔分电炉,在一定温度下还原后,产出含钒铁水及含钛炉渣.继续对铁水进行脱硫、提钒后,得到半钢、脱硫渣及钒渣,半钢进入铸铁机铸铁,生产出铸铁块.钛渣制取钛白,实验室条件下钛回收率达到80%以上;钒渣制取钒氧化物(V2O5),实验室条件下,钒回收率达到65%以上.与高炉流程相比,转底炉流程采用100%钒钛矿冶炼,克服了高炉流程必须配加普通矿的不足,在当前铁资源紧张的形势下,有助于充分发挥攀西地区资源优势,拉动区域经济发展.此外,转底炉流程的铁精矿不需烧结处理,不使用焦炭,从根本上避免了烧结烟气脱硫、焦煤资源采购困难以及环保压力大等问题.3 结语图7 资源综合利用中试线工艺流程煤炭资源总量丰富、焦煤短缺,铁矿资源储量大、富矿少、贫矿和共生矿多是中国钢铁工业面临的现实状况.这种能源、资源结构给煤基直接还原法生产海绵铁的发展提供了机遇.转底炉直接还原技术由于在生产率、规模化、投资费用、单位成本等方面都占有明显的优势,可作为发展直接还原技术的首选工艺.鉴于转底炉处理钒钛磁铁矿技术尚属世界首创,并无较多的经验借鉴,因此要大力开展针对钒钛磁铁矿直接还原的基础研究工作,在实践中借鉴各种直接还原方法已取得的成果,开拓创新,开创钒钛矿直接还原新纪元.参考文献[1] 陈守明,黄超,张金良.煤基竖炉直接还原工艺//2008年非高炉炼铁年会文集.中国金属学会,2008:132-135.[2] 杨婷,孙继青.世界直接还原铁发展现状及分析.世界金属导报,2006.[3] 刘国根,邱冠周,王淀佐.直接还原炼铁中的粘结剂.矿产综合利用,2001(4):27-30.[4] 韩跃新,高鹏,李艳军.白云鄂博氧化矿直接还原综合利用前景.金属矿山,2009 (5):1-6.[5] 魏国,赵庆杰,沈峰满,等.非高炉生产技术进步//2004年全国炼铁生产技术暨炼铁年会文集.2004:878-882.[6] 陶晋. 环形转底炉直接还原工艺现状及发展趋势. 冶金信息工作, 1997.6.[7] 郭培民,赵沛,张殿伟.低温快速还原炼铁新技术特点及理论研究.炼铁,2007,26(1): 57-60.来源:攀枝花钢铁研究院网站。
比较分析高炉炼铁与非高炉炼铁技术

比较分析高炉炼铁与非高炉炼铁技术摘要:我国的焦煤资源供应日趋紧张,阻碍我国高炉炼铁技术的发展,非高炉炼铁成为关注度最高的冶炼技术。
文章重点就高炉炼铁与非高炉炼铁技术二者的比较分析进行研究,旨在为业内人士提供一些建议和帮助。
关键词:高炉炼铁;非高炉炼铁;技术比较分析前言:依据现阶段市场环境状况,高炉炼铁是炼铁生产的主体,高炉炼铁存在一个不足之处,对能源焦炭的依赖,同时冶炼焦炭也是环境污染的一个源头。
与高炉炼铁不同的是,非高炉炼铁的能耗和环境方面具有优势较强。
详细地说,非高炉炼铁在一定程度上可将焦煤的使用量降低,进而将高炉炼铁流程如球团、焦化工序等生成的污染物排放量降低。
对于原燃料,非高炉炼铁具有极高的要求,使原燃料只在较好生产指标的生铁生产企业中运用,这就表示着只能在特定的环境下,非高炉炼铁才能实施组织生产,这也是非高炉炼铁技术一直未被普及于全世界的关键原因。
基于此,文章主要对高炉炼铁与非高炉炼铁能耗进行了比较,然后分析了高炉炼铁与非高炉炼铁技术应用现状,最后展望了高炉炼铁与非高炉炼铁发展前景。
1能耗比较分析1.1相关高炉炼铁能耗分析高炉作为炼铁设备,是一个炼铁炉料和煤气反向运动的反应器,高炉属于一种高效化的反应竖炉。
在高炉这个特殊的竖炉中,炉料可以获得充分的物理过程和化学过程如原燃料预热、熔融、生铁改性等,同时炉料生产过程也伴随着粉尘等有害物质。
在高炉炼铁过程中,炉料会遇到选择间接还原与直接还原反应问题,相关分析证明,放热反应是铁矿石进行间接还原,而吸热反应则是直接还原。
所以在高炉中,进行间接还原反应的炉料大概有一半,这就表明了比起炉料在高炉中进行直接还原铁工艺过程的能源使用,要比间接还原的高出一部分。
1.2相关非高炉炼铁能耗分析非高炉炼铁划分为熔融还原和直接还原两大类。
在能源消耗方面,直接还原可以分为煤基、气基和电热三大类。
不论煤基、气基和电热,最终都是利用设备生产非高炉炼铁所需的气源。
例如煤基的直接还原生产工艺过程要求>90%的CO+H2含量,同时要构建专门的造气装置。
煤基直接还原炼铁法的能耗与环境负荷

煤基直接还原炼铁法的能耗与环境负荷(表)据中国钢铁新闻网2007年2月13日报道:近年,世界粗钢产量随着亚洲的经济成长而持续增加。
现代炼铁法的主流是高炉法,但高炉法为了提高其效率而必须大型化,并且需要环境负荷大的烧结设备和炼焦炉。
作为替代高炉法的炼铁法,有MIDREX法所代表的气基还原铁冶炼法,但气基还原铁冶炼法需要大量的天然气,所以地区选定受到限制。
在上述背景下,对于今后的炼铁法而言,如下的期待正在日益高涨:1)降低能耗与环境负荷;2)减少投资费用与运行成本;3)适应宽泛的原料与能源。
为了回应这样的期待,神户制钢与Midrex技术公司共同开发了3种煤基直接还原炼铁法——FASTMET、FASTMELT和ITmk3。
这些方法可以用世界各地富存的铁矿粉和煤炭生产高质量的铁源,例如DRI(直接还原铁)、铁水和粒铁。
它们的能耗与环境负荷与当今普遍使用的大容量高炉法不相上下。
煤基还原冶炼法1 煤基还原铁冶炼法的定位作为煤基还原铁冶炼法的FASTMET、FASTMELT、ITmk3是使用世界上较为大量存在的粉矿石和煤炭的方法。
2 工艺流程铁矿石和作为还原剂的煤炭预先混合,并被成型为球团或压块状的团块化混合物。
这种团块化混合物供给RHF(转底炉),在RHF内被还原。
团块化混合物在RHF的炉床上铺一层或两层予以加热。
在FASTMET、FASTMELT法中,炉内加热到1250~1350℃,以直接还原铁的形式排至炉外,而在ITmk3法中则加热到1450℃,在炉内还原、熔融而以粒珠的形式排至炉外。
对FASTMET法来讲,可以做成高温还原铁和经冷却做成低温还原铁,或者以HBI(热压团块铁)的形式来利用制品还原铁。
FASTMELT法是将还原铁熔炼炉组合到FASTMET法中的方法,把RHF排出的高温的铁装入还原铁熔炼炉,边利用其显热边冶炼生产生铁。
ITmk3法则在RHF内生产与炉渣分离的粒铁,与炉渣一起排出的粒铁,用磁选机等分选机选出粒铁。
比较分析高炉炼铁与非高炉炼铁技术

比较分析高炉炼铁与非高炉炼铁技术摘要:就目前而言,我国钢铁主要通过高炉进行生产和冶炼,从客观角度理解,这种高炉炼铁的形式还要持续相当长的一段时间。
对比来讲,非高炉炼铁技术实际上比高炉炼铁技术更具优势性和时代性。
在工艺优势方面,非高炉炼铁技术可以促使燃料燃烧完全,使得主焦煤的使用量大幅度降低,从根本意义上减少烧结、球团、焦化等作业工序中产生和排放各种污染物的现象。
整体而言,虽然非高炉炼铁技术优势显著,但由于该技术在我国还处于进步阶段,还具有一系列的问题和不足。
所以,对该技术进行更加深入研究,并比较其与传统炼铁技术的能耗,是本文即将研究和分析的主要内容。
关键词:高炉炼铁技术;非高炉炼铁技术;直接还原技术;熔融还原技术随着钢铁行业的不景气,与之对应的高炉炼铁技术发展呈现出停滞状态。
但在目前,其仍是全世界范围内,进行钢铁生产主要技术内容,这就意味着其利用焦炭生产造成的污染环境问题仍处在不断深化状态。
针对这一问题,相关人员应加大非高炉炼铁技术的研究应用,从而改进我国钢铁行业发展的产业结构。
然而,非高炉炼铁技术的研究成果存在一定局限,因而,相关建设人员应从能耗、技术应用现状以及未来发展角度,对高炉炼铁与非高炉炼铁两种技术进行对比,以找出优化控制的节点,进而提高非高炉炼铁技术的应用研究效率。
1高炉炼铁与非高炉炼铁技术分析比较就目前的市场环境来说,生铁的生产大多是以高炉炼铁的方式存在的,而非高炉炼铁与高炉炼铁不同,其在能耗方面具有一定优势。
具体来说,非高炉炼铁能够大幅度降低焦煤的使用量,这就降低了球团、烧结以及焦化工序等高炉炼铁流程生成的污染物排放量。
非高炉炼铁所需的原燃料条件较高,使其仅作用于生产指标较好的生铁生产企业。
这就意味着非高炉炼铁需要在特定的环境下才能进行组织生产,这是全世界范围内,非高炉炼铁技术始终没有得到普及的原因所在。
但随着市场经济发展进程的不断加快,人们对各行各业发展建设可持续性的要求越来越高,非高炉炼铁技术是实现降低生态环境污染目标的重要组成部分。
炼铁生产过程中的耗能分析与节能措施

炼铁生产过程中的耗能分析与节能措施铁是不可缺少的资源之一,而炼铁生产则是一项高能耗、高排放的产业。
在我国经济建设中占据着重要的地位。
但是在制造过程中的能耗问题是制约工业发展和环境保护的重要问题之一。
因此,对炼铁生产过程中的能耗问题进行分析和研究,以实现节能降耗,具有重要的实用价值。
1. 炼铁生产过程中的能耗问题在炼铁生产过程中,最主要的能耗来自于高炉和焦炉。
高炉负责将铁矿石还原成生铁,而焦炉则是供给高炉热力能源的主要设备。
具体来看,高炉会在还原铁矿石的同时,释放出大量的热能,这些热能可以通过高炉炉顶的烟气传递给蒸汽锅炉,进而制造蒸汽驱动汽轮机发电,实现对高炉废热的利用。
但是在实际生产过程中,由于高炉运行条件复杂,热传递效果不佳,导致高炉废热的利用率较低,从而造成了不少的能源浪费。
另外,由于焦炉所需的热能来自于煤炭的燃烧,其过程中会产生大量的各种有毒有害气体,主要包括一氧化碳和二氧化碳等。
虽然目前通过改进焦炉工艺等手段,可以在一定程度上降低焦炉排放的有害气体,但仍然存在着很大的安全隐患。
除了以上两大能源,矿泉水的制备和物料输送等环节也都需要消耗大量的能源,从而增加了炼铁生产的总能耗。
2. 炼铁生产中的节能措施(1) 提高热能利用效率作为炼铁生产过程中最主要的能耗来源,高炉和焦炉的能源利用效率直接影响整个生产的能耗指标。
因此提高高炉和焦炉的热能利用效率,是炼铁生产节能的主要手段之一。
其中,提高高炉烟气能量利用率是节能降耗的关键点之一。
目前实现高炉废热的利用较为常见的方法,是通过蒸汽锅炉和汽轮机等设备实现对高炉废热的二次利用。
这种方法需要充分考虑高炉炉顶烟气的温度、烟气输送以及蒸汽锅炉等设备带来的热损失等因素。
因此,在此过程中需要合理设计设备和参数,实现烟气高温、高速、高湿的冷凝。
(2) 提高炉缸效率在炼铁生产中焦炉所产生的有害气体问题一直是亟待解决的难题。
为了减少焦炉对环境的影响,我们可以从多方面入手,如通过改进炉壁材料、调整设计参数等方式优化焦炉结构,逐步提高焦炉效率,减少有害气体的排放。
非高炉炼铁技术重点是以煤代焦 DRI最佳装备是煤基竖炉

非高炉炼铁技术重点是以煤代焦 DRI最佳装备是煤基竖炉陈守明我国粗钢产量连续高速增长,2011年达6.995亿吨,占全球粗钢产量45%;但产业结构不合理,工艺以高炉炼铁-转炉炼钢长流程为主,铁钢比高、电炉钢比例小,能源资源消耗大、生产成本高,经济效益一路下滑,优化结构、节能增效势在必行。
直接还原铁(DRI)不仅是一种重要的冶金原料,由于不以焦炭为主要能源,称非高炉炼铁,是一种节能增效的冶金新工艺。
发展DRI产业不仅可以为电炉炼钢、转炉炼钢、高炉炼铁、铸造等产业提供大量优质冶金炉料,有助于这些企业节能增效,而且节省大量焦炭,对于缓减高炉炼铁焦炭供应紧张局面、降低成本有利。
同时,国内中小铁矿和非炼焦煤的综合利用、提高附加值,可促进中西部地区经济发展。
国家工信部2011年底颁发的《钢铁工业“十二五”发展规划》中,“重点领域和任务”的技术创新重点第一项即非高炉炼铁技术。
中国DRI多年来产量始终在几十万吨徘徊,主要因为工艺、装备未根据国情自主创新,未显示节能减排优势,工程投资大、生产成本高,经济效益不理想。
DRI工艺按还原剂分为气基法和煤基法,按主体设备分有竖炉法、隧道窑法、回转窑法、转底炉法等。
根据冶金原理和中国能源资源结构、经济技术条件,煤基法比较适宜;按机械和热工原理,这几类工业炉窑虽然都能生产DRI,但竖炉是其优选优化成果,性能更好。
炼铁理论和生产实践均可证明,煤基竖炉DRI能耗低、工程投资少,可取的更好效益。
1 煤基竖炉DRI工艺节能的理论根据1.1 DRI流程短炼铁是钢铁冶金上游工序。
考察钢铁生产流程,如图1所示,流程最短、能耗最低路线是从铁矿石直接炼钢的虚线ideal Route。
但这一路线很难实现,因为还原与升温同时进行,高温下金属铁融化后,还原剂中的碳即渗入铁中,铁水含碳量大于钢的标准。
为了得到含碳量较低的钢,不得不增加炼钢工序,将铁水中的碳再氧化脱去。
现代钢铁生产的高炉-转炉炼钢流程就是这样,称作二步法炼钢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤基直接还原炼铁技术及非高炉炼铁能耗分析摘要:非高炉炼铁技术或称非焦炼铁技术是当今钢铁生产工艺中最受关注的技术之一。
依产品的形态不同,非高炉炼铁技术可分为熔融还原与直接还原两种工艺方法。
直接还原是以非焦煤为能源,在不熔化不造渣的条件下,原料保持原有物理形态,铁的氧化物经还原获得以金属铁为主要成分的固态产品的技术方法。
直接还原炼铁工艺分为气基直接还原和煤基直接还原,气基直接还原炼铁工艺是最主要的直接还原炼铁技术,其产量占到直接还原炼铁的90%左右,煤基直接还原炼铁,目前以回转窑为主,也是最主要的煤基直接还原炼铁工艺。
关键词:非高炉炼铁;直接还原;熔融还原;煤基;气基近代高炉已有数百年历史,其工艺已达到相当完善的地步。
高炉反应器的优点是热效率高、技术完善,设备已大型化、长寿化,单座高炉年产铁最高可达400 万t左右,一代炉役的产铁量可达5000万t以上,可以说,没有现代化的大型高炉就没有现代化的钢铁工业大生产。
但是在它日益完善和大型化的同时,也带来了流程长、投资大以及污染环境等问题。
高炉工艺流程存在以下问题:一是高炉必须要用较多焦炭,而炼焦煤越来越少,焦炭越来越贵;二是环境污染严重,特别是焦炉的水污染物粉尘排放烧结的SO2粉尘排放,高炉的CO2排放很高;三是传统炼铁流程长,投资大;四是从铁、烧、焦全系统看重复加热、降温,增碳、脱碳,资源、能源循环使用率低,热能利用不合理。
高炉法虽然仍是当今炼铁生产的主体流程,但非高炉炼铁法已成为炼铁技术发展的方向。
非高炉炼铁技术或称非焦炼铁技术是当今钢铁生产工艺中最受关注的技术之一。
依产品的形态不同,非高炉炼铁技术可分为熔融还原与直接还原两种工艺方法。
随着世界上废钢铁积累日益减少,电炉流程迅速发展,这就要求采用直接还原新工艺,生产出的海绵铁供电炉炼钢。
此外,由于炼焦煤资源日渐短缺,焦炉逐渐老化以及人们对焦炉污染日益关注,八十年代以来,各发达国家纷纷谋求开发另外的无焦炼铁工艺——熔融还原,其中Corex流程已实现工业化生产。
综合起来看,当前炼铁工艺正朝着少焦或无焦炼铁方向发展,而直接还原与熔融还原技术正适合这种发展方向。
所以说我国应适度发展直接还原与熔融还原技术。
直接还原是以非焦煤为能源,在不熔化不造渣的条件下,原料保持原有物理形态,铁的氧化物经还原获得以金属铁为主要成分的固态产品的技术方法。
熔融还原是以非焦煤为能源,铁矿物在高温熔融状态下完成还原过程,获得液态铁水的技术方法。
由于优质废钢资源的短缺,海绵铁作为电炉钢重要的原料之一受到重视与发展。
直接还原炼铁工艺分为气基直接还原和煤基直接还原,气基直接还原炼铁工艺是最主要的直接还原炼铁技术,其产量占到直接还原炼铁的90%左右,气基直接还原炼铁使用天然气重整制备高质量的富氢气体(75%H2~25%CO)作为还原剂,以竖炉作为还原反应器,气固充分接触,还原反应与热量交换好,因此,反应器效率高,吨铁能耗低。
由于我国的天然气资源短缺,难以用于生产海绵铁。
直接还原的产品直接还原铁(DRD是铁氧化物在不熔化、不造渣且在固态下还原生成的金属铁产品。
为提高产品的抗氧化能力和体积密度, DRI热态下挤压成形的产品称为热压块( HBI) , DRI冷态下挤压成形的产品称为DRI压块。
煤基直接还原炼铁,目前以回转窑为主,也是最主要的煤基直接还原炼铁工艺,另外还存在隧道窑直接还原炼铁工艺,近年来,以处理钢铁厂废弃物的转底炉工艺,我国也在尝试变成直接还原炼铁工艺。
1 煤基直接还原炼铁的几种工艺1.1 回转窑工艺目前,在全世界的煤基直接还原炼铁工艺中,回转窑流程约占煤基直接还原炼铁总产量的95%以上。
回转窑工艺有三种,分为一步法、二步法和冷固结球团法。
“一步法”是指把细磨铁精矿造球,在链篦机上经干燥、900 ℃预热,直接送入回转窑进行固结和还原,所有工序在一条流水线上连续完成。
“二步法”是将上述工艺过程分两步来完成,即先把铁精矿造球,经1300℃高温氧化焙烧,制成氧化球团;然后再将氧化球团送入回转窑进行还原;两个工艺可以分别在两地独立进行,故称“二步法”。
冷固结球团法是在磁铁矿精粉中加入少量特制的复合型粘合剂造球,在200℃左右干燥固结,然后送入回转窑进行还原,省去了高温焙烧氧化固结过程。
回转窑法最著名的为SL-RN流程,是由SL流程和RN流程结合而成的。
开发者为加拿大的Steel Co Ltd、德国的Lurgi A. G.、美国的Republic Steel有限公司和National Lead公司,S、L、R、N 即这四个开发者的首字母。
该流程于1954 年开发完成,在1969 年实现工业化,在澳大利亚建成第一座30mSL-RN工业回转窑,之后得到了较快的发展。
1.2 隧道窑工艺隧道窑法是由E·Sieurin于1908年发明的。
它使用外热式反应罐和隧道窑,窑体可分为加热、还原和冷却三个区域。
在还原段装有燃烧器,以液体或气体燃料为能源使还原段温度保持在1200℃左右,还原段高温炉气向加热段流动,对反应罐进行预热,使其温度随着向还原段的逐渐接近而逐步提高。
台车进入还原段后,煤气化反应放出大量CO,使矿粉得到还原,生成海绵铁。
还原完成后,台车进入冷却段,冷却段中有一股由吸入的冷空气形成的气流,在气流中,密封的反应罐逐步冷却至常温。
出窑后,将海绵铁取出,去掉残煤和灰分即可得到产品。
该工艺可用于生产粉末冶金用铁粉和海绵铁。
反应罐的材质多为SiC或黏土,SiC 罐耐用,导热性好,成本较高;黏土罐造价低,但性能较差。
反应罐内矿粉和还原剂分层装入罐内,还原剂采用煤粉,混入石灰石粉作为脱硫剂。
隧道窑生产工艺的特点:(1)原料、还原剂、燃料容易解决;(2)生产工艺易掌握,生产过程易控制;(3)设备运行稳定,产品质量均匀。
窑炉是海绵铁生产的关键设备。
2004 年之前,我国部分海绵铁生产厂家从倒焰窑改为煤烧隧道窑,使还原工段设备档次上升了一个台阶。
但煤烧隧道窑存在环境污染、能耗高等问题,根据国家的环保政策,隧道窑煤气化已势在必行,2005年开始,我国新上的海绵铁项目绝大部分采用了煤气,加之国家行业管理部门提倡鼓励新上长窑、大窑,以形成规模经济、降低能耗和提高经济效益,在这种背景下,新一代大型煤气隧道窑应运而生。
煤基隧道窑还原主要用于生产高纯铁粉,金属化率要求大于95%,因此,造成特殊的布料方式(环行布料),传统煤基隧道窑还原窑内温度控制在1180 ~1200℃,吨铁煤耗高达1500kg,罐材寿命短、冶炼周期长(约40~50 h,包括预热、加热与冷却段)。
1.3 转底炉技术1.3.1 Fastmet 工艺转底炉起源于环形加热炉,原用于轧钢钢坯的加热,近年来被移植用于钢铁厂粉尘的处理,进而演化成炼铁设施。
转底炉可用于生产金属化球团矿,为钢铁公司处理粉尘。
Fastmet 流程主体设备是转底炉。
转底炉呈密封的圆盘状,炉底在运行中以垂线为轴作旋转运动。
两侧炉壁上设有燃烧器为炉内提供所需热量。
利用粉状还原剂和粘结剂与铁精矿混合均匀制成球团,经干燥后送入转底炉,均匀地铺放于旋转的炉底上。
随着炉底的旋转,含碳球团被加热到1250~1350 ℃,经过10~20 min的还原得到海绵铁。
海绵铁通过出料螺旋连续排出炉外,温度约为1000 ℃。
根据需要,可将出炉后的海绵铁热压成块或使用圆筒冷却机冷却,也可热装入熔炼炉处理成铁水(Fastmet和熔炼联合被称为Fastmelt 工艺)。
燃料(天然气、油、煤)和预热空气通过烧嘴进入炉内燃烧(包括还原气相产物CO 的燃烧),产生还原所需的足够温度和热量。
燃烧废气逆向流动,最后从加料口的排气口排出,经二次燃烧、热交换和洗涤除尘后从烟囱排出。
Fastmet 的基本还原原理是将燃烧着的火焰的高温经炉壁通过辐射传给料层,使含碳球团中的铁矿粉在高温下被其中的碳/挥发分还原。
含碳球团的还原过程比较复杂,因为煤不仅作为固体还原剂,而且其挥发分具有气体还原剂的特点。
挥发分中含有的少量H2和CO 可以直接作为还原剂,大部分的碳氢化合物裂解后生成的H2 和C也可作为还原剂。
在研究含碳球团的还原时,重点都集中在碳的还原作用上,往往忽略了挥发分的还原作用。
试验结果证明,随温度的升高,含碳球团的还原过程应该包括三部分:挥发分的热解;铁氧化物被挥发分中CO 和H2以及其裂解产物H2 和C还原;铁氧化物被碳还原。
此方法可应用于以下几个方面。
(1)用铁精粉生产DRI或HBI将铁精粉与煤粉混合压球后加入转底炉,球团在炉内受控的还原气氛中被加热。
当达到反应温度时,铁氧化物被还原为金属铁。
反应所需的热能全部由煤提供。
从转底炉出来的海绵铁带有较多显热,可采用热压块工艺加工为热压块铁,以便运输与存储。
该法生产的热压块铁TFe含量达92%,金属化率高达95%,C含量约4%,脉石含量约2.4%,S含量仅为0.04%,可见其品质纯净,脉石与硫等杂质含量很低,可作为优质废钢的理想替代品。
而且与废钢相比,其质量均匀稳定,波动小,对于炼钢生产极为有利。
(2)回收电炉除尘灰与轧钢铁鳞电炉除尘灰与轧钢铁鳞的特点是含有较多非铁金属的氧化物,如锌、铅、镉等,被美国环保部门定为有害物质,称作KO61。
在干铁法工艺处理过程中,这些非铁氧化物将以气态逸出,并在后续的烟气处理装置中予以收集,此时KO61 已转化为提炼有价值非铁金属的原料。
转底炉中ZnO的脱除率高于95%,生成的海绵铁金属化率高达91%。
转底炉焙烧含锌粉尘时以气态逸出的非铁金属氧化物在尾气处理过程中,由布袋除尘器收集,其成分以ZnO为主,可作为提炼锌的原料使用。
(3)回收传统钢铁厂废弃物传统钢铁厂废弃物包括转炉除尘灰,轧钢铁鳞,热轧污泥,连铸氧化铁皮及高炉粉尘与污泥。
这些物质总体来说碳的含量很高,与电炉除尘灰相比,锌含量较低,而铅、镉等含量极少。
由于原料中的铁与碳含量较高,在经过转底炉焙烧后,生成的海绵铁金属化率高于90%,其尾气收尘富含ZnO,可予以回收提炼,增加收入来源。
1.3.2 ITmk3法ITmk3法这是Midrex 及其母公司神户制钢1996年9月提出的一种第三代炼铁技术。
该技术基于Fastmet工艺,利用粉矿与煤粉制成含碳球团,然后把球团装入转底加热炉内,加热到1300~1500 ℃;球团被还原和熔融,使珠铁与渣分开,珠铁中不含杂质。
冶炼过程仅用10 min,即可生产出高纯珠铁供电炉使用。
ITmk3 技术适用于多种类型的铁矿和煤种,可利用铁粉矿和低品位含铁原料(磁铁矿、赤铁矿或含铁粉尘)一步处理生产出直径10~20 mm 的优质珠铁,取消焦炉和烧结装置,使投资成本降低。
ITmk3法在中试阶段,曾用多种铁氧化物生产出珠铁;可用煤粉、石油焦、焦粉或其他固体的、液体的或气体的还原剂。