材料力学答案第三版单辉祖.pdf
完整版材料力学答案单辉祖版全部答案
第二章轴向拉压应力与材料的力学性能13}2-1 试画图示各杆的轴力图。
题2-1图解:各杆的轴力图如图2-1所示。
图2-12-2 试画图示各杆的轴力图,并指出轴力的最大值。
图a与b所示分布载荷均沿杆轴均匀分布,集度为q。
A Bq<1aHD题2-2图(a)解:由图2-2a(1)可知,F N(X) 2qa qx 轴力图如图2-2a(2)所示,F N,max 叩图2-2a(b)解:由图2-2b(2)可知,F R qaF N (X1) F R qaF N(X2)F R q(x2 a) 2qa qx2F N,max qa图 2-2b2-3 图示轴向受拉等截面杆,横截面面积A=500mm 2,载荷F=50kN 。
试求图示斜截面m-m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。
题图T ax—50MPa22-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。
试确定材料的弹性模量 E 、比例极限 p 、屈服极限s 、强度极限b 与伸长率 判断该材料属于何种类型(塑性或脆性材料) 。
T -sin2 a 50MPa sin( 100 )49.2MPa2杆内的最大正应力与最大切应力分别为轴力图如图2-2b(2)所示,^maxlOOMPaF 50 103N— A 500 10-6m 2斜截面m-m 的方位角 a 50,故有解:该拉杆横截面上的正应力为1.00 108Pa lOOMPa题2-5解:由题图可以近似确定所求各量。
2 2(T ocos a lOOMPa cos ( 50 ) 41.3MPa A- 220 106PaAe 0.001220 109Pa 220GPa-220MPa ,- 240MPa ,并-440MPa ,3 29.7%该材料属于塑性材料。
2-7 一圆截面杆,材料的应力-应变曲线如题2-6图所示。
若杆径d =10mm , 杆长 I =200mm ,杆端承受轴向拉力 F = 20kN 作用,试计算拉力作用时与卸去 后杆的轴向变形。
工程力学(静力学与材料力学)课后习题答案(单辉祖)
1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
解:1-2 试画出以下各题中AB 杆的受力图。
(a(b(c(dA(eBA(a(bA(cA(dA(eB (c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。
(d)(e)B(a)B(b)(c)BF(a)W(c)AF (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。
解:(a)A F(b)WA(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b)B(c)BF D1-5 试画出以下各题中指定物体的受力图。
(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。
解:(a)(d)F CD(e)WB(f)F ABFBC(c)(d)ATF BAF (b)(e)(b)(c)(d)(e)C AAC’DDC ’B2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-3 水平力F 作用在刚架的B 点,如图所示。
如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)F 1F FDF F AF D211 1.1222D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o的力F ,力的大小等于20KN ,如图所示。
工程力学(静力学与材料力学)课后习题答案(单辉祖)
1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
解:1-2 试画出以下各题中AB杆的受力图。
A(BF((W(AW(F(F(F(FW(AW(FBDB解:1-3 试画出以下各题中AB 梁的受力图。
B(BB(F BF(FB (DB F F(FB((B F(BB1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。
解:B(B F (W ((D(F Bx(DC(D((B(WB(1-5 试画出以下各题中指定物体的受力图。
(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。
(DCD(B(BF D(F CC(WB(F AB F BC((C(A(解:(a)(b)(c)AF ABF ATF AF BAFCC’CD((e)D DC’2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-3 水平力F 作用在刚架的B 点,如图所示。
如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:FF43xFF F AF D(2) 由力三角形得211 1.122D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。
材料力学-单祖辉-第三版课后答案-(第九章—第十九章)
3Fx 4a 2
[
]
x2 0.1277x6.39104 0
由此得切口的允许深度为
x5.20 mm
10-3 图示矩形截面钢杆,用应变片测得上、下表面的纵向正应变分别为 εa =1.0×10-3
2Sz(a)
S z,max
[2.23104
1 0.0085(0.140 0.0137)2 ]m3 2
2.90104 m3
式中:足标 b 系指翼缘与腹板的交界点;足标 a 系指上翼缘顶边中点。 3.应力计算及强度校核
三个可能的危险点( a , b 和 c )示如图 9-5。
a 点处的正应力和切应力分别为
x1
4F πD 2
x2 0
设圆柱体与外管间的相互作用力的压强为 p,在其作用下,外管纵截面上的周向正应力为
t2
pD 2
(a)
在外压 p 作用下(图 b,尺寸已放大),圆柱体内任一点处的径向与周向正应力均为
r1 t1 p
根据广义胡克定律,圆柱体外表面的周向正应变为
t1
1 E1
t1
1
x1
松比 均为已知。试求内压 p 与扭力偶矩 M 之值。
题 9-14 图 解:圆筒壁内任意一点的应力状态如图 9-14 所示。
图中所示各应力分量分别为
图 9-14
由此可得
x
pD 4
,
t p2D,
2M πD2
σ0 σ x , σ90 σt ,
σ 4 5
τ
3pD, 8δ
根据广义胡克定律,贴片方向的正应变为
σ1
σ2
σt
pD,σ 4δ
3
0
9-13 图示组合圆环,内、外环分别用铜与钢制成,已知铜环与钢环的壁厚分别为
材料力学答案第三版单辉祖
第二章轴向拉压应力与材料的力学性能2-1试画图示各杆的轴力图。
题2-1图解:各杆的轴力图如图2-1所示。
图2-12-2试画图示各杆的轴力图,并指出轴力的最大值。
图a与b所示分布载荷均沿杆轴均匀分布,集度为q。
;题2-2图(a)解:由图2-2a(1)可知,=2()F-xqxqaN轴力图如图2-2a(2)所示,qa F 2m ax ,N =图2-2a(b)解:由图2-2b(2)可知, qa F =Rqa F x F ==R 1N )($22R 2N 2)()(qx qa a x q F x F -=--=轴力图如图2-2b(2)所示,qa F =m ax N,图2-2b2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2,载荷F =50kN 。
试求图示斜截面m -m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。
题2-3图解:该拉杆横截面上的正应力为100MPa Pa 1000.1m10500N 10508263=⨯=⨯⨯==-A F σ 》斜截面m -m 的方位角, 50-=α故有MPa 3.41)50(cos MPa 100cos 22=-⋅== ασσαMPa 2.49)100sin(MPa 502sin 2-=-⋅== αστα杆内的最大正应力与最大切应力分别为MPa 100max ==σσMPa 502max ==στ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。
试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。
题2-5解:由题图可以近似确定所求各量。
~220GPa Pa 102200.001Pa10220ΔΔ96=⨯=⨯≈=εσEMPa 220p ≈σ, MPa 240s ≈σMPa 440b ≈σ, %7.29≈δ该材料属于塑性材料。
2-7 一圆截面杆,材料的应力-应变曲线如题2-6图所示。
材料力学_单祖辉_第三版课后答案_(第九章—第十九章)精编版
Fx 0,πDδ t
得
πD 2 p0 4
pD 4δ 球壁内任一点的应力状态如图 b 所示,由此可得三个主应力依次为 pD σ1 σ 2 σ t ,σ 3 0 4δ σt
9-13
图示组合圆环,内、外环分别用铜与钢制成,已知铜环与钢环的壁厚分别为
与, 交接面的直径为 D, 铜与钢的弹性模量分别为 E1 与 E2, 线胀系数分别为与, 且。 试问当温度升高 T 时,环的周向正应力为何值。
1 ( 2 3 ) [ ]
即要求
[ ]
由此得相应许用切应力为
[ ]
[ ] 1
9-4
试比较图示正方形棱柱体在下列两种情况下的相当应力 r3 ,弹性常数 E 和 均
为已知。 (a) 棱柱体轴向受压; (b) 棱柱体在刚性方模中轴向受压。
题 9-4 图 (a)解:对于棱柱体轴向受压的情况(见题图 a) ,三个主应力依次为
题 9-13 图 解:内、外环的受力情况示如图 9-13a 和 b。
7
图 9-13 设铜环的轴力(绝对值)为 FN1 ,钢环的轴力为 FN2 ,由图 c 与 d 所示各半个薄圆环的平 衡条件可得
FN1 FN2
变形协调条件为
pD 2
(a)
ΔD1 ΔD2
物理关系为
(b)
FN1 D E1 A1 F D ΔD2 α2 DΔT N2 E 2 A2 ΔD1 α1 DΔT
第九章 强度理论
9-3
已知脆性材料的许用拉应力[]与泊松比,试根据第一与第二强度理论确定纯剪
切时的许用切应力[ ]。 解:纯剪切时的主应力为
1 3 , 2 0
材料力学答案_单辉祖_习题答案第3版.pdf
解:
,
故 因为
故
圈
返回
3-12(3-23) 图示矩形截面钢杆承受一对外力偶矩
切变模量
,试求:
(1)杆内最大切应力的大小、位置和方向;
(2)横截面矩边中点处的切应力;
。已知材料的
(3)杆的单位长度扭转角。
解:
,
,
由表得
MPa
返回
第四章 弯曲应力
4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 下页 4-1(4-1) 试求图示各梁中指定截面上的剪力和弯矩。 解:(a)
解:取消 A 端的多余约束,以 用下杆产生缩短变形。
代之,则
(伸长),在外力作
因为固定端不能移动,故变形协调条件为:
故
故 返回
6-2 图示支架承受荷载
别为
,
各杆由同一材料制成,其横截面面积分
和
。试求各杆的轴力。
解:设想在荷载 F 作用下由于各杆的变形,节点 A 移至 。此时各杆的变形
及 充方程。
如图所示。现求它们之间的几何关系表达式以便建立求内力的补
由附录Ⅳ得
返回 5-5(5-18) 试按迭加原理求图示梁中间铰 C 处的挠度 ,并描出梁挠曲线的 大致形状。已知 EI 为常量。
解:(a)由图 5-18a-1
(b)由图 5-18b-1 = 返回
5-6(5-19)
试按迭加原理求图示平面折杆自由端截面
C 的铅垂位移和水平位移。已知杆各段的横截面面积均为 A,弯曲刚度均为 EI。
及横截面上最大弯曲
得:
由几何关系得: 于是钢尺横截面上的最大正应力为:
返回
第五章 梁弯曲时的位移
5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-1(5-13) 试按迭加原理并利用附录 IV 求解习题 5-4。
工程力学(静力学与材料力学)课后习题答案(单辉祖)
.精品文档,放心下载,放心阅读1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
解:1-2 试画出以下各题中AB 杆的受力图。
(a)B (b)(c)(d)A(e)A(a)(b) A(c)A(d)A(e)(c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。
(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。
解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b)B(c)BF D1-5 试画出以下各题中指定物体的受力图。
(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。
解:(a)(d) FC(e)WB (f)F FBC(c)(d)AT F BAF (b)(e)(b)(c)(d)(e) F ABF ACAA C’CDDB2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-3 水平力F 作用在刚架的B 点,如图所示。
如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)F 1F FDF F AF D211 1.1222D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o的力F ,力的大小等于20KN ,如图所示。
材料力学_单祖辉_第三版课后答案_第九章—第十九章
式中:足标 b 系指翼缘与腹板的交界点;足标 a 系指上翼缘顶边中点。 3.应力计算及强度校核 三个可能的危险点( a , b 和 c )示如图 9-5。
图 9-5
a 点处的正应力和切应力分别为
σ τ FS S z ( a ) I zt M 7.80 104 N 1.545108 Pa 154.5 MPa Wz 5.0510 4 m 2 130103 1.11510 4 N 1.496107 Pa 14.96 MPa 2 5 7.07 10 0.0137m
r 3 2 2 62.7MPa 125.4MPa
结论:该梁满足强度要求。 4.强度校核 依据第三强度理论,上述三点的相当应力依次为
σ r3( a ) σ1 σ 3 [155.9 ( 1.44)] MPa 157.3 MPa σ r3(b ) [154.4 ( 15.05)] MPa 169.5 MPa σ r3( c ) 2 τ 2 62.7 MPa 125.4 MPa
(b)
按照第三强度理论,(a)与(b)两种情况相当应力的比值为
r
σ r3( a ) σ r3(b )
1 μ 1 1 2μ
这表明加刚性方模后对棱柱体的强度有利。
9-5
图示外伸梁,承受载荷 F = 130 kN 作用,许用应力[ ]=170 MPa。试校核梁的强
度。如危险点处于复杂应力状态,采用第三强度理论校核强度。
2
题 9-5 图 解:1.内力分析 由题图可知, B 截面为危险截面,剪力与弯矩均为最大,其值分别为
FS F 130kN, M Fl2 130103 N 0.600m 7.80104 N m
实用文档之工程力学(静力学与材料力学)课后习题答案(单辉祖)
实用文档之"1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
"解:1-2 试画出以下各题中AB 杆的受力图。
(a)B(b)(c)(d)(e)A(a)(b) A(c)A(d)(e)(c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。
(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。
(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)(e)W(f)解:1-5 试画出以下各题中指定物体的受力图。
(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。
(a)D(b) CB(c)BF D(d)F C(e)B (f)F F BC(c)(d)(b)解:(a)(b)(c)(d)ATF BAFCAA C’CD(e)(e)B2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-3 水平力F 作用在刚架的B 点,如图所示。
如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:F 1FFDF F AF D(2) 由力三角形得211 1.1222D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。
工程力学(静力学与材料力学)课后习题答案(单辉祖)doc资料
工程力学(静力学与材料力学)课后习题答案(单辉祖)精品文档,放心下载,放心阅读1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略精品文档,超值下载解:1-2 试画出以下各题中AB杆的受力图。
(a)(b)(c)(d)A(e)(a)(c)(d)A(e)解:1-3 试画出以下各题中AB 梁的受力图。
(d)(e)(c)(a)(b)(a)(b)(c)(a)(c)F (b)1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。
(d) (e)(a)F (b) W(c)(d)DF Bx(a)(b)(c)(d) D(e)W(f)解:1-5 试画出以下各题中指定物体的受力图。
(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。
(a)D(b)CB(c)BF D(d)F C(e)WB (f)F AB F BC(b)解:(a)(b)(c)AF ATF AF BAFCAA C’C(e)(e)DDB2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-3 水平力F 作用在刚架的B 点,如图所示。
如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:F 1F FF F AF D(2) 由力三角形得211 1.1222D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。
材料力学答案单辉祖版全部答案(Word最新版)
材料力学答案单辉祖版全部答案通过整理的材料力学答案单辉祖版全部答案相关文档,渴望对大家有所扶植,感谢观看!其次章轴向拉压应力与材料的力学性能2-1 试画图示各杆的轴力图。
题2-1图解:各杆的轴力图如图2-1所示。
图2-12-2试画图示各杆的轴力图,并指出轴力的最大值。
图a与b所示分布载荷均沿杆轴匀整分布,集度为q。
题2-2图(a)解:由图2-2a(1)可知,轴力图如图2-2a(2)所示,图2-2a (b)解:由图2-2b(2)可知,轴力图如图2-2b(2)所示,图2-2b 2-3图示轴向受拉等截面杆,横截面面积A=500mm2,载荷F=50kN。
试求图示斜截面m-m上的正应力与切应力,以及杆内的最大正应力与最大切应力。
题2-3图解:该拉杆横截面上的正应力为斜截面m-m的方位角故有杆内的最大正应力与最大切应力分别为2-5某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。
试确定材料的弹性模量E、比例极限、屈服极限、强度极限与伸长率,并推断该材料属于何种类型(塑性或脆性材料)。
题2-5 解:由题图可以近似确定所求各量。
,,该材料属于塑性材料。
2-7一圆截面杆,材料的应力-应变曲线如题2-6图所示。
若杆径 d =10mm,杆长l =200mm,杆端承受轴向拉力F = 20kN作用,试计算拉力作用时与卸去后杆的轴向变形。
题2-6图解:查上述曲线,知此时的轴向应变为轴向变形为拉力卸去后,有,故残留轴向变形为2-9图示含圆孔板件,承受轴向载荷F作用。
已知载荷F =32kN,板宽b =100mm,板厚15mm,孔径d =20mm。
试求板件横截面上的最大拉应力(考虑应力集中)。
题2-9图解:依据查应力集中因数曲线,得依据,得2-10图示板件,承受轴向载荷F作用。
已知载荷F=36kN,板宽b1=90mm,b2=60mm,板厚=10mm,孔径d =10mm,圆角半径R =12mm。
试求板件横截面上的最大拉应力(考虑应力集中)。
材料力学-单祖辉-第三版课后答案-(第九章—第十九章)
σr2 σ1 μ(σ2 σ3)[σ] 将上述各主应力值代入上式,得
σr2 [100.25(42.7)] MPa20.7 MPa[σ] 可见,该铸铁构件满足强度要求。
9-12 图示圆球形薄壁容器,其内径为 D,壁厚为 ,承受压强为 p 之内压。试证明
r3 2 4 2 154.52 414.962 MPa 157.4MPa [ ] b 点处的正应力和切应力分别为
3
σ
M yb Iz
7.80104 (0.140 0.0137)N 7.07105 m2
1.393108
Pa 139.3
MPa
τ
FS S z ( b ) Izδ
130103 2.23104 N 7.07105 0.0085m2
(α1
α2
)ΔT
FN1 E1 A1
FN2 E2 A2
σ1t E1
σ2t E2
(d)
由式(a)可知,
σ1t
A1
σ2t
A2,
σ1t σ2t
A2 A1
δ2 δ1
即
σ1t
δ2 δ1
σ2t
(e)
将方程(e)与方程(d)联立求解,得铜环和钢环内的周向正应力依次为
σ1t
(α1 α2 )E1E2δ2 E1δ1 E2δ2
4.82107
Pa 48.2
MPa
该点也处于单向与纯剪切组合应力状态,其相当应力为
r3 139.32 448.22 MPa169.4MPa[ ] c 点处于纯剪切应力状态,其切应力为
τ
FS S z ,max Izδ
材料力学答案第三版单辉祖
第二章 轴向拉压应力与材料的力学性能2-1 试画图示各杆的轴力图。
题2-1图解:各杆的轴力图如图2-1所示。
图2-12-2试画图示各杆的轴力图,并指出轴力的最大值。
图a 与b 所示分布载荷均沿杆轴均匀分布,集度为q 。
题2-2图 (a)解:由图2-2a(1)可知,qx qa x F -=2)(N 轴力图如图2-2a(2)所示,qa F 2m ax ,N =图2-2a (b)解:由图2-2b(2)可知,qa F =Rqa F x F ==R 1N )(22R 2N 2)()(qx qa a x q F x F -=--= 轴力图如图2-2b(2)所示,qa F =m ax N,图2-2b2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2,载荷F =50kN 。
试求图示斜截面m -m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。
题2-3图解:该拉杆横截面上的正应力为100MPa Pa 1000.1m10500N 10508263=⨯=⨯⨯==-A F σ 斜截面m -m 的方位角,ο50-=α故有MPa 3.41)50(cos MPa 100cos 22=-⋅==οασσα MPa 2.49)100sin(MPa 502sin 2-=-⋅==οαστα 杆内的最大正应力与最大切应力分别为MPa 100max ==σσ MPa 502max ==στ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。
试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。
题2-5解:由题图可以近似确定所求各量。
220GPa Pa 102200.001Pa 10220ΔΔ96=⨯=⨯≈=εσEMPa 220p ≈σ, MPa 240s ≈σMPa 440b ≈σ, %7.29≈δ 该材料属于塑性材料。
2-7 一圆截面杆,材料的应力-应变曲线如题2-6图所示。
材料力学参考答案三版单辉祖北航教材
由图可知, 及 的形心位置(竖向)依次为
由
可得 的形心位置为
曲边三角形截面对 轴的惯性矩为
于是得
A-9试计算图示截面对水平形心轴z的惯性矩。
题A-9图
(a)解:1.确定形心位置(到顶边之距为 )
2.计算惯性矩
(b)解:根据教材附录 第4行的公式,可直接计算惯性矩,
(c)解:1.确定形心位置(到大圆水平直径之距为 )
根据转轴公式,
将相关表达式代入上式,得
A-12图示矩形截面,试确定A点的主轴方位及截面对该主轴的惯性矩。
题A-12图
解:坐标取如图A-12,并设边长 , ,于是有
图A-12
依据主轴方位与主惯性矩公式,得
A-13试求图示各截面的主形心轴位置及主形心惯性矩。
题A-13图
(a)解:坐标示如图A-13a, 为截面形心。
图A-13a
由
得
最后得到
(b)解:坐标示如图A-13b,有
图A-13b
由
得
从而得
于是得
图A-2b
且 在 与 之间变化,而
由此可得
A-4试计算图示截面对水平形心轴z的惯性矩。
题A-4图
解:显然,
A-5试计算图a所示正六边形截面对水平形心轴z的惯性矩。
题A-5图
解:由图b可以看出,
所以,ADB对z轴的惯性矩为
中部矩形截面对z轴的的惯性矩为
于是得整个六边形截面对z轴的惯性矩为
A-6试计算图示截面对水平形心轴z的惯性矩。
结果为负值,表示形心 在大圆水平直径上方。
2.计算惯性矩
A-10试证明下列截面的形心轴均为主形心轴,且截面对这些主形心轴的惯性矩均相同。
工程力学(静力学与材料力学)课后习题答案(单辉祖)
1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
解:1-2 试画出以下各题中AB杆的受力图。
A(BF((W(AW(F(F(F(FW(AW(F((B(DB解:1-3 试画出以下各题中AB 梁的受力图。
B(BB(F BF(FB (D B F F(FB(W(B F(A DBB1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。
解:B(BF (W((D(F Bx(DC(D((BC(WB(1-5 试画出以下各题中指定物体的受力图。
(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。
(D CD(B(BF D(F CC(WB(F ABF BC((C(A(解:(a)(b)(c)AF ABF ATF AF BAFCC’CD((e)D DC’2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-3 水平力F 作用在刚架的B 点,如图所示。
如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:FF43xFDF F AF D(2) 由力三角形得211 1.122D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章轴向拉压应力与材料的力学性能2-1试画图示各杆的轴力图。
题2-1图解:各杆的轴力图如图2-1所示。
图2-12-2试画图示各杆的轴力图,并指出轴力的最大值。
图a与b所示分布载荷均沿杆轴均匀分布,集度为q。
题2-2图(a)解:由图2-2a(1)可知,)(qx=2F−qaxN轴力图如图2-2a(2)所示,qa F 2max ,N =图2-2a(b)解:由图2-2b(2)可知, qa F =Rqa F x F ==R 1N )(22R 2N 2)()(qx qa a x q F x F −=−−=轴力图如图2-2b(2)所示,qa F =max N,图2-2b2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2,载荷F =50kN 。
试求图示斜截面m -m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。
题2-3图解:该拉杆横截面上的正应力为100MPa Pa 1000.1m10500N 10508263=⨯=⨯⨯==-A F σ 斜截面m -m 的方位角, 50−=α故有MPa 3.41)50(cos MPa 100cos 22=−⋅== ασσαMPa 2.49)100sin(MPa 502sin 2−=−⋅== αστα杆内的最大正应力与最大切应力分别为MPa 100m ax ==σσMPa 502m ax ==στ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。
试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。
题2-5解:由题图可以近似确定所求各量。
220GPa Pa 102200.001Pa10220ΔΔ96=⨯=⨯≈=εσEMPa 220p ≈σ, MPa 240s ≈σMPa 440b ≈σ, %7.29≈δ该材料属于塑性材料。
2-7 一圆截面杆,材料的应力-应变曲线如题2-6图所示。
若杆径d =10mm ,杆长l =200mm ,杆端承受轴向拉力F = 20kN 作用,试计算拉力作用时与卸去后杆的轴向变形。
题2-6图解:255MPa Pa 1055.2m0.010πN 102048223=⨯=⨯⨯⨯==A F σ 查上述εσ−曲线,知此时的轴向应变为%39.00039.0==ε轴向变形为mm 780m 108700390m)2000(Δ4....l εl =⨯=⨯==−拉力卸去后,有00364.0e =ε, 00026.0p =ε故残留轴向变形为0.052mm m 105.2000260(0.200m)Δ5p =⨯=⨯==−.l εl2-9 图示含圆孔板件,承受轴向载荷F 作用。
已知载荷F =32kN ,板宽b =100mm ,板厚=δ15mm ,孔径d =20mm 。
试求板件横截面上的最大拉应力(考虑应力集中)。
题2-9图解:根据2.0m)100.0m/(020.0/==b d查应力集中因数曲线,得42.2≈K根据 δd b Fσ)(n −=, n max σσK =得64.5MPa Pa 1045.60.015m0.020)(0.100N103242.2)(723n max=⨯⨯⨯⨯=−===-δd b KF K σσ 2-10 图示板件,承受轴向载荷F 作用。
已知载荷F =36kN ,板宽b 1=90mm ,b 2=60mm ,板厚δ=10mm ,孔径d =10mm ,圆角半径R =12mm 。
试求板件横截面上的最大拉应力(考虑应力集中)。
题2-10图解:1.在圆孔处根据111100.090mm 010.01.b d == 查圆孔应力集中因数曲线,得 6.21≈K故有117MPa Pa 1017.1m010.0)010.0090.0(N 10366.2)(82311n 1max1=⨯=⨯⨯⨯===--δd b F K σK σ 2.在圆角处根据1.50.060mm 090.021===b b d D 2.00.060mm 012.02===b R d R 查圆角应力集中因数曲线,得 74.12≈K故有104MPa Pa 1004.10.010m 0.060N 103674.182322n 2max 2=⨯=⨯⨯⨯===δb F K σK σ 3. 结论MPa 117m ax =σ(在圆孔边缘处)2-14图示桁架,承受铅垂载荷F 作用。
设各杆的横截面面积均为A ,许用应力均为[σ],试确定载荷F 的许用值[F ]。
题2-14图解:先后以节点C 与B 为研究对象,求得各杆的轴力分别为 F F 2N1=F F F ==N3N2 根据强度条件,要求 ][2σ≤A F由此得2][][AF σ=2-15 图示桁架,承受载荷F 作用,已知杆的许用应力为[σ]。
若在节点B 和C 的位置保持不变的条件下,试确定使结构重量最轻的α值(即确定节点A 的最佳位置)。
题2-15图解:1.求各杆轴力设杆AB 和BC 的轴力分别为N1F 和N2F ,由节点B 的平衡条件求得αF F αF F ctan sin N2N1==, 2.求重量最轻的α值由强度条件得ασFA σF A ctan ][ ]sin [21==,α结构的总体积为)ctan sin22(][ctan ][cos ]sin [2211αασFl ασFl αl ασF l A l A V +=+⋅=+=由0d d =αV得01cos 32=−α由此得使结构体积最小或重量最轻的α值为4454opt '= α2-16 图示桁架,承受载荷F 作用,已知杆的许用应力为[σ]。
若节点A 和C 间的指定距离为 l ,为使结构重量最轻,试确定θ的最佳值。
题2-16图解:1.求各杆轴力由于结构及受载左右对称,故有θFF F sin 2N2N1== 2.求θ的最佳值 由强度条件可得θσFA A ]sin [221==结构总体积为θσFlθl θσF l A V ]sin2[cos 2]sin [211=⋅== 由 0d d =θV得0cos2=θ 由此得θ的最佳值为45opt =θ2-17图示杆件,承受轴向载荷F 作用。
已知许用应力[σ]=120MPa ,许用切应力[τ]=90MPa ,许用挤压应力[σbs ]=240MPa ,试从强度方面考虑,建立杆径d 、墩头直径D 及其高度h 间的合理比值。
题2-17图解:根据杆件拉伸、挤压与剪切强度,得载荷F 的许用值分别为 ][4π][2t σd F =(a) ][4)(π][bs 22b σd D F −=(b)][π][s τdh F =(c)理想的情况下,s b t ][][][F F F ==在上述条件下,由式(a )与(c )以及式(a )与(b ),分别得d h ][4][τσ=d D bs][][1σσ+= 于是得 1:][4][:][][1::bs τσσσ+=d h D 由此得1:333.0:225.1::=d h D2-18 图示摇臂,承受载荷F 1与F 2作用。
已知载荷F 1=50kN ,F 2=35.4kN ,许用切应力[τ]=100MPa ,许用挤压应力][bs σ=240MPa 。
试确定轴销B 的直径d 。
题2-18图解:1. 求轴销处的支反力由平衡方程0=∑x F 与0=∑y F ,分别得 kN 25cos4521=−= F F F BxkN 25sin452== F F By由此得轴销处的总支反力为kN 435kN 252522.F B =+=2.确定轴销的直径由轴销的剪切强度条件(这里是双面剪)][π22s τd F A F τB≤==得m 0150m 10100104.352][263.τF d B =⨯⨯⨯⨯=≥ππ由轴销的挤压强度条件][bs b bs σd F d F σB≤==δδ 得m 014750m 102400100104.35][63bs ..σδF d B =⨯⨯⨯=≥结论:取轴销直径15mm m 015.0=≥d 。
2-19图示木榫接头,承受轴向载荷F = 50 kN 作用,试求接头的剪切与挤压应力。
题2-19图解:剪应力与挤压应力分别为MPa 5)m 100.0)(m 100.0(N10503=⨯=τMPa 5.12)m 100.0)(m 040.0(N10503bs =⨯=σ2-20图示铆接接头,铆钉与板件的材料相同,许用应力[σ] =160MPa ,许用切应力[τ] = 120 MPa ,许用挤压应力[σbs ] = 340 MPa ,载荷F = 230 kN 。
试校核接头的强度。
题2-20图解:最大拉应力为MPa 3.153)m )(010.0)(020.0170.0(N1023023max=−⨯=σ 最大挤压与剪切应力则分别为MPa 2300.010m)5(0.020m)(N102303bs =⨯=σMPa 4.146π(0.020m)5N 10230423=⨯⨯⨯=τ2-21 图示两根矩形截面木杆,用两块钢板连接在一起,承受轴向载荷F = 45kN 作用。
已知木杆的截面宽度b =250mm ,沿木纹方向的许用拉应力[σ]=6MPa ,许用挤压应力][bs σ=10MPa ,许用切应力[τ]=1MPa 。
试确定钢板的尺寸δ与l 以及木杆的高度h 。
题2-21图解:由拉伸强度条件 ][)2(σδh b Fσ≤−=得0.030m m 10625001045][263=⨯⨯⨯=≥−.σb F δh(a )由挤压强度条件][2bs bs σb δFσ≤=得mm 9m 0090m 1010250.021045][263bs ==⨯⨯⨯⨯=≥.σb F δ (b )由剪切强度条件 ][2τblFτ≤=得mm 90m 0900m 101250.021045][263==⨯⨯⨯⨯=≥.b F l τ 取m 009.0=δ代入式(a ),得48mm m 0480m )009.02030.0(==⨯+≥.h 结论:取mm 9≥δ,mm 90≥l ,mm 48≥h 。
2-22 图示接头,承受轴向载荷F 作用。
已知铆钉直径d =20mm ,许用应力[σ]=160MPa ,许用切应力[τ]=120MPa ,许用挤压应力][bs σ=340MPa 。
板件与铆钉的材料相同。
试计算接头的许用载荷。
题2-22图解:1.考虑板件的拉伸强度 由图2-22所示之轴力图可知,4/3 N2N1F F F F ==,][)(1N11σδd b FA F σ≤−==432kN N 104.32N 10160015.0)02002000(][)(56=⨯=⨯⨯⨯=−≤.-.σδd b F][)2(432N22σδd b FA F σ≤−==512kN N 105.12N 10160015.0)040.0200.0(34][)2(3456=⨯=⨯⨯⨯−=−≤σδd b F图2-222.考虑铆钉的剪切强度 8s F F = ][π842s τd F A F τ≤==302kN N 1002.3N 101200200π2][π25622=⨯=⨯⨯⨯⨯=≤.τd F3.考虑铆钉的挤压强度][ 4 4bs b bs b σδδσ≤===d F d F F FkN 408N 1008.4N 103400.0200.0154][456bs =⨯=⨯⨯⨯⨯=≤σd F δ结论:比较以上四个F 值,得kN 302][=F2-23 图a 所示钢带AB ,用三个直径与材料均相同的铆钉与接头相连接,钢带承受轴向载荷F 作用。