立体几何经典题型汇总

合集下载

立体几何中的常考经典小题全归类【十大题型】(新高考专用)(原卷版)—2025年新高考数学一轮复习

立体几何中的常考经典小题全归类【十大题型】(新高考专用)(原卷版)—2025年新高考数学一轮复习

立体几何中的常考经典小题重难点全归类【十大题型】【题型1 求几何体的体积与表面积】 (4)【题型2 几何体与球的切、接问题】 (6)【题型3 体积、面积、周长、距离的最值与范围问题】 (7)【题型4 空间线段以及线段之和最值问题】 (7)【题型5 空间角问题】 (9)【题型6 空间中的距离问题】 (9)【题型7 翻折问题】 (10)【题型8 立体几何中的截面、交线问题】 (11)【题型9 立体几何中的轨迹问题】 (12)【题型10 以立体几何为载体的新定义、新情景题】 (13)1、立体几何中的常考经典小题全归类立体几何是高考的重点、热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上,需要灵活求解.【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)定义法:利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.(2)补形法:若球面上四点P,A B,C构成的三条线段PA,PB,PC两两垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)截面法:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.3.内切球问题的求解策略:(1)找准切点,通过作过球心的截面来解决.(2)体积分割是求内切球半径的通用方法.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线PA在面外的一点P到面的距离,利用三角形的正弦公式进行求解.,其中是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的截面、交线问题的解题策略】1.立体几何截面问题的求解方法(1)坐标法:所谓坐标法就是通过建立空间直角坐标系,将几何问题转化为坐标运算问题,进行求解.(2)几何法:从几何视角人手,借助立体几何中的线面平行及面面平行的性质定理,找到该截面与相关线、面的交点位置、依次连接这些点,从而得到过三点的完整截面,再进行求解.2.截面、交线问题的解题策略(1)作截面应遵循的三个原则:①在同一平面上的两点可引直线;②凡是相交的直线都要画出它们的交点;③凡是相交的平面都要画出它们的交线.(2)作交线的方法有如下两种:①利用基本事实3作交线;②利用线面平行及面面平行的性质定理去寻找线面平行及面面平行,然后根据性质作出交线.【知识点6 立体几何中的轨迹问题及其解题策略】1.动点轨迹的判断方法出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程.2.立体几何中的轨迹问题的常见解法(1)定义法:根据圆或圆锥曲线的定义推断出动点的轨迹,进而求解轨迹问题.(2)交轨法:若动点满足的几何条件是两动曲线(曲线方程中含有参数)的交点,此时,要首先分析两动曲线的变化,依赖于哪一个变量?设出这个变量为t,求出两动曲线的方程,然后由这两动曲线方程着力消去参数t,化简整理即得动点的轨迹方程,这种求轨迹方程的方法我们称为交轨法.(3)几何法:从几何视角人手,结合立体几何中的线面平行、线面垂直的判定定理和性质定理,找到动点的轨迹,再进行求解.(4)坐标法:坐标法就是通过建立空间直角坐标系,将立体几何中的轨迹问题转化为坐标运算问题,进行求解.(5)向量法:不通过建系,而是利用空间向量的运算、空间向量基本定理等来研究立体几何中的轨迹问题,进行求解.【知识点7 以立体几何为载体的情景题的求解策略】1.以立体几何为载体的几类情景题以立体几何为载体的情景题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.2.以立体几何为载体的情景题的求解思路以立体几何为载体的情景题都跟图形有关,涉及在具体情景下的图形阅读,需要通过数形结合来解决问题.此类问题的求解过程主要分四步:一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【题型1 求几何体的体积与表面积】【例1】(2024·浙江·模拟预测)清代的苏州府被称为天下粮仓,大批量的粮食要从苏州府运送到全国各地.为了核准粮食的数量,苏州府制作了“小嘴大肚”的官斛用以计算粮食的多少,五斗为一斛,而一只官斛的容量恰好为一斛,其形状近似于正四棱台,上口为正方形,内边长为25cm,下底也为正方形,内边长为50cm,斛内高36cm,那么一斗米的体积大约为立方厘米?()A.10500B.12500C.31500D.52500【变式1-1】(2024·江苏连云港·二模)如图是一个圆台的侧面展开图,若两个半圆的半径分别是1和2,则该圆台的体积是()A B C D【变式1-2】(2024·江苏无锡·模拟预测)蒙古包是我国蒙古族牧民居住的房子,适于牧业生产和游牧生活.如图所示的蒙古包由圆柱和圆锥组合而成,其中圆柱的高为2m,底面半径为4m,O是圆柱下底面的圆心.若圆锥的侧面与以O 为球心,半径为4m 的球相切,则圆锥的侧面积为( )A .2B .2C .20πm 2D .40πm 2【变式1-3】(2024·天津和平·二模)如图,一块边长为10cm 的正方形铁片上有四块阴影部分,将这些阴影部分裁下去,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,则这个正四棱锥的内切球(球与正四棱锥各面均有且只有一个公共点)的体积为( )A .94πB .92πC .9πD .323π【题型2 几何体与球的切、接问题】【例2】(2024·新疆乌鲁木齐·三模)三棱锥A ―BCD 中,AD ⊥平面ABC ,∠BAC =60°,AB =1,AC =2,AD =4,则三棱锥A ―BCD 外接球的表面积为( )A .10πB .20πC .25πD .30π【变式2-1】(2024·海南·模拟预测)已知正方体ABCD ―A 1B 1C 1D 1的棱长为2,点N 为侧面四边形CDD 1C 1的中心,则四面体NCB 1C 1的外接球的表面积为( )A .2πB .4πC .6πD .8π【变式2-2】(2024·云南大理·模拟预测)六氟化硫,化学式为SF 6,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体结构(正八面体每个面都是正三角形,可以看作是将两个棱长均相等的正四棱锥将底面粘接在一起的几何体).如图所示,正八面体E ―ABCD ―F 的棱长为a ,此八面体的外接球与内切球的体积之比为( )A.B.C.D.【变式2-3】(2024·安徽安庆·三模)如图,在一个有盖的圆锥容器内放入两个球体,已知该圆锥容器的底)AB.这两个球体的半径之和的最大值为43C.这两个球体的表面积之和的最大值为(6+πD.这两个球体的表面积之和的最大值为10π9【题型3 体积、面积、周长、距离的最值与范围问题】【例3】(2024·广东佛山·模拟预测)如图,在△ABC中,AC边上的高为BH,且BH=AH=3,CH=6,矩形DEFG的顶点D,G分别在边BA,BC上,E,F都在边AC上,以AC为轴将△ABC旋转一周,则矩形DEFG旋转形成的几何体的最大体积为()A .818πB .232πC .12πD .18π【变式3-1】(2024·重庆渝中·模拟预测)在三棱锥P ―ABC 中,AC =BC =PC =2,且AC ⊥BC,PC ⊥平面ABC ,过点P 作截面分别交AC,BC 于点E,F ,且二面角P ―EF ―C 的平面角为60∘,则所得截面PEF 的面积最小值为( )A .43B .83C .23D .1【变式3-2】(2024·河南·一模)已知P A ―BCD 各面所围成的区域内部(不在表面上)一动点,记P 到面ABC ,面ACD ,面BCD ,面ABD 的距离分别为ℎ1,ℎ2,ℎ3,ℎ4,若ℎ3+ℎ4=1,则12ℎ1+8ℎ2的最小值为( )A .2B .252CD .12+【变式3-3】(2024·四川宜宾·三模)已知E ,F 分别是棱长为2的正四面体ABCD 的对棱AD,BC 的中点.过EF 的平面α与正四面体ABCD 相截,得到一个截面多边形τ,则下列说法正确的是( )A .截面多边形τ不可能是平行四边形B .截面多边形τ的周长是定值C .截面多边形τD .截面多边形τ的面积的取值范围是【题型4 空间线段以及线段之和最值问题】【例4】(2024·江西鹰潭·模拟预测)如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC (端点除外)上的动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC ,在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设BK =t ,则t 的取值范围是( )A.B.C.D【变式4-1】(2024·北京·模拟预测)在棱长为1的正方体ABCD―A1B1C1D1中,点F是棱CC1的中点,P是正方体表面上的一点,若D1P⊥AF,则线段D1P长度的最大值是()A BC.3D2【变式4-2】(23-24高三下·陕西西安·阶段练习)在棱长为2的正方体ABCD―A1B1C1D1中,P,Q,R分别为线段BD,B1C,C1D上的动点,则PR+3QR的最小值为()A.B.C.D.5【变式4-3】(2024·陕西商洛·模拟预测)如图,AC为圆锥SO的底面圆O的直径,点B是圆O上异于A,C的动AC=2,则下列结论正确的是()点,SO=12A.圆锥SO的侧面积为B.三棱锥S―ABC的体积的最大值为123C.∠SABD.若AB=BC,E为线段AB上的动点,则SE+CE的最小值为2+1)【题型5 空间角问题】【例5】(2024·辽宁沈阳·模拟预测)已知直三棱柱ABC―A1B1C1中,∠ABC=120°,AB=CC1=2,BC=1,则异面直线AB1与BC1所成角的余弦值为()A B C D【变式5-1】(2024·内蒙古包头·一模)如图,底面ABCD是边长为2的正方形,半圆面APD⊥底面ABCD,点P为圆弧AD上的动点.当三棱锥P―BCD的体积最大时,二面角P―BC―D的余弦值为()A B C D【变式5-2】(2024·四川雅安·一模)如图,在正方体ABCD―A1B1C1D1中,点P是线段AB1上的动点(含端点),点Q是线段AC的中点,设PQ与平面ACD1所成角为θ,则cosθ的最小值是()A.1B C D3【变式5-3】(2024·山东临沂·二模)已知正方体ABCD―A1B1C1D1中,M,N分别为CC1,C1D的中点,则()A.直线MN与A1C B.平面BMN与平面BC1D1C.在BC1上存在点Q,使得B1Q⊥BD1D.在B1D上存在点P,使得PA//平面BMN【题型6 空间中的距离问题】【例6】(2023·贵州六盘水·模拟预测)平面α的一个法向量为n=(1,2,2),A(1,0,0)为α内的一点,则点P(3,1,1)到平面α的距离为()A.1B.2C.3D【变式6-1】(2024·广西来宾·一模)棱长为3的正方体ABCD ―A 1B 1C 1D 1中,点E ,F 满足D 1E =2ED ,⃗BF =2⃗FB 1,则点E 到直线FC 1的距离为( )A BC D 【变式6-2】(2024·福建福州·模拟预测)四棱锥E ―ABCD 的顶点均在球O 的球面上,底面ABCD 为矩形,平面BEC ⊥平面ABCD ,BC =CD =CE =1,BE =2,则O 到平面ADE 的距离为( )A .13B .14CD 【变式6-3】(2024·广西·模拟预测)如图,在棱长为2的正方体ABCD ―A 1B 1C 1D 1中,E 为线段DD 1的中点,F 为线段BB 1的中点.直线FC 1到平面AB 1E 的距离为( ).A B C .23D .13【题型7 翻折问题】【例7】(2024·全国·模拟预测)如图,已知矩形ABCD 中,E 为线段CD 上一动点(不含端点),记∠AED =α,现将△ADE 沿直线AE 翻折到△APE 的位置,记直线CP 与直线AE 所成的角为β,则( )A .cos α>cos βB .cos α<cos βC .cos α>sin βD .sin α<cos β【变式7-1】(2023·浙江台州·二模)已知菱形ABCD 的边长为3,对角线BD 长为5,将△ABD 沿着对角线BD 翻折至△A ′BD ,使得线段A ′C 长为3,则异面直线A ′B 与CD 所成角的余弦值为( )A .34BC .49D .89【变式7-2】(2024·全国·三模)在平面直角坐标系中,P 为圆x 2+y 2=16上的动点,定点A (―3,2).现将y轴左侧半圆所在坐标平面沿y轴翻折,与y轴右侧半圆所在平面成2π的二面角,使点A翻折至A′,P仍在右侧3半圆和折起的左侧半圆上运动,则A′,P两点间距离的取值范围是()A B.[4―C.4―D.【变式7-3】(2024·湖南邵阳·二模)如图所示,在矩形ABCD中,AB=AD=1,AF⊥平面ABCD,且AF=3,点E为线段CD(除端点外)上的动点,沿直线AE将△DAE翻折到△D′AE,则下列说法中正确的是()A.当点E固定在线段CD的某位置时,点D′的运动轨迹为球面B.存在点E,使AB⊥平面D′AEC.点A到平面BCFD.异面直线EF与BC【题型8 立体几何中的截面、交线问题】【例8】(2024·河南新乡·三模)已知球O的半径为5,点A到球心O的距离为3,则过点A的平面α被球O所截的截面面积的最小值是()A.9πB.12πC.16πD.20π【变式8-1】(2024·四川绵阳·模拟预测)在长方体ABCD―A1B1C1D1中,AB=2AD=2AA1,点M是线段C1D1上靠近D1的四等分点,点N是线段CC1的中点,则平面AMN截该长方体所得的截面图形为()A.三角形B.四边形C.五边形D.六边形【变式8-2】(2024·安徽安庆·三模)在正方体ABCD―A1B1C1D1中,点E,F分别为棱AB,AD的中点,过点E,F,C1三点作该正方体的截面,则()A.该截面多边形是四边形B.该截面多边形与棱BB1的交点是棱BB1的一个三等分点C.A1C⊥平面C1EFD.平面AB1D1//平面C1EF【变式8-3】(2024·河南·模拟预测)如图,已知直三棱柱ABC―A1B1C1的体积为4,AC⊥BC,AC=BC=CC1,D为B1C1的中点,E为线段AC上的动点(含端点),则平面BDE截直三棱柱ABC―A1B1 C1所得的截面面积的取值范围为()A.B.3,C.D.【题型9 立体几何中的轨迹问题】【例9】(2024·陕西商洛·ABC―A1B1C1的底面边长是2,侧棱长是M为A1C1的中点,N是侧面BCC1B1内的动点,且MN//平面ABC1,则点N的轨迹的长度为()A B.2C D.4【变式9-1】(2024·浙江温州·一模)如图,所有棱长都为1的正三棱柱ABC―A1B1C1,BE=2EC,点F是侧棱AA1上的动点,且AF=2CG,H为线段FB上的动点,直线CH∩平面AEG=M,则点M的轨迹为()A.三角形(含内部)B.矩形(含内部)C.圆柱面的一部分D.球面的一部分【变式9-2】(2024·四川成都·三模)在棱长为5的正方体ABCD―A1B1C1D1中,Q是DD1中点,点P在正方体的内切球的球面上运动,且CP⊥AQ,则点P的轨迹长度为()A B.C.5π4D.5π【变式9-3】(2024·四川成都·二模)在所有棱长均相等的直四棱柱ABCD―A1B1C1D1中,∠BAD=60∘,点P在四边形AA1B1B内(含边界)运动.当C1P=1时,点P的轨迹长度为2π3,则该四棱柱的表面积为()A.16+B.8+C.4+D.【题型10 以立体几何为载体的新定义、新情景题】【例10】(2024·天津北辰·三模)中国载人航天技术发展日新月异.目前,世界上只有3个国家能够独立开展载人航天活动.从神话“嫦娥奔月”到古代“万户飞天”,从诗词“九天揽月”到壁画“仕女飞天”……千百年来,中国人以不同的方式表达着对未知领域的探索与创新.如图,可视为类似火箭整流罩的一个容器,其内部可以看成由一个圆锥和一个圆柱组合而成的几何体.圆柱和圆锥的底面半径均为2,圆柱的高为6,圆锥的高为4.若将其内部注入液体,已知液面高度为7,则该容器中液体的体积为()A.325π12B.76π3C.215π9D.325π16【变式10-1】(2024·安徽池州·模拟预测)古希腊数学家欧几里德在其著作《几何原本》中定义了相似圆锥:两个圆锥的高与底面的直径之比相等时,则称这两个圆锥为相似圆锥.已知圆锥SO的底面圆O的半径为3,其母线长为5.若圆锥S′O′与圆锥SO是相似圆锥,且其高为8,则圆锥S′O′的侧面积为()A.15πB.60πC.96πD.120π【变式10-2】(2024·广东江门·模拟预测)沙漏也叫做沙钟,是一种测量时间的装置.沙漏由两个完全一样的圆锥和一个狭窄的连接管道组成,通过充满了沙子的玻璃圆锥从上面穿过狭窄的管道流入底部玻璃圆锥所需要的时间来对时间进行测量西方发现最早的沙漏大约在公元1100年,比我国的沙漏出现要晚.时钟问世之后,沙漏完成了它的历史使命.现代沙漏可以用来助眠.经科学认证,人类的健康入睡时间是15分钟,沙漏式伴睡灯便是一个15分钟的计时器.它将古老的计时沙漏与现代夜灯巧妙结合,随着沙粒从缝隙中滑下,下部的灯光逐渐被沙子掩埋,直到15分钟后沙粒全部流光,柔和的灯光完全覆盖.就这样,宁静的夜晚,听着沙粒窸窸窣窣的声音,仿佛一首缓缓流动的安眠曲如图,一件沙漏工艺品,上下两部分可近似看成完全一样的圆锥,测得圆锥底面圆的直径为10cm,沙漏的高(下底面圆心的距离)为8cm,通过圆锥的顶点作沙漏截面,则截面面积最大为()A.40cm2B.41cm2C.42cm2D.43cm2【变式10-3】(23-24高二上·河南·阶段练习)《瀑布》(图1)是埃舍尔为人所知的作品.画面两座高塔各有一个几何体,右塔上的几何体首次出现,后称“埃舍尔多面体”(图2).埃舍尔多面体可以用两两垂直且中心重合的三个正方形构造,定义这三个正方形A n B n C n D n(n=1,2,3)的顶点为“框架点”,定义两正方形的交线为“极轴”,其端点为“极点”,记为P n,Q n,将极点P1,Q1分别与正方形A2B2C2D2的顶点连线,取其中点记为E m,F m(m=1,2,3,4),如图3.埃舍尔多面体可视部分是由12个四棱锥构成的,这些四棱锥顶点均为“框架点”,底面四边形由两个“极点”与两个“中点”构成,为了便于理解,在图4中构造了其中两个四棱锥A1―P1E1P2E2与A2―P2E1P3F1,则直线Q1B2与平面A1E2P2所成角的正弦值为()A B C D .23一、单选题1.(2024·贵州·模拟预测)为了美化广场环境,县政府计划定购一批石墩.已知这批石墩可以看作是一个圆台和一个圆柱拼接而成,其轴截面如下图所示,其中AB =2CE =2EF =40cm ,AC =,则该石墩的体积为( )A .10000π3cm 3B .11000π3cm 3C .4000πcm 3D .13000π3cm 32.(2024·江苏南京·模拟预测)已知SO 1=2,底面半径O 1A =4的圆锥内接于球O ,则经过S 和O 1A 中点的平面截球O 所得截面面积的最小值为( )A .252πB .253πC .254πD .5π3.(2024·陕西榆林·模拟预测)如图,△ABC 是边长为4的正三角形,D 是BC 的中点,沿AD 将△ABC 折叠,形成三棱锥A ―BCD .当二面角B ―AD ―C 为直二面角时,三棱锥A ―BCD 外接球的体积为( )A .5πB .20πCD 4.(2024·河南·二模)已知四面体ABCD 的各个面均为全等的等腰三角形,且CA =CB =2AB =4.设E 为空间内一点,且A,B,C,D,E 五点在同一个球面上,若AE =E 的轨迹长度为( )A .πB .2πC .3πD .4π5.(2024·河南·模拟预测)为体现市民参与城市建设、共建共享公园城市的热情,同时搭建城市共建共享平台,彰显城市的发展温度,某市在中心公园开放长椅赠送点位,接受市民赠送的休闲长椅.其中观景草坪上一架长椅因其造型简单别致,颇受人们喜欢(如图1).已知AB 和CD 是圆O 的两条互相垂直的直径,将平面ABC 沿AB 翻折至平面ABC ′,使得平面ABC ′⊥平面ABD (如图2)此时直线AB 与平面C ′BD 所成角的正弦值为( )A .13BCD 6.(2024·安徽·一模)在平行六面体ABCD ―A 1B 1C 1D 1中,已知AB =AD =AA 1=1,∠A 1AB =∠A 1AD =∠BAD =60°,则下列选项中错误的一项是( )A.直线A1C与BD所成的角为90°B.线段A1CC.直线A1C与BB1所成的角为90°D.直线A1C与平面ABCD7.(2024·江苏盐城·模拟预测)棱长为2的正方体ABCD―A1B1C1D1中,设点P为底面A1B1C1D1内(含边界)的动点,则点A,C1到平面PBD距离之和的最小值为()A B C D8.(2024·四川宜宾·模拟预测)已知E,F分别是棱长为2的正四面体ABCD的对棱AD,BC的中点.过EF的平面α与正四面体ABCD相截,得到一个截面多边形τ,则正确的选项是()①截面多边形τ可能是三角形或四边形.②截面多边形τ周长的取值范围是+.③截面多边形τ面积的取值范围是[1,.④当截面多边形τ.A.①③B.②④C.①②③D.①③④二、多选题9.(2024·江苏扬州·模拟预测)如图,一个棱长为6的透明的正方体容器(记为正方体ABCD―A1B1C1D1)放置在水平面α的上方,点A恰在平面α内,点B到平面α的距离为2,若容器中装有水,静止时水面与表面AA1D1D的交线与A1D的夹角为0,记水面到平面α的距离为d,则()A.平面ABC1D1⊥平面αB.点D1到平面α的距离为8C.当d∈(2,8)时,水面的形状是四边形D.当d=7时,所装的水的体积为747410.(2024·全国·二模)已知正方体ABCD―A1B1C1D1外接球的体积为是空间中的一点,则下列命题正确的是()A.若点P在正方体表面上运动,且AP=2,则点P轨迹的长度为2πB.若P是棱C1D1上的点(不包括点C1,D1),则直线AP与CC1是异面直线C.若点P在线段BC1上运动,则始终有D1P⊥A1DD.若点P在线段BC1上运动,则三棱锥A―B1PD1体积为定值11.(2024·湖南·三模)如图,在棱长为2的正方体ABCD―A1B1C1D1中,点P是正方体的上底面A1B1C1D1内(不含边界)的动点,点Q是棱BC的中点,则以下命题正确的是()A.三棱锥Q―PCD的体积是定值B.存在点P,使得PQ与AA160°C.直线PQ与平面A1ADD1所成角的正弦值的取值范围为0,D.若PD1=PQ,则P三、填空题12.(2024·广东·一模)在正方体ABCD―A1B1C1D1中,点P、Q分别在A1B1、C1D1上,且A1P=2PB1,C1Q=2QD1,则异面直线BP与DQ所成角的余弦值为.13.(2024·新疆·二模)我国古代数学著作《九章算术》中记载了一种称为“羡除”的几何体,该几何体的一种结构是三个面均为梯形,其他两面为三角形的五面体.如图所示,四边形ABCD,ABFE,CDEF均为等腰梯形,AB//CD//EF,AB=6,CD=8,EF=10,EF到平面ABCD的距离为5,CD与AB间的距离为10,则这个羡除的体积V=.14.(2024·北京大兴·三模)在棱长为6的正方体ABCD―A1B1C1D1中,E为棱AA1上一动点,且不与端点重合,F,G分别为D1C1,B1C1的中点,给出下列四个结论:①平面ECC1⊥平面EFG;②平面EFG可能经过BB1的三等分点;③在线段AC上的任意点H(不与端点重合),存在点E使得A1H⊥平面EFG;④若E为棱AA1的中点,则平面EFG与正方体所形成的截面为五边形,且周长为其中所有正确结论的序号是.四、解答题15.(2024·四川成都·模拟预测)如图,在四棱锥E―ABCD中,AB//CD,∠BAD=60°,AB=1,AD=CD=2,BE⊥CD.(1)证明:平面BDE⊥平面ABCD;(2)若AD⊥DE,DE=F为CE中点,求三棱锥F―ABE的体积.。

高三高考数学总复习《立体几何》题型归纳与汇总

高三高考数学总复习《立体几何》题型归纳与汇总

(3)当 PA// 平面 BDE 时, PA 平面 PAC ,且平面 PAC 平面 BDE DE ,可得 PA//DE .由 D 是 AC 边的中 点知, E 为 PC 边的中点.故而 ED 1 PA 1, ED∥PA ,因为 PA 平面 ABC ,所以 ED 平面 BDC .
2
由 AB BC 2 ,AB BC ,D 为 AC 边中点知,BD CD 2. 又 BD AC ,有 BD DC ,即 BDC 90.
3 【解析】(1)∵ PA PD, N 为 AD 的中点,∴ PN AD, ∵底面 ABCD为菱形, BAD 60 ,∴ BN AD, ∵ PN BN N ,∴ AD 平面 PNB . (2)∵ PN PD AD 2 , ∴ PN NB 3 , ∵平面 PAD 平面 ABCD,平面 PAD 平面 ABCD AD , PN AD, ∴ PN 平面 ABCD, ∴ PN NB ,
【易错点】 外接球球心位置不好找 【思维点拨】 应用补形法找外接球球心的位置
题型四 立体几何的计算
例 1 如图,已知三棱锥的底面是直角三角形,直角 边边长分别为 3 和 4 ,过直角顶点的侧棱长为 4 ,且 垂直于底面,该三棱锥的主视图是 ( )
【答案】 B 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原 点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B.
以 PA BD . (2)因为 AB BC , AB BC , D 为线段 AC 的中点,所以在等腰 Rt△ABC 中, BD AC .又 由(1)可知, PA BD,PA AC A,所以 BD 平面 PAC .由 E 为线段 PC 上一点,则 DE 平面 PAC ,

立体几何7大题型汇编

立体几何7大题型汇编

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

立体几何大题15种题型全归纳

立体几何大题15种题型全归纳

【题型一】 平行1:四边形法证线面平行【典例分析】如图,在正方体中,E ,F 分别是,CD 的中点.(1)求证:平面;(2)求异面直线与所成角的余弦值.【答案】(1)证明见解析;(2(1)在正方体中,取中点G ,连接FG ,,如图,而F 是CD 的中点,则,,又E 是的中点,则,, 因此,,,四边形是平行四边形,有,而平面,平面,平面.【经验总结】基本规律1.利用平移法做出平行四边形2.利用中位线做出平行四边形【变式演练】1.如图所示,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,,,,E 是PB 的中点.(1)求证:平面PAD ;(2)若,求三棱锥P -ACE 的体积.【答案】(1)证明见解析(2) 【分析】(1)取PA 的中点F ,连接EF ,DF ,利用平行四边形证明,再由线面平行的判定定理即可得证;(2)根据等体积法知,即可由棱锥体积公式求解.(1)取PA 的中点F ,连接EF ,DF ,∵点E ,F 分别为PB ,PA 的中点,1111ABCD A B C D -1AA //EF 11A CD 1ED 1A C 1111ABCD A B C D -1CD 1GA 1//FG DD 112FG DD =1AA 11//A E DD 1112A E DD =1//A E FG 1A E FG =1FGA E 1//EF GA EF ⊄11A CD 1GA ⊂11A CD //EF 11A CD AB AD ⊥//AB CD 222AB AD CD ===//CE 2PC =13//EC DF P ACE E ACP V V --=∴,,∴四边形EFDC 是平行四边形,∴,又∵平面PAD ,平面PAD ,∴平面PAD ;2.如图,在四棱锥中,面,,且,,,,为的中点.(1)求证:平面;(2)求平面与平面所成二面角的余弦值;(3)在线段上是否存在一点,使得直线与平面若存在求出的值,若不存在说明理由. 【答案】(1)证明见解析(2)(3)存在, (1)证明:取CP 中点F ,连接NF 、BF ,因为F ,N 分为PC ,PD 的中点,则,且, 又,且,,所以四边形NABF 是平行四边形, ,又面PBC ,面PBC 。

新高一立体几何经典题型

新高一立体几何经典题型

新高一立体几何经典题型立体几何是高中数学中的一个重要分支,它涉及到空间中的点、线、面及其相互关系。

对于新高一学生来说,掌握立体几何的基本概念、性质和解题方法是十分必要的。

以下是一些立体几何的经典题型及其解题思路:1. 空间直线与平面的位置关系:- 直线与平面平行:证明直线与平面内的所有直线都平行。

- 直线与平面垂直:证明直线与平面内的任意直线垂直。

- 直线在平面内:证明直线与平面内的两条相交直线都相交。

2. 空间直线与直线的位置关系:- 两直线平行:证明它们与第三条直线平行或它们确定的平面相互平行。

- 两直线相交:证明它们不平行且共面。

- 两直线异面:证明它们既不平行也不相交。

3. 空间平面与平面的位置关系:- 平面与平面平行:证明它们之间的所有直线都平行。

- 平面与平面垂直:证明它们之间的所有直线都垂直。

4. 空间几何体的体积和表面积计算:- 长方体、正方体、圆柱、圆锥、球等几何体的体积和表面积公式。

- 利用勾股定理、相似三角形等方法解决实际问题。

5. 空间几何体的截面问题:- 截面的形状:直线与几何体相交,求截面的形状,如三角形、矩形等。

- 截面的性质:如截面与几何体的边、面的关系。

6. 空间几何体的对角线问题:- 求几何体对角线的长度,通常需要利用空间向量和余弦定理。

7. 空间向量在立体几何中的应用:- 利用空间向量证明线面平行、垂直。

- 利用空间向量求点到平面的距离、线段的长度等。

8. 立体几何中的最值问题:- 求几何体中的最大角度、最小距离等,通常需要利用三角函数和空间向量。

9. 立体几何的证明题:- 利用已知条件和几何性质,通过逻辑推理证明几何命题。

10. 立体几何的组合体问题:- 将多个基本几何体组合,分析其空间关系和性质。

解决立体几何问题时,需要具备良好的空间想象能力,同时熟练运用几何定理和公式。

在解题过程中,要注意审题,明确已知条件和求解目标,合理运用辅助线和辅助面,逐步推导出结论。

(完整版)高中数学立体几何经典常考题型

(完整版)高中数学立体几何经典常考题型

高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明 ∵OB=OC,又∵∠ABC=,∴∠OCB=,∴∠BOC=.⊥∴CO AB.又PO⊥平面ABC,⊥OC⊂平面ABC,∴PO OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA=1,则PO=OB=OC=2,DA=1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD=(0,-1,-1),BC=(2,-2,0),BD=(0,-3,1).设平面BDC的一个法向量为n=(x,y,z),∴∴令y=1,则x=1,z=3,∴n=(1,1,3).设PD与平面BDC所成的角为θ,则sin θ===.即直线PD与平面BDC所成角的正弦值为.【类题通法】利用向量求空间角的步骤间标.第一步:建立空直角坐系第二步:确定点的坐标.线)坐标.第三步:求向量(直的方向向量、平面的法向量计夹(或函数值).第四步:算向量的角将夹转为间.第五步:向量角化所求的空角查关键错题规.第六步:反思回顾.看点、易点和答范【变式训练】 如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角EA1DB1的余弦值.(1)证明 由正方形的性质可知A1B1AB DC∥∥,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C A∥1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB,AD,AA1为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E=,A1D=(0,1,-1),由n1⊥A1E,n1⊥A1D得r1,s1,t1应满足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1=(1,0,0),A1D=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角EA1DB1的余弦值为==.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,所以AB⊥平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.(2)解 取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD的一个法向量为n=(x,y,z),则即令z=2,则x=1,y=-2.所以n=(1,-2,2).又PB=(1,1,-1),所以cos〈n,PB〉==-.所以直线PB与平面PCD所成角的正弦值为.(3)解 设M是棱P A上一点,则存在λ∈0,1],使得AM=λAP.因此点M(0,1-λ,λ),BM=(-1,-λ,λ).因为BM⊄平面PCD,所以要使BM∥平面PCD,则BM·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.所以在棱P A上存在点M,使得BM∥平面PCD,此时=.应设,把要成立的作件结论当条,据此列方对断问题,先假存在【类题通法】(1)于存在判型的求解规围内”等.标,是否有定范的解程或方程组,把“是否存在”化问题转为“点的坐是否有解对问题,通常借助向量,引进参数,合已知和列出等式综结论,解出参数.(2)于位置探究型【变式训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠P AD=45°,E为P A的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明 取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN===6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∥且EM=CD,四边形CDEM为平行四边形,∴EM CD∥∵⊂平面PBC,DE⊄平面PBC,∴DE CM.CM∴DE∥平面BPC.(2)解 由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8).假设AB上存在一点F使CF⊥BD,设点F坐标为(8,t,0),则CF=(8,t-6,0),DB=(8,12,0),由CF·DB=0得t=.又平面DPC的一个法向量为m=(1,0,0),设平面FPC的法向量为n=(x,y,z).又PC=(0,6,-8),FC=.由得即不妨令y=12,有n=(8,12,9).则cos〈n,m〉===.又由图可知,该二面角为锐二面角,故二面角F-PC-D的余弦值为.题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD 上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.(1)证明:D′H⊥平面ABCD;(2)求二面角B-D′A-C的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD .又由AE =CF 得=,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO ==4.由EF ∥AC 得==.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF 的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB =(3,-4,0),AC =(6,0,0),AD′=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量,则即所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量,则即所以可取n =(0,-3,1).于是cos 〈m ,n 〉===-.sin 〈m ,n 〉=.因此二面角B -D ′A -C 的正弦值是.【类题通法】立体几何中的折叠问题,是翻折前后形中面位置系和度量系的化关键搞清图线关关变情况,一般地翻折后在同一平面上的性不生化还个质发变,不在同一平面上的性生化个质发变.【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC.又CD∥BE,所以CD⊥平面A1OC.(2)解 由已知,平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.如图,以O为原点,OB,OC,OA1分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B,E,A1,C,得BC=,A1C=,CD=BE=(-,0,0).设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,则得取n1=(1,1,1);得取n2=(0,1,1),从而cos θ=|cos〈n1,n2〉|==,即平面A1BC与平面A1CD夹角的余弦值为.。

高考数学立体几何题型大全总结

高考数学立体几何题型大全总结

高考数学立体几何题型大全总结1. 三角锥的体积公式
体积公式:V=1/3∗S∗h
其中,S为底面积,h为高。

2. 三棱锥的体积公式
体积公式:V=1/3∗S∗h
其中,S为底面积,h为高。

3. 四棱锥的体积公式
体积公式:V=1/3∗S∗h
其中,S为底面积,h为高。

4. 圆锥的体积公式
体积公式:V=1/3∗π∗r2∗h
其中,r为圆锥的半径,h为圆锥的高。

5. 球的体积公式
体积公式:V=4/3∗π∗r3
其中,r为球的半径。

6. 圆柱的体积公式
体积公式:V=π∗r2∗h
其中,r为圆柱的半径,h为圆柱的高。

7. 圆台的体积公式
体积公式:V=1/3∗π∗h∗(r12+r22+r1r2)
其中,r1,r2为底面半径,h为圆台高。

8. 空间向量的共线与垂直判定公式
共线判定公式:
如果两个向量a,b共线,则有a=kb,其中k为一个实数。

垂直判定公式:
如果两个向量a,b垂直,则有a·b=0,其中“·”表示向量的数量积。

9. 空间向量的平面垂直判定公式
若向量a与平面P垂直,则a在平面P上的投影为零向量。

10. 空间向量的平面共面判定公式
若向量a和向量b在同一平面上,则a和b的向量积c在该平面内。

11. 空间中两直线相交的条件
两直线相交的条件是它们至少有一个公共点,并且既不平行也不重合。

高考数学立体几何题型全归纳

高考数学立体几何题型全归纳

高考数学立体几何题型全归纳一、空间几何体的结构特征1. 一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm),则该三棱柱的表面积为()正视图:是一个矩形,长为2,高为√(3);侧视图:是一个矩形,长为2,高为1;俯视图:是一个正三角形,边长为2。

解析:底面正三角形的边长a = 2,底面积S_{底}=(√(3))/(4)a^2=(√(3))/(4)×2^2=√(3)。

侧棱长h = 1,三个侧面的面积S_{侧}=3×2×1 = 6。

所以表面积S=2S_{底}+S_{侧}=2√(3)+6。

2. 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()正视图:是一个梯形,上底为1,下底为2,高为2;侧视图:是一个矩形,长为2,宽为1;俯视图:是一个矩形,长为2,宽为1。

解析:该几何体是一个四棱台。

上底面积S_{1}=1×1 = 1,下底面积S_{2}=2×2=4,高h = 2。

根据四棱台体积公式V=(1)/(3)h(S_{1}+S_{2}+√(S_{1)S_{2}})=(1)/(3)×2×(1 + 4+√(1×4))=(14)/(3)二、空间几何体的表面积与体积3. 已知球的直径SC = 4,A,B是该球球面上的两点,AB=√(3),∠ ASC=∠BSC = 30^∘,则棱锥S - ABC的体积为()解析:设球心为O,因为SC是球的直径,∠ ASC=∠ BSC = 30^∘所以SA=SB = 2√(3),AO = BO=√(3)又AB=√(3),所以 AOB是等边三角形,S_{ AOB}=(√(3))/(4)×(√(3))^2=(3√(3))/(4)V_{S - ABC}=V_{S - AOB}+V_{C - AOB}=(1)/(3)× S_{ AOB}×(SO + CO)=(1)/(3)×(3√(3))/(4)×2=√(3)4. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()正视图:是一个正方形,右上角缺了一个等腰直角三角形;侧视图:是一个正方形,右上角缺了一个等腰直角三角形;俯视图:是一个正方形,右上角缺了一个小正方形。

立体几何经典题型

立体几何经典题型

m •n=cos p =cos<m ,n >= mn 立体几何经典题型cos 0=cos<AB ,CD >= AB -CDABCDcos 01.线线角0e 八兀03(异面直线e e<兀103L2)1..(2010天津)如图,在五面体ABCDEF中,四边形ADEF是正方形,FA,平面ABCD,BC〃AD,CD=1,AD=2<2,/BAD=Z CDA=45(I)求异面直线CE与AF所成角的余弦值;(II)证明CD,平面ABF;(III)求二面角B—EF—A的正切值.C1.线面角e e*一1.(2018全国卷I)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF1BF.(1)证明:平面PEF1平面ABFD;(2)求DP与平面ABFD所成角的正弦值.题型二:空间距离1.两点间的距离:一z 21 2 1 2 1 AB =Q -x I +(y -y )+ 2.点到线的距离【面积】 AB -nAB -n[向量法]d =AB cos <n ,AB >=AB =AB -nn 【几何法】等面积法3.点到面的距离【体积】AB -nAB -n [向量法]d =AB cos <n ,AB >=AB =AB -nn 【几何法】等体积法1.点到面的距离例(2014新课标2)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA,平面ABCD,E为PD的中点.(I)证明:PB〃平面AEC;(II)设二面角D—AE—C为60°,AP=i,AD=3,求三棱锥E—ACD的体积.题型三:探索性问题方法:共线向量的基本定理b二九a,用一个变量表示一个坐标1.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,NBCD=135°,侧面PAB,底面ABCD,NBAP=90°, AB二AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.(I)求证:EF,平面PAC;(II)若M为PD的中点,求证:ME〃平面PAB;(III)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求到的值.PD2.在四棱锥P-ABCD中,侧面PCD1底面ABCDPD1CD,E为PC中点,底面ABCD是直角梯形AB//CD,ZADC=90,AB=AD=PD=1,CD=2.(1)求证:BE//平面PAD;(2)求证:BC1平面PBD;(3)在线段PC上是否存在一点Q,使得二面角Q—BD—P为PQ45?若存在,求的值;若不存在,请述明理由P C\PA B3.如图,在四棱锥P-ABCD中,PB±底面ABCD,底面ABCD为梯形,ADBC,AD±AB,且PB=AB=AD=3,BC=1.1(I)若点F为PD上一点且PF=3PD,证明:CF平面PAB;P(II)求二面角B—PD—A的大小;\、T F\(III)在线段PD上是否存在一点M,使得CM±PA?若存在,求出PM的长;若不存在,说明理由.。

2023届高考数学专项练习立体几何解答题最全归纳总结含答案

2023届高考数学专项练习立体几何解答题最全归纳总结含答案

2023届高考数学专项练习立体几何解答题最全归纳总结【题型归纳目录】题型一:非常规空间几何体为载体题型二:立体几何存在性问题题型三:立体几何折叠问题题型四:立体几何作图问题题型五:立体几何建系繁琐问题题型六:两角相等(构造全等)的立体几何问题题型七:利用传统方法找几何关系建系题型八:空间中的点不好求题型九:创新定义【典例例题】题型一:非常规空间几何体为载体例1.如图,P为圆锥的顶点,O为圆锥底面的圆心,圆锥的底面直径AB=4,母线PH=22,M是PB的中点,四边形OBCH为正方形.(1)设平面POH∩平面PBC=l,证明:l∥BC;(2)设D为OH的中点,N是线段CD上的一个点,当MN与平面PAB所成角最大时,求MN的长.例2.如图所示,圆锥的底面半径为4,侧面积为162π,线段AB为圆锥底面⊙O的直径,C在线段AB上,且BC=3CA,点D是以BC为直径的圆上一动点;(1)当CD=CO时,证明:平面PAD⊥平面POD(2)当三棱锥P-BCD的体积最大时,求二面角B-PD-A的余弦值.例3.如图,圆锥PO 的母线长为6,△ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =23,∠ABC =60°.(1)证明:PA ⊥PC ;(2)设点Q 满足OQ =λOP ,其中λ∈0,1 ,且二面角O -QB -C 的大小为60°,求λ的值.例4.如图,D 为圆锥的顶点,O 为圆锥底面的圆心,AB 为底面直径,C 为底面圆周上一点,DA =AC =BC =2,四边形DOAE 为矩形,点F 在BC 上,且DF ⎳平面EAC .(1)请判断点F 的位置并说明理由;(2)平面DFO 将多面体DBCAE 分成两部分,求体积较大部分几何体的体积.例5.如图,在直角△POA 中,PO ⊥OA ,PO =2OA ,将△POA 绕边PO 旋转到△POB 的位置,使∠AOB =90°,得到圆锥的一部分,点C 为AB的中点.(1)求证:PC ⊥AB ;(2)设直线PC 与平面PAB 所成的角为φ,求sin φ..例6.如图,四边形ABCD 为圆柱O 1O 2的轴截面,EF 是该圆柱的一条母线,EF =2EA ,G 是AD 的中点.(1)证明:AF ⊥平面EBG ;(2)若BE =3EA ,求二面角E -BG -A 的正弦值.例7.例7.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求证BP ⊥BE ;(2)当AB =3,AD =2时,求二面角E -AG -C 的大小.例8.如图,四边形ABCD 是一个半圆柱的轴截面,E ,F 分别是弧DC ,AB 上的一点,EF ∥AD ,点H 为线段AD 的中点,且AB =AD =4,∠FAB =30°,点G 为线段CE 上一动点.(1)试确定点G 的位置,使DG ⎳平面CFH ,并给予证明;(2)求二面角C -HF -E 的大小.例9.坐落于武汉市江汉区的汉口东正教堂是中国南方唯一的拜占庭式建筑,象征着中西文化的有机融合.拜占庭建筑创造了将穹顶支承于独立方柱上的结构方法和与之相呼应的集中式建筑形制,其主体部分由一圆柱与其上方一半球所构成,如图所示.其中O 是下底面圆心,A ,B ,C 是⊙O 上三点,A 1,B 1,C 1是上底面对应的三点.且A ,O ,C 共线,AC ⊥OB ,C 1E =EC ,B 1F =13FB ,AE 与OF 所成角的余弦值为36565.(1)若E 到平面A 1BC 的距离为233,求⊙O 的半径.(2)在(1)的条件下,已知P 为半球面上的动点,且AP =210,求P 点轨迹在球面上围成的面积.例10.如图,ABCD 为圆柱OO 的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB =BC =6,当三棱锥B -DEF 的体积最大时,求二面角B -DF -E 的正弦值.例11.如图,O1,O分别是圆台上、下底的圆心,AB为圆O的直径,以OB为直径在底面内作圆E,C为圆O的直径AB所对弧的中点,连接BC交圆E于点D,AA1,BB1,CC1为圆台的母线,AB=2A1B1=8.(1)证明;C1D⎳平面OBB1O1;(2)若二面角C1-BC-O为π3,求O1D与平面AC1D所成角的正弦值.例12.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体ABCD-A1B1C1D1中,AB=4,AD=AA1=2,圆台下底圆心O为AB的中点,直径为2,圆与直线AB交于E,F,圆台上底的圆心O1在A1B1上,直径为1.(1)求A1C与平面A1ED所成角的正弦值;(2)圆台上底圆周上是否存在一点P使得FP⊥AC1,若存在,求点P到直线A1B1的距离,若不存在则说明理由.题型二:立体几何存在性问题例13.如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥A-PBC的体积;(2)在线段PC上是否存在一点M,使得BM⊥AC?若存在,求MCPM的值,若不存在,请说明理由.例14.已知四棱锥P-ABCD中,底面ABCD是矩形,且AD=2AB,△PAD是正三角形,CD⊥平面PAD,E、F、G、O分别是PC、PD、BC、AD的中点.(1)求平面EFG与平面ABCD所成的锐二面角的大小;(2)线段PA上是否存在点M,使得直线GM与平面EFG所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.例15.已知三棱柱ABC-A1B1C1中,∠ACB=90°,A1B⊥AC1,AC=AA1=4,BC=2.(1)求证:平面A1ACC1⊥平面ABC;(2)若∠A1AC=60°,在线段AC上是否存在一点P,使二面角B-A1P-C的平面角的余弦值为34若存在,确定点P的位置;若不存在,说明理由.例16.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD⎳BC,AD⊥CD,且AD=CD,BC=2CD,PA=2AD.(1)证明:AB⊥PC;(2)在线段PD上是否存在一点M,使得二面角M-AC-D的余弦值为1717,若存在,求BM与PC所成角的余弦值;若不存在,请说明理由.例17.如图,△ABC是边长为6的正三角形,点E,F,N分别在边AB,AC,BC上,且AE=AF=BN=4,M 为BC边的中点,AM交EF于点O,沿EF将三角形AEF折到DEF的位置,使DM=15.(1)证明:平面DEF⊥平面BEFC;(2)试探究在线段DM上是否存在点P,使二面角P-EN-B的大小为60°?若存在,求出DPPM的值;若不存在,请说明理由.例18.图1是直角梯形ABCD ,AB ⎳CD ,∠D =90∘,AB =2,DC =3,AD =3,CE =2ED ,以BE 为折痕将△BCE 折起,使点C 到达C 1的位置,且AC 1=6,如图2.(1)求证:平面BC 1E ⊥平面ABED ;(2)在棱DC 1上是否存在点P ,使得C 1到平面PBE 的距离为62?若存在,求出二面角P -BE -A 的大小;若不存在,说明理由.例19.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,E 为棱AA 1上的点,且AE =12.(1)求证:BE ⊥平面ACB 1;(2)求二面角D 1-AC -B 1的余弦值;(3)在棱A 1B 1上是否存在点F ,使得直线DF ∥平面ACB 1?若存在,求A 1F 的长;若不存在,请说明理由.例20.如图,在五面体ABCDE中,已知AC⊥BD,AC⊥BC,ED⎳AC,且AC=BC=2ED=2,DC=DB =3.(1)求证:平面ABE⊥与平面ABC;(2)线段BC上是否存在一点F,使得平面AEF与平面ABE夹角余弦值的绝对值等于54343,若存在,求BFBC的值;若不存在,说明理由.题型三:立体几何折叠问题例21.如图1,在边上为4的菱形ABCD中,∠DAB=60°,点M,N分别是边BC,CD的中点,AC∩BD=O1,AC∩MN=G.沿MN将△CMN翻折到△PMN的位置,连接PA,PB,PD,得到如图2所示的五棱锥P -ABMND.(1)在翻折过程中是否总有平面PBD⊥平面PAG?证明你的结论;(2)当四棱锥P-MNDB体积最大时,求直线PB和平面MNDB所成角的正弦值;(3)在(2)的条件下,在线段PA上是否存在一点Q,使得二面角Q-MN-P余弦值的绝对值为1010若存在,试确定点Q的位置;若不存在,请说明理由.例22.如图,在等腰直角三角形PAD中,∠A=90°,AD=8,AB=3,B、C分别是PA、PD上的点,且AD⎳BC,M、N分别为BP、CD的中点,现将△BCP沿BC折起,得到四棱锥P-ABCD,连接MN.(1)证明:MN⎳平面PAD;(2)在翻折的过程中,当PA=4时,求二面角B-PC-D的余弦值.例23.如图1,在平面四边形PDCB中,PD∥BC,BA⊥PD,PA=AB=BC=2,AD=1.将△PAB沿BA 翻折到△SAB的位置,使得平面SAB⊥平面ABCD,如图2所示.(1)设平面SDC与平面SAB的交线为l,求证:BC⊥l;(2)点Q在线段SC上(点Q不与端点重合),平面QBD与平面BCD夹角的余弦值为66,求线段BQ的长.例24.如图,在平面五边形PABCD 中,△PAD 为正三角形,AD ∥BC ,∠DAB =90°且AD =AB =2BC =2.将△PAD 沿AD 翻折成如图所示的四棱锥P -ABCD ,使得PC =7.F ,Q 分别为AB ,CE 的中点.(1)求证:FQ ∥平面PAD ;(2)若DE PE=12,求平面EFC 与平面PAD 夹角的余弦值.例25.如图,在平行四边形ABCD 中,AB =3,AD =2,∠A =60°,E ,F 分别为线段AB ,CD 上的点,且BE =2AE ,DF =FC ,现将△ADE 沿DE 翻折至△A 1DE 的位置,连接A 1B ,A 1C .(1)若点G 为线段A 1B 上一点,且A 1G =3GB ,求证:FG ⎳平面A 1DE ;(2)当三棱锥C -A 1DE 的体积达到最大时,求二面角B -A 1C -D 的正弦值.例26.如图1,四边形ABCD是边长为2的正方形,四边形ABEF是等腰梯形,AB=BE=12EF,现将正方形ABCD沿AB翻折,使CD与C D 重合,得到如图2所示的几何体,其中D E=4.(1)证明:AF⊥平面AD E;(2)求二面角D -AE-C 的余弦值.例27.如图,在梯形ABCD中,AD∥BC,AB=BC=2,AD=4,现将△ABC所在平面沿对角线AC翻折,使点B翻折至点E,且成直二面角E-AC-D.(1)证明:平面EDC⊥平面EAC;(2)若直线DE与平面EAC所成角的余弦值为12,求二面角D-EA-C的余弦值.例28.如图1,在△ABC 中,∠ACB =90°,DE 是△ABC 的中位线,沿DE 将△ADE 进行翻折,使得△ACE 是等边三角形(如图2),记AB 的中点为F .(1)证明:DF ⊥平面ABC .(2)若AE =2,二面角D -AC -E 为π6,求直线AB 与平面ACD 所成角的正弦值.题型四:立体几何作图问题例29.已知四棱锥P -ABCD 中,底面ABCD 为正方形,O 为其中心,点E 为侧棱PD 的中点.(1)作出过O 、P 两点且与AE 平行的四棱锥截面(在答题卡上作出该截面与四棱锥表面的交线,并写出简要作图过程);记该截面与棱CD 的交点为M ,求出比值DM MC (直接写出答案);(2)若四棱锥的侧棱与底面边长均相等,求AE 与平面PBC 所成角的正弦值.例30..如图,已知底面为平行四边形的四棱锥P-ABCD中,平面MNGH与直线PB和直线AC平行,点E为PD的中点,点F在CD上,且DF:FC=1:2.(1)求证:四边形MNGH是平行四边形;(2)求作过EF作四棱锥P-ABCD的截面,使PB与截面平行(写出作图过程,不要求证明).截面的定义:用一个平面去截一个几何体,平面与几何体的表面的交线围成的平面图形.例31.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱B1C1的中点,F,G分别是棱CC1,BC上的动点(不与顶点重合).(1)作出平面A1DG与平面CBB1C1的交线(要求写出作图过程),并证明:若平面A1DG⎳平面D1EF,则EF⎳A1D;(2)若G为棱BC的中点,是否存在F,使平面D1EF⊥平面DGF,若存在,求出CF的所有可能值;若不存在,请说明理由.例32.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱B1C1的中点,F,G分别是棱CC1,BC上的动点(不与顶点重合).(1)作出平面A1DG与平面CBB1C1的交线(要求写出作图过程),并证明:若平面A1DG⎳平面D1EF,则EF⎳A1D;(2)若F,G均为其所在棱的中点,求点G到平面D1EF的距离.例33.如图多面体ABCDEF中,面FAB⊥面ABCD,△FAB为等边三角形,四边形ABCD为正方形,EF⎳BC,且EF=32BC=3,H,G分别为CE,CD的中点.(1)求二面角C-FH-G的余弦值;(2)作平面FHG与平面ABCD的交线,记该交线与直线AB交点为P,写出APAB的值(不需要说明理由,保留作图痕迹).例34.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,FD⎳EA,且FD =12EA=1.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.例35.四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=2π3.AC∩BD=O,且PO⊥平面ABCD,PO=3,点F,G分别是线段PB.PD上的中点,E在PA上.且PA=3PE.(Ⅰ)求证:BD⎳平面EFG;(Ⅱ)求直线AB与平面EFG的成角的正弦值;(Ⅲ)请画出平面EFG与四棱锥的表面的交线,并写出作图的步骤.题型五:立体几何建系繁琐问题例36.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1⎳MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心.若AO⎳平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.例37.如图,在锥体P-ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=2,PB=2,E,F 分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P-AD-B的余弦值.例38.如图,AEC 是半径为a 的半圆,AC 为直径,点E 为AC的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB =FD =5a ,EF =6a .(1)证明:EB ⊥FD ;(2)已知点Q ,R 为线段FE ,FB 上的点,FQ =23FE ,FR =23FB ,求平面BED 与平面RQD 所成二面角的正弦值.例39.《九章算术》是中国古代的一部数学专著,是《算经十书》中最重要的一部,成于公元一世纪左右.它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志着中国古代数学形成了完整的体系.《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”,已知在三棱锥P -ABC 中,PA ⊥平面ABC .(1)从三棱锥P -ABC 中选择合适的两条棱填空: BC ⊥ ,则三棱锥P -ABC 为“鳖臑”;(2)如图,已知AD ⊥PB ,垂足为D ,AE ⊥PC ,垂足为E ,∠ABC =90°.(ⅰ)证明:平面ADE ⊥平面PAC ;(ⅱ)设平面ADE 与平面ABC 的交线为l ,若PA =23,AC =2,求二面角E -l -C 的大小.例40.已知四面体ABCD,AD=CD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.(Ⅰ)求证:BD⊥AC;(Ⅱ)求直线CA与平面ABD所成角的大小.例41.已知四面体ABCD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.(Ⅰ)若AD=CD,求证:BD⊥AC;(Ⅱ)求二面角B-CD-A的正切值.题型六:两角相等(构造全等)的立体几何问题例42.如图,在三棱锥A-BCD中,ΔABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP(1)证明:平面ACD⊥平面BDP;(2)若BD=6,cos∠BPD=-33,求三棱锥A-BCD的体积.例43.如图,在三棱锥A-BCD中,ΔABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=6,且二面角A-BD-C为120°,求直线AD与平面BCD所成角的正弦值.例44.如图,四棱锥F-ABCD中,底面ABCD为边长是2的正方形,E,G分别是CD、AF的中点,AF=4,∠FAE=∠BAE,且二面角F-AE-B的大小为90°.(1)求证:AE⊥BG;(2)求二面角B-AF-E的余弦值.例45.如图,四棱锥E-ABCD中,四边形ABCD是边长为2的菱形,∠DAE=∠BAE=45°,∠DAB=60°.(Ⅰ)证明:平面ADE⊥平面ABE;(Ⅱ)当直线DE与平面ABE所成的角为30°时,求平面DCE与平面ABE所成锐二面角的余弦值.例46.如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,(1)求证:AC⊥BD;(2)若平面ABD⊥平面CBD,且BD=52,求二面角C-AD-B的余弦值.题型七:利用传统方法找几何关系建系例47.如图:长为3的线段PQ与边长为2的正方形ABCD垂直相交于其中心O(PO>OQ).(1)若二面角P-AB-Q的正切值为-3,试确定O在线段PQ的位置;(2)在(1)的前提下,以P,A,B,C,D,Q为顶点的几何体PABCDQ是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例48.在四棱锥P-ABCD中,E为棱AD的中点,PE⊥平面ABCD,AD⎳BC,∠ADC=90°,ED=BC= 2,EB=3,F为棱PC的中点.(Ⅰ)求证:PA⎳平面BEF;(Ⅱ)若二面角F-BE-C为60°,求直线PB与平面ABCD所成角的正切值.例49.三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=2,侧面BCC1B1为矩形,∠A1AB=2π3,二面角A-BC-A1的正切值为12.(Ⅰ)求侧棱AA1的长;(Ⅱ)侧棱CC1上是否存在点D,使得直线AD与平面A1BC所成角的正切值为63,若存在,判断点的位置并证明;若不存在,说明理由.例50.如图,在四棱锥P-ABCD中,底面四边形ABCD内接于圆O,AC是圆O的一条直径,PA⊥平面ABCD,PA=AC=2,E是PC的中点,∠DAC=∠AOB(1)求证:BE⎳平面PAD;(2)若二面角P-CD-A的正切值为2,求直线PB与平面PCD所成角的正弦值.例51.如图所示,PA⊥平面ABCD,ΔCAB为等边三角形,PA=AB,AC⊥CD,M为AC中点.(Ⅰ)证明:BM⎳平面PCD;(Ⅱ)若PD与平面PAC所成角的正切值为62,求二面角C-PD-M的正切值.题型八:空间中的点不好求例52.如图,直线AQ⊥平面α,直线AQ⊥平行四边形ABCD,四棱锥P-ABCD的顶点P在平面α上,AB =7,AD=3,AD⊥DB,AC∩BD=O,OP⎳AQ,AQ=2,M,N分别是AQ与CD的中点.(1)求证:MN⎳平面QBC;(2)求二面角M-CB-Q的余弦值.例53.如图,四棱锥S-ABCD中,AB⎳CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB(2)求AB与平面SBC所成角的正弦值.例54.如图,四棱锥S-ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=2,DC=SD=2,点M在侧棱SC上,∠ABM=60°.(Ⅰ)证明:M是侧棱SC的中点;(Ⅱ)求二面角S-AM-B的余弦值.例55.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD为直角梯形,其中AB⎳CD,∠CDA=90°,CD=2AB=2,AD=3,PA=5,PD=22,点E在棱AD上且AE=1,点F为棱PD的中点.在棱AD上且AE=1,点F位棱PD的中点.(1)证明:平面BEF⊥平面PEC;(2)求二面角A-BF-C的余弦值的大小.例56.如图,在四棱锥A-BCFE中,四边形EFCB为梯形,EF⎳BC,且EF=34BC,ΔABC是边长为2的正三角形,顶点F在AC上的射影为点G,且FG=3,CF=212,BF=52.(1)证明:平面F GB⊥平面ABC;(2)求二面角E-AB-F的余弦值.例57.三棱柱ABC-A1B1C1的底面ABC是等边三角形,BC的中点为O,A1O⊥底面ABC,AA1与底面ABC所成的角为π3,点D在棱AA1上,且AD=32,AB=2.(1)求证:OD⊥平面BB1C1C;(2)求二面角B-B1C-A1的平面角的余弦值.例58.如图,将矩形ABCD沿AE折成二面角D1-AE-B,其中E为CD的中点,已知AB+2,BC=1.BD1 =CD1,F1为D1B的中点.(1)求证:CF⎳平面AD1E;(2)求AF与平面BD1E所成角的正弦值.题型九:创新定义例59.蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H-ABC,J-CDE,K-EFA,再分别以AC,CE,EA为轴将△ACH,△CEJ,△EAK分别向上翻转180°,使H,J,K三点重合为点S所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).例如:正四面体在每个顶点有3个面角,每个面角是π3,所以正四面体在各顶点的曲率为2π-3×π3=π.(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱底面边长为1,侧棱长为2,设BH=x(i)用x表示蜂房(图2右侧多面体)的表面积S(x);(ii)当蜂房表面积最小时,求其顶点S的曲率的余弦值.例60.类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA,PB,PC构成的三面角P-ABC,∠APC=α,∠BPC=β,∠APB=γ,二面角A-PC-B的大小为θ,则cosγ=cosαcosβ+sinαsinβcosθ.时,证明以上三面角余弦定理;(1)当α、β∈0,π2(2)如图2,四棱柱ABCD-A1B1C1D1中,平面AA1C1C⊥平面ABCD,∠A1AC=60°,∠BAC=45°,①求∠A1AB的余弦值;②在直线CC1上是否存在点P,使BP⎳平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.例61.(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的平面α1,α2,α3,α4,使得A i ∈αi i=1,2,3,4,且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi i=1,2,3,4,求该正四面体A1A2A3A4的体积.例62.已知a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )⋅c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,已知四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,4),AD =(4,2,0),AP =(-1,2,1)(1)试计算(AB ×AD )⋅AP 的绝对值的值,并求证PA ⊥面ABCD ;(2)求四棱锥P -ABCD 的体积,说明(AB ×AD )⋅AP 的绝对值的值与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )⋅AP 的绝对值的几何意义.立体几何解答题最全归纳总结【题型归纳目录】题型一:非常规空间几何体为载体题型二:立体几何存在性问题题型三:立体几何折叠问题题型四:立体几何作图问题题型五:立体几何建系繁琐问题题型六:两角相等(构造全等)的立体几何问题题型七:利用传统方法找几何关系建系题型八:空间中的点不好求题型九:创新定义【典例例题】题型一:非常规空间几何体为载体例1.如图,P 为圆锥的顶点,O 为圆锥底面的圆心,圆锥的底面直径AB =4,母线PH =22,M 是PB 的中点,四边形OBCH 为正方形.(1)设平面POH ∩平面PBC =l ,证明:l ∥BC ;(2)设D 为OH 的中点,N 是线段CD 上的一个点,当MN 与平面PAB所成角最大时,求MN 的长.【解析】(1)因为四边形OBCH 为正方形,∴BC ∥OH ,∵BC ⊄平面POH ,OH ⊂平面POH ,∴BC ∥平面POH .∵BC ⊂平面PBC ,平面POH ∩平面PBC =l ,∴l ∥BC .(2)∵圆锥的母线长为22,AB =4,∴OB =2,OP =2,以O 为原点,OP 所在的直线为z 轴,建立如图所示的空间直角坐标系,则P 0,0,2 ,B 0,2,0 ,D 1,0,0 C 2,2,0 ,M 0,1,1 ,设DN =λDC =λ,2λ,0 0≤λ≤1 ,ON =OD +DN =1+λ,2λ,0 ,MN =ON -OM =1+λ,2λ-1,-1 ,OD =1,0,0 为平面PAB 的一个法向量,设MN 与平面PAB 所成的角为θ,则sin θ=1+λ,2λ-1,-1 ⋅1,0,0 1+λ 2+2λ-1 2+1 =1+λ5λ2-2λ+3,令1+λ=t ∈1,2 ,则sin θ=t 5t 2-12t +10=15-12t +101t 2=1101t -35 2+75所以当1t =35时,即λ=23时,sin θ最大,亦θ最大,此时MN =53,13,-1 ,所以MN =MN =53 2+13 2+-1 2=353.例2.如图所示,圆锥的底面半径为4,侧面积为162π,线段AB 为圆锥底面⊙O 的直径,C 在线段AB 上,且BC =3CA ,点D 是以BC 为直径的圆上一动点;(1)当CD =CO 时,证明:平面PAD ⊥平面POD(2)当三棱锥P -BCD 的体积最大时,求二面角B -PD -A 的余弦值.【解析】(1)∵PO 垂直于圆锥的底面,∴PO ⊥AD ,当CD =CO 时,CD =OC =AC ,∴AD ⊥OD ,又OD ∩PO =O ,∴AD ⊥平面POD ,又AD ⊂平面PAD ,∴平面PAD ⊥平面POD ;(2)由题可知OA =OB =4,4π⋅PB =162π,∴PB =42,∴PO =4,当三棱锥P -BCD 的体积最大时,△DBC 的面积最大,此时D 为BC的中点,如图,建立空间直角坐标系O -xyz ,则A (0,-4,0),B (0,4,0),P (0,0,4),D 3,1,0 ,∴BP =0,-4,4 ,PD =3,1,-4 ,AP =(0,4,4),设平面PAD 的法向量为n 1 =(a ,b ,c ),则n 1 ⋅AP =0n 1 ⋅PD =0 ,即4b +4c =03a +b -4c =0,令a =5,则b =-3,c =3,∴n 1 =(5,-3,3),设平面PBD 的法向量n 2 =x ,y ,z ,则n 2 ⋅BP =0n 2 ⋅PD =0 ,即-4y +4z =03x +y -4z =0,令x =1,则y =1,z =1,∴n 2 =1,1,1 ,则cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2 =5-3+33×52+-3 2+32=5129129,∴二面角B -PD -A 的余弦值为-5129129.例3.如图,圆锥PO 的母线长为6,△ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =23,∠ABC =60°.(1)证明:PA ⊥PC ;(2)设点Q 满足OQ =λOP ,其中λ∈0,1 ,且二面角O -QB -C 的大小为60°,求λ的值.【解析】(1)∵PA =PB =PC =6,BC =23,PB 2+PC 2=BC 2,∴PB ⊥PC∵平面PAC ⊥平面PBC 且平面PAC ∩平面PBC =PC ,PB ⊂平面PBC ,PB ⊥PC ,∴PB ⊥平面PAC ,又PA ⊂平面PAC ,∴PB ⊥PA ,∴AB =PA 2+PB 2=23,∴∠ABC =60°,∴△ABC 是正三角形,AC =23,∵PA 2+PC 2=AC 2∴PA ⊥PC ;(2)在平面ABC 内作OM ⊥OB 交BC 于M ,以O 为坐标原点,OM ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz 如图所示:易知OB =OC =2,OP =PB 2-OB 2=2,所以B 2,0,0 ,P 0,0,2 ,C -1,3,0 ,Q 0,0,2λ ,QB =2,0,-2λ ,BC =-3,3,0 ,设平面OBC 的法向量n 1 =x ,y ,z ,依题意n 1 ⋅QB =0n 1 ⋅CB =0 ,即2x -2λz =0-3x +3y =0 ,不妨令y =3λ,得n 1 =λ,3λ,2 ,易知平面OQB 的法向量n 2 =0,1,0 ,由λ∈0,1 可知cos n 1 ,n 2 =n 1 ⋅n 2 n 1 ⋅n 2=cos60°,即3λλ2+(3λ)2+2 2=12,解得λ=12例4.如图,D 为圆锥的顶点,O 为圆锥底面的圆心,AB 为底面直径,C 为底面圆周上一点,DA =AC =BC =2,四边形DOAE 为矩形,点F 在BC 上,且DF ⎳平面EAC .(1)请判断点F 的位置并说明理由;(2)平面DFO 将多面体DBCAE 分成两部分,求体积较大部分几何体的体积.【解析】(1)点F 是BC 的中点,取BC 的中点F ,连接OF ,DF ,因为O 为AB 的中点,所以OF ⎳AC ,又AC ⊂平面AEC ,OF ⊄平面AEC ,所以OF ⎳平面AEC ,由四边形DOAE 为矩形,所以DO ⎳AE ,又AE ⊂平面AEC ,OD ⊄平面AEC ,所以OD ⎳平面AEC ,因为DO ∩OF =O ,DO ,OF ⊂平面DOF ,所以平面DOF ⎳平面AEC ,因为DF ⊂平面DOF ,所以DF ⎳平面AEC ,(2)由(1)知点F 是BC 的中点,因为DA =AC =BC =2,所以AB =AC 2+BC 2=22,所以OA =OC =OB =2,且OC ⊥AB ,所以OD =AD 2-OA 2=2,所以三棱锥D -BOF 的体积V D -BOF =13S △BOF ⋅DO =13×12×2×22×2=26;又三棱锥D -BOC 的体积V D -BOC =13S △BOC ⋅DO =13×12×2×2×2=23,所以四棱锥C -DOAE 的体积V C -DOAE =13S DOAE ×2=13×2 2×2=223,所以几何体DBCAE 的体积V DBCAE =V D -BCO +V C -DOAE =2,所以体积较大部分几何体的体积为V DBCAE -V D -BOF =2-26=526;例5.如图,在直角△POA 中,PO ⊥OA ,PO =2OA ,将△POA 绕边PO 旋转到△POB 的位置,使∠AOB =90°,得到圆锥的一部分,点C 为AB 的中点.(1)求证:PC ⊥AB ;(2)设直线PC 与平面PAB 所成的角为φ,求sin φ.【解析】(1)证明:由题意知:PO ⊥OA ,PO ⊥OB ,OA ∩OC =0∴PO ⊥平面AOB ,又∵AB ⊂平面AOB ,所以PO ⊥AB .又点C 为AB 的中点,所以OC ⊥AB ,PO ∩OC =0,所以AB ⊥平面POC ,又∵PC ⊂平面POC ,所以PC ⊥AB .(2)以O 为原点,OA ,OB ,OP 的方向分别作为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,设OA =2,则A 2,0,0 ,B 0,2,0 ,P 0,0,4 ,C 2,2,0 ,所以AB =-2,2,0 ,AP =-2,0,4 ,PC =2,2,-4 .设平面PAB 的法向量为n =a ,b ,c ,则n ⋅AB =-2a +2b =0,n ⋅AP =-2a +4c =0, 取c =1,则a =b =2可得平面PAB 的一个法向量为n =2,2,1 ,所以sin φ=cos n ,PC =n ⋅PC n PC =42-465=210-5 15.例6.如图,四边形ABCD 为圆柱O 1O 2的轴截面,EF 是该圆柱的一条母线,EF =2EA ,G 是AD 的中点.(1)证明:AF ⊥平面EBG ;(2)若BE =3EA ,求二面角E -BG -A 的正弦值.【解析】(1)由已知EF ⊥平面ABE ,BE ⊂平面ABE ,所以EF ⊥BE ,因为AB 是圆O 1的直径,所以AE ⊥BE ,因为AE ∩FE =E ,所以BE ⊥平面AFE ,AF ⊂平面AFE ,故BE ⊥AF ,因为EF =2EA =2AG ,所以EA =2AG ,易知:Rt △AEG ∼Rt △EFA ,所以∠GEA +∠EAF =90°,从而AF ⊥EG ,又BE ∩EG =E ,所以AF ⊥平面EBG .(2)以E 为坐标原点,EA 为x 轴正方向,EA 为单位向量,建立如图所示的空间直角坐标系E -xyz ,则AB =2,BE =3,EF =2,从而A 1,0,0 ,B 0,3,0 ,D 1,0,2 ,F 0,0,2 ,AB =-1,3,0 ,AD =0,0,2 ,设n =x ,y ,z 位平面BGA 的法向量,则{n ⋅AB =0n ⋅AD =0⇒{-x +3y =02z =0⇒{x =3y =1z =0,所以n =3,1,0 ,由(1)知:平面BEG 的法向量为AF =-1,0,2 ,因为cos n ,AF =n ⋅AF n ⋅AF=-12,所以二面角E -BG -A 的正弦值为32.例7.例7.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求证BP ⊥BE ;(2)当AB =3,AD =2时,求二面角E -AG -C 的大小.【解析】(1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BP ⊥BE .(2)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE =(2,0,-3),AG =(1,3,0),CG =(2,0,3).设m =x 1,y 1,z 1 是平面AEG 的一个法向量,由m ·AE =0m ·AG =0 可得2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2).设n =x 2,y 2,z 2 是平面ACG 的一个法向量,由n ·AG =0n ·CG =0,可得x 2+3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos ‹m ,n ›=m ⋅n |m |⋅|n |=12, 因为<m ,n >∈[0,π],故所求的角为60°.例8.如图,四边形ABCD 是一个半圆柱的轴截面,E ,F 分别是弧DC ,AB 上的一点,EF ∥AD ,点H 为线段AD 的中点,且AB =AD =4,∠FAB =30°,点G 为线段CE 上一动点.(1)试确定点G 的位置,使DG ⎳平面CFH ,并给予证明;(2)求二面角C -HF -E 的大小.【解析】(1)当点G 为CE 的中点时,DG ∥平面CFH .证明:取CF 得中点M ,连接HM ,MG .∵G ,M 分别为CE 与CF 的中点,∴GM ∥EF ,且GM =12EF =12AD ,又H 为AD 的中点,且AD ∥EF ,AD =EF ,∴GM ∥DH ,GM =DH .四边形GMHD 是平行四边形,∴HM ∥DG又HM ⊂平面CFH ,DG ⊄平面CFH∴DG ∥平面CFH(2)由题意知,AB 是半圆柱底面圆的一条直径,∴AF ⊥BF .∴AF =AB cos30°=23,BF =AB sin30°=2.由EF ∥AD ,AD ⊥底面ABF ,得EF ⊥底面ABF .∴EF ⊥AF ,EF ⊥BF .以点F 为原点建立如图所示的空间直角坐标系,则F (0,0,0),B (0,2,0),C (0,2,4),H (23,0,2)FH =(23,0,2),FC =(0,2,4)设平面CFH 的一个法向量为n =(x ,y ,z )所以n ⋅FH =23x +2z =0n ⋅FC =2y +4z =0则令z =1则y =-2,x =-33即n =-33,-2,1由BF ⊥AF ,BF ⊥FE ,AF ∩FE =F .得BF ⊥平面EFH ∴平面EFH 的一个法向量为FB =(0,2,0)设二面角C -HF -E 所成的角为θ∈0,π2则cos θ=∣cos ‹n ,FB ›=|n ⋅FB ||n ||FB |=0×-33 +(-2)×2+1×02×13+4+1=32 ∴二面角C -HF -E 所成的角为π6.例9.坐落于武汉市江汉区的汉口东正教堂是中国南方唯一的拜占庭式建筑,象征着中西文化的有机融合.拜占庭建筑创造了将穹顶支承于独立方柱上的结构方法和与之相呼应的集中式建筑形制,其主体部分由一圆柱与其上方一半球所构成,如图所示.其中O 是下底面圆心,A ,B ,C 是⊙O 上三点,A 1,B 1,C 1是上底面对应的三点.且A ,O ,C 共线,AC ⊥OB ,C 1E =EC ,B 1F =13FB ,AE 与OF 所成角的余弦值为36565.(1)若E 到平面A 1BC 的距离为233,求⊙O 的半径.(2)在(1)的条件下,已知P 为半球面上的动点,且AP =210,求P 点轨迹在球面上围成的面积.【解析】(1)如图,取BB 1,CE 上的点N ,M .连接OM ,OF ,FM .过N 作NH ⊥A 1B 于H ,则OM ∥AE ,由题意知cos ∠FOM =36565,设⊙O 的半径为r ,AA 1=h ,由勾股定理知OF =r 2+916h 2,OM =r 2+116h 2,FM =2r 2+14h 2,由余弦定理知cos ∠FOM =OF 2+OM 2-FM 22×OF ×OM.代入解得h =2r ,因为EN ∥BC ,EN ⊄面A 1BC ,所以EN ∥面A 1BC ,故N 到面A 1BC 的距离是233,因为BC ⊥AB ,BC ⊥AA 1,AA 1∩AB =A ,所以BC ⊥面A 1AB ,BC ⊥NH ,因为NH ⊥BC ,NH ⊥A 1B ,A 1B ∩BC =B ,所以NH ⊥面A 1BC ,NH =233,而sin ∠A 1BB 1=NH BN =A 1B 1A 1B ,即233×h 2=2r 2r 2+h 2,解得r =2,h =4,即⊙O 的半径为2.(2)设上底面圆心为O 1,则O 1P =2,O 1O 2与O 1P 的夹角为θ,所以|AP |=|AO 1 +O 1P |=20+4+85cos θ=210,解得cos θ=255,过P 作PO 2⊥AO 1于O 2,则O 2P =O 1P ⋅sin θ=255,所以点P 的轨迹是以O 2为圆心,以255为半径的圆,因此可作出几何体被面AOA 1所截得到的截面,如图所示.设弧A 1C 1旋转一周所得到的曲面面积为S 1,弧PP 得到的为S 2,则S 2S 1=1-cos θS 1=12×4πr2 ,因此S 2=2πr 2(1-cos θ)=8π1-255 .因此P 点轨迹在球面上围成的面积为8π1-255.例10.如图,ABCD 为圆柱OO 的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB =BC =6,当三棱锥B -DEF 的体积最大时,求二面角B -DF -E 的正弦值.【解析】(1)证明:如图,连接AE ,由题意知AB 为⊙O 的直径,所以AE ⊥BE .因为AD ,EF 是圆柱的母线,所以AD ∥EF 且AD =EF ,所以四边形AEFD 是平行四边形.所以AE ⎳DF ,所以BE ⊥DF .因为EF 是圆柱的母线,所以EF ⊥平面ABE ,又因为BE ⊂平面ABE ,所以EF ⊥BE .又因为DF ∩EF =F ,DF 、EF ⊂平面DEF ,所以BE ⊥平面DEF .(2)由(1)知BE 是三棱锥B -DEF 底面DEF 上的高,由(1)知EF ⊥AE ,AE ∥DF ,所以EF ⊥DF ,即底面三角形DEF 是直角三角形.设DF =AE =x ,BE =y ,则在Rt △ABE 中有:x 2+y 2=6,所以V B -DEF =13S △DEF ⋅BE =13⋅12x ⋅6⋅y =66xy ≤66⋅x 2+y 22=62,当且仅当x =y =3时等号成立,即点E ,F 分别是AB ,CD的中点时,三棱锥B -DEF 的体积最大,。

2024届新高考数学大题精选30题--立体几何含答案

2024届新高考数学大题精选30题--立体几何含答案

大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。

立体几何题型归类总结

立体几何题型归类总结

立体几何专题复习1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为正方形2. 棱锥棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。

3.球球的性质:①球心与截面圆心的连线垂直于截面;★②r =d 、球的半径为R 、截面的半径为r )★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2344,3S R V R ππ==球球(其中R 为球的半径)俯视图11_________________.第1题2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________.第2题 第3题3.一个几何体的三视图如图3所示,则这个几何体的体积为 .侧(左)视图 正(主)视图4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 .第4题 第5题5.如图5是一个几何体的三视图,若它的体积是 a .6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 .7.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm 8.设某几何体的三视图如图8(尺寸的长度单位为m ),则该几何体的体积为_________m 3。

3俯视图正视图侧视图俯视图俯视图正(主)视图侧(左)视图第7题 第8题9.一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_________________.图910.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图10所示(单位cm ),则该三棱柱的表面积为_____________.图1011.如图11所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为_____________.图图11 图12 图1312. 如图12,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为_____________.13.已知某几何体的俯视图是如图13所示的边长为2的正方形,主视图与左视图是边长为2的正三角形,则其表面积是_____________.14.如果一个几何体的三视图如图14所示(单位长度: cm ), 则此几何体的表面积是_____________.图14正视图俯视图15.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )_____________.正视图 左视图 俯视图1. 正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点. (Ⅰ) 求证:11B D AE ⊥; (Ⅱ) 求证://AC 平面1B DE ; (Ⅲ)求三棱锥A-BDE 的体积.2. 已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D .3.如图,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 和PC 的中点.AD 11A E CD 1ODBA C 1B 1A 1C(Ⅰ)求证:MN ∥平面PAD ; (Ⅱ)求证:MN CD ⊥;(Ⅲ)若45PDA ∠=,求证:MN ⊥平面PCD .4. 如图(1),ABCD 为非直角梯形,点E ,F 分别为上下底AB ,CD 上的动点,且EF CD ⊥。

【高考压轴题】空间立体几何经典大题汇编100题(含答案)

【高考压轴题】空间立体几何经典大题汇编100题(含答案)

【高考压轴题】空间立体几何经典大题汇编100题(含答案)未命名一、解答题1.直三棱柱'''ABC A B C -中,底面ABC 是边长为2的正三角形,'D 是棱''A C 的中点,且'AA =.(1)若点M 为棱'CC 的中点,求异面直线'AB 与BM 所成角的余弦值; (2)若点M 在棱'CC 上,且'A M ⊥平面''AB D ,求线段CM 的长.2.如图,在三棱台DEF ABC -中,2AB DE =,CF ⊥平面ABC ,AB BC ⊥,45BAC ∠=︒,CF DE =,,G H 分别为,AC BC 的中点.(1)求证://BD 平面FGH ;(2)求平面FGH 与平面ACFD 所成角(锐角)的大小.3.在直三棱柱111ABC A B C -中,AC BC ==12AB AA ==,E 是棱1CC 的中点.(1)求证:平面1A AB ⊥平面1A BE ; (2)求二面角1A BE A --的余弦值.4.如图,四棱锥P ABCD -中,PA ⊥平面,,ABCD AB AD CD BC ==. (1)求证:平面PBD ⊥平面PAC ; (2)若120,60B A D B CD ∠=∠=,且P B P D ⊥,求二面角B PC D --的平面角的大小.5.如图,在三棱柱111ABC A B C -中,四边形11BB C C 是矩形,11AB B C ⊥,平面1A BC ⊥平面11AB C .(1)求证:11AB A B ⊥;(2)若113B C =,4AB =,160ABB ︒∠=,求二面角1A A C B --的余弦值.6.如图,在正方体1111ABCD A B C D -中,,E F 分别是111,CC B C 的中点.(1)求证:1A F //平面1AD E ; (2)求二面角1D E A DC --余弦值.7.在多面体ABCDEF 中,四边形ABCD 是正方形,//EF AB ,1DE EF ==,2DC BF ==,30EAD ︒∠=.(Ⅰ) 求证:AE ⊥平面CDEF ;(Ⅱ)在线段BD 上确定一点G ,使得平面EAD 与平面FAG 所成的角为30︒. 8.已知四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,且22PD PC BC ===, 2,3BCD ABD π∠=∆是等边三角形,AC B D E =. (1)证明:PC ⊥平面PAD ; (2)求二面角P AB C --的余弦值.9.已知直角梯形ABCD 中,//AB CD ,AB AD ⊥,22AB AD CD ===,E 、F 分别是边AD 、BC 上的点,且//EF AB ,沿EF 将EFCD 折起并连接成如图的多面体CD ABFE -,折后BE ED ⊥.(Ⅰ)求证:AE FC ⊥;(Ⅱ)若折后直线AC 与平面ABFE 所成角θABCD ⊥平面FCB .10.如图,在四棱锥S ABCD -中,SA ⊥平面ABCD ,且90ABC BCD ∠=∠=︒,22SA AB BC CD ====,E 是边SB 的中点.(1)求证:AE ⊥平面SBC ;(2)若F 是线段SB 上的动点(不含端点):问当BF FS为何值时,二面角D CF B--余弦值为10-. 11.如图,已知三棱柱111ABC A B C -,侧面11BCC B ABC ⊥底面. (Ⅰ)若,M N 分别是1,AB AC 的中点,求证:11//MN BCC B 平面; (Ⅱ)若三棱柱111ABC A B C -的各棱长均为2,侧棱1BB 与底面ABC 所成的角为60︒,问在线段11A C 上是否存在一点P ,使得平面111B CP ACC A ⊥平面?若存在,求1C P 与1PA 的比值,若不存在,说明理由.12.已知某几何体直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN 11C B N ⊥平面;(2)11sin C N CNB θθ设为直线与平面所成的角,求的值;(3)设M 为AB 中点,在BC 边上找一点P ,使MP //平面1CNB 并求BPPC的值. 13.如图,在直三棱柱111ABC A B C -中,,D E 分别是棱,BC AB 的中点,点F 在1CC 棱上,且AB AC =,13AA =,2BC CF ==.(1)求证:1//C E 平面ADF ;(2)当2AB =时,求二面角111A C E B --的余弦值.14.如图,在直三棱柱111ABC A B C -中,已知1CA CB ==,12AA =,90BCA ︒∠=.(1)求异面直线1BA 与1CB 夹角的余弦值; (2)求二面角1B AB C --平面角的余弦值.15.已知正三棱柱 中, 、 分别为 的中点,设.(1)求证:平面 平面 ;(2)若二面角 的平面角为,求实数 的值,并判断此时二面角是否为直二面角,请说明理由.16.在直三棱柱中,13,2,AA AB BC AC D ====是AC 中点. (Ⅰ)求证:1B C //平面1A BD ; (Ⅱ)求点1B 到平面1A BD 的距离; (Ⅲ)求二面角11A DB B --的余弦值.17.如图,在三棱柱ABC -111A B C 中,侧棱与底面垂直,090BAC ∠=,AB AC =1AA =2=,点,M N 分别为1A B 和11B C 的中点.(1)证明:1A M ⊥MC ;(2)求二面角N MC A --的正弦值.18.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,//EA PD ,22AD PD EA ===,F ,G ,H 分别为PB ,EB ,PC 的中点.(1)求证://FG 平面PED ;(2)求平面FGH 与平面PBC 所成锐二面角的大小;(3)在线段PC 上是否存在一点M ,使直线FM 与直线PA 所成的角为3π?若存在,求出线段PM 的长;若不存在,请说明理由.19.已知五边形ABCDE 是由直角梯形ABCD 和等腰直角三角形ADE 构成,如图所示, AB AD ⊥, AE DE ⊥, AB CD ,且224AB CD DE ===,将五边形ABCDE 沿着AD 折起,且使平面ABCD ⊥平面ADE .(Ⅰ)若M 为DE 中点,边BC 上是否存在一点N ,使得MN 平面ABE ?若存在,求BNBC的值;若不存在,说明理由; (Ⅱ)求二面角A BE C --的平面角的余弦值.20.如图,在以,,,,,A B C D E F 为顶点的多面体中,四边形ACDF 是菱形,60,,//FAC AC BC AB DE ∠=︒⊥, //,2,1,BC EF AC BC BF ===(1)求证:BC ⊥平面ACDF ; (2)求二面角C AE F --的余弦值.21.在PABC 中,4PA =,PC =45P ∠=︒,D 是PA 中点(如图1).将PCD ∆沿CD 折起到图2中1PCD ∆的位置,得到四棱锥1P ABCD -.(1)将PCD ∆沿CD 折起的过程中,CD ⊥平面1P DA 是否成立?并证明你的结论; (2)若1P D 与平面ABCD 所成的角为60°,且1PDA ∆为锐角三角形,求平面1P AD 和平面1P BC 所成角的余弦值.22.四棱锥P ABCD -中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=︒的菱形,M 为PB 的中点,Q 为CD 的中点.(1)求证:PA CD ⊥;(2)求AQ 与平面CDM 所成的角.23.如图,在正方体ABCD – A 1B 1C 1D 1中,点E ,F ,G 分别是棱BC ,A 1B 1,B 1C 1的中点.(1)求异面直线EF 与DG 所成角的余弦值;(2)设二面角A —BD —G 的大小为θ,求 |cos θ| 的值.24.如图,四边形ABCD 与BDEF 均为菱形, 60DAB DBF ∠=∠=︒,且F A F C =.(1)求证:AC ⊥平面BDEF ;(2)求直线AF 与平面BCF 所成角的正弦值.25.如图,在正方体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上一点,且异面直线1B E 与BG 所成角的余弦值为25.(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.26.如图,ABC ∆中,02,4,90AC BC ACB ==∠=,,D E 分别是,AC AB 的中点,将ADE ∆沿DE 折起成PDE ∆,使面PDE ⊥面BCDE ,,H F 分别是PD 和BE 的中点,平面BCH 与PE ,PF 分别交于点,I G .(1)求证://IH BC ;(2)求二面角P GI C --的正弦值.27.如图,矩形ABCD 中,6AB =,AD =点F 是AC 上的动点.现将矩形ABCD沿着对角线AC 折成二面角D AC B '--,使得D B '=.(Ⅰ)求证:当AF =D F BC '⊥;(Ⅱ)试求CF 的长,使得二面角A D F B -'-的大小为4π.28.如图,在三棱锥P ABC -中,,,CP CA CB 两两垂直且相等,过PA 的中点D 作平面α∥BC ,且α分别交PB ,PC 于M 、N ,交,AB AC 的延长线于,E F .(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若2AB BE =,求二面角P DM N --的余弦值.29.如图1,在M B C △中,24BM BC ==,BM BC ⊥,A ,D 分别为BM ,MC 的中点.将MAD △沿AD 折起到PAD △的位置,使90PAB ∠=,如图2,连结PB ,PC .(Ⅰ)求证:平面PAD ⊥平面ABCD ;(Ⅱ)若E 为PC 中点,求直线DE 与平面PBD 所成角的正弦值;(Ⅲ)线段PC 上是否存在一点G ,使二面角G AD P --求出PGPC的值;若不存在,请说明理由.30.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形.(1)求证:BD ⊥平面PAC ;(2)若PA AB BD ==,求PC 与平面PBD 所成角的正弦值.31.如图,四棱锥P ABCD -中,底面ABCD 为梯形,PD ⊥底面ABCD ,//,,1,AB CD AD CD AD AB BC ⊥===过A 作一个平面α使得//α平面PBC .(1)求平面α将四棱锥P ABCD -分成两部分几何体的体积之比;(2)若平面α与平面PBC PA 与平面PBC 所成角的正弦值.32.如图几何体ADM-BCN 中,ABCD 是正方形,CD //NM ,,AD MD CD CN ⊥⊥,MDC ∠=120o ,30CDN ∠=,24MN MD ==.(Ⅰ)求证://AB CDMN 平面; (Ⅱ)求证:DN AMD ⊥平面; (Ⅲ)求二面角N AM D --的余弦值.33.如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,且1PA AB ==,点E 在线段PC 上,且2PE EC =. (Ⅰ)证明:平面BDE ⊥平面PCD ; (Ⅱ)求二面角P BD E --的余弦值.34.在如图所示的多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC AD CD DE 2AB 1G =====,,为AD 中点,F 是CE 的中点. (1)证明:BF 平面ACD (2)求点G 到平面BCE 的距离.35.如图所示,四棱锥P ABCD -的侧面PAD ⊥底面ABCD ,底面ABCD 是直角梯形,且//,AB CD AB AD ⊥,12CD PD AD AB ===,E 是PB 中点.(1)求证:CE ⊥平面PAB ;(2)若4CE AB ==,求直线CE 与平面PDC 所成角的大小.36.如图,在四棱锥E ABCD -中,ABD ∆是正三角形,BCD ∆是等腰三角形,120BCD ∠=,EC BD ⊥.(1)求证:BE DE =;(2)若AB =AE =EBD ⊥平面ABCD ,直线AE 与平面ABD 所成的角为45°,求二面角B AE D --的余弦值.37.如图1,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,现把平行四边形11ABB A 1沿C 1C 折起如图2所示,连接1B C 、1B A 、11B A .(1)求证:11AB CC ⊥;(2)若1AB =11C AB A --的正弦值.38.如图,已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,SA SD SB ===点E 是棱AD 的中点,点F 在棱SC 上,且SF SC λ=,SA //平面BEF .(1)求实数λ的值;(2)求二面角S BE F --的余弦值.39.如图所示,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 是正方形,且PA PD =,90APD ︒∠=.(Ⅰ)证明:平面PAB ⊥平面PCD ; (Ⅱ)求二面角A PB C --的余弦值.40.如图,空间四边形OABC 中,,OA BC OB AC ⊥⊥.求证:OC AB ⊥.41.如图,直角梯形BDFE 中,||EF BD ,BE BD ⊥,EF =等腰梯形ABCD 中,||AB CD ,AC BD ⊥,24AB CD ==,且平面BDFE ⊥平面ABCD . (1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.42.在如图所示的几何体中,正方形ABEF 所在的平面与正三角形ABC 所在的平面互相垂直,//CD BE ,且2BE CD =,M 是ED 的中点. (1)求证://AD 平面BFM ;(2)求面EDF 与面ADB 所成锐二面角的大小.43.如图,四面体中,分别是的中点,(1)求证:平面;(2)求直线与平面所成角的正弦值.44.如图,已知正方体ABCD A B C D ''''-的棱长为1,E ,F ,G ,H 分别是棱AB ,CC ',AA ',C D ''的中点.(1)求证:EF 平面GHD ; (2)求直线EF 与BD '所成的角.45.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠ABC =60°,PAB ∆为正三角形,且侧面P AB ⊥底面ABCD ,E 为线段AB 的中点,M 在线段PD 上.(I )当M 是线段PD 的中点时,求证:PB // 平面ACM ; (II )求证:PE AC ⊥;(III )是否存在点M ,使二面角M EC D --的大小为60°,若存在,求出PMPD的值;若不存在,请说明理由.46.长方形ABCD 中,2AB AD =,M 是DC 中点(图1).将△ADM 沿AM 折起,使得AD BM ⊥(图2)在图2中:(1)求证:平面ADM ⊥平面ABCM ;(2)在线段BD 上是否存点E ,使得二面角E AM D --为大小为π4,说明理由. 47.如下图,在空间直角坐标系O xyz -中,正四面体(各条棱均相等的三棱锥)ABCD 的顶点,,A B C 分别在x 轴,y 轴,z 轴上.(Ⅰ)求证://CD 平面OAB ; (Ⅱ)求二面角C AB D --的余弦值.48.如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,底面ABCD 为梯形, //AD BC ,AB DC ==1122AD AA BC ===,点P ,Q 分别为11A D ,AD 的中点.(Ⅰ)求证://CQ 平面1PAC ; (Ⅱ)求二面角1C AP D --的余弦值;(Ⅲ)在线段BC 上是否存在点E ,使PE 与平面1PAC 所成角的正弦值是21若存在,求BE 的长;若不存在,请说明理由.49.如图在棱锥P ABCD -中,ABCD 为矩形,PD ⊥面ABCD ,2PB =,PB 与面PCD 成045角,PB 与面ABD 成030角.(1)在PB 上是否存在一点E ,使PC ⊥面ADE ,若存在确定E 点位置,若不存在,请说明理由;(2)当E 为PB 中点时,求二面角P AE D --的余弦值.50.如图所示,在底面为正方形的四棱柱1111ABCD A B C D -中,1111,2,3AA A B A D AB AA B π===∠=.(1)证明:平面1A BD ⊥平面11A BC ; (2)求直线1AC 与平面1DBC 所成角的正弦值.51.如图,在等腰梯形ABCD 中,060ABC ∠=,上底2CD =,下底4AB =,点E 为下底AB 的中点,现将该梯形中的三角形BEC 沿线段EC 折起,形成四棱锥B AECD -.(1)在四棱锥B AECD -中,求证:AD BD ⊥;(2)若平面BEC 与平面AECD 所成二面角的平面角为0120,求直线AE 与平面ABD所成角的正弦值.52.如图,已知四棱锥P ABCD - 中,//,,3,4,4,AB CD AB AD AB CD AD AP ⊥====060PAB PAD ∠=∠=.(1)证明:顶点P 在底面ABCD 的射影在BAD ∠的平分线上; (2)求二面角B PD C --的余弦值.53.如图,三棱柱111ABC A B C -中,AB ⊥平面11AAC C ,12AA AB AC ===,160A AC ∠=.过1AA 的平面交11B C 于点E ,交BC 于点F .(l)求证:1A C ⊥平面1ABC ;(Ⅱ)求证:四边形1AA EF 为平行四边形; (Ⅲ)若是23BF BC =,求二面角1B AC F --的大小. 54.如图,在四棱锥P ABCD -中,底面ABCD 为梯形,平面PAD ⊥平面,//,ABCD BC AD ,PA PD ⊥,60,AB AD PDA E ⊥∠=为侧棱PD 的中点,且2,4AB BC AD ===.(1)证明://CE 平面PAB ; (2)求二面角A PB C --的余弦值.55.如图1,梯形ABCD 中,AD BC ∥,CD BC ⊥,1BC CD ==,2AD =,E为AD 中点.将ABE ∆沿BE 翻折到1A BE ∆的位置,使11A E A D =,如图2.(Ⅰ)求证:平面1A DE ⊥与平面BCDE ; (Ⅱ)求直线1A B 与平面1A CD 所成角的正弦值;(Ⅲ)设M N 、分别为1A E 和BC 的中点,试比较三棱锥1M A CD -和三棱锥1N A CD -(图中未画出)的体积大小,并说明理由.56.如图1,梯形ABCD 中,//,,1,2,AD BC CD BC BC CD AD E ⊥===为AD中点.将ABE ∆沿BE 翻折到1A BE ∆的位置,如图2.(Ⅰ)求证:平面1A DE ∆⊥平面BCDE ; (Ⅱ)求直线1A B 与平面1A CD 所成角的正弦值;(Ⅲ)设,M N 分别为1A E 和BC 的中点,试比较三棱锥1M A CD -和三棱锥1N A CD -(图中未画出)的体积大小,并说明理由.57.如图,在几何体ABCDEF 中,四边形ADEF 为矩形,四边形ABCD 为梯形,//AB CD ,平面CBE 与平面BDE 垂直,且CB BE ⊥.。

立体几何解答题常考模型归纳总结(九大题型)(原卷版)-高中数学

立体几何解答题常考模型归纳总结(九大题型)(原卷版)-高中数学

立体几何解答题常考模型归纳总结 高考立体几何解答题常考模型主要包括柱体、锥体、球体、旋转体、多面体等。

这些模型常涉及体积、表面积的计算,截面问题,以及与其他几何体的组合或相交问题。

此外,空间位置关系,如平行、垂直的判断与证明,也是常考内容。

空间角的计算,包括异面直线所成的角、直线与平面所成的角、二面角等,同样是高考立体几何的重要考点。

最后,空间距离的计算,如点到平面的距离、两平行平面间的距离等,也是解答题中常见的考查点。

掌握这些模型的基本性质和解题方法,对于提高高考立体几何的解题能力至关重要。

题型一:非常规空间几何体为载体【典例1-1】(2024·河南濮阳·模拟预测)如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==(1)求证:1AA ^平面11BCC B ;(2)求直线AB 和平面1ACB 所成角的正弦值.【典例1-2】(2024·云南昆明·三模)如图,在三棱台111ABC A B C -中,上、下底面是边长分别为2和4的正三角形,1AA ^平面ABC ,设平面11AB C I 平面=ABC l ,点,E F 分别在直线l 和直线1BB 上,且满足EF l ^,1EF BB ^.(1)证明:^EF 平面11BCC B ;(2)若直线EF 和平面ABC 【变式1-1】(2024·天津和平·二模)如图,三棱台111ABC A B C -中,ABC V 为等边三角形,1124AB A B ==,1AA ^平面ABC ,点M ,N ,D 分别为AB ,AC ,BC 的中点,11A B AC ^.(1)证明:1CC ∥平面1A MN ;(2)求直线1A D 与平面1A MN 所成角的正弦值;(3)求点D 到平面1A MN 的距离.【变式1-2】(2024·河南周口·模拟预测)如图,平行六面体1111ABCD A B C D -中,底面ABCD 与平面11ABC D 都是边长为2的菱形,11120BCD BC D °Ð=Ð=,侧面11BCC B(1)求平行六面体1111ABCD A B C D -的体积;(2)求平面11BCC B 与平面11CDD C 的夹角的余弦值.题型二:立体几何存在与探索性问题【典例2-1】如图1,ABC V 是边长为3的等边三角形,点,D E 分别在线段,AC AB 上,且1,2AE AD ==,沿DE 将ADE V 翻折到PDE △的位置,使得PB 2.(1)求证:平面PDE ^平面BCDE ;(2)在线段PB 上是否存在点M ,使得//EM 平面PCD ,若存在,求出PM MB的值;若不存在,请说明理由.【典例2-2】(2024·广东·一模)如图所示,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,608AB AD BAD AC Ð===o ,,.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为 2V ,求 12V V ;(2)设点F 在线段AP 上,且存在一个正整数k ,使得PA kPF PC kCE ==,,若已知平面FCD 与平面PCDk 的值.【变式2-1】在ABC V 中,90ABC Ð=°,6AB BC ==,D 为边AB 上一点,2AD =,E 为AC 上一点,//DE BC ,将ADE V 沿DE 翻折,使A 到A ¢处,90DA B ¢Ð=°.(1)证明:A B ¢^平面A DE ¢;(2)若射线DE 上存在点M ,使l =uuuu r uuu r DM DE ,且MC 与平面A EC ¢所成角的正弦值为15,求λ.【变式2-2】(2024·甘肃张掖·模拟预测)如图,在四棱锥P ABCD -中,底面四边形ABCD为菱形,且60,DAB PAD Ð=o V 是边长为2的等边三角形,且平面PAD ^平面,ABCD O 为AD 中点.(1)求证:OB ^平面PAD ;(2)在线段PC 上是否存在点M ,使二面角M BO C --的大小为60o ,若存在,求PM PC的值,若不存在,请说明理由.题型三:立体几何折叠问题【典例3-1】(2024·湖北武汉·模拟预测)如图1,在矩形ABCD 中,2AB =,BC =ABD △沿矩形的对角线BD 进行翻折,得到如图2所示的三棱锥A BCD -,且AB CD ^.(1)求翻折后线段AC 的长;(2)点M 满足2AM MD =uuuu r uuuu r ,求CM 与平面ABD 所成角的正弦值.【典例3-2】(2024·山东·模拟预测)如图,在菱形ABCD 中,60BAD Ð=°,E 是AD 的中点,将ABE V沿直线BE 翻折使点A 到达点1A 的位置,F 为线段1AC 的中点.(1)求证:DF ∥平面1A BE ;(2)若平面1A BE ^平面BCDE ,求直线1A E 与平面1A BC 所成角的大小.【变式3-1】(2024·河南驻马店·二模)在如图①所示的平面图形中,四边形ACDE 为菱形,现沿AC 进行翻折,使得AB ^平面ACDE ,过点E 作//EF AB ,且12EF AB =,连接,,FD FB BD ,所得图形如图②所示,其中G 为线段BD 的中点,连接FG .(1)求证:FG ^平面ABD ;(2)若2AC AD ==,直线FG 与平面BCD ,求AB 的值.【变式3-2】在等腰梯形ABCD 中,//AB CD ,2AB =,2AD BC ==,60DAB Ð=°,M 为AB 中点,将AMD V ,BMC △沿MD ,MC 翻折,使A ,B 重合于点E ,得到三棱锥M CDE -.(1)求ME 与平面CDE 所成角的大小;(2)求二面角M DE C --的余弦值.题型四:立体几何作图问题【典例4-1】(2024·河南信阳·模拟预测)长方体1111ABCD A B C D -中,123,2AB AA AD CE ED ===uuu r uuu r .(1)过E 、B 作一个截面,使得该截面平分长方体的表面积和体积.写出作图过程及其理由.(2)记(1)中截面为a ,若a 与(1)中过D 点的长方体的三个表面成二面角分别为,,q j w ,求222cos cos cos q j w ++的值.【典例4-2】(2024·高三·河北承德·期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,,,O E F 分别是,,BD PA BC 的中点.(1)证明://OE 平面PBC ;(2)若平面a 经过点,,F D E ,且与棱PB 交于点H .请作图画出H 在棱PB 上的位置,并求出PH HB的值.【变式4-1】(2024·辽宁大连·一模)如图多面体ABCDEF 中,面FAB ^面ABCD ,FAB V 为等边三角形,四边形ABCD 为正方形,EF BC ∥,且334EF BC ==,H ,G 分别为CE ,CD 的中点.(1)证明:BF AD ^;(2)求平面BCEF 与平面FGH 所成角的余弦值;(3)作平面FHG 与平面ABCD 的交线,记该交线与直线AD 交点为P ,写出AP AD的值(不需要说明理由,保留作图痕迹).【变式4-2】如图,已知底面为平行四边形的四棱锥P ABCD -中,平面MNGH 与直线PB 和直线AC 平行,点E 为PD 的中点,点F 在CD 上,且:1:2DF FC =.(1)求证:四边形MNGH 是平行四边形;(2)求作过EF 作四棱锥P ABCD -的截面,使PB 与截面平行(写出作图过程,不要求证明).截面的定义:用一个平面去截一个几何体,平面与几何体的表面的交线围成的平面图形.【变式4-3】(2024·北京·三模)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB p Ð=.AC BD O =I ,且^PO 平面ABCD ,PO =,点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅱ)求直线AB 与平面EFG 的成角的正弦值;(Ⅲ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.题型五:立体几何建系繁琐问题【典例5-1】(2024·山东淄博·二模)已知直角梯形ABCD ,90ADC Ð=°,//AB CD ,2AB CD AD ===M 为对角线AC 与BD 的交点.现以AC 为折痕把ADC V 折起,使点D 到达点P 的位置,点Q 为PB 的中点,如图所示:(1)证明:AC ^平面PBM ;(2)求三棱锥P ACQ -体积的最大值;(3)当三棱锥P ACQ -的体积最大时,求直线AB 与平面PBC 所成角的正弦值.【典例5-2】(2024·贵州黔东南·二模)如图,在四棱台1111ABCD A B C D -中,O 为AC 的中点,1111122AA A C C C AC ====.(1)证明:1//OC 平面11AA D D ;(2)若平面ABCD ^平面11ACC A ,AB BC ^,当四棱锥11B AA C C -的体积最大时,求1CC 与平面11AA B B 夹角的正弦值.【变式5-1】(2024·重庆·三模)如图所示的几何体是一个半圆柱和一个三棱锥的组合体.11,BB CC 是半圆柱的母线,1,O O 分别是底面直径BC 和11B C 的中点,11114,2,BC B C BB CC A ====是半圆O 上一动点,1A 是半圆1O 上的动点,1AA 是圆柱的母线,延长1A A 至P 点使得A 为1A P 的中点,连接PB ,PC 构成三棱锥P ABC -.(1)证明:1AC BA ^;(2)当三棱锥P ABC -的体积最大时,求平面1ABA 与平面1BA C 的夹角.【变式5-2】已知平面四边形ABCD ,2AB AD ==,60BAD Ð=°,30BCD Ð=°,现将ABD D 沿BD 边折起,使得平面ABD ^平面BCD ,此时AD CD ^,点P 为线段AD 的中点.(1)求证:BP ^平面ACD ;(2)若M 为CD 的中点①求MP 与平面BPC 所成角的正弦值;②求二面角P BM D --的平面角的余弦值.题型六:两角相等(构造全等)的立体几何问题【典例6-1】(2024·河南·模拟预测)如图,在三棱锥A BCD -中,ABC V 是等边三角形,90BAD BCD Ð=Ð=°,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ^平面BDP ;(2)若BD =,且二面角A BD C --为120°,求直线AD 与平面BCD 所成角的正弦值.【典例6-2】(2024·广西桂林·二模)如图,四棱锥F ABCD -中,底面ABCD 为边长是2的正方形,E ,G 分别是CD ,AF 的中点,4AF =,FAE BAE Ð=Ð,且二面角F AE B --的大小为90°.(1) 求证:AE BG ^;(2) 求二面角B AF E --的余弦值.【变式6-1】(2024·安徽合肥·模拟预测)如图,四棱锥E ABCD -中,四边形ABCD 是边长为2的菱形,45DAE BAE °Ð=Ð=,60DAB Ð=°.(1)证明:平面ADE ^平面ABE ;(2)当直线DE 与平面ABE 所成的角为30°时,求平面DCE 与平面ABE 所成锐二面角的余弦值.【变式6-2】(2024·辽宁沈阳·模拟预测)如图,四棱锥E ABCD -中,四边形ABCD 是边长为2的菱形45DAE BAE Ð=Ð=°,60DAB Ð=°(1)证明:平面ADE ^平面ABE ;(2)当平面DCE 与平面ABE DE 与平面ABE 所成角正弦值.题型七:利用传统方法找几何关系建系【典例7-1】(2024·江苏南京·二模)如图,//AD BC ,AD AB ^,点E 、F 在平面ABCD 的同侧,//CF AE ,1AD =,2AB BC ==,平面ACFE ^平面ABCD ,EA EC ==(1)求证://BF 平面ADE ;(2)若直线EC 与平面FBD ,求线段CF 的长.【典例7-2】斜三棱柱ABC -A 1B 1C 1上,侧面AA 1C 1C ⊥平面ABC ,侧面AA 1C 1C 是菱形,∠A 1AC =60°,A 1C =AC AB =2,为BB 1的中点.(1)求二面角C -A 1D -C 1的余弦值;(2)记△ABC 的外接圆上有一动点P ,若二面角P -AA 1-C 与二面角C -A 1D -C 1相等,求AP 的长.【变式7-1】如图,已知四棱锥P ABCE -中,PA ^平面ABCE ,平面PAB ^平面PBC ,且1AB =,2BC =,BE =,点A 在平面PCE 内的射影恰为PCE V 的重心G .(1)证明:BC AB ^;(2)求直线CG 与平面PBC 所成角的正弦值.【变式7-2】如图所示,圆锥的高2PO =,底面圆O 的半径为R ,延长直径AB 到点C ,使得BC R =,分别过点A ,C 作底面圆O 的切线,两切线相交于点E ,点D 是切线CE 与圆O 的切点.(1)证明:平面PDE ^平面POD ;(2)若直线PE 与平面PBD ,求点A 到平面PED 的距离.题型八:空间中的点不好求【典例8-1】(2024·山东日照·三模)在五面体ABCDEF 中,CD ADE ^平面,EF ADE ^平面.(1)求证:AB CD ∥;(2)若222AB AD EF ===,3CD =,90ADE Ð=°,点D 到平面ABFE A BC F --的余弦值.【典例8-2】(2024·全国·校联考模拟预测)已知三棱锥ABCD ,D 在面ABC 上的投影为O ,O 恰好为△ABC 的外心.4AC AB ==,2BC =.(1)证明:BC ⊥AD ;(2)E 为AD 上靠近A 的四等分点,若三棱锥A-BCD 的体积为1,求二面角E CO B --的余弦值.【变式8-1】(2024·河南·校联考模拟预测)如图,在四棱锥P ABCD -中,AB BC ==AD CD AC ===E ,F 分别为AC ,CD 的中点,点G 在PF 上,且G 为三角形PCD 的重心.(1)证明://GE 平面PBC ;(2)若PA PC =,PA CD ^,四棱锥P ABCD -的体积为GE 与平面PCD 所成角的正弦值.【变式8-2】(2024·湖北武汉·华中师大一附中校考模拟预测)如图,平行六面体1111ABCD A B C D -中,点P 在对角线1BD 上,AC BD O =I ,平面ACP ∥平面11AC D .(1)求证:O ,P ,1B 三点共线;(2)若四边形ABCD 是边长为2的菱形,11π3BAD BAA DAA =ÐÐ==Ð,13AA =,求二面角P AB C --大小的余弦值.【变式8-3】(2024·全国·模拟预测)已知菱形ABCD 中,1AB BD ==,四边形BDEF 为正方形,满足2π3ABF Ð=,连接AE ,AF ,CE ,CF .(1)证明:CF AE ^;(2)求直线AE 与平面BDEF 所成角的正弦值.题型九:数学文化与新定义问题【典例9-1】(2024·高三·山东青岛·期中)某校积极开展社团活动,在一次社团活动过程中,一个数学兴趣小组发现《九章算术》中提到了“刍薨”这个五面体,于是他们仿照该模型设计了一道数学探究题,如图1,E 、F 、G 分别是边长为4的正方形的三边AB CD AD 、、的中点,先沿着虚线段FG 将等腰直角三角形FDG 裁掉,再将剩下的五边形ABCFG 沿着线段EF 折起,连接AB CG 、就得到了一个“刍甍” (如图2)。

立体几何大题题型归纳总结

立体几何大题题型归纳总结

立体几何大题题型归纳总结立体几何是数学中的一个重要分支,涉及到图形的三维空间形态及其性质。

在学习立体几何时,我们经常会遇到各种不同类型的题目。

为了更好地理解和掌握这些题型,本文将对常见的立体几何大题题型进行归纳总结。

一、平面与立体体积计算平面与立体体积计算是立体几何中最基础的题型之一。

在此类题目中,我们需要计算平面和立体的面积或体积。

1. 长方体和正方体的体积计算以边长分别为a、b、c的长方体和正方体为例,它们的体积计算公式分别为V = a * b * c和V = a³。

2. 圆柱、圆锥和球的体积计算以底面半径为r、高度为h的圆柱、圆锥和球为例,它们的体积计算公式分别为V = πr²h、V = 1/3πr²h和V = 4/3πr³。

3. 平面图形的面积计算在立体几何题目中,有时需要计算平面图形的面积。

例如,计算正方形、长方形、圆形和三角形的面积时,可以使用相应的公式进行计算。

二、棱柱与棱锥的性质和计算棱柱和棱锥是立体几何中常见的两种立体图形。

在解答与棱柱和棱锥相关的题目时,我们需要了解它们的性质和计算方法。

1. 棱柱的性质和计算棱柱由一个多边形的底面和与底面相平行的侧面组成。

在求解棱柱的体积和表面积时,我们需要考虑底面的形状和侧面的高度。

2. 棱锥的性质和计算棱锥由一个多边形的底面和以底面为顶点的侧面组成。

在求解棱锥的体积和表面积时,我们需要考虑底面的形状、侧面的高度以及侧面形成的角度。

三、多面体的性质与计算多面体是指由多个面组成的立体图形,其中最常见的包括五面体、六面体、八面体等。

在解答与多面体相关的题目时,我们需要了解多面体的性质和计算方法。

1. 正多面体的性质和计算正多面体是指所有的面都是相等的正多边形,并且所有的顶点和棱都相等。

在解答正多面体的题目时,我们需要了解其面的个数、形状以及各种性质,如角度和棱长等。

2. 斜面体的性质和计算斜面体是指各个面不都是平行于某个坐标面的情况下的多面体。

立体几何题型总结

立体几何题型总结

立体几何题型总结一、高考考查的公理、性质、判定等:立几中的向量公式:1.二、题目归类与练习:(一) 三视图1. 某几何体的三视图如图所示,则它的体积是A .283π-B .83π-C .82π-D .23π【答案】A2. 右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱, 其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯 视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命 题的个数是 A .3 B .2 C .1 D .0 【答案】A3. 如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A .63B .93C .123D .183【答案】B(二) 点、线、面的位置判断:1. 命题①空间直线a ,b ,c ,若a∥b,b∥c 则a∥c ②非零向量c 、b 、a ,若a ∥b ,b ∥c 则a ∥c③平面α、β、γ若α⊥β,β⊥γ,则α∥γ ④空间直线a 、b 、c 若有a⊥b,b⊥c,则a∥c⑤直线a 、b 与平面β,若a⊥β,c⊥β,则a∥c 其中所有真命题的序号是( C ) A .①②③ B.①③⑤ C.①②⑤ D.②③⑤ 2. 下列命题中错误的是A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β 【答案】D3. 已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p,那么“12P P =23P P ”是“12d d =”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C4. 如图,四棱锥S —ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是(A )AC ⊥SB(B )AB ∥平面SCD(C )SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 (D )AB 与SC 所成的角等于DC 与SA 所成的角【答案】D5. 不共面的三条定直线l 1,l 2,l 3互相平行,点A 在l 1上,点B 在l 2上,C 、D 两点在l 3上,若CD =a (定值),则三棱锥A —BCD 的体积 ( ) A.由A 点的变化而变化 B.由B 点的变化而变化 C.有最大值,无最小值 D.为定值讲解:D 。

【高考压轴题】空间立体几何经典大题汇编100题(含答案)

【高考压轴题】空间立体几何经典大题汇编100题(含答案)

【⾼考压轴题】空间⽴体⼏何经典⼤题汇编100题(含答案)【⾼考压轴题】空间⽴体⼏何经典⼤题汇编100题(含答案)未命名⼀、解答题1.直三棱柱'''ABC A B C -中,底⾯ABC 是边长为2的正三⾓形,'D 是棱''A C 的中点,且'AA =.(1)若点M 为棱'CC 的中点,求异⾯直线'AB 与BM 所成⾓的余弦值;(2)若点M 在棱'CC 上,且'A M ⊥平⾯''AB D ,求线段CM 的长.2.如图,在三棱台DEF ABC -中,2AB DE =,CF ⊥平⾯ABC ,AB BC ⊥,45BAC ∠=?,CF DE =,,G H 分别为,AC BC 的中点.(1)求证://BD 平⾯FGH ;(2)求平⾯FGH 与平⾯ACFD 所成⾓(锐⾓)的⼤⼩.3.在直三棱柱111ABC A B C -中,AC BC ==12AB AA ==,E 是棱1CC 的中点.(1)求证:平⾯1A AB ⊥平⾯1A BE ; (2)求⼆⾯⾓1A BE A --的余弦值.4.如图,四棱锥P ABCD -中,PA ⊥平⾯,,ABCD AB AD CD BC ==. (1)求证:平⾯PBD ⊥平⾯PAC ;(2)若120,60B A D B CD ∠=∠=,且P B P D ⊥,求⼆⾯⾓B PC D --的平⾯⾓的⼤⼩.5.如图,在三棱柱111ABC A B C -中,四边形11BB C C 是矩形,11AB B C ⊥,平⾯1A BC ⊥平⾯11AB C .(1)求证:11AB A B ⊥;(2)若113B C =,4AB =,160ABB ?∠=,求⼆⾯⾓1A A C B --的余弦值.6.如图,在正⽅体1111ABCD A B C D -中,,E F 分别是111,CC B C 的中点.(1)求证:1A F //平⾯1AD E ;(2)求⼆⾯⾓1D E A DC --余弦值.7.在多⾯体ABCDEF 中,四边形ABCD 是正⽅形,//EF AB ,1DE EF ==,2DC BF ==,30EAD ?∠=.(Ⅰ)求证:AE ⊥平⾯CDEF ;(Ⅱ)在线段BD 上确定⼀点G ,使得平⾯EAD 与平⾯FAG 所成的⾓为30?. 8.已知四棱锥P ABCD -中,平⾯PCD ⊥平⾯ABCD ,且22PD PC BC ===, 2,3BCD ABD π∠=是等边三⾓形,AC B D E =. (1)证明:PC ⊥平⾯PAD ; (2)求⼆⾯⾓P AB C --的余弦值.9.已知直⾓梯形ABCD 中,//AB CD ,AB AD ⊥,22AB AD CD ===,E 、F 分别是边AD 、BC 上的点,且//EF AB ,沿EF 将EFCD 折起并连接成如图的多⾯体CD ABFE -,折后BE ED ⊥.(Ⅰ)求证:AE FC ⊥;(Ⅱ)若折后直线AC 与平⾯ABFE 所成⾓θABCD ⊥平⾯FCB .10.如图,在四棱锥S ABCD -中,SA ⊥平⾯ABCD ,且90ABC BCD ∠=∠=?,22SA AB BC CD ====,E 是边SB 的中点.(1)求证:AE ⊥平⾯SBC ;(2)若F 是线段SB 上的动点(不含端点):问当BF FS为何值时,⼆⾯⾓D CF B--余弦值为10-. 11.如图,已知三棱柱111ABC A B C -,侧⾯11BCC B ABC ⊥底⾯. (Ⅰ)若,M N 分别是1,AB AC 的中点,求证:11//MN BCC B 平⾯; (Ⅱ)若三棱柱111ABC A B C -的各棱长均为2,侧棱1BB 与底⾯ABC 所成的⾓为60?,问在线段11A C 上是否存在⼀点P ,使得平⾯111B CP ACC A ⊥平⾯?若存在,求1C P 与1PA 的⽐值,若不存在,说明理由.12.已知某⼏何体直观图和三视图如图所⽰,其正视图为矩形,侧视图为等腰直⾓三⾓形,俯视图为直⾓梯形.(1)求证:BN 11C B N ⊥平⾯;(2)11sin C N CNB θθ设为直线与平⾯所成的⾓,求的值;(3)设M 为AB 中点,在BC 边上找⼀点P ,使MP //平⾯1CNB 并求BPPC的值. 13.如图,在直三棱柱111ABC A B C -中,,D E 分别是棱,BC AB 的中点,点F 在1CC 棱上,且AB AC =,13AA=,2BC CF ==.(1)求证:1//C E 平⾯ADF ;(2)当2AB =时,求⼆⾯⾓111A C E B --的余弦值.14.如图,在直三棱柱111ABC A B C -中,已知1CA CB ==,12AA =,90BCA ?∠=.(1)求异⾯直线1BA 与1CB 夹⾓的余弦值;(2)求⼆⾯⾓1B AB C --平⾯⾓的余弦值.15.已知正三棱柱中,、分别为的中点,设.(1)求证:平⾯平⾯;(2)若⼆⾯⾓的平⾯⾓为,求实数的值,并判断此时⼆⾯⾓是否为直⼆⾯⾓,请说明理由.16.在直三棱柱中,13,2,AA AB BC AC D ====是AC 中点. (Ⅰ)求证:1B C //平⾯1A BD ;(Ⅱ)求点1B 到平⾯1A BD 的距离;(Ⅲ)求⼆⾯⾓11A DB B --的余弦值.17.如图,在三棱柱ABC -111A B C 中,侧棱与底⾯垂直,090BAC ∠=,AB AC =1AA =2=,点,M N 分别为1A B 和11B C 的中点.(1)证明:1A M ⊥MC ;(2)求⼆⾯⾓N MC A --的正弦值.18.如图,四边形ABCD 是正⽅形,EA ⊥平⾯ABCD ,//EA PD ,22AD PD EA ===,F ,G ,H 分别为PB ,EB ,PC 的中点.(1)求证://FG 平⾯PED ;(2)求平⾯FGH 与平⾯PBC 所成锐⼆⾯⾓的⼤⼩;(3)在线段PC 上是否存在⼀点M ,使直线FM 与直线PA 所成的⾓为3π若存在,求出线段PM 的长;若不存在,请说明理由.19.已知五边形ABCDE 是由直⾓梯形ABCD 和等腰直⾓三⾓形ADE 构成,如图所⽰, AB AD ⊥, AE DE ⊥, AB CD ,且224AB CD DE ===,将五边形ABCDE 沿着AD 折起,且使平⾯ABCD ⊥平⾯ADE .(Ⅰ)若M 为DE 中点,边BC 上是否存在⼀点N ,使得MN 平⾯ABE ?若存在,求BNBC的值;若不存在,说明理由;(Ⅱ)求⼆⾯⾓A BE C --的平⾯⾓的余弦值.20.如图,在以,,,,,A B C D E F 为顶点的多⾯体中,四边形ACDF 是菱形,60,,//FAC AC BC AB DE ∠=?⊥, //,2,1,BC EF AC BC BF ===(1)求证:BC ⊥平⾯ACDF ;(2)求⼆⾯⾓C AE F --的余弦值.21.在PABC 中,4PA =,PC =45P ∠=?,D 是PA 中点(如图1).将PCD ?沿CD 折起到图2中1PCD ?的位置,得到四棱锥1P ABCD -.(1)将PCD ?沿CD 折起的过程中,CD ⊥平⾯1P DA 是否成⽴?并证明你的结论;(2)若1P D 与平⾯ABCD 所成的⾓为60°,且1PDA ?为锐⾓三⾓形,求平⾯1P AD 和平⾯1P BC 所成⾓的余弦值.22.四棱锥P ABCD -中,侧⾯PDC 是边长为2的正三⾓形,且与底⾯垂直,底⾯ABCD 是60ADC ∠=?的菱形,M 为PB 的中点,Q 为CD 的中点.(1)求证:PA CD ⊥;(2)求AQ 与平⾯CDM 所成的⾓.23.如图,在正⽅体ABCD – A 1B 1C 1D 1中,点E ,F ,G 分别是棱BC ,A 1B 1,B 1C 1的中点.(1)求异⾯直线EF 与DG 所成⾓的余弦值;(2)设⼆⾯⾓A —BD —G 的⼤⼩为θ,求 |cos θ| 的值.24.如图,四边形ABCD 与BDEF 均为菱形, 60DAB DBF ∠=∠=?,且F A F C =.(1)求证:AC ⊥平⾯BDEF ;(2)求直线AF 与平⾯BCF 所成⾓的正弦值.25.如图,在正⽅体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上⼀点,且异⾯直线1B E 与BG 所成⾓的余弦值为25.(1)证明:E 为AB 的中点;(2)求平⾯1B EF 与平⾯11ABC D 所成锐⼆⾯⾓的余弦值.26.如图,ABC ?中,02,4,90AC BC ACB ==∠=,,D E 分别是,AC AB 的中点,将ADE ?沿DE 折起成PDE ?,使⾯PDE ⊥⾯BCDE ,,H F 分别是PD 和BE 的中点,平⾯BCH 与PE ,PF 分别交于点,I G .(1)求证://IH BC ;(2)求⼆⾯⾓P GI C --的正弦值.27.如图,矩形ABCD 中,6AB =,AD =点F 是AC 上的动点.现将矩形ABCD沿着对⾓线AC 折成⼆⾯⾓D AC B '--,使得D B '=.(Ⅰ)求证:当AF =D F BC '⊥;(Ⅱ)试求CF 的长,使得⼆⾯⾓A D F B -'-的⼤⼩为4π.28.如图,在三棱锥P ABC -中,,,CP CA CB 两两垂直且相等,过PA 的中点D 作平⾯α∥BC ,且α分别交PB ,PC 于M 、N ,交,AB AC 的延长线于,E F .(Ⅰ)求证:EF ⊥平⾯PAC ;(Ⅱ)若2AB BE =,求⼆⾯⾓P DM N --的余弦值.29.如图1,在M B C △中,24BM BC ==,BM BC ⊥,A ,D 分别为BM ,MC 的中点.将MAD △沿AD 折起到PAD △的位置,使90PAB ∠=,如图2,连结PB ,PC .(Ⅰ)求证:平⾯PAD ⊥平⾯ABCD ;(Ⅱ)若E 为PC 中点,求直线DE 与平⾯PBD 所成⾓的正弦值;(Ⅲ)线段PC 上是否存在⼀点G ,使⼆⾯⾓G AD P --求出PGPC的值;若不存在,请说明理由.30.如图,在四棱锥P ABCD -中,PA ⊥平⾯ABCD ,底⾯ABCD 是菱形.(1)求证:BD ⊥平⾯PAC ;(2)若PA AB BD ==,求PC 与平⾯PBD 所成⾓的正弦值.31.如图,四棱锥P ABCD -中,底⾯ABCD 为梯形,PD ⊥底⾯ABCD ,//,,1,AB CD AD CD AD AB BC ⊥===过A 作⼀个平⾯α使得//α平⾯PBC .(1)求平⾯α将四棱锥P ABCD -分成两部分⼏何体的体积之⽐;(2)若平⾯α与平⾯PBC PA 与平⾯PBC 所成⾓的正弦值.32.如图⼏何体ADM-BCN 中,ABCD 是正⽅形,CD //NM ,,AD MD CD CN ⊥⊥,MDC ∠=120o ,30CDN ∠=,24MN MD ==.(Ⅰ)求证://AB CDMN 平⾯;(Ⅱ)求证:DN AMD ⊥平⾯;(Ⅲ)求⼆⾯⾓N AM D --的余弦值.33.如图所⽰,在四棱锥P ABCD -中,底⾯ABCD 为正⽅形,PA ⊥平⾯ABCD ,且1PA AB ==,点E 在线段PC 上,且2PE EC =. (Ⅰ)证明:平⾯BDE ⊥平⾯PCD ;(Ⅱ)求⼆⾯⾓P BD E --的余弦值.34.在如图所⽰的多⾯体ABCDE 中,AB ⊥平⾯ACD ,DE ⊥平⾯ACD ,AC AD CD DE 2AB 1G =====,,为AD 中点,F 是CE 的中点. (1)证明:BF 平⾯ACD (2)求点G 到平⾯BCE 的距离.35.如图所⽰,四棱锥P ABCD -的侧⾯PAD ⊥底⾯ABCD ,底⾯ABCD 是直⾓梯形,且//,AB CD AB AD ⊥,12CD PD AD AB ===,E 是PB 中点.(1)求证:CE ⊥平⾯PAB ;(2)若4CE AB ==,求直线CE 与平⾯PDC 所成⾓的⼤⼩.36.如图,在四棱锥E ABCD -中,ABD ?是正三⾓形,BCD ?是等腰三⾓形,120BCD ∠=,EC BD ⊥.(1)求证:BE DE =;(2)若AB =AE =EBD ⊥平⾯ABCD ,直线AE 与平⾯ABD 所成的⾓为45°,求⼆⾯⾓B AE D --的余弦值.37.如图1,在平⾏四边形11ABB A 中,160ABB ∠=?,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,现把平⾏四边形11ABB A 1沿C 1C 折起如图2所⽰,连接1B C 、1B A 、11B A .(1)求证:11AB CC ⊥;(2)若1AB =11C AB A --的正弦值.38.如图,已知四棱锥S ABCD -中,底⾯ABCD 是边长为2的菱形,60BAD ∠=?,SA SD SB ===点E 是棱AD 的中点,点F 在棱SC 上,且SF SC λ=,SA //平⾯BEF .(1)求实数λ的值;(2)求⼆⾯⾓S BE F --的余弦值.39.如图所⽰,在四棱锥P ABCD -中,平⾯PAD ⊥平⾯ABCD ,底⾯ABCD 是正⽅形,且PA PD =,90APD ?∠=.(Ⅰ)证明:平⾯PAB ⊥平⾯PCD ;(Ⅱ)求⼆⾯⾓A PB C --的余弦值.40.如图,空间四边形OABC 中,,OA BC OB AC ⊥⊥.求证:OC AB ⊥.41.如图,直⾓梯形BDFE 中,||EF BD ,BE BD ⊥,EF =等腰梯形ABCD 中,||AB CD ,AC BD ⊥,24AB CD ==,且平⾯BDFE ⊥平⾯ABCD . (1)求证:AC ⊥平⾯BDFE ;(2)若BF 与平⾯ABCD 所成⾓为4π,求⼆⾯⾓B DF C --的余弦值.42.在如图所⽰的⼏何体中,正⽅形ABEF 所在的平⾯与正三⾓形ABC 所在的平⾯互相垂直,//CD BE ,且2BE CD =,M 是ED 的中点.(1)求证://AD 平⾯BFM ;(2)求⾯EDF 与⾯ADB 所成锐⼆⾯⾓的⼤⼩.43.如图,四⾯体中,分别是的中点,(1)求证:平⾯;(2)求直线与平⾯所成⾓的正弦值.44.如图,已知正⽅体ABCD A B C D ''''-的棱长为1,E ,F ,G ,H 分别是棱AB ,CC ',AA ',C D ''的中点.(1)求证:EF 平⾯GHD ;(2)求直线EF 与BD '所成的⾓.45.如图,在四棱锥P -ABCD 中,底⾯ABCD 是边长为2的菱形,∠ABC =60°,PAB ?为正三⾓形,且侧⾯P AB ⊥底⾯ABCD ,E 为线段AB 的中点,M 在线段PD 上.(I )当M 是线段PD 的中点时,求证:PB // 平⾯ACM ;(II )求证:PE AC ⊥;(III )是否存在点M ,使⼆⾯⾓M EC D --的⼤⼩为60°,若存在,求出PMPD的值;若不存在,请说明理由.46.长⽅形ABCD 中,2AB AD =,M 是DC 中点(图1).将△ADM 沿AM 折起,使得AD BM ⊥(图2)在图2中:(1)求证:平⾯ADM ⊥平⾯ABCM ;(2)在线段BD 上是否存点E ,使得⼆⾯⾓E AM D --为⼤⼩为π4,说明理由. 47.如下图,在空间直⾓坐标系O xyz -中,正四⾯体(各条棱均相等的三棱锥)ABCD 的顶点,,A B C 分别在x 轴,y 轴,z 轴上.(Ⅰ)求证://CD 平⾯OAB ;(Ⅱ)求⼆⾯⾓C AB D --的余弦值.48.如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平⾯ABCD ,底⾯ABCD 为梯形, //AD BC ,AB DC ==1122AD AA BC ===,点P ,Q 分别为11A D ,AD 的中点.(Ⅰ)求证://CQ 平⾯1PAC ;(Ⅱ)求⼆⾯⾓1C AP D --的余弦值;(Ⅲ)在线段BC 上是否存在点E ,使PE 与平⾯1PAC 所成⾓的正弦值是21若存在,求BE 的长;若不存在,请说明理由.49.如图在棱锥P ABCD -中,ABCD 为矩形,PD ⊥⾯ABCD ,2PB =,PB 与⾯PCD 成045⾓,PB 与⾯ABD 成030⾓.(1)在PB 上是否存在⼀点E ,使PC ⊥⾯ADE ,若存在确定E 点位置,若不存在,请说明理由;(2)当E 为PB 中点时,求⼆⾯⾓P AE D --的余弦值.50.如图所⽰,在底⾯为正⽅形的四棱柱1111ABCD A B C D -中,1111,2,3AA A B A D AB AA B π===∠=.(1)证明:平⾯1A BD ⊥平⾯11A BC ;(2)求直线1AC 与平⾯1DBC 所成⾓的正弦值.51.如图,在等腰梯形ABCD 中,060ABC ∠=,上底2CD =,下底4AB =,点E 为下底AB 的中点,现将该梯形中的三⾓形BEC 沿线段EC 折起,形成四棱锥B AECD -.(1)在四棱锥B AECD -中,求证:AD BD ⊥;(2)若平⾯BEC 与平⾯AECD 所成⼆⾯⾓的平⾯⾓为0120,求直线AE 与平⾯ABD所成⾓的正弦值.52.如图,已知四棱锥P ABCD - 中,//,,3,4,4,AB CD AB AD AB CD AD AP ⊥====060PAB PAD ∠=∠=.(1)证明:顶点P 在底⾯ABCD 的射影在BAD ∠的平分线上;(2)求⼆⾯⾓B PD C --的余弦值.53.如图,三棱柱111ABC A B C -中,AB ⊥平⾯11AAC C ,12AA AB AC ===,160A AC ∠=.过1AA 的平⾯交11B C 于点E ,交BC 于点F .(l)求证:1A C ⊥平⾯1ABC ;(Ⅱ)求证:四边形1AA EF 为平⾏四边形; (Ⅲ)若是23BF BC =,求⼆⾯⾓1B AC F --的⼤⼩. 54.如图,在四棱锥P ABCD -中,底⾯ABCD 为梯形,平⾯PAD ⊥平⾯,//,ABCD BC AD ,PA PD ⊥,60,AB AD PDA E ⊥∠=为侧棱PD 的中点,且2,4AB BC AD ===.(1)证明://CE 平⾯PAB ;(2)求⼆⾯⾓A PB C --的余弦值.55.如图1,梯形ABCD 中,AD BC ∥,CD BC ⊥,1BC CD ==,2AD =,E。

立体几何题型及解题方法总结

立体几何题型及解题方法总结

立体几何题型及解题方法总结1. 立体几何题型啊,那可是个神奇的领域!有求各种立体图形体积的题型,就像求一个装满水的古怪形状瓶子能装多少水一样。

比如说正方体,正方体的体积公式就是边长的立方。

要是有个正方体边长是3厘米,那它的体积就是3×3×3 = 27立方厘米,简单吧!这类型的题就像是数糖果,一个一个数清楚就行。

2. 还有求立体图形表面积的题型呢。

这就好比给一个形状奇怪的礼物包装纸,得算出需要多少纸才能把它包起来。

像长方体,表面积就是六个面的面积之和。

假如一个长方体长4厘米、宽3厘米、高2厘米,那表面积就是2×(4×3 + 4×2 + 3×2) = 52平方厘米。

哎呀,可别小瞧这表面积,有时候算错一点就像给礼物包了个破纸一样难看。

3. 立体几何里关于线面关系的题型也不少。

这就像在一个迷宫里找路,线和面的关系复杂得很。

比如说直线和平面平行的判定,就像在一个方方正正的房间里,一根直直的杆子和地面平行,只要杆子和地面内的一条直线平行就行。

像有个三棱柱,一条棱和底面的一条棱平行,那这条棱就和底面平行啦,是不是很有趣呢?4. 线面垂直的题型也很重要哦。

这就像是建房子时的柱子和地面的关系,必须垂直才稳当。

判断一条直线和一个平面垂直,就看这条直线是不是和平面内两条相交直线都垂直。

就像搭帐篷,中间那根杆子要和地面上交叉的两根绳子都垂直,帐篷才能稳稳地立起来。

比如一个正四棱锥,它的高就和底面垂直,因为高和底面两条相交的对角线都垂直呢。

5. 面面平行的题型有点像照镜子。

两个平面就像两面镜子,要想平行,得看一个平面内的两条相交直线和另一个平面内的两条相交直线分别平行。

就像有两个一样的盒子,一个盒子里面两条交叉的边和另一个盒子里面对应的两条交叉边平行,那这两个盒子的面就是平行的关系。

想象一下,如果两个平行的黑板,是不是很有画面感?6. 面面垂直的题型就像是打开的书页。

(完整版)立体几何的经典题型

(完整版)立体几何的经典题型

(完整版)立体几何的经典题型立体几何的经典题型
1. 点、线、面的基本概念
在立体几何中,点、线和面是基本概念,对于经典题型的理解
至关重要。

- 点: 点是立体几何中最基本的要素,没有长度、宽度和高度,
只有一个位置。

- 线: 线由无数个点组成,没有宽度,只有长度和方向。

- 面: 面是由无数个线组成的,具有长度和宽度,但没有高度。

2. 立体图形的计算
掌握立体图形的计算方法能够解决很多经典题型。

- 体积: 体积是立体图形所占的空间大小,常见的计算公式有:
- 立方体的体积:V = 边长^3
- 圆柱体的体积:V = 底面积 ×高度
- 圆锥体的体积:V = 1/3 ×底面积 ×高度
- 表面积: 表面积是立体图形外部的总面积,常见的计算公式有:- 立方体的表面积:A = 6 ×边长^2
- 圆柱体的表面积:A = 2 ×底面积 + 侧面积
- 圆锥体的表面积:A = 底面积 + 侧面积
3. 空间关系和投影
理解立体图形的空间关系和投影对于解决经典题型至关重要。

- 平行关系: 如果两个面或两个线在空间中永远保持相同的距离
且不相交,它们是平行的。

- 垂直关系: 如果两个线或两个面彼此相交,并且交角为90度,它们是垂直的。

- 投影: 在立体几何中,我们常常需要计算一个图形在投影时的
变化。

常见的投影有平面投影和正交投影。

以上是立体几何的一些经典题型和基本概念,掌握了这些内容,你将能够更好地解决相关的问题。

希望对你有所帮助!。

立体几何压轴题十大题型汇总(学生版)

立体几何压轴题十大题型汇总(学生版)

立体几何压轴题十大题型汇总命题预测本专题考查类型主要涉及点立体几何的内容,主要涉及了立体几何中的动点问题,外接球内切球问题,以及不规则图形的夹角问题,新定义问题等。

预计2024年后命题会继续在以上几个方面进行。

高频考法题型01几何图形内切球、外接球问题题型02立体几何中的计数原理排列组合问题题型03立体几何动点最值问题题型04不规则图形中的面面夹角问题题型05不规则图形中的线面夹角问题题型06几何中的旋转问题题型07立体几何中的折叠问题题型08不规则图形表面积、体积问题题型09立体几何新定义问题题型10立体几何新考点题型01几何图形内切球、外接球问题解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.1(多选)(23-24高三下·浙江·开学考试)如图,八面体的每个面都是正三角形,并且4个顶点A,B,C,D 在同一个平面内,如果四边形ABCD是边长为2的正方形,则()A.异面直线AE与DF所成角大小为π3B.二面角A-EB-C的平面角的余弦值为13C.此八面体一定存在外接球D.此八面体的内切球表面积为8π32(2024·浙江宁波·二模)在正四棱台ABCD-A1B1C1D1中,AB=4,A1B1=2,AA1=3,若球O与上底面A1B1C1D1以及棱AB,BC,CD,DA均相切,则球O的表面积为()A.9πB.16πC.25πD.36π3(2024·河北石家庄·二模)已知正方体的棱长为22,连接正方体各个面的中心得到一个八面体,以正方体的中心O为球心作一个半径为233的球,则该球O的球面与八面体各面的交线的总长为()A.26πB.463π C.863π D.46π4(多选)(2022·山东聊城·二模)用与母线不垂直的两个平行平面截一个圆柱,若两个截面都是椭圆形状,则称夹在这两个平行平面之间的几何体为斜圆柱.这两个截面称为斜圆柱的底面,两底面之间的距离称为斜圆柱的高,斜圆柱的体积等于底面积乘以高.椭圆的面积等于长半轴与短半轴长之积的π倍,已知某圆柱的底面半径为2,用与母线成45°角的两个平行平面去截该圆柱,得到一个高为6的斜圆柱,对于这个斜圆柱,下列选项正确的是()A.底面椭圆的离心率为22B.侧面积为242πC.在该斜圆柱内半径最大的球的表面积为36πD.底面积为42π5(21-22高三上·湖北襄阳·期中)在正方体ABCD-A1B1C1D1中,球O1同时与以A为公共顶点的三个面相切,球O2同时与以C1为公共顶点的三个面相切,且两球相切于点F.若以F为焦点,AB1为准线的抛物线经过O1,O2,设球O1,O2的半径分别为r1,r2,则r1r2=.题型02立体几何中的计数原理排列组合问题1(2024·浙江台州·二模)房屋建造时经常需要把长方体砖头进行不同角度的切割,以契合实际需要.已知长方体的规格为24cm×11cm×5cm,现从长方体的某一棱的中点处作垂直于该棱的截面,截取1次后共可以得到12cm×11cm×5cm,24cm×112cm×5cm,24cm×11cm×52cm三种不同规格的长方体.按照上述方式对第1次所截得的长方体进行第2次截取,再对第2次所截得的长方体进行第3次截取,则共可得到体积为165cm3的不同规格长方体的个数为()A.8B.10C.12D.162(2023·江苏南通·模拟预测)在空间直角坐标系O-xyz中,A10,0,0,B0,10,0,C0,0,10,则三棱锥O-ABC内部整点(所有坐标均为整数的点,不包括边界上的点)的个数为()A.C310B.C39C.C210D.C293(2024·重庆·模拟预测)从长方体的8个顶点中任选4个,则这4个点能构成三棱锥的顶点的概率为()A.2736B.2935C.67D.32354(多选)(2024·重庆·模拟预测)如图,16枚钉子钉成4×4的正方形板,现用橡皮筋去套钉子,则下列说法正确的有(不同的图形指两个图形中至少有一个顶点不同)()A.可以围成20个不同的正方形B.可以围成24个不同的长方形(邻边不相等)C.可以围成516个不同的三角形D.可以围成16个不同的等边三角形5(2024·上海浦东新·模拟预测)如图ABCDEF -A B C D E F 为正六棱柱,若从该正六棱柱的6个侧面的12条面对角线中,随机选取两条,则它们共面的概率是.题型03立体几何动点最值问题空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,结合空间距离,确定动点的轨迹形状;结合等体积法求得点到平面的距离,结合线面角的定义求解.1(多选)(2024·浙江台州·二模)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为平面ABCD 内一动点,且直线D 1P 与平面ABCD 所成角为π3,E 为正方形A 1ADD 1的中心,则下列结论正确的是()A.点P 的轨迹为抛物线B.正方体ABCD -A 1B 1C 1D 1的内切球被平面A 1BC 1所截得的截面面积为π6C.直线CP 与平面CDD 1C 1所成角的正弦值的最大值为33D.点M 为直线D 1B 上一动点,则MP +ME 的最小值为11-2662(多选)(2024·江苏扬州·模拟预测)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为平面ABCD 内一动点,则()A.若M 在线段AB 上,则D 1M +MC 的最小值为4+22B.平面ACD 1被正方体内切球所截,则截面面积为π6C.若C 1M 与AB 所成的角为π4,则点M 的轨迹为椭圆D.对于给定的点M ,过M 有且仅有3条直线与直线D 1A ,D 1C 所成角为60°3(多选)(2023·安徽芜湖·模拟预测)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,棱AB 的中点为M ,过点M 作正方体的截面α,且B 1D ⊥α,若点N 在截面α内运动(包含边界),则()A.当MN 最大时,MN 与BC 所成的角为π3B.三棱锥A 1-BNC 1的体积为定值23C.若DN =2,则点N 的轨迹长度为2πD.若N ∈平面A 1BCD 1,则BN +NC 1 的最小值为6+234(多选)(2024·福建厦门·一模)如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,△ABF 和△DCE 均是等边三角形,且AB =23,EF =x (x >0),则()A.EF ⎳平面ABCDB.二面角A -EF -B 随着x 的减小而减小C.当BC =2时,五面体ABCDEF 的体积V (x )最大值为272D.当BC =32时,存在x 使得半径为32的球能内含于五面体ABCDEF 5(多选)(2024·广西南宁·一模)在边长为2的正方体ABCD -A 1B 1C 1D 1中,动点M 满足AM =xAB+yAD +zAA 1 ,(x ,y ,z ∈R 且x ≥0,y ≥0,z ≥0),下列说法正确的是()A.当x =14,z =0,y ∈0,1 时,B 1M +MD 的最小值为13B.当x =y =1,z =12时,异面直线BM 与CD 1所成角的余弦值为105C.当x +y +z =1,且AM =253时,则M 的轨迹长度为42π3D.当x +y =1,z =0时,AM 与平面AB 1D 1所成角的正弦值的最大值为63题型04不规则图形中的面面夹角问题利用向量法解决立体几何中的空间角问题,关键在于依托图形建立合适的空间直角坐标系,将相关向量用坐标表示,通过向量的坐标运算求空间角,其中建系的关键在于找到两两垂直的三条直线.1(2024·浙江台州·二模)如图,已知四棱台ABCD-A1B1C1D1中,AB=3A1B1,AB∥CD,AD⊥AB,AB=6,CD=9,AD=6,且AA1=BB1=4,Q为线段CC1中点,(1)求证:BQ∥平面ADD1A1;A1与平面CDD1C1夹角的余弦值.(2)若四棱锥Q-ABB1A1的体积为3233,求平面ABB12(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°,BC =2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.3(2024·浙江金华·模拟预测)已知四棱锥P-ABCD的棱AB,BC的长为2,其余各条棱长均为1.(1)求四棱锥P-ABCD的体积;(2)求二面角A-PC-B的大小.4(2024·安徽·二模)将正方形ABCD绕直线AB逆时针旋转90°,使得CD到EF的位置,得到如图所示的几何体.(1)求证:平面ACF⊥平面BDE;(2)点M为DF上一点,若二面角C-AM-E的余弦值为13,求∠MAD.5(2024·山西·二模)如图,四棱锥P-ABCD中,二面角P-CD-A的大小为90°,∠DCP=∠DPC<π°,E是PA的中点.4,∠DAB=∠ABC=2∠ADB=2∠DCB=90(1)求证:平面EBD⊥平面PCD;(2)若直线PD与底面ABCD所成的角为60°,求二面角B-ED-C的余弦值.题型05不规则图形中的线面夹角问题1(2024·浙江宁波·二模)在菱形ABCD中,AB=2,∠BAD=60°,以AB为轴将菱形ABCD翻折到菱形ABC1D1,使得平面ABC1D1⊥平面ABCD,点E为边BC1的中点,连接CE,DD1.(1)求证:CE∥平面ADD1;(2)求直线CE与平面BDD1所成角的正弦值.2(23-24高三下·江苏泰州·阶段练习)如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD= 60°,△PAD为等边三角形,点M,N分别为AB,PC的中点.(1)证明:直线MN⎳平面PAD;(2)当二面角P-AD-C为120°时,求直线MN与平面PCD所成的角的正弦值.3(23-24高三下·浙江·开学考试)在三棱锥D-ABC中,AC=3,DC=22,∠DCA=45°,CB⊥AB,BC=BD=6.(1)证明:平面ADC⊥平面ABC;(2)点E为棱DC上,若BC与平面EAB所成角的正弦值为3311,求DE的长;4(2022·江西赣州·二模)已知四棱锥P-ABCD中,△ABD、△BCD、△BDP都是正三角形AB=2,AP=3(1)求证:平面ACP⊥平面BDP;(2)求直线BP与平面ADP所成角的正弦值.5(2024·全国·模拟预测)如图,AB,CD,EF两两垂直,点E为AB的中点,点F在线段CD上,且满足DF=4CF,AB=EF=2,CD=5.(1)求证:平面ABC⊥平面ABD.(2)求直线BD与平面ACD所成角的正弦值.题型06几何中的旋转问题1(2024·全国·模拟预测)如图,已知长方体ABCD-A B C D 中,AB=BC=2,AA =2,O为正方形ABCD的中心点,将长方体ABCD-A B C D 绕直线OD 进行旋转.若平面α满足直线OD 与α所成的角为53°,直线l⊥α,则旋转的过程中,直线AB与l夹角的正弦值的最小值为( )(参考数据:sin53°≈4 5,cos53°≈35)A.43-310B.33-410C.33+310D.43+3102(多选)(2024·河北唐山·一模)在透明的密闭正三棱柱容器ABC-A1B1C1内灌进一些水,已知AB= AA1=4.如图,当竖直放置时,水面与地面距离为3.固定容器底面一边AC于地面上,再将容器按如图方向倾斜,至侧面ACC1A1与地面重合的过程中,设水面所在平面为α,则()A.水面形状的变化:三角形⇒梯形⇒矩形B.当C1A1⊂α时,水面的面积为221C.当B∈α时,水面与地面的距离为835D.当侧面ACC1A1与地面重合时,水面的面积为123(2024·陕西商洛·模拟预测)魔方,又叫鲁比克方块,最早是由匈牙利布达佩斯建筑学院厄尔诺•鲁比克教授于1974年发明的机械益智玩具.魔方拥有竞速、盲拧、单拧等多种玩法,风靡程度经久未衰,每年都会举办大小赛事,是最受欢迎的智力游戏之一.一个三阶魔方,由27个棱长为1的正方体组成,如图是把魔方的中间一层转动了45°,则该魔方的表面积增加了 .4(2024·福建·模拟预测)在△ABC 中,∠ABC =90°,AB =6,∠ACB 的平分线交AB 于点D ,AD =2DB .平面α过直线AB ,且与△ABC 所在的平面垂直.(1)求直线CD 与平面α所成角的大小;(2)设点E ∈α,且∠ECD =30°,记E 的轨迹为曲线Γ.(i )判断Γ是什么曲线,并说明理由;(ii )不与直线AB 重合的直线l 过点D 且交Γ于P ,Q 两点,试问:在平面α内是否存在定点T ,使得无论l 绕点D 如何转动,总有∠PTC =∠QTC ?若存在,指出点T 的位置;若不存在,说明理由.5(多选)(2024·浙江·二模)已知正方体ABCD -A 1B 1C 1D 1,的棱长为1,点P 是正方形A 1B 1C 1D 1上的一个动点,初始位置位于点A 1处,每次移动都会到达另外三个顶点.向相邻两顶点移动的概率均为14,向对角顶点移动的概率为12,如当点P 在点A 1处时,向点B 1,D 1移动的概率均为14,向点C 1移动的概率为12,则()A.移动两次后,“PC =3”的概率为38B.对任意n ∈N *,移动n 次后,“PA ⎳平面BDC 1”的概率都小于13C.对任意n ∈N *,移动n 次后,“PC ⊥平面BDC 1”的概率都小于12D.对任意n ∈N *,移动n 次后,四面体P -BDC 1体积V 的数学期望E V <15(注:当点P 在平面BDC 1上时,四面体P -BDC 1体积为0)题型07立体几何中的折叠问题1(2020·浙江·模拟预测)如图,在△ABC中,∠ABC=90°,AB=1,BC=2,D为线段BC(端点除外)上一动点.现将△ABD沿线段AD折起至△AB D,使二面角B -AD-C的大小为120°,则在点D的移动过程中,下列说法错误的是()A.不存在点D,使得CB ⊥ABB.点B 在平面ABC上的投影轨迹是一段圆弧C.B A与平面ABC所成角的余弦值的取值范围是105,1D.线段CB 的最小值是32(多选)(23-24高三下·江苏泰州·阶段练习)已知正方形ABCD的边长为4,点E在线段AB上,BE =1.沿DE将△ADE折起,使点A翻折至平面BCDE外的点P,则()A.存在点P,使得PE⊥DCB.存在点P,使得直线BC⎳平面PDEC.不存在点P,使得PC⊥DED.不存在点P,使得四棱锥P-BCDE的体积为83(2024·安徽池州·模拟预测)如图①,四边形ABCD是边长为2的正方形,△EAB与△FAD是两个全等的直角三角形,且FA=4,FC与AD交于点G,将Rt△EAB与Rt△FAD分别沿AB,AD翻折,使E,F重合于点P,连接PC,得到四棱锥P-ABCD,如图②,(1)证明:BD⊥PC;(2)若M为棱PC的中点,求直线BM与平面PCG所成角的正弦值.4(多选)(2023·浙江嘉兴·模拟预测)如图,在△ABC 中,∠B =π2,AB =3,BC =1,过AC 中点M 的直线l 与线段AB 交于点N .将△AMN 沿直线l 翻折至△A MN ,且点A 在平面BCMN 内的射影H 在线段BC 上,连接AH 交l 于点O ,D 是直线l 上异于O 的任意一点,则()A.∠A DH ≥∠A DCB.∠A DH ≤∠A OHC.点O 的轨迹的长度为π6D.直线A O 与平面BCMN 所成角的余弦值的最小值为83-135(2024·全国·模拟预测)如图1,已知在正方形ABCD 中,AB =2,M ,E ,F 分别是边CD ,BC ,AD的中点,现将矩形ABEF 沿EF 翻折至矩形A B EF 的位置,使平面A B EF ⊥平面CDFE ,如图2所示.(1)证明:平面A EM ⊥平面A FM ;(2)设Q 是线段A E 上一点,且二面角A -FM -Q 的余弦值为33,求EQ EA的值.题型08不规则图形表面积、体积问题解决不规则图形的表面积体积问题,注意使用割补法,通过分割与补形的方法,转化成常规的几何体进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。

(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线.(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直.(1). 空间直线与平面位置分三种:相交、平行、在平面内.(2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)(3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4). 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), ● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5).a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。

4. 平面平行与平面垂直.(1). 空间两个平面的位置关系:相交、平行.(2). 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. [注]:一平面内的任一直线平行于另一平面.POAa(3). 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行⇒线线平行”)(4). 两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系.(5). 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面. 简证:如图,在平面内过O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.所以结论成立 (6). 两异面直线任意两点间的距离公式:θcos 2222mn d n m l -++=(θ为锐角取减,θ为钝角取加,综上,都取减则必有⎥⎦⎤⎝⎛∈2,0πθ)(1). a.最小角定理:21cos cos cos θθθ=(1θ为最小角,如图) b.最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条. 成角比交线夹角一半大,又比交线夹角补角小,一定有2条. 成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有. 5. 棱柱. 棱锥(1). 棱柱.a.①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的. ②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.b.{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}. {直四棱柱} {平行六面体}={直平行六面体}.四棱柱直平行六面体长方体正四棱柱底面是平行四边形侧棱垂直底面底面是矩形底面是正方形c.棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.PαβθM AB O图1θθ1θ2图2注: (直棱柱定义)棱柱有一条侧棱和底面垂直. d.平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则 1cos cos cos 222=++γβα. 推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. [注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四棱柱的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)(2). 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形. [注]:①一个三棱锥四个面可以都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心. [注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形) ii. 正四面体是各棱相等,而正三棱锥是底面为正三角形,侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α)附:以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --. 则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别求多个三角形面积和的方法).b.棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.c.特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.labc③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心. ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; ⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三棱锥,两条相对棱互相垂直,则第三组相对棱必然垂直简证:AB ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令b AC c AD a AB ===,, 得c a c b AD BC c AD a b AB AC BC -=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅c a b b c a0=-⇒c b c a 则0=⋅AD BC .iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形. iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则 EFGH FG EF ⇒=为正方形.(3). 球:a.球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=. b.纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高)②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥体体积:Sh V 31=(S 为底面积,h 为高) (1). ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧,得R a R a a a ⋅⋅+⋅=⋅2224331433643a a a R 46342334/42=⋅==⇒. B CFEHGBCDAO'O rO注:球内切于四面体:h S R S 313R S 31V 底底侧A CD B ⋅=⋅+⋅⋅⋅=-。

相关文档
最新文档