求函数fx的解析式
二次函数图像与性质
课堂互动讲练
例3 解题示范本题满分12分 已知二次函数fx=ax2+bxa;b为常
数;且a≠0满足条件:f-x+5=fx-3; 且方程fx=x有等根.
1求fx的解析式; 2是否存在实数m;nm<n;使fx的 定义域和值域分别为m;n和3m;3n?如 果存在;求出m;n的值;如果不存在;说 明理由.
课堂互动讲练
t2-2t-7,t<1,
பைடு நூலகம்
从而 g(t)=-8,1≤t≤2, t2-4t-4,t>2.
2gt的图象如图所示. gt的最小值为-8.
课堂互动讲练
规律小结 二次函数区间最值主 要有三种类型:轴定区间定;轴定区间 动和轴动区间定.
一般来说;讨论二次函数在闭区间 上的最值;主要是看区间是落在二次函 数的哪一个单调区间上;从而应用单调 性求最值.
第4课时 二次函数
基础知识梳理
1.二次函数的解析式有三种常用表 达形式
1一般式:fx= ax2+bx+ca≠;0 2顶点式:fx=ax-h2+ka≠0;h;k是顶 点; 3标根式或因式分解式:fx=ax-x1x -x2a≠0;其中x1;x2分别是fx=0的两实 根.
基础知识梳理
2.二次函数的图象及其性质
规律方法总结
1.二次函数fx=ax2+bx+ca>0 在区间m;n上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
规律方法总结
当 m≤-2ba≤n 时,最小值为 f(-2ba)= 4ac4-a b2,最大值为 f(m)或 f(n)(m,n 与-2ba 较远的一个为最大).
课堂互动讲练
考点三 二次函数的综合问题
二次函数常和二次方程、二次 不等式结合在一起.
fx的解析式公式
fx是一个函数的符号,表示它是一个具体的函数。
其解析式公式取决于具体的函数是什么。
如果您有具体的函数,我可以告诉您它的解析式公式。
如果您有一个特定的函数,例如f(x) = x^2 + 3x + 1,那么它的解析式公式是f(x) = x^2 + 3x + 1。
这是一个二次函数,可以用来描述二次函数的形式。
其他函数也有自己的解析式公式,如指数函数f(x) = 2^x 或三角函数f(x) = sin(x)。
请注意,每种函数都有其自己的特殊解析式公式,并且在不同的场景中使用。
另外,在许多情况下,函数f(x) 没有解析式公式,因为它可能不能被数学公式表示。
在这种情况下,我们可以使用数值方法来近似函数值。
例如,在机器学习中,我们可以使用深度学习网络来拟合复杂的函数,而无需知道其解析式。
总之,fx的解析式公式取决于具体的函数,如果给定函数没有解析式,可能需要使用数值方法来近似函数的值。
另外,对于复合函数f(g(x)) 也可以使用解析式公式来表示, 其中g(x)是一个具体的函数.
如f(g(x))=sin(g(x)), g(x)=x^2+3x+1, 那么f(g(x))=sin(x^2+3x+1) 就是这个复合函数的解析式公式.
总结:fx的解析式公式是一种用数学公式表示函数的方
法,对于每种函数都有其自己的特殊解析式公式,但是并不是所有函数都有解析式公式,在这种情况下可能需要使用数值方法来近似函数的值。
求函数解析式的四种方法
ʏ王 江函数的解析式是表示函数的一种方法,对于不是y =f (x )的形式,可根据题目的条件转化为该形式㊂求函数解析式的常用方法有:配凑法,换元法,待定系数法,解方程组法㊂一㊁配凑法例1 已知f 1+xx()=1+x 2x 2+1x ,则函数f (x )=㊂解:因为f 1+xx()=1+x 2+2x -2x x 2+1x =1+xx()2-1+x -x x =1+xx()2-1+xx+1,所以f (x )=x 2-x +1㊂又1+x x =1x+1ʂ1,所以函数f (x )=x 2-x +1(x ʂ1)㊂评析:由已知条件f [g (x )]=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),可得f (x )的表达式㊂二㊁换元法例2 若f (2x +1)=4x 2+4x ,则f (x )的解析式为㊂解:令2x +1=t ,t ɪR ,则x =t -12,所以f (t )=4ˑt -12()2+4ˑt -12=t 2-1,t ɪR ㊂故函数f (x )=x 2-1㊂评析:已知复合函数f [g (x )]的解析式求f (x )的解析式,可用换元法㊂例3 若f 2x 2+1()=2020x 2+1,则f (x )的解析式为㊂解:由f 2x 2+1()=2020x 2+1,可令t =2x 2+1(t ʂ0),则x 2=2-tt ,所以f (t )=4040-2020t t +1=4040-2019tt (t ʂ0)㊂故函数f (x )=4040-2019xx(x ʂ0)㊂评析:由于x ɪR ,可知2x 2+1ʂ0,所以本题换元后t ʂ0㊂三㊁待定系数法例4 已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图像过点(0,3),求函数f (x )的解析式㊂解:设函数f (x )=a x 2+b x +c (a ʂ0)㊂由f (0)=f (4),可得4a +b =0㊂由图像过点(0,3),可得c =3㊂设f (x )=0的两根为x 1,x 2,则x 1+x 2=-b a ,x 1㊃x 2=c a,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=-b a()2-2㊃c a=10,即b 2-2a c =10a2㊂由上容易解得a =1,b =-4,c =3㊂故函数f (x )=x 2-4x +3㊂评析:已知函数的类型(如一次函数㊁二次函数)求函数的解析式,可用待定系数法㊂四㊁解方程组法例5 已知函数y =f (x )满足f (x )=2f1x ()+x ,则f (x )的解析式为㊂解:由f (x )=2f 1x()+x ,将x 换成1x ,可得f 1x()=2f (x )+1x (x ʂ0)㊂由上消去f 1x(),可得f (x )=-23x -x 3㊂故函数f (x )=-x 2+23x(x ʂ0)㊂评析:已知关于f (x )与f1x()或f (-x )的表达式,可根据已知条件再构造出另外一个等式,然后通过解方程组求出函数f (x )的解析式㊂作者单位:安徽省宣城市工业学校(责任编辑 郭正华)5数学部分㊃知识结构与拓展高一使用 2020年9月。
关于y=a对称 fx的解析式
关于y=a对称 fx的解析式一、概述在数学中,对称是一个重要的概念,它在几何、代数等不同领域都有广泛的应用。
而在函数的研究中,对称函数也是一个重要的研究对象。
在此,我们将关注于y=a对称的函数fx的解析式的推导和性质研究。
二、y=a对称的函数 fx的概念和性质1. 定义:y=a对称的函数fx是指对于任意x,当有fx=y时,也有fx=(-y+a)。
即在图像上关于直线y=a对称。
2. 性质: y=a对称的函数fx具有以下一些性质:(1)对称轴:直线y=a是y=a对称函数fx的对称轴,即如果有点(x,y)属于函数fx的图像,那么点(x,2a-y)也属于函数fx的图像。
(2)奇偶性:y=a对称的函数fx的奇偶性与a无关,因为对称轴不变。
即如果fx是偶函数,则当x属于定义域时,也有(-x,fx)属于fx的图像;如果fx是奇函数,则当x属于定义域时,也有(-x,a-fx)属于fx的图像。
(3)图像性质:如果函数fx的图像关于y=a对称,那么函数fx的图像也关于y=-a对称。
三、y=a对称的函数 fx的解析式推导1. 对称函数的一般形式:假设函数fx是关于直线y=a对称的函数,则可以设函数fx的解析式为y=f(x)。
那么由对称函数的性质可知,对于任意x,有f(x)=f(2a-x)。
2. 推导:通过上述函数的一般形式,可以得到y=a对称的函数fx的解析式推导公式为f(x)=f(2a-x)。
3. 实例:对于函数f(x)=x^2-2x+3,我们可以验证其是否对称于直线y=1。
我们有f(x)=x^2-2x+3,而f(2*1-x)=f(2-x)=(-x+1)^2-2*(-x+1)+3=x^2-2x+3。
f(x)的图像关于y=1对称。
四、y=a对称的函数 fx的实例分析以下通过实例对y=a对称的函数fx的解析式进行分析。
1. 实例一:函数f(x)=x^3-3x+2由上述推导公式f(x)=f(2a-x),我们有f(x)=x^3-3x+2,则f(2-a-x)=(2-a-x)^3-3*(2-a-x)+2=8-a^3-6x+3a^2+6x-3a+x-2=8-a^3-2+3a^2-x。
求函数fx的解析式
解:设f(x)=ax+b (a≠0),则
f[f(x)]=af(x)+b=a(ax+b)+b= a2 x+ab+bLeabharlann a2 4 ab b 3
a b
12或ba
2 -3
f (x) 2x 1 或 f (x) 2x - 3
例二:已知反比例函数f(x)满足f(3)=-6,则函数f(x)=
解:令 t x 1,则 t 1 x (t 1)2
f ( x 1) x 2 x , f (t) (t 1)2 2(t 1) t 2 1, f (x) x 2 1 (x 1)
f (x 1) (x 1)2 1 x2 2x (x 0)
例二:f (x 1) x2 2x 2,求f(x)及
1、解2:、f (解x 1:) f(x(x1)2 1)2x1(x(x 11))22 22(xx1) 3
f f
( (
xx)1()xx2 ( x21x)12)
3
2
22((xx
1)
1)3
02
解得,x1f(2x,)x2 x22 2x 2
四、【待定系数法】
已知函数模型(如:一次函数,二次函数,反比例函数等) 求解析式,首先设出函数解析式,根据已知条件代入求系 数。
故f(x)的解析式为f(x)=a-b 1x.
(2)在原式中用1x替换x,得f1x-2f(x)=3x+2,
于是有ff1xx--22ff1xx==33x+x+22,. f(x)=-x-2x-2.
消去f1x,得
六.赋值法
例1: 已知定义在R上的函数f(x),对任意 实数x,y满足:f (x y) f (x) 2xy y2 y
三角函数解三角形综合
1.已知函数fx=sinωx﹣2sin2+mω>0的最小正周期为3π,当x∈0,π时,函数fx 的最小值为0.1求函数fx的表达式;2在△ABC中,若fC=1,且2sin2B=cosB+cosA﹣C,求sinA的值.解:Ⅰ.依题意:函数.所以.,所以fx的最小值为m.依题意,m=0..Ⅱ∵,∴..在Rt△ABC中,∵,∴.∵0<sinA<1,∴.2.已知函数其中ω>0,若fx的一条对称轴离最近的对称中心的距离为.I求y=fx的单调递增区间;Ⅱ在△ABC中角A、B、C的对边分别是a,b,c满足2b﹣acosC=c•cosA,则fB恰是fx的最大值,试判断△ABC的形状.解答解:Ⅰ∵,=,∵fx的对称轴离最近的对称中心的距离为,∴T=π,∴,∴ω=1,∴.∵得:,∴函数fx单调增区间为;Ⅱ∵2b﹣acosC=c•cosA,由正弦定理,得2sinB﹣sinAcosC=sinC•cosA2sinBcosC=sinAcosC+sinCcosA=sinA+C,∵sinA+C=sinπ﹣B=sinB>0,2sinBcosC=sinB,∴sinB2cosC﹣1=0,∴,∵0<C<π,∴,∴,∴.∴,根据正弦函数的图象可以看出,fB无最小值,有最大值y max=1,此时,即,∴,∴△ABC为等边三角形.3.已知函数fx=sinωx+cosωx++cosωx﹣﹣1ω>0,x∈R,且函数的最小正周期为π:1求函数fx的解析式;2在△ABC中,角A、B、C所对的边分别是a、b、c,若fB=0,•=,且a+c=4,试求b的值.解答解:1fx=sinωx+cosωx++cosωx﹣﹣1==.∵T=,∴ω=2.则fx=2sin2x﹣1;2由fB==0,得.∴或,k∈Z.∵B是三角形内角,∴B=.而=ac•cosB=,∴ac=3.又a+c=4,∴a2+c2=a+c2﹣2ac=16﹣2×3=10.∴b2=a2+c2﹣2ac•cosB=7.则b=.4.已知函数.1求fx单调递增区间;2△ABC中,角A,B,C的对边a,b,c满足,求fA的取值范围.解答解:1fx=﹣+sin2x=sin2x﹣cos2x=sin2x﹣,令2kπ﹣≤2x﹣≤2kπ+,k∈Z,得到﹣+kπ≤x≤+kπ,k∈Z, 则fx的增区间为﹣+kπ, +kπk∈Z;2由余弦定理得:cosA=,即b2+c2﹣a2=2bccosA,代入已知不等式得:2bccosA>bc,即cosA>,∵A为△ABC内角,∴0<A<,∵fA=sin2A﹣,且﹣<2A﹣<,∴﹣<fA<,则fA的范围为﹣,.5.在△ABC中,内角A,B,C的对边分别是a,b,c,已知A为锐角,且bsinAcosC+csinAcosB=a.1求角A的大小;2设函数fx=tanAsinωxcosωx﹣cos2ωxω>0,其图象上相邻两条对称轴间的距离为,将函数y=fx的图象向左平移个单位,得到函数y=gx图象,求函数gx在区间﹣,上值域.解:1∵bsinAcosC+csinAcosB=a,∴由正弦定理可得:sinBsinAcosC+sinCsinAcosB=sinA,∵A为锐角,sinA≠0,∴sinBcosC+sinCcosB=,可得:sinB+C=sinA=,∴A=.2∵A=,可得:tanA=,∴fx=sinωxcosωx﹣cos2ωx=sin2ωx﹣cos2ωx=sin2ωx﹣,∵其图象上相邻两条对称轴间的距离为,可得:T=2×=,解得:ω=1,∴fx=sin2x﹣,∴将函数y=fx的图象向左平移个单位,得到图象对应的函数解析式为y=gx=sin2x+﹣=sin2x+,∵x∈﹣,,可得:2x+∈,,∴gx=sin2x+∈,1.6.已知向量,向量,函数.Ⅰ求fx单调递减区间;Ⅱ已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,,c=4,且fA恰是fx 在上的最大值,求A,b,和△ABC的面积S.解:Ⅰ∵=+1+sin2x+=sin2x﹣cos2x+2=sin2x﹣+2,…∴, 所以:fx的单调递减区间为:.…Ⅱ 由1知:,∵时,,由正弦函数图象可知,当时fx 取得最大值3,…7分∴,…8分由余弦定理,a 2=b 2+c 2﹣2bccosA,得:,∴b=2,…10分∴.…12分7.已知函数.Ⅰ作出在一个周期内的图象;Ⅱ分别是中角的对边,若,求的面积.()cos sin 6f x x x π⎛⎫=++ ⎪⎝⎭()f x a b c ,,ABC △ A B C ,,() 1a f A b ===,,ABC △利用“五点法”列表如下:……………………………………………………4分 画出在上的图象,如图所示:Ⅱ由Ⅰ,在中,,所以.由正弦定理可知,,所以,………………9分又,∴,∴,∴. 因此.…………………………12分 ()f x 5 33ππ⎡⎤-⎢⎥⎣⎦,()sin 3f A A π⎛⎫=+ ⎪⎝⎭ABC △0A π<<3A π=sin sin a b A B =1sin sin 3B =1sin 2B =203B π<<6B π=2C π=11122S ab ==ABC △8.已知函数fx=m+2cos2x•cos2x+θ为奇函数,且f=0,其中m∈R,θ∈0,πⅠ求函数fx的图象的对称中心和单调递增区间Ⅱ在△ABC中,角A,B,C的对边分别是a,b,c,且f+=﹣,c=1,ab=2,求△ABC的周长.解答解:Ⅰf=﹣m+1sinθ=0,∵θ∈0,π.∴sinθ≠0,∴m+1=0,即m=﹣1,∵fx为奇函数,∴f0=m+2cosθ=0,∴cosθ=0,θ=.故fx=﹣1+2cos2xcos2x+=cos2x•﹣sin2x=﹣sin4x,由4x=kπ,k∈Z得:x=kπ,k∈Z,故函数fx的图象的对称中心坐标为:kπ,0,k∈Z,由4x∈+2kπ, +2kπ,k∈Z得:x∈+kπ, +kπ,k ∈Z,即函数fx的单调递增区间为+kπ, +kπ,k∈Z,Ⅱ∵f+=﹣sin2C+﹣,C为三角形内角,故C=,∴c2=a2+b2﹣2abcosC==,∵c=1,ab=2,∴a+b=2+,∴a+b+c=3+,即△ABC的周长为3+.9.已知向量=sin,1,=cos,cos2,记fx=•.Ⅰ若fx=1,求cosx+的值;Ⅱ在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足2a﹣ccosB=bcosC,求f2A的取值范围.解答解:Ⅰ向量=sin,1,=cos,cos2,记fx=•=sincos+cos2=sin+cos+=sin+,因为fx=1,所以sin=,所以cosx+=1﹣2sin2=,Ⅱ因为2a﹣ccosB=bcosC,由正弦定理得2sinA﹣sinCcosB=sinBcosC所以2sinAcosB﹣sinCcosB=sinBcosC所以2sinAcosB=sinB+C=sinA,sinA≠0,所以cosB=,又0<B<,所以B=,则A+C=,即A=﹣C,又0<C<,则<A<,得<A+<,所以<sinA+≤1,又f2A=sinA+,所以f2A的取值范围.10.已知向量,函数fx=.1求函数fx的最小正周期及在上的值域;2在△ABC中,若fA=4,b=4,△ABC的面积为,求a的值.解答解:1向量,函数fx==2+sin2x+2cos2x=3+sin2x+cos2x=3+2sin2x+,可得函数fx的最小正周期为=π,x∈,即有2x+∈﹣,,可得sin2x+∈﹣,1,则在上的值域为2,5;2在△ABC中,若fA=4,b=4,△ABC的面积为,可得3+2sin2A+=4,即sin2A+=,由0<A<π,可得<2A+<,可得2A+=,即A=,由=bcsinA=•4c•sin=c,解得c=1,则a2=b2+c2﹣2bccosA=16+1﹣8×=13,即a=.11.已知函数fx=2sinx+•cosx.1若0≤x≤,求函数fx的值域;2设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且fA=,b=2,c=3,求cosA﹣B的值.解答解:1fx=2sinx+•cosx=sinx+cosx•cosx=sinxcosx+cos2x=sin2x+cos2x+=sin2x++;…由得,,∴,…∴,即函数fx的值域为;…2由,得,又由,∴,∴,解得;…在△ABC中,由余弦定理a2=b2+c2﹣2bccosA=7,解得;…由正弦定理,得,…∵b<a,∴B<A,∴,∴cosA﹣B=cosAcosB+sinAsinB=.…12..已知向量x ∈R,设函数fx=﹣1.1求函数fx 的单调增区间;2已知锐角△ABC 的三个内角分别为A,B,C,若fA=2,B=,边AB=3,求边BC .解答解:由已知得到函数fx=﹣1=2cos 2x+2sinxcosx ﹣1=cos2x+sin2x=2cos2x ﹣;所以1函数fx 的单调增区间是2x ﹣∈2kπ﹣π,2kπ,即x ∈kπ﹣,kπ+,k ∈Z ;已升级到最新版2已知锐角△ABC 的三个内角分别为A,B,C,fA=2,则2cos2A ﹣=2,所以A=,又B=,边AB=3,所以由正弦定理得,即,解得BC=.13.. 1求函数的单调递减区间;2在中,角的对边分别为,若,的面积为,求a 的最小值.2()sin 2f x x x =+()f x ABC ∆,,A B C ,,a b c ()12A f =ABC∆试题解析:1, 令,解得,,∴的单调递减区间为. 14.已知fx=•,其中=2cosx,﹣sin2x,=cosx,1,x ∈R .1求fx 的单调递减区间;2在△ABC 中,角A,B,C 所对的边分别为a,b,c,fA=﹣1,a=,且向量=解答解:1由题意知.3分∵y=cosx 在a 2上单调递减,∴令,得∴fx 的单调递减区间,6分2∵,∴,又,∴,即,8分∵,由余弦定理得a 2=b 2+c 2﹣2bccosA=b+c 2﹣3bc=7.10分因为向量与共线,所以2sinB=3sinC,由正弦定理得2b=3c .∴b=3,c=2.12 分.111()cos 22sin(2)2262f x x x x π=-=-+3222262k x k πππππ+≤-≤+536k x k ππππ+≤≤+k Z ∈()f x 5[,]36k k ππππ++k Z ∈15.已知函数fx=2sinx+•cosx.1若0≤x≤,求函数fx的值域;2设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且fA=,b=2,c=3,求cosA ﹣B的值.解答解:1fx=2sinx+•cosx=sinx+cosx•cosx=sinxcosx+cos2x=sin2x+cos2x+=sin2x++;…由得,,∴,…∴,即函数fx的值域为;…2由,得,又由,∴,∴,解得;…在△ABC中,由余弦定理a2=b2+c2﹣2bccosA=7,解得;…由正弦定理,得,…∵b<a,∴B<A,∴,∴cosA﹣B=cosAcosB+sinAsinB=.…16.在△ABC中,角A,B,C所对的边分别为a,b,c,fx=2sinx﹣Acosx+sinB+Cx∈R,函数fx的图象关于点,0对称.Ⅰ当x∈0,时,求fx的值域;Ⅱ若a=7且sinB+sinC=,求△ABC的面积.解答解:Ⅰfx=2sinx﹣Acosx+sinB+C=2sinxcosA﹣cosxsinAcosx+sinA=2sinxcosxcosA﹣2cos2xsinA+sinA=sin2xcosA﹣cos2xsinA=sin2x﹣A,由于函数fx的图象关于点,0对称,则f=0,即有sin﹣A=0,由0<A<π,则A=,则fx=sin2x﹣,由于x∈0,,则2x﹣∈﹣,,即有﹣<sin2x﹣≤1.则值域为﹣,1;Ⅱ由正弦定理可得===, 则sinB=b,sinC=c,sinB+sinC=b+c=,即b+c=13,由余弦定理可得a2=b2+c2﹣2bccosA,即49=b2+c2﹣bc=b+c2﹣3bc,即有bc=40,则△ABC的面积为S=bcsinA=×40×=10.17.已知函数fx=2sinxcosx﹣3sin2x﹣cos2x+3.1当x∈0,时,求fx的值域;2若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cosA+C,求fB的值.解答解:1∵fx=2sinxcosx﹣3sin2x﹣cos2x+3=sin2x﹣3﹣+3=sin2x﹣cos2x+1=2sin2x++1,∵x∈0,,∴2x+∈,,∴sin2x+∈,1,∴fx=2sin2x++1∈0,3;2∵=2+2cosA+C,∴sin2A+C=2sinA+2sinAcosA+C,∴sinAcosA+C+cosAsinA+C=2sinA+2sinAcosA+C,∴﹣sinAcosA+C+cosAsinA+C=2sinA,即sinC=2sinA,由正弦定理可得c=2a,又由=可得b=a,由余弦定理可得cosA=== ,∴A=30°,由正弦定理可得sinC=2sinA=1,C=90°,由三角形的内角和可得B=60°,∴fB=f60°=218.设函数fx=cos2x﹣+2cos2x.1求fx的最大值,并写出使fx取得最大值时x的集合;2求fx的单调递增区间;3已知△ABC中,角A,B,C的对边分别为a,b,c,若fB+C=,b+c=2,求a的最小值.解答解:1由三角函数公式化简可得fx=cos2x﹣+2cos2x=cos2xcos+sin2xsin+2cos2x=﹣cos2x﹣sin2x+1+cos2x=cos2x﹣sin2x+1=cos2x++1,当2x+=2kπ即x=kπ﹣k∈Z时,fx取得最大值2,此时x的集合为{x|x=kπ﹣,k∈Z};2由2kπ+π≤2x+≤2kπ+2π可解得kπ+≤x≤kπ+,∴fx的单调递增区间为得kπ+,kπ+,k∈Z;3由2可得fB+C=cos2B+2C++1=,∴cos2B+2C+=,由角的范围可得2B+2C+=,变形可得B+C=,A=, 由余弦定理可得a2=b2+c2﹣2bccosA=b2+c2﹣bc=b+c2﹣3bc=4﹣3bc≥4﹣32=1当且仅当b=c=1时取等号,故a的最小值为119.已知函数,x∈R.1求函数fx的最大值和最小正周期;2设△ABC 的内角A,B,C 的对边分别a,b,c,且c=3,fC=0,若sinA+C=2sinA,求a,b 的值.解答解:1 (3)∵,∴,∴fx 的最大值为0,最小正周期是…6分2由,可得∵0<C <π,∴0<2C <2π,∴∴,∴∵sinA+C=2sinA,∴由正弦定理得①…9分由余弦定理得∵c=3∴9=a 2+b 2﹣ab②由①②解得,…12分20..已知向量,设函数.1求在上的最值;2在中,分别是角的对边,若,,求的值.()()3sin 22,cos ,1,2cos m x x n x =+=()f x m n =⋅()f x 0,4π⎡⎤⎢⎥⎣⎦ABC ∆,,a b c ,,A B C ()4,1f A b ==ABC ∆a;2.21.已知函数fx=sin 2x+sin2x .1求函数fx 的单调递减区间;2在△ABC 中,角A,B,C 的对边分别为a,b,c,若f =,△ABC 的面积为3,求a 的最小值.解答解:1∵fx=sin 2x+sin2x=+sin2x=sin2x ﹣+,∴2kπ+≤2x ﹣≤2kπ+,k ∈Z,解得:kπ+≤x ≤kπ+,k ∈Z,∴函数fx 的单调递减区间为:kπ+,kπ+,k ∈Z .()()min max 4,5f x f x ∴==()12sin 234,sin 2662f A A A ππ⎛⎫⎛⎫=++=∴+= ⎪ ⎪⎝⎭⎝⎭1352,2666663AA A ππππππ⎛⎫+∈∴+=∴= ⎪⎝⎭1sin 2ABC S bc A ∆==2c ∴=2222cos 3a b c bc A a ∴=+-=∴=2∵f=,即: sin2×﹣+=,化简可得:sinA﹣=,又∵A∈0,π,可得:A﹣∈﹣,,∴A﹣=,解得:A=,∵S△ABC=bcsinA=bc=3,解得:bc=12,∴a==≥=2.当且仅当b=c时等号成立.故a的最小值为2.22.已知函数fx=2sinxcosx+2,x∈R.1求函数fx的最小正周期和单调递增区间;2在锐角三角形ABC中,若fA=1,,求△ABC的面积.解答解:1fx=2sinxcosx+=sin2x+=2sin2x+,∴函数fx的最小正周期为π,由2kπ﹣≤2x+≤2kπ+,k∈Z,得,∴函数fx的单调增区间是k,k k∈Z,2由已知,fA=2sin2A+=1,∴sin2A+=,∵0<A<,∴,∴2A+=,从而A=,又∵=,∴,∴△ABC的面积S===.23.已知向量=sinx,﹣1,向量=cosx,﹣,函数fx=+•.1求fx的最小正周期T;2已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2,c=4,且fA恰是fx在0,上的最大值,求A和b.解答解:1∵向量=sinx,﹣1,向量=cosx,﹣,∴fx=+•=sin2x+1+sinxcosx+=+1+sin2x+= sin2x﹣cos2x+2=sin2x﹣+2,∵ω=2,∴函数fx的最小正周期T==π;2由1知:fx=sin2x﹣+2,∵x∈0,,∴﹣≤2x﹣≤,∴当2x﹣=时,fx取得最大值3,此时x=,∴由fA=3得:A=, 由余弦定理,得a2=b2+c2﹣2bccosA,∴12=b2+16﹣4b,即b﹣22=0,∴b=2.24.在中,分别是角的对边,且满足. 1求角的大小;2设函数,求函数在区间上的值域.25.已知函数在处取最小值.ABC ∆c b a ,,C B A ,,CBc b a cos cos 2=-C 23sin sin 2cos cos sin 2)(2-+=C x C x x x f )(x f ]2,0[π2()2sin coscos sin sin (0)2f x x x x ϕϕϕπ=+-<<x π=1求的值;2在中,分别为内角的对边,已知求角.试题分析:1利用三角恒等变换公式化简函数解析式得,由在处取最小值及查求得;2由可得,再由正弦定理求出,从而求出角的值,即可求角.2因为,所以,因为角为的内角,所以. 又因为所以由正弦定理,得, 也就是, 因为,所以或. 当时,; 当时,. 26.已知函数的最小正周期为.ϕABC∆,,a b c ,,A B C 1,()a b f A ===C ()sin()f x x ϕ=+x π=0ϕπ<<2πϕ=()f A =6A π=sin B B C ()2f A =cos 2A =A ABC ∆6A π=1,a b ==sin sin a bA B=sin 1sin 22b A B a ===b a >4B π=34B π=4B π=76412C ππππ=--=34B π=36412C ππππ=--=2()2sin(0)2xf x x ωωω=->3π1求函数在区间上的最大值和最小值; 2已知分别为锐角三角形中角的对边,且满足,,求的面积.答案及解析:26.1,;2.试题分析:1利用三角恒等变换相关公式化简函数解析式得,由周期为,可求的值,由三角函数性质可求函数的最值.2及正弦定理可求得,从而是求出解的值,由可求出角及角,由正弦定理求出边,即可求三角形面积.27.已知函数.Ⅰ求函数fx 的单调递增区间;Ⅱ在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知,a=2,,求△ABC 的面积.解答解:Ⅰ =sin2xcos+cos2xsin+cos2x=sin2x+cos2x=sin2x+cos2x=sin2x+.令 2kπ﹣≤2x+≤2kπ+,k ∈z,求得 kπ﹣≤x ≤kπ+,()f x 3[,]4ππ-,,a b c ABC ,,A B C 2,()1b f A ==2sin b A =ABC ∆min ()1f x =max ()1f x =33+()2sin()16f x x πω=+-3πω2sin b A =sin B =B ()1f A =4A π=51246C πππ==+a函数fx的单调递增区间为kπ﹣,kπ+,k∈z.Ⅱ由已知,可得 sin2A+=,因为A为△ABC内角,由题意知0<A<π,所以<2A+<,因此,2A+=,解得A=.由正弦定理,得b=,…由A=,由B=,可得 sinC=,…∴S=ab•sinC==.28.已知函数fx=Asinωx+φA>0,ω>0,|φ|<,x∈R,且函数fx的最大值为2,最小正周期为,并且函数fx的图象过点,0.1求函数fx解析式;2设△ABC的角A,B,C的对边分别为a,b,c,且f=2,c=,求a+2b的取值范围.解答解:1根据题意得:A=2,ω=4,即fx=2sin4x+φ,把,0代入得:2sin+φ=0,即sin+φ=0,∴+φ=0,即φ=﹣,则fx=2sin4x﹣;2由f=2sinC﹣=2,即sinC﹣=1,∴C﹣=,即C=,由正弦定理得: ==2R,即=2R=1,∴a+2b=2RsinA+4RsinB=sinA+2sinB=sinA+2sin﹣A=sinA+2sin cosA﹣2cossinA=sinA+cosA﹣sinA=cosA,∵<cosA<1,即<cosA<,∴a+2b的范围为,.29.已知函数fx=2cos2x+cos2x+.1若fα=+1,0<a<,求sin2α的值;2在锐角△ABC中,a,b,c分别是角A,B,C的对边;若fA=﹣,c=3,△ABC的面积S△ABC=3,求a的值.解答解:1化简可得fx=2cos2x+cos2x+=1+cos2x+cos2x﹣sin2x=cos2x﹣sin2x+1=cos2x++1,∴fα=cos2α++1=+1,∴cos2α+=,∵0<α<,∴0<2α+<,∴sin2α+==,∴2∵fx=cos2x++1,∴fA=cos2A++1=﹣,∴cos2A+=﹣,又∵A∈0,,∴2A+∈,,∴2A+=,解得A=又∵c=3,S △ABC =bcsinA=3,∴b=4由余弦定理得a 2=b 2+c 2﹣2bccosA=13, ∴a=30.已知函数13cos 3cos sin 3)(-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++=πωπωωx x x x f 0>ω,R ∈x ,且函数)(x f 的最小正周期为π.1求函数)(x f 的解析式;2在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若0)(=B f ,23=⋅BC BA ,且4=+c a ,求b 的值.参考答案1, ……………3分 又,所以,, ………………………………………………5分所以,. …………………………………………………6分π()cos 12sin 16f x x x x ωωω⎛⎫=+-=+- ⎪⎝⎭πT =2=ωπ()2sin 216f x x ⎛⎫=+- ⎪⎝⎭2,故, 所以,或, 因为是三角形内角,所以.……9分 而,所以,, …………………………11分 又,所以,,所以,,所以,. …………………………………14分31.已知函数2()sin(2)2cos 1()6f x x x x π=--∈+R .Ⅰ求()f x 的单调递增区间;Ⅱ在△ABC 中,三个内角,,A B C 的对边分别为,,a b c ,已知()12f A =,且△ABC 外求a 的值. 试题解析:Ⅰ∵x x x x x x f 2cos 2cos 212sin 231cos 2)62sin()(2+-=-+-=π ………………2分x x 2cos 212sin 23+==)62sin(π+x ………………3分 由∈+≤+≤+-k k x k (226222πππππZ 得,∈+≤≤+-k k x k (63ππππZ 5分π()2sin 2106f B B ⎛⎫=+-= ⎪⎝⎭π1sin 262B ⎛⎫+= ⎪⎝⎭ππ22π66B k +=+π5π22π66B k +=+Z ∈k B π3B =3cos 2BA BC ac B ⋅=⋅=3=ac 4=+c a 1022=+c a 7cos 2222=-+=B ac c a b 7=a∴)(x f 的单调递增区间是∈++-k k k ](6,3[ππππZ (7)Ⅱ∵21)62sin()(=+=πA A f ,π<<A 0,62626ππππ+<+<A于是6562ππ=+A ∴ 3π=A ∵ABC ∆外接圆的半径为由正弦定理2sin a R A =,得2sin 3a R A ===,32.在中,分别是角A,B,C 的对边,已知,且1求的大小;2设且的最小正周期为,求在的最大值;试题解析:1∵ ∴∴ 又∵0<x < ∴A=2.==++=+== sin x+∵ = ∴=2 ∴=sin2x+∵ ∴2x+, ∴时.33.已知函数fx=sinxcosx++1.1求函数fx 的单调递减区间;2在△ABC中,a,b,c分别是角A、B、C的对边fC=,b=4,•=12,求c.解答解:1fx=sinx cosx﹣sinx+1=sin2x﹣+1=sin2x++.令≤2x+≤,解得≤x≤.∴函数fx的单调递减区间是,,k∈Z.2∵fC=sin2C++=,∴sin2C+=1,∴C=.∵•=abcosA=2a=12,∴a=2.由余弦定理得c2=a2+b2﹣2abcosC=12+16﹣24=4.∴c=2.34.在△ABC中,角A,B,C的对边分别为a,b,c,已知a2+c2﹣b2=ac,且b=c.1求角A的大小;2设函数fx=1+cos2x+B﹣cos2x,求函数fx的单调递增区间.解答解:1在△ABC中,因为,所以.…在△ABC中,因为,由正弦定理可得,所以,,,故…2由1得===…,得即函数fx 的单调递增区间为…35.ABC 的三个内角A,B,C 所对的边分别为a,b,c,已知46cos ,a .55A == 1当3B π=时,求b 的值;2设B x =02x π⎛⎫<< ⎪⎝⎭,求函数()22x f x b =+的值域.36.已知函数fx=sinxsinx+cosx .1求fx 的最小正周期和最大值;2在锐角三角形ABC 中,角A,B,C 的对边分别为a,b,c,若f =1,a=2,求三角形ABC面积的最大值. 解答解:1fx=sin 2x+sinxcosx=﹣cos2x+sin2x=sin2x ﹣.∴fx的最小正周期T==π,fx的最大值是.2∵f=sinA﹣+=1,∴sinA﹣=,∴A=.∵a2=b2+c2﹣2bccosA,∴12=b2+c2﹣bc,∴b2+c2=12+bc≥2bc,∴bc≤12.∴S==bc≤3.∴三角形ABC面积的最大值是3.37.已知向量=cos2x, sinx﹣,=1,,设函数fx=.Ⅰ求函数fx取得最大值时x取值的集合;Ⅱ设A,B,C为锐角三角形ABC的三个内角,若cosB=,fC=﹣,求sinA的值.解答解:Ⅰ∵向量=cos2x, sinx﹣,=1,,∴函数fx==cos2x+sinx﹣2=cos2x+sin2x+cos2x﹣sinxcosx=cos2x﹣sin2x+=cos2x++故当cos2x+=1时,函数fx取得最大值,此时2x+=2kπ,解得x=kπ﹣,k∈Z,故x取值的集合为{x|x=kπ﹣,k∈Z};Ⅱ∵A,B,C为锐角三角形ABC的三个内角,且cosB=,∴sinB==,又fC=cos2C++=﹣,∴cos2C+=﹣,∴2C+=,解得C=,∴sinA=sin﹣B=cosB+sinB==38..已知向量=sin2x+2,cosx,=1,2cosx,设函数fx=1求fx的最小正周期与单调递增区间;2在△ABC中,a,b,c分别是角A,B,C所对应的边,若fA=4,b=1,得面积为,求a的值.解答解:1∵向量=sin2x+2,cosx,=1,2cosx,∴函数fx=•=sin2x+2+2cos2x=sin2x+cos2x+3=2sin2x++3,∵ω=2,∴T=π,令2kπ﹣≤2x+≤2kπ+,k∈Z,得到kπ﹣≤x≤kπ+,k∈Z,则fx的最小正周期为π;单调递增区间为kπ﹣,kπ+,k∈Z;2由fA=4,得到2sin2A++3=4,即sin2A+=,∴2A+=或2A+=,解得:A=0舍去或A=,∵b=1,面积为,∴bcsinA=,即c=2,由余弦定理得:a2=b2+c2﹣2bccosA=1+4﹣2=3,则a=.39..设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足S=.Ⅰ求B;Ⅱ若b=,设A=x,,求函数y=fx的解析式和最大值.解答解:Ⅰ∵S=acsinB,cosB=,S=a2+c2﹣b2,∴acsinB=•2accosB,∴tanB=,又B∈0,π,∴B=;Ⅱ由Ⅰ知B=,△ABC的内角和A+B+C=π,又A>0,C>0,得0<A<,由正弦定理,知a===2sinx,c==2sin﹣x,∴y=﹣1a+2c=2﹣1sinx+4sin﹣x=2sinx+2cosx=2sinx+0<x<,当x+=,即x=时,y取得最大值2.40.在△ABC中,a,b,c分别是内角A,B,C的对边,且2a﹣ccosB﹣bcosC=0.1求∠B;2设函数fx=﹣2cos2x+B,将fx的图象向左平移后得到函数gx的图象,求函数gx的单调递增区间.解答解:1由2a﹣ccosB﹣bcosC=0及正弦定理得,2sinA﹣sinCcosB﹣sinBcosC=0,即2sinAcosB﹣sinB+C=0,因为A+B+C=π,所以sinB+C=sinA,因为sinA≠0,所以cosB=,由B是三角形内角得,B=,2由1得,B=,则fx=﹣2cos2x+B=﹣2cos2x+,所以gx=﹣2cos2x++,=﹣2cos2x+=2sin2x,由得,故函数gx的单调递增区间是:.41..已知函数 fx=sin2x﹣cos2x﹣,x∈R.1求函数fx的最小正周期和单调递减区间;2设△ABC的内角A,B,C的对边分别为a,b,c且c=,fC=0.若sinB=2sinA,求a,b的值.解答解:1∵fx=sin2x﹣cos2x﹣,x∈R.=sin2x﹣﹣=sin2x﹣﹣1∴T==π∴由2kπ+≤2x﹣≤2kπ+,k∈Z可解得:x∈kπ,kπ+ ,k∈Z∴fx单调递减区间是:kπ,kπ+,k∈Z2fC=sin2C﹣﹣1=0,则sin2C﹣=1∵0<C<π,∴C=∵sinB=2sinA,∴由正弦定理可得b=2a①∵c=,∴由余弦定理可得c2=a2+b2﹣ab=3②由①②可得a=1,b=2.42..在锐角△ABC中,角A,B,C的对边分别为a,b,c,且,1求角B的值;2设A=θ,求函数的取值范围.解:1∵由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,sinB+C=sinAcosB,∴cosB= ,∴B=.…2锐角△ABC中,A+B=,∴θ∈,,…=1﹣cos+2θ﹣cos2θ=1+sin2θ﹣cos2θ=sin2θ﹣cos2θ+1=2sin2θ﹣+1.…9分∵θ∈,,∴2θ﹣∈,,∴2<2sin2θ﹣+1≤3.所以:函数fθ的取值范围是2,3.…12分。
导数中的零点问题
导数中的零点问题1.已知函数 .(Ⅰ)若曲线在点处的切线与直线垂直,求实数的取值;(Ⅱ)求函数的单调区间;(Ⅲ)记 . 当时,函数在区间上有两个零点,求实数的取值范围.2.已知函数(Ⅰ)若的图像与直线相切,求(Ⅱ)若且函数的零点为,设函数试讨论函数的零点个数. (为自然常数)3.已知函数 .(1)若时,讨论函数的单调性;(2)若函数在区间上恰有 2 个零点,求实数的取值范围 .4.已知函数(为自然对数的底数,),在处的切线为.(1)求函数的解析式;(2)在轴上是否存在一点,使得过点可以作的三条切钱若存在,请求出横坐标为整数的点坐标;若不存在,请说明理由.5.已知函数f x x22lnx a R, a 0 . a( 1)讨论函数 f x 的单调性;( 2)若函数f x 有最小值,记为g a ,关于a的方程g a a21 m 有三9a个不同的实数根,求实数m 的取值范围.6.已知函数(Ⅰ)求函数f x x 2aa R , e 为自然对数的底数).x(ef x 的极值;(Ⅱ)当 a 1 时,若直线l : y kx 2 与曲线y f x 没有公共点,求k 的最大值.7.已知函数(为自然对数的底数).(1)求曲线在点处的切线方程;(2)当时 , 不等式恒成立 , 求实数的取值范围;(3)设,当函数有且只有一个零点时, 求实数的取值范围 .8.已知函数 .(1)若函数有两个零点,求实数的取值范围;(2)若函数有两个极值点,试判断函数的零点个数.9.已知函数 .(Ⅰ)讨论的单调性;(Ⅱ)是否存在实数,使得有三个相异零点若存在,求出的值;若不存在,说明理由.10.已知函数 .( 1)求函数的单调区间;( 2)记,当时,函数在区间上有两个零点,求实数的取值范围.11.已知函数 .(1)讨论的导函数零点的个数;(2)若函数的最小值为,求的取值范围.12..(1)证明:存在唯一实数,使得直线和曲线相切;(2)若不等式有且只有两个整数解,求的范围.13 .已知函数 f x ax3bx23x a,b R在点1, f 1处的切线方程为y 20 .( 1)求函数 f x 的解析式;( 2)若经过点M 2,m 可以作出曲线y f x 的三条切线,求实数m 的取值范围.14.已知函数f xx22aln x, a R .x( 1)若f x 在 x 2 处取极值,求 f x 在点1, f 1 处的切线方程;( 2)当a 0 时,若 f x 有唯一的零点x0,求x0.注 x 表示不超过x的最大整数,如0.6 0, 2.1 2, 1.52. 参考数据:ln2 0.693,ln3 1.099,ln5 1.609,ln7 1.946.15 .已知函数 f x e x m xln x m 1 x ;(1)若m 1 f x在0,上单调递增;,求证:(2)若g x =f ' x ,试讨论 g x 零点的个数.16.已知函数 f x e ax ?sinx 1 ,,其中 a 0 .(I) 当a 1时,求曲线y f x 在点0,f 0 处的切线方程;( Ⅱ) 证明: f x 在区间0,上恰有 2 个零点.参考答案1.(Ⅰ);(Ⅱ)当时 , 减区间为;当时,增区间为,减区间为; (Ⅲ).【解析】【分析】( 1)先求出函数f ( x )的定义域和导函数 f ′( x ),再由两直线垂直的条件可得 f ′( 1)=﹣ 3,求出 a 的值;( 2)求出 f ′( x ),对 a 讨论,由 f ′( x )> 0 和 f ′( x )< 0 进行求解,即判断出函数的单调区间;( 3)由( 1)和题意求出g ( )的解析式,求出′( x ),由 g ′( x )>0 和 g ′( x )< 0x g进行求解, 即判断出函数的单调区间, 再由条件和函数零点的几何意义列出不等式组,求出b 的范围.【详解】(Ⅰ)定义域, ,,∴.(Ⅱ)当,,单减区间为当时令,单增区间为;令,单减区间为当时,单减区间∴当时 , 减区间为;当时,增区间为,减区间为;(Ⅲ)令,,令,;令,∴是在上唯一的极小值点,也是唯一的最小值点∴∵在上有两个零点∴只须∴.【点睛】本题主要考查了利用导数研究函数的单调性以及几何意义、函数零点等基础知识,注意求出函数的定义域,考查计算能力和分析问题的能力.2.( 1)( 2)有两个不同的零点【解析】分析:(Ⅰ)设切点坐标为,故可以关于的方程组,从该方程组解得.(Ⅱ)因,故为减函数,结合可得的零点.又是分段函数,故分别讨论在上的单调性,结合利用零点存在定理得到有两个不同的零点.详解:(Ⅰ)设切点,所以,故,从而又切点在函数上,所以即,故,解得,.(Ⅱ)若且函数的零点为,因为,,为上的减函数,故.当时,,因为,当时,;当时,,则在上单调递增,上单调递减,则,所以在上单调递减.当时,,所以在区间上单调递增.又,且;又,所以函数在区间上存在一个零点,在区间上存在一个零点.综上,有两个不同的零点.点睛:处理切线问题的核心是设出切点坐标,因为它的横坐标沟通了切线的斜率和函数在该值处的导数.零点问题需要利用导数明确函数的单调性,再结合零点存在定理才能判断函数零点的个数.3.( 1)见解析;( 2)【解析】分析:( 1)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;( 2)分三种情况讨论的范围,分别利用导数研究函数的单调性,结合零点存在定理与函数图象,可筛选出函数在区间上恰有 2 个零点的实数的取值范围.详解:( 1)当时,,此时在单调递增;当时,①当时,,恒成立,,此时在单调递增;②当时,令在和上单调递增;在上单调递减;综上:当时,在单调递增;当时,在和上单调递增;在上单调递减;( 2)当时,由(1)知,在单调递增,,此时在区间上有一个零点,不符;当时,,在单调递增;,此时在区间上有一个零点,不符;当时,要使在内恰有两个零点,必须满足在区间上恰有两个零点时,点睛:导数及其应用通常围绕四个点进行命题.第一个点是围绕导数的几何意义展开,;第二个点是围绕利用导数研究函数的单调性、极值 ( 最值 ) 展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力.4.( 1)( 2)不存在横坐标为整数的点,过该点可以作的三条切线.【解析】分析:(1) 求出 f ( x)的导数,由切线方程可得切线斜率和切点坐标,可得a=2,即可得到 f ( x)的解析式;(2) 令,设图象上一点,,该处的切线, 又过点则过作 3 条详解:( 1),由题意可知,,即( 2),令,设图象上一点,,该处的切线又过点则①过作 3 条不同的切线,则方程①关于有令,图象与轴有 3 个不同交点3 个不同实根( 1)当,,是单调函数,不可能有 3 个零点(2)当,或时,当时,所以在单调递减,单调递增,单调递减曲线与轴有个交点,应该满足,,当,又,所以无解(3)当,或时,,当时,在单调递减,单调递增,单调递减,应满足,,当,又,无解,综上,不存在横坐标为整数的点,过该点可以作的三条切线.点睛:( 1)函数零点个数(方程根的个数)的判断方法:①结合零点存在性定理,利用函数的单调性、对称性确定函数零点个数;②利用函数图像交点个数判断方程根的个数或函数零点个数.( 2)本题将方程实根个数的问题转化为两函数图象交点的问题解决.5.( 1)当a 0 时, f x 在 0, 上递减,当 a 0 时, f x 在 0, a 上递减,在a , 上递增;(2)1 1ln3 .ln2 ln 3 m33【解析】试题分析:( 1)函数求导得 f ' x 2x 2,分 a 0 和 a 0 两种情况讨论即可;a x2( 2)结合( 1 )中的单调性可得最值g a 1 lna ,即m a ln a ( a 0) ,令2(a 9aF a a ln a 0) ,求导得单调性得值域即可.试题解析:( 1) f ' x2x 2, (x0) ,a x当 a 0 时, f ' x 0 ,知 f x 在 0,上是递减的;当 a时, f ' x 2 xa x ax 在 0, a 上是递减的, 在 a ,ax,知 f上递增的 .( 2)由( 1)知, a 0 , f xmin fa1 ln a ,即 g a1 lna ,方程 g a a2 1 m ,即 m a ln a29a( a 0) ,9a令 Faa lna 2(a0) ,则 F ' a1 1 23a 13a 2a9a 29a 2,9a知 Fa 在0, 1 和 2 ,是递增的,1 , 2是递减的,333 3F a 极大F 11 ln3 ,Fa极小F 21 ln2 ln 3,3 33 3依题意得1ln2ln 3 m1 ln3 .33点睛:已知函数有零点求参数常用的方法和思路:( 1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;( 2)分离参数法:先将参数分离,转化成函数的值域问题解决;( 3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解 .6.( 1)见解析( 2) k 的最大值为 1.【解析】试题分析: (1)先求导数,再根据 a 的正负讨论导函数符号变化规律,最后根据导函数符号确定极值, ( 2)先将无交点转化为方程1 在 R 上没有实数解,转化为k 1 x1e xxe x 在 R 上 没 有 实 数 解 , 再 利 用 导 数 研 究 g xxe x 的 取 值 范 围 , 即得k 11 , 1 ,即得 k 的取值范围是 1 e,1 ,从中确定 k 的最大值 . k 1ea①当 a 0 时, f x 0 , f x 为, 上的增函数,所以函数 f x 无极值 .②当 a 0 时,令 f x 0 ,得 e x a ,x lna .x ,ln a , f x 0 ; x lna , f x 0.所以 f x 在,ln a 上单调递减,在lna, 上单调递增,故 f x 在x lna 处取得极小值,且极小值为 f lna lna 1 ,无极大值.综上,当 a 0 时,函数 f x 无极小值;当 a 0 , f x 在 x lna 处取得极小值 lna ,无极大值.(Ⅱ)当 a 1 时, f x x 2 1 x. e直线 l : y kx 2 与曲线y f x 没有公共点,等价于关于 x 的方程 kx 2 x 2 1在 R 上没有实数解,即关于x 的方程:e xk 1 x 1x * 在 R 上没有实数解.e可化为1①当 k 1 时,方程* 0 ,在 R 上没有实数解.e x②当 k 1 时,方程* 化为 1 xe x.k 1令 g x xe x,则有 g x 1 x e x令 g x 0 ,得 x 1 ,当 x 变化时,g x 的变化情况如下表:x , 1 -1 1, g x - 0 +g x ↘ 1 ↗e当 x 1 时,g x min 1,同时当 x 趋于+ 时,g x 趋于 + ,e从而 g x 的取值范围为1. [ , )e所以当 11 , 1 时,方程 * 无实数解,k e解得 k 的取值范围是 1 e,1 .综上,得 k 的最大值为 1.7.( 1);(2);( 3)或【解析】分析:( 1)先求切点的坐标,再利用导数求切线的斜率,最后写出切线的方程.(2)先分离参数得到,再求函数的最小值,即得实数a 的取值范围 .(3) 先令,再转化为方程有且只有一个实根,再转化为有且只有一个交点,利用导数和函数的图像分析得到 a 的取值范围. 详解:( 1),所以切线的斜率.又因为,所以切线方程为,所以切线方程为.( 2)由得 .当 x=0 时,上述不等式显然成立,故只需考虑的情况.将变形得令,所以令,解得x> 1;令,解得x< 1.从而在( 0,1 )内单调递减,在(1, 2)内单调递增.所以 , 当 x=1 时,取得最小值e-1 ,从而所求实数的取值范围是.(3)令当时,,函数无零点;当时,,即令,令,则由题可知,当,或时,函数有一个函数零点点睛:第( 3)问的转化是一个关键,由于直接研究函数有且只有一个零点比较困难,所以本题把函数的零点转化为方程有且只有一个实根,再转化为有且只有一个交点,这样问题经过一次又一次的转化,大大提高了解题效率,优化了解题. 所以在解答数学难题时,注意数学转化思想的灵活运用.8.( 1)( 2) 3【解析】试题分析:( 1)第( 1)问,先把问题转化成的图象与的图象有两个交点,再利用导数求出的单调性,通过图像分析得到 a 的取值范围 .(2)第(2)问,先通过函数有两个极值点分析出函数g(x) 的单调性,再通过图像研究得到它的零点个数.试题解析:( 1)令,由题意知的图象与的图象有两个交点..当时,,∴在上单调递增;当时,,∴在上单调递减.∴.又∵时,,∴时, .又∵时, .综上可知,当且仅当时,与的图象有两个交点,即函数有两个零点.( 2)因为函数有两个极值点,由,得有两个不同的根,(设).由( 1)知,,,且,且函数在,上单调递减,在上单调递增,则 .令,则,所以函数在上单调递增,故, . 又,;,,所以函数恰有三个零点.点睛:对于零点问题的处理,一般利用图像法分析解答. 先求出函数的单调性、奇偶性、周期性、端点的取值等情况,再画出函数的图像分析函数的零点的个数. 本题第( 2)问,就是利用这种方法处理的.9.(Ⅰ)见解析 . (Ⅱ)见解析 .【解析】试题分析:( I )求出,分三种情况讨论的范围,分别令求得的范围,可得函数增区一定有且的极大值大于0,极小值小于0,则取得极大值和极小值时或,注意到此时恒有,则必有为极小值,此时极值点满足,即,还需满足,换元后只需证明即可.试题解析:(Ⅰ)由题可知.当,即时,令得,易知在上单调递减,在上单调递增.当时,令得或.当,即时,在,上单调递增,在上单调递减;当时,,在上单调递增;当时,在,上单调递增,在上单调递减.(Ⅱ)不存在.理由如下:假设有三个相异零点.由(Ⅰ)的讨论,一定有且的极大值大于0,极小值小于已知取得极大值和极小值时或,注意到此时恒有,则必有为极小值,此时极值点满足,即,还需满足,又,,故存在使得,即存在使得.令,即存在满足.令,,从而在上单调递增,所以,故不存在满足,与假设矛盾,从而不存在使得有三个相异零点10. (1) 见解析 ;(2) . 0..【解析】试题分析:(1)先求出函数 f (x)的定义域和导函数 f ′( x),对字母 a 分类讨论,由 f ′(x)>0 和 f ′(x)<0 进行求解,即判断出函数的单调区间;(2)由(1)和题意求出 g(x)的解析式,求出 g′(x),由 g′(x)>0 和 g′(x)< 0 进行求解,即判断出函数的单调区间,再由条件和函数零点的几何意义列出不等式组,求出 b 的范围.试题解析:(1)定义域为,,当时,,当时,由得,∴当时,的单调增区间为,无减区间,当时,的减区间为,增区间为.( 2)当时,,.令,得,,在区间上,令,得递增区间为,令,得递减区间为,所以是在上唯一的极小值点,也是最小值点,所以,又因为在上有两个零点,所以只需,,所以,即 .11. (1) 见解析 ;(2) .【解析】试题分析:( 1)先求出,则至少存在一个零点,讨论的范围,利用导数研究函数的单调性,结合单调性与函数图象可得结果;( 2)求出,分五种情况讨论的范围,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,利用函数的单调性,结合函数图象可排除不合题意的的范围,筛选出符合题意的的范围.试题解析:( 1),令,故在上单调递增,则,因此,当或时,只有一个零点;当或时,有两个零点;(2)当时,,则函数在处取得最小值,当时,则函数在上单调递增,则必存在正数,使得,若,则,函数在与上单调递增,在上单调递减,又,故不符合题意.若,则,函数在上单调递增,又,故不符合题意.若,则,设正数,则,与函数的最小值为矛盾,12.( 1)详见解析;( 2) .【解析】试题分析:(1) 先设切点坐标,根据导数几何意义得切线斜率,根据切点既在切线上也在曲线上,联立方程组可得.再利用导数研究单调性,并根据零点存在定理确定零点唯一性,即得证结论,(2) 先化简不等式为,再分析函数单调性及其值域,结合图形确定讨论 a 的取法,根据整数解个数确定 a 满足条件,解得的范围.试题解析:(1)设切点为,则①,和相切,则②,所以,即.令,所以单增.又因为,所以,存在唯一实数,使得,且.所以只存在唯一实数,使①②成立,即存在唯一实数使得和相切.(2)令,即,所以,令,则,由( 1)可知,在上单减,在单增,且,故当时,,当时,,当时,因为要求整数解,所以在时,,所以有无穷多整数解,舍去;当时,,又,所以两个整数解为 0, 1,即,所以,即,当时,,因为在内大于或等于1,所以无整数解,舍去,综上,.13.( 1)f x x33x ;(2) 6 m 2【解析】试题分析:( 1)求出函数的导函数,然后根据导数的几何意义得到关于a,b 的方程组,解方程组求得a, b 后可得函数的解析式.(2)设出切点x0 , y0 ,求导数后可得 f x0 3x02 3 ,即为切线的斜率,然后根据斜率公式可得 3x02 3 x03 3x0 m,即2x03 6x02 6 m 0.若x0 2函数有三条切线,则函数g x 2x3 6 x2 6 m有三个不同的零点,根据函数的极值可得所求范围.试题解析;( 1)∵f xax3 bx2 3x ,∴ fx 3ax 22bx 3 ,根据题意得 {f 1 a b 3 2a 1f 13a2b 3 ,解得 {b 0,∴函数的解析式为fx x 3 3x .( 2)由( 1)得 f x3x 2 3 .设切点为x 0 , y 0 ,则 y 0 x 03 3x 0 , f x 03x 02 3 ,故切线的斜率为 3x 02 3 ,由题意得 3x 023 x 03 3x 0 m ,x 0 2即 2x 03 6x 02 6 m 0 ,∵过点M2,m m 2 可作曲线 yf x 的三条切线∴方程 2 x 03 6 x 026m 0 有三个不同的实数解,∴函数 g x 2x 3 6x 2 6 m 有三个不同的零点.由于 g x 6x 2 12x 6x x2 ,∴当 x 0 时, g x 0, g x 单调递增,当 0 x 2时, g x 0, g x 单调递减,当 x2 时, g x0, g x 单调递增 .∴当 x 0 时, g x 有极大值,且极大值为 g 0 m 6 ;当 x 2 时, g x 有极小值,且极小值为 g 2 m 2 .∵函数 g x 有 3 个零点,6 m 0 ∴ {m,2 0解得 6m 2 .∴实数 m 的取值范围是6,2 .点睛:利用导数研究方程根的方法( 1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求, 画出函数图象的大体形状, 标明函数极 ( 最 ) 值的位置, 通过数形结合的思想去分析问题,使问题的求解有直观的整体展现.( 2)研究方程根的情况,也可通过分离参数的方法,转化为两函数图象公共点个数的问题处理,解题时仍要利用数形结合求解.14.( 1) 7x y 10 0 ;( 2) 2【解析】试题分析: ( 1)求导,利用对应导函数为 0 求出 a 值,再利用导数的几何意义进行求解;( 2)求导,讨论导函数的符号变化确定函数的单调性和极值,通过极值的符号确定零点的位置,再利用零点存在定理进行求解.试题解析:(1)因为 fx2x 3 ax 2216 2a 2 a 7 ,则x 2,所以 f4 0 ,解得f 1 7 ,即 fx 在点 1, f 1 处的切线方程为 y 37 x 1 ,即 7 x y10 0 ;( 2) f x x22 aln x ,f x2x 3 ax2x 0xx2令g x2x 3 ax 2 ,则 g x 6x 2 a由 a0, gx 0 ,可得 xa6g x 在 0, a上单调递减,在a , 上单调递增66由于 g 02 0 ,故 x0,a时, g x 06又 g 1a 0 ,故 g x 在 1,上有唯一零点,设为x 1 ,从而可知 f x在0, x 1 上单调递减,在 x 1,上单调递增由于 fx 有唯一零点 x 0 ,故 x 1 x 0 , 且 x 0 1又 2lnx 031 0 ......*x 0 3 1令h x 2ln x 031 ,可知h x 在 1, 上单调递增x 0 3 1由于 h 22ln2 10 2 0.7 10 0 , h 32ln3290 ,7 726故方程* 的唯一零点 x 02,3 ,故 x 0215.( 1)见解析( 2)当 m 1时, g x 没有零点; m 1时, g x 有一个零点; m1时, gx 有两个零点 .【解析】试题分析:( 1)m 1时, f x e x 1 xlnx , f ' xe x 1lnx 1 ,要证 f x在 0,+ 上单调递增,只要证:f ' x0 对 x 0 恒成立,只需证明e x 1x (当且仅当 x1 时取等号) . x lnx 1 (当且仅当 x 1时取等号),即可证明 f ' x0 ;( 2)求函数的导数,根据函数极值和导数的关系,分 m 1 m >1, m1讨论,即可判断函数 g x 零点的个数.试题解析:( 1) m 1时, f xe x 1xlnx , f ' x e x 1 lnx 1 ,要证 f x 在 0,+上单调递增,只要证:f ' x0 对 x 0 恒成立,令i x e x 1 x ,则 i ' x e x 1 1 ,当 x 1 时, i ' x 0 ,当 x 1 i ' x 0 ,故 i x 在 ,1 上单调递减,在 1,+上单调递增,时,所以 i x i 10 ,即 e x 1x (当且仅当 x 1 时等号成立),令 j xx 1 lnx x 0 ,则 j ' xx 1x ,当 0x 1时, j ' x 0 ,当 x 1时,j ' x 0 ,故 j x 在( 0, 1)上单调递减,在 1,+上单调递增,所以j xj 1 0 ,即 x lnx 1(当且仅当 x 1 时取等号), f xe x 1lnx 1 x lnx 10 (当且仅当 x 1 时等号成立)f x 在 0,+ 上单调递增 .( 2)由 g xe xmlnx m 有 g ' xe x m1 x0 ,显然 g ' x 是增函数,x令g ' x 00 ,得 e x 0 m1 , e m x 0 e x 0 , mx 0 ln x 0 ,x 0则 x0, x 0 时, g ' x 0 , x x 0 ,时, g ' x0 ,∴ gx 在 0,x 0 上是减函数,在 x 0 ,上是增函数,∴ gx 有极小值,g x 0e xmln x 0 m12ln x 0 x 0 ,x 0①当 m 1时, x 0 1, g x 极小值 =g 10 , g x 有一个零点1;② m1时, 0 x 0 1, g x 0g 1 1 0 1 0,g x 没有零点;③当 m 1时, x 0 1, g x 010 1 0 ,又 g e me emmm m e e mm0 ,又对于函数 y e x x 1 , y ' e x 10 时 x 0 ,∴当 x 0 时, y1 0 1 0 ,即 e xx 1 ,∴g 3m e 2mln3m m2m 1 ln3m mm 1 lnmln3 ,令 tmm 1 lnm ln3 ,则 t ' m11 m 1mm ,∵ m 1,∴ t ' m 0 ,∴ t mt 12 ln3 0 ,∴ g 3m0 ,又 e m1 x 0 , 3m 3x 0 3lnx 0x 0 ,∴ g x 有两个零点,综上, 当 m 1时, g x 没有零点;m 1时, g x 有一个零点; m 1时, g x 有两个零点 .【点睛】 本题题考查导数的综合应用, 利用函数单调性极值和导数之间的关系是解决本题的关键.,对于参数要进行分类讨论,综合性较强,难度较大.16.( Ⅰ) y x 1 ( Ⅱ) 见解析.【解析】试题分析:( Ⅰ)求出 f x 在 x0 的导数即可得切线的斜率, 也就得到在 0, f处切线方程. (Ⅱ)先研究函数 fx 的单调性,其导数为 f ' x e axa sin x cosx ,当x 0,时,利用三角函数的符号可以判断出 f ' x 0 ,当 x, 时,导数有唯 22一的零点 x 0 且为函数的极大值点.结合f0 , f 0 f 0 可以判断 f x 在20,x 0 存在一个零点,在 x 0 , 上存在一个零点,故在 0,上存在两个不同的零点.解析:(Ⅰ)当 a 1 时, f xe x sinx 1,所以f x e x sinx cosx ,故 f ' 01 ,又 f 01 ,故曲线在 0, f 0 的切线方程为 y x 1 .(Ⅱ) f 'xe ax asinx cosx .当 x0, 时,因为 a 0,sin x 0,cosx 0 ,故 f ' x 0 ,所以 f x 在 0,是单22调增函数;当 x, 时, f ' xae ax cosx 1 tanx ,令 tanx1 0, x, ,此方程2aa2有唯一解 x x 0 .当 x, x 0 时, f ' x 0 , f x 在, x 0 上是单调增函数; 22当 xx 0 ,时,f ' x 0 , f x 在 x 0 ,上是单调减函数;因为 fx 的图像是不间断的, 所以 f x 在0,x 0上是单调增函数, 在 x 0 ,上是单调减a,f 0f1 0 , 而 x 0函 数 .又 f2e 21 02 , 故f x 0f0 ,根据零点存在定理和 f x 的单调性可知 f x 在 0,x 0存在一个零2点,在x 0 ,上存在一个零点,故f x 在 0,上存在两个不同的零点.点睛:导数背景下函数的零点个数的讨论不仅要考虑函数的极值的符号, 还要结合零点存在定理去判断.一般地,我们在一个单调区间中要找到这样的a, b ,使得 f a f b0 .。
高考函数知识点总结全面
高考函数总结一、函数的概念与表示 1、函数 1函数的定义①原始定义:设在某变化过程中有两个变量x 、y,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量;②近代定义:设A 、B 都是非空的数的集合,f :x →y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A →B 就叫做函数,记作y=fx,其中B y A x ∈∈,,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域;B C⊆2构成函数概念的三要素 ①定义域 ②对应法则 ③值域 3、函数的表示方法 ①解析法 ②列表法 ③图象法 注意:强调分段函数与复合函数的表示形式; 二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式, 求函数解析式的方法:(1) 定义法 2变量代换法 3待定系数法 4函数方程法 5参数法 6实际问题2、函数的定义域:要使函数有意义的自变量x 的取值的集合;求函数定义域的主要依据: 1分式的分母不为零;2偶次方根的被开方数不小于零,零取零次方没有意义; 3对数函数的真数必须大于零;4指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集; 3;复合函数定义域:已知fx 的定义域为[]b a x ,∈,其复合函数[])(x g f 的定义域应由不等式b x g a ≤≤)(解出;三、函数的值域 1.函数的值域的定义在函数y=fx 中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域;2.确定函数的值域的原则①当函数y=fx 用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=fx 用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=fx 用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=fx 由实际问题给出时,函数的值域由问题的实际意义确定; 3.求函数值域的方法①直接法:从自变量x 的范围出发,推出y=fx 的取值范围; ②二次函数法:利用换元法将函数转化为二次函数求值域; ③反函数法:将求函数的值域转化为求它的反函数的值域;④判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围; ⑤单调性法:利用函数的单调性求值域; ⑥不等式法:利用不等式的性质求值域;⑦图象法:当一个函数图象可作时,通过图象可求其值域; ⑧几何意义法:由数形结合,转化距离等求值域; 四.函数的奇偶性1.定义: 设y=fx,x ∈A,如果对于任意x ∈A,都有()()f x f x -=,则称y=fx 为偶函数;设y=fx,x ∈A,如果对于任意x ∈A,都有()()f x f x -=-,则称y=fx 为奇函数;如果函数()f x 是奇函数或偶函数,则称函数y=()f x 具有奇偶性;2.性质:①函数具有奇偶性的必要条件是其定义域关于原点对称, ②y=fx 是偶函数⇔y=fx 的图象关于y 轴对称, y=fx 是奇函数⇔y=fx 的图象关于原点对称,③偶函数在定义域内关于原点对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同,④偶函数无反函数,奇函数的反函数还是奇函数,⑤若函数fx 的定义域关于原点对称,则它可表示为一个奇函数与一个偶函数之和)]()([21)]()([21)(x f x f x f x f x f --+-+=⑥奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称 ⑦对于Fx=fgx :若gx 是偶函数,则Fx 是偶函数若gx 是奇函数且fx 是奇函数,则Fx 是奇函数 若gx 是奇函数且fx 是偶函数,则Fx 是偶函数3.奇偶性的判断①看定义域是否关于原点对称 ②看fx 与f-x 的关系 五、函数的单调性 1、函数单调性的定义一般地,设一连续函数 fx 的定义域为D ,则• 如果对于属于定义域D 内某个区间上的任意两个自变量的值x 1,x 2∈D 且x 1>x 2,都有f x 1 >f x 2,即在D 上具有单调性且单调增加,那么就说f x 在这个区间上是增函数;•相反地,如果对于属于定义域D 内某个区间上的任意两个自变量的值x 1,x 2∈D 且x 1>x 2,都有fx 1 <fx 2,即在D 上具有单调性且单调减少,那么就说 f x 在这个区间上是减函数;则增函数和减函数统称单调函数; 2、判断函数单调性求单调区间的方法:1从定义入手,2从图象入手,3从函数运算入手,4从熟悉的函数入手 5从复合函数的单调性规律入手 注:函数的定义域优先3、函数单调性的证明:定义法“取值—作差—变形—定号—结论”;4、一般规律1若fx,gx 均为增函数,则fx+gx 仍为增函数; 2若fx 为增函数,则-fx 为减函数; 3互为反函数的两个函数有相同的单调性;4设()[]x g f y =是定义在M 上的函数,若fx 与gx 的单调性相反,则()[]x g f y =在M 上是减函数;若fx 与gx 的单调性相同,则()[]x g f y =在M 上是增函数;六、反函数 1、反函数的概念:设函数y=fx 的定义域为A,值域为C,由y=fx 求出()y xϕ=,若对于C 中的每一个值y,在A 中都有唯一的一个值和它对应,那么()y x ϕ=叫以y 为自变量的函数,这个函数()y xϕ=叫函数y=fx 的反函数,记作()y fx1-=,通常情况下,一般用x 表示自变量,所以记作()x fy 1-=;注:在理解反函数的概念时应注意下列问题;1只有从定义域到值域上一一映射所确定的函数才有反函数; 2反函数的定义域和值域分别为原函数的值域和定义域; 2、求反函数的步骤1解关于x 的方程y=fx,达到以y 表示x 的目的; 2把第一步得到的式子中的x 换成y,y 换成x ; 3求出并说明反函数的定义域即函数y=fx 的值域; 3、关于反函数的性质1y=fx 和y=f -1x 的图象关于直线y=x 对称; 2y=fx 和y=f -1x 具有相同的单调性;3y=fx 和x=f -1y 互为反函数,但对同一坐标系下它们的图象相同; 4已知y=fx,求f -1a,可利用fx=a,从中求出x,即是f -1a ; 5f -1fx=x;6若点Pa,b 在y=fx 的图象上,又在y=f -1x 的图象上,则Pb,a 在y=fx 的图象上; 7证明y=fx 的图象关于直线y=x 对称,只需证得y=fx 反函数和y=fx 相同; 七.二次函数1.二次函数的解析式的三种形式1一般式:fx=ax 2+bx+ca ≠0,其中a 是开口方向与大小,c 是Y 轴上的截距,而ab2-是对称轴; 2顶点式配方式:fx=ax-h 2+k 其中h,k 是抛物线的顶点坐标;3两根式因式分解:fx=ax-x 1x-x 2,其中x 1,x 2是抛物线与x 轴两交点的坐标;求一个二次函数的解析式需三个独立条件,如:已知抛物线过三点,已知对称轴和两点,已知顶点和对称 轴;又如,已知fx=ax 2+bx+ca ≠0,方程fx-x=0的两根为21,x x ,则可设 fx-x=()()(),21x x x x a x x f --=-或()()()x x x x x a x f +--=21;2.二次函数fx=ax 2+bx+ca ≠0的图象是一条抛物线,对称轴ab x 2-=,顶点坐标)44,2(2a b ac a b --1a>0时,抛物线开口向上,函数在]2,(a b --∞上单调递减,在),2[+∞-a b 上单调递增,ab x 2-=时,ab ac x f 44)(2m in-= 2a<0时,抛物线开口向下,函数在]2,(a b --∞上单调递增,在),2[+∞-a b 上单调递减,abx 2-=时,ab ac x f 44)(2m ax -=3.二次函数fx=ax 2+bx+ca ≠0当042>-=∆ac b 时图象与x 轴有两个交点M 1x 1,0,M 2x 2,0ax x x x x x M M ∆=-+=-=2122121214)( 4.二次函数与一元二次方程关系 方程)0(02≠=++a c bx ax的根为二次函数fx=ax 2+bx+ca ≠00=y 的x 的取值;二次函数与一元二次不等式的关系一元二次不等式)0(02<>++c bx ax 的解集为二次函数fx=ax 2+bx+ca ≠0)0(0<>y 的x 的取值范围;二次函数 △情况 一元二次方程 一元二次不等式解集Y=ax 2+bx+c a>0△=b 2-4acax 2+bx+c=0 a>0ax 2+bx+c>0 a>0ax 2+bx+c<0 a>0图象与解△>0a b x a b x 2221∆+-=∆--={}21x x x x x ><或{}21x x xx <<△=0abx x 221-=={}0x x x ≠Φ△<0 方程无解 RΦ八.指数式与对数式 1.幂的有关概念1正整数指数幂)(*∈⋅⋅⋅⋅=N n a a a a a n n个,2零指数幂)0(10≠=a a3负整数指数幂()10,nn aa n N a-*=≠∈4正分数指数幂)0,,,1mn m n a a a m n N n *=>∈>; 5负分数指数幂)10,,,1m nm nmnaa m n N n a a-*==>∈>60的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质()()10,,r s r s a a a a r s Q +=>∈()()()20,,sr rs a a a r s Q =>∈()()()30,0,rr r ab a b a b r Q =>>∈3.根式1根式的定义:一般地,如果a xn=,那么x 叫做a 的n 次方根,其中()*∈>N n n ,1,n a 叫做根式,n 叫做根指数,a 叫被开方数;2根式的性质: ①当n 是奇数,则a a nn =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n②负数没有偶次方根, ③零的任何次方根都是零4.对数1对数的概念 如果)1,0(≠>=a a N ab,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a2对数的性质:①零与负数没有对数 ②01log =a ③1log =a a3对数的运算性质N M MN ①a a a log log log +=N M NM②a a alog log log -= M n M ③a n a log log =其中a>0,a ≠0,M>0,N>04对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a且且5对数的降幂公式:)10,0(log log≠>>=a a N N mnN a n a m且 九.指数函数与对数函数1、 指数函数y=a x 与对数函数y=log a x a>0 , a ≠1互为反函数,从概念、图象、性质去理解它们的区别和联系 名称 指数函数 对数函数 一般形式 Y=a x a>0且a ≠1y=log a x a>0 , a ≠1定义域 -∞,+ ∞ 0,+ ∞ 值域 0,+ ∞ -∞,+ ∞ 过定点 0,1 1,0图象指数函数y=a x 与对数函数y=log a x a>0 , a ≠1图象关于y=x 对称单调性a> 1,在-∞,+ ∞上为增函数 0<a<1, 在-∞,+ ∞上为减函数a>1,在0,+ ∞上为增函数 0<a<1, 在0,+ ∞上为减函数值分布y>1 y<1y>0 y<0比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系对数式比较大小同理 记住下列特殊值为底数的函数图象:3、 研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、 指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径; 十.函数的图象1、作函数图象的基本方法有两种:(1) 描点法:1、先确定函数定义域,讨论函数的性质奇偶性,单调性,周期性2、列表注意特殊点,如:零点,最大最小,与轴的交点 3、描点,连线 如:作出函数xx y 1+=的图象. (2) 图象变换法:利用基本初等函数变换作图① 平移变换:左正右负,上正下负即kx f y x f y h x f y x f y k k h h +=−−−−−→−=+=−−−−−→−=><><)()()()(,0;,0,0;,0上移下移左移右移 ② 对称变换:对称谁,谁不变,对称原点都要变)()()()()()()()()()()()(1x f y x f y x f y x f y x fy x f y x f y x f y x f y x f y x f y x f y x x y xy y x =−−−−−−−−−→−==−−−−−−−−−−→−==−−→−=--=−−→−=-=−→−=-=−→−=-=轴下方图上翻轴上方图,将保留边部分的对称图轴右边不变,左边为右原点轴轴③ 伸缩变换:)()()()(1x Af y x f y x f y x f y A =−−−−−−−−→−==−−−−−−−−−→−=⎪⎭⎫⎝⎛倍来的仍一点的纵坐标变为原倍来的仍一点的横坐标变为原ϖϖ导数与积分1.导数的概念函数y=fx,如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=fx 0+x ∆-fx 0,比值x y∆∆叫做函数y=fx 在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00;如果当0→∆x 时,x y∆∆有极限,我们就说函数y=fx 在点x 0处可导,并把这个极限叫做fx 在点x 0处的导数,记作f’x 0或y’|0x x =;即fx 0=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00;2.导数的几何意义函数y=fx 在点x 0处的导数的几何意义是曲线y=fx 在点px 0,fx 0处的切线的斜率;也就是说,曲线y=fx 在点px 0,fx 0处的切线的斜率是f’x 0;相应地,切线方程为y -y 0=f`x 0x -x 0; 3.几种常见函数的导数:①0;C '= ②()1;nn x nx-'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();xxe e '= ⑥()ln xxa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x ex '=.4.两个函数的和、差、积的求导法则.)'''v u v u ±=± .)('''uv v u uv +=⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -v ≠0;复合函数的导数:单调区间:一般地,设函数)(x f y =在某个区间可导,如果'f )(x 0>,则)(x f 为增函数; 如果'f 0)(<x ,则)(x f 为减函数;如果在某区间内恒有'f 0)(=x ,则)(x f 为常数;2.极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 3.最值:一般地,在区间a,b 上连续的函数f )(x 在a,b 上必有最大值与最小值;①求函数ƒ)(x 在a,b 内的极值; ②求函数ƒ)(x 在区间端点的值ƒa 、ƒb ;③将函数ƒ )(x 的各极值与ƒa 、ƒb 比较,其中最大的是最大值,其中最小的是最小值;4.定积分1概念:设函数fx 在区间a,b 上连续,用分点a =x0<x1<…<xi -1<xi<…xn =b 把区间a,b 等分成n 个小区间,在每个小区间xi -1,xi 上取任一点ξii =1,2,…n 作和式In =∑ni f1=ξi △x 其中△x 为小区间长度,把n→∞即△x→0时,和式In 的极限叫做函数fx 在区间a,b 上的定积分,记作:⎰badxx f )(,即⎰badxx f )(=∑=∞→ni n f1lim ξi △x;这里,a 与b 分别叫做积分下限与积分上限,区间a,b 叫做积分区间,函数fx 叫做被积函数,x 叫做积分变量,fxdx 叫做被积式; 基本的积分公式:⎰dx 0=C ;⎰dx x m=111++m xm +Cm ∈Q, m≠-1;⎰x 1dx =ln x +C ; ⎰dx e x =x e +C ;⎰dx a x =a a x ln +C ;⎰xdx cos =sinx +C ; ⎰xdx sin =-cosx +C 表中C 均为常数;2定积分的性质 ①⎰⎰=ba badxx f k dx x kf )()(k 为常数;②⎰⎰⎰±=±ba b ab adx x g dx x f dx x g x f )()()()(;③⎰⎰⎰+=bacabcdxx f dx x f dx x f )()()(其中a <c <b );3定积分求曲边梯形面积由三条直线x =a,x =ba<b,x 轴及一条曲线y =fxfx≥0围成的曲边梯的面积⎰=badxx f S )(;如果图形由曲线y1=f1x,y2=f2x 不妨设f1x≥f2x≥0,及直线x =a,x =ba<b 围成,那么所求图形的面积S =S 曲边梯形AMNB -S 曲边梯形DMNC =⎰⎰-babadxx f dx x f )()(21;。
高考数学函数解析式的求解及其常用方法知识点归纳
高考数学函数解析式的求解及其常用方法知识点归纳高考数学函数解析式的求解及其常用方法知识点一函数解析式的常用求解方法:1待定系数法:已知函数类型如:一次、二次函数、反比例函数等:若已知fx的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得fx的表达式。
待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
2换元法注意新元的取值范围:已知fgx的表达式,欲求fx,我们常设t=gx,从而求得,然后代入fgx的表达式,从而得到ft的表达式,即为fx的表达式。
3配凑法整体代换法:若已知fgx的表达式,欲求fx的表达式,用换元法有困难时,如gx不存在反函数可把gx看成一个整体,把右边变为由gx组成的式子,再换元求出fx 的式子。
4消元法如自变量互为倒数、已知fx为奇函数且gx为偶函数等:若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
5赋值法特殊值代入法:在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。
高考数学函数解析式的求解及其常用方法知识点二求函数解析式是中学数学的重要内容,是高考的重要考点之一。
本文给出求函数解析式的基本方法,供广大师生参考。
一、定义法根据函数的定义求其解析式的方法。
例1. 已知,求。
解:因为二、换元法看成一个整体t,进行换元,从而求出的方法。
例2. 同例1。
解:令,所以,所以。
评注:利用换元法求函数解析式必须考虑“元”的取值范围,即的定义域。
三、方程组法根据题意,通过建立方程组求函数解析式的方法。
例3. 已知定义在R上的函数满足,求的解析式。
解:,①②得,所以。
评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程。
四、特殊化法通过对某变量取特殊值求函数解析式的方法。
例4. 已知函数的定义域为R,并对一切实数x,y都有的解析式。
高中数学导数大题压轴高考题选
函数与导数高考压轴题选一.选择题共2小题1.2013安徽已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1<x2,则关于x的方程3fx2+2afx+b=0的不同实根个数为A.3 B.4 C.5 D.62.2012福建函数fx在a,b上有定义,若对任意x1,x2∈a,b,有则称fx在a,b上具有性质P.设fx在1,3上具有性质P,现给出如下命题:①fx在1,3上的图象是连续不断的;②fx2在1,上具有性质P;③若fx在x=2处取得最大值1,则fx=1,x∈1,3;④对任意x1,x2,x3,x4∈1,3,有fx1+fx2+fx3+fx4其中真命题的序号是A.①②B.①③C.②④D.③④二.选择题共1小题3.2012新课标设函数fx=的最大值为M,最小值为m,则M+m=.三.选择题共23小题4.2014陕西设函数fx=lnx+,m∈R.Ⅰ当m=ee为自然对数的底数时,求fx的极小值;Ⅱ讨论函数gx=f′x﹣零点的个数;Ⅲ若对任意b>a>0,<1恒成立,求m的取值范围.5.2013新课标Ⅱ已知函数fx=e x﹣lnx+mΙ设x=0是fx的极值点,求m,并讨论fx的单调性;Ⅱ当m≤2时,证明fx>0.6.2013四川已知函数,其中a是实数,设Ax1,fx1,Bx2,fx2为该函数图象上的点,且x1<x2.Ⅰ指出函数fx的单调区间;Ⅱ若函数fx的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;Ⅲ若函数fx的图象在点A,B处的切线重合,求a的取值范围.7.2013湖南已知函数fx=.Ⅰ求fx的单调区间;Ⅱ证明:当fx1=fx2x1≠x2时,x1+x2<0.8.2013辽宁已知函数fx=1+xe﹣2x,gx=ax++1+2xcosx,当x∈0,1时,I求证:;II若fx≥gx恒成立,求实数a的取值范围.9.2013陕西已知函数fx=e x,x∈R.Ⅰ若直线y=kx+1与f x的反函数gx=lnx的图象相切,求实数k的值;Ⅱ设x>0,讨论曲线y=f x 与曲线y=mx2m>0公共点的个数.Ⅲ设a<b,比较与的大小,并说明理由.10.2013湖北设n是正整数,r为正有理数.Ⅰ求函数fx=1+x r+1﹣r+1x﹣1x>﹣1的最小值;Ⅱ证明:;Ⅲ设x∈R,记x为不小于x的最小整数,例如.令的值.参考数据:.11.2012辽宁设fx=lnx+1++ax+ba,b∈R,a,b为常数,曲线y=fx与直线y=x在0,0点相切.I求a,b的值;II证明:当0<x<2时,fx<.12.2012福建已知函数fx=axsinx﹣a∈R,且在上的最大值为,1求函数fx的解析式;2判断函数fx在0,π内的零点个数,并加以证明.13.2012湖北设函数fx=ax n1﹣x+bx>0,n为正整数,a,b为常数,曲线y=fx在1,f1处的切线方程为x+y=1Ⅰ求a,b的值;Ⅱ求函数fx的最大值;Ⅲ证明:fx<.14.2012湖南已知函数fx=e x﹣ax,其中a>0.1若对一切x∈R,fx≥1恒成立,求a的取值集合;2在函数fx的图象上取定点Ax1,fx1,Bx2,fx2x1<x2,记直线AB的斜率为K,证明:存在x0∈x1,x2,使f′x0=K恒成立.15.2012四川已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设fn为该抛物线在点A处的切线在y轴上的截距.Ⅰ用a和n表示fn;Ⅱ求对所有n都有成立的a的最小值;Ⅲ当0<a<1时,比较与的大小,并说明理由.16.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=fx﹣hx,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程log4fx﹣1﹣=log2ha﹣x﹣log2h4﹣x;Ⅲ试比较f100h100﹣与的大小.17.2011陕西设函数fx定义在0,+∞上,f1=0,导函数f′x=,gx=fx+f′x.Ⅰ求gx的单调区间和最小值;Ⅱ讨论gx与的大小关系;Ⅲ是否存在x0>0,使得|gx﹣gx0|<对任意x>0成立若存在,求出x0的取值范围;若不存在请说明理由.18.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=18fx﹣x2hx2,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程lg fx﹣1﹣=2lgha﹣x﹣2lgh4﹣x;Ⅲ设n∈N n,证明:fnhn﹣h1+h2+…+hn≥.19.2010四川设,a>0且a≠1,gx是fx的反函数.Ⅰ设关于x的方程求在区间2,6上有实数解,求t的取值范围;Ⅱ当a=e,e为自然对数的底数时,证明:;Ⅲ当0<a≤时,试比较||与4的大小,并说明理由.20.2010全国卷Ⅱ设函数fx=1﹣e﹣x.Ⅰ证明:当x>﹣1时,fx≥;Ⅱ设当x≥0时,fx≤,求a的取值范围.21.2010陕西已知函数fx=,gx=alnx,a∈R,Ⅰ若曲线y=fx与曲线y=gx相交,且在交点处有共同的切线,求a的值和该切线方程;Ⅱ设函数hx=fx﹣gx,当hx存在最小值时,求其最小值φa的解析式;Ⅲ对Ⅱ中的φa和任意的a>0,b>0,证明:φ′≤≤φ′.22.2009全国卷Ⅱ设函数fx=x2+aln1+x有两个极值点x1、x2,且x1<x2,Ⅰ求a的取值范围,并讨论fx的单调性;Ⅱ证明:fx2>.23.2009湖北在R上定义运算:b、c∈R是常数,已知f1x=x2﹣2c,f2x=x﹣2b,fx=f1xf2x.①如果函数fx在x=1处有极值,试确定b、c的值;②求曲线y=fx上斜率为c的切线与该曲线的公共点;③记gx=|f′x|﹣1≤x≤1的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.参考公式:x3﹣3bx2+4b3=x+bx﹣2b224.2009湖北已知关于x的函数fx=﹣x3+bx2+cx+bc,其导函数为f′x.令gx=|f′x|,记函数gx 在区间﹣1、1上的最大值为M.Ⅰ如果函数fx在x=1处有极值﹣,试确定b、c的值:Ⅱ若|b|>1,证明对任意的c,都有M>2Ⅲ若M≧K对任意的b、c恒成立,试求k的最大值.25.2008江苏请先阅读:在等式cos2x=2cos2x﹣1x∈R的两边求导,得:cos2x′=2cos2x﹣1′,由求导法则,得﹣sin2x2=4cosx ﹣sinx,化简得等式:sin2x=2cosxsinx.1利用上题的想法或其他方法,结合等式1+x n=C n0+C n1x+C n2x2+…+C n n x n x∈R,正整数n≥2,证明:.2对于正整数n≥3,求证:i;ii;iii.26.2008天津已知函数fx=x4+ax3+2x2+bx∈R,其中a,b∈R.Ⅰ当时,讨论函数fx的单调性;Ⅱ若函数fx仅在x=0处有极值,求a的取值范围;Ⅲ若对于任意的a∈﹣2,2,不等式fx≤1在﹣1,1上恒成立,求b的取值范围.四.解答题共4小题27.2008福建已知函数fx=ln1+x﹣x1求fx的单调区间;2记fx在区间0,nn∈N上的最小值为b n令a n=ln1+n﹣b ni如果对一切n,不等式恒成立,求实数c的取值范围;ii求证:.28.2007福建已知函数fx=e x﹣kx,1若k=e,试确定函数fx的单调区间;2若k>0,且对于任意x∈R,f|x|>0恒成立,试确定实数k的取值范围;3设函数Fx=fx+f﹣x,求证:F1F2…Fn>n∈N.29.2006四川已知函数,fx的导函数是f′x.对任意两个不相等的正数x1、x2,证明:Ⅰ当a≤0时,;Ⅱ当a≤4时,|f′x1﹣f′x2|>|x1﹣x2|.30.2006辽宁已知f0x=x n,其中k≤nn,k∈N+,设Fx=C n0f0x2+C n1f1x2+…+C n n f n x2,x∈﹣1,1.1写出f k1;2证明:对任意的x1,x2∈﹣1,1,恒有|Fx1﹣Fx2|≤2n﹣1n+2﹣n﹣1.函数与导数高考压轴题选参考答案与试题解析一.选择题共2小题1.2013安徽已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1<x2,则关于x的方程3fx2+2afx+b=0的不同实根个数为A.3 B.4 C.5 D.6解答解:∵函数fx=x3+ax2+bx+c有两个极值点x1,x2,∴f′x=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得=.∵x1<x2,∴,.而方程3fx2+2afx+b=0的△1=△>0,∴此方程有两解且fx=x1或x2.不妨取0<x1<x2,fx1>0.①把y=fx向下平移x1个单位即可得到y=fx﹣x1的图象,∵fx1=x1,可知方程fx=x1有两解.②把y=fx向下平移x2个单位即可得到y=fx﹣x2的图象,∵fx1=x1,∴fx1﹣x2<0,可知方程fx=x2只有一解.综上①②可知:方程fx=x1或fx=x2.只有3个实数解.即关于x的方程3fx2+2afx+b=0的只有3不同实根.故选:A.2.2012福建函数fx在a,b上有定义,若对任意x1,x2∈a,b,有则称fx在a,b上具有性质P.设fx在1,3上具有性质P,现给出如下命题:①fx在1,3上的图象是连续不断的;②fx2在1,上具有性质P;③若fx在x=2处取得最大值1,则fx=1,x∈1,3;④对任意x1,x2,x3,x4∈1,3,有fx1+fx2+fx3+fx4其中真命题的序号是A.①②B.①③C.②④D.③④解答解:在①中,反例:fx=在1,3上满足性质P,但fx在1,3上不是连续函数,故①不成立;在②中,反例:fx=﹣x在1,3上满足性质P,但fx2=﹣x2在1,上不满足性质P,故②不成立;在③中:在1,3上,f2=f≤,∴,故fx=1,∴对任意的x1,x2∈1,3,fx=1,故③成立;在④中,对任意x1,x2,x3,x4∈1,3,有=≤≤=fx1+fx2+fx3+fx4,∴fx1+fx2+fx3+fx4,故④成立.故选D.二.选择题共1小题3.2012新课标设函数fx=的最大值为M,最小值为m,则M+m=2.解答解:函数可化为fx==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数fx=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.三.选择题共23小题4.2014陕西设函数fx=lnx+,m∈R.Ⅰ当m=ee为自然对数的底数时,求fx的极小值;Ⅱ讨论函数gx=f′x﹣零点的个数;Ⅲ若对任意b>a>0,<1恒成立,求m的取值范围.解答解:Ⅰ当m=e时,fx=lnx+,∴f′x=;∴当x∈0,e时,f′x<0,fx在0,e上是减函数;当x∈e,+∞时,f′x>0,fx在e,+∞上是增函数;∴x=e时,fx取得极小值为fe=lne+=2;Ⅱ∵函数gx=f′x﹣=﹣﹣x>0,令gx=0,得m=﹣x3+xx>0;设φx=﹣x3+xx>0,∴φ′x=﹣x2+1=﹣x﹣1x+1;当x∈0,1时,φ′x>0,φx在0,1上是增函数,当x∈1,+∞时,φ′x<0,φx在1,+∞上是减函数;∴x=1是φx的极值点,且是极大值点,∴x=1是φx的最大值点,∴φx的最大值为φ1=;又φ0=0,结合y=φx的图象,如图;可知:①当m>时,函数gx无零点;②当m=时,函数gx有且只有一个零点;③当0<m<时,函数gx有两个零点;④当m≤0时,函数gx有且只有一个零点;综上,当m>时,函数gx无零点;当m=或m≤0时,函数gx有且只有一个零点;当0<m<时,函数gx有两个零点;Ⅲ对任意b>a>0,<1恒成立,等价于fb﹣b<fa﹣a恒成立;设hx=fx﹣x=lnx+﹣xx>0,则hb<ha.∴hx在0,+∞上单调递减;∵h′x=﹣﹣1≤0在0,+∞上恒成立,∴m≥﹣x2+x=﹣+x>0,∴m≥;对于m=,h′x=0仅在x=时成立;∴m的取值范围是,+∞.5.2013新课标Ⅱ已知函数fx=e x﹣lnx+mΙ设x=0是fx的极值点,求m,并讨论fx的单调性;Ⅱ当m≤2时,证明fx>0.解答Ⅰ解:∵,x=0是fx的极值点,∴,解得m=1.所以函数fx=e x﹣lnx+1,其定义域为﹣1,+∞.∵.设gx=e x x+1﹣1,则g′x=e x x+1+e x>0,所以gx在﹣1,+∞上为增函数,又∵g0=0,所以当x>0时,gx>0,即f′x>0;当﹣1<x<0时,gx<0,f′x<0.所以fx在﹣1,0上为减函数;在0,+∞上为增函数;Ⅱ证明:当m≤2,x∈﹣m,+∞时,lnx+m≤lnx+2,故只需证明当m=2时fx>0.当m=2时,函数在﹣2,+∞上为增函数,且f′﹣1<0,f′0>0.故f′x=0在﹣2,+∞上有唯一实数根x0,且x0∈﹣1,0.当x∈﹣2,x0时,f′x<0,当x∈x0,+∞时,f′x>0,从而当x=x0时,fx取得最小值.由f′x0=0,得,lnx0+2=﹣x0.故fx≥=>0.综上,当m≤2时,fx>0.6.2013四川已知函数,其中a是实数,设Ax1,fx1,Bx2,fx2为该函数图象上的点,且x1<x2.Ⅰ指出函数fx的单调区间;Ⅱ若函数fx的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;Ⅲ若函数fx的图象在点A,B处的切线重合,求a的取值范围.解答解:I当x<0时,fx=x+12+a,∴fx在﹣∞,﹣1上单调递减,在﹣1,0上单调递增;当x>0时,fx=lnx,在0,+∞单调递增.II∵x1<x2<0,∴fx=x2+2x+a,∴f′x=2x+2,∴函数fx在点A,B处的切线的斜率分别为f′x1,f′x2,∵函数fx的图象在点A,B处的切线互相垂直,∴,∴2x1+22x2+2=﹣1.∴2x1+2<0,2x2+2>0,∴=1,当且仅当﹣2x1+2=2x2+2=1,即,时等号成立.∴函数fx的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值为1.III当x1<x2<0或0<x1<x2时,∵,故不成立,∴x1<0<x2.当x1<0时,函数fx在点Ax1,fx1,处的切线方程为,即.当x2>0时,函数fx在点Bx2,fx2处的切线方程为,即.函数fx的图象在点A,B处的切线重合的充要条件是,由①及x1<0<x2可得﹣1<x1<0,由①②得=.∵函数,y=﹣ln2x1+2在区间﹣1,0上单调递减,∴ax1=在﹣1,0上单调递减,且x1→﹣1时,ln2x1+2→﹣∞,即﹣ln2x1+2→+∞,也即ax1→+∞.x1→0,ax1→﹣1﹣ln2.∴a的取值范围是﹣1﹣ln2,+∞.7.2013湖南已知函数fx=.Ⅰ求fx的单调区间;Ⅱ证明:当fx1=fx2x1≠x2时,x1+x2<0.解答解:Ⅰ易知函数的定义域为R.==,当x<0时,f′x>0;当x>0时,f′x<0.∴函数fx的单调递增区间为﹣∞,0,单调递减区间为0,+∞.Ⅱ当x<1时,由于,e x>0,得到fx>0;同理,当x>1时,fx<0.当fx1=fx2x1≠x2时,不妨设x1<x2.由Ⅰ可知:x1∈﹣∞,0,x2∈0,1.下面证明:x∈0,1,fx<f﹣x,即证<.此不等式等价于.令gx=,则g′x=﹣xe﹣x e2x﹣1.当x∈0,1时,g′x<0,gx单调递减,∴gx<g0=0.即.∴x∈0,1,fx<f﹣x.而x2∈0,1,∴fx2<f﹣x2.从而,fx1<f﹣x2.由于x1,﹣x2∈﹣∞,0,fx在﹣∞,0上单调递增,∴x1<﹣x2,即x1+x2<0.8.2013辽宁已知函数fx=1+xe﹣2x,gx=ax++1+2xcosx,当x∈0,1时,I求证:;II若fx≥gx恒成立,求实数a的取值范围.解答I证明:①当x∈0,1时,1+xe﹣2x≥1﹣x1+xe﹣x≥1﹣xe x,令hx=1+xe﹣x﹣1﹣xe x,则h′x=xe x﹣e﹣x.当x∈0,1时,h′x≥0,∴hx在0,1上是增函数,∴hx≥h0=0,即fx≥1﹣x.②当x∈0,1时,e x≥1+x,令ux=e x﹣1﹣x,则u′x=e x﹣1.当x∈0,1时,u′x≥0,∴ux在0,1单调递增,∴ux≥u0=0,∴fx.综上可知:.II解:设Gx=fx﹣gx=≥=.令Hx=,则H′x=x﹣2sinx,令Kx=x﹣2sinx,则K′x=1﹣2cosx.当x∈0,1时,K′x<0,可得H′x是0,1上的减函数,∴H′x≤H′0=0,故Hx在0,1单调递减,∴Hx≤H0=2.∴a+1+Hx≤a+3.∴当a≤﹣3时,fx≥gx在0,1上恒成立.下面证明当a>﹣3时,fx≥gx在0,1上不恒成立.fx﹣gx≤==﹣x.令vx==,则v′x=.当x∈0,1时,v′x≤0,故vx在0,1上是减函数,∴vx∈a+1+2cos1,a+3.当a>﹣3时,a+3>0.∴存在x0∈0,1,使得vx0>0,此时,fx0<gx0.即fx≥gx在0,1不恒成立.综上实数a的取值范围是﹣∞,﹣3.9.2013陕西已知函数fx=e x,x∈R.Ⅰ若直线y=kx+1与f x的反函数gx=lnx的图象相切,求实数k的值;Ⅱ设x>0,讨论曲线y=f x 与曲线y=mx2m>0公共点的个数.Ⅲ设a<b,比较与的大小,并说明理由.解答解:I函数fx=e x的反函数为gx=lnx,∴.设直线y=kx+1与gx的图象相切于点Px0,y0,则,解得,k=e﹣2, ∴k=e﹣2.II当x>0,m>0时,令fx=mx2,化为m=,令hx=,则,则x∈0,2时,h′x<0,hx单调递减;x∈2,+∞时,h′x>0,hx单调递增.∴当x=2时,hx取得极小值即最小值,.∴当时,曲线y=f x 与曲线y=mx2m>0公共点的个数为0;当时,曲线y=f x 与曲线y=mx2m>0公共点的个数为1;当时,曲线y=f x 与曲线y=mx2m>0公共点个数为2.Ⅲ===,令gx=x+2+x﹣2e x x>0,则g′x=1+x﹣1e x.g′′x=xe x>0,∴g′x在0,+∞上单调递增,且g′0=0,∴g′x>0,∴gx在0,+∞上单调递增,而g0=0,∴在0,+∞上,有gx>g0=0.∵当x>0时,gx=x+2+x﹣2e x>0,且a<b,∴,即当a<b时,.10.2013湖北设n是正整数,r为正有理数.Ⅰ求函数fx=1+x r+1﹣r+1x﹣1x>﹣1的最小值;Ⅱ证明:;Ⅲ设x∈R,记x为不小于x的最小整数,例如.令的值.参考数据:.解答解;Ⅰ由题意得f'x=r+11+x r﹣r+1=r+11+x r﹣1,令f'x=0,解得x=0.当﹣1<x<0时,f'x<0,∴fx在﹣1,0内是减函数;当x>0时,f'x>0,∴fx在0,+∞内是增函数.故函数fx在x=0处,取得最小值为f0=0.Ⅱ由Ⅰ,当x∈﹣1,+∞时,有fx≥f0=0,即1+x r+1≥1+r+1x,且等号当且仅当x=0时成立,故当x>﹣1且x≠0,有1+x r+1>1+r+1x,①在①中,令这时x>﹣1且x≠0,得.上式两边同乘n r+1,得n+1r+1>n r+1+n r r+1,即,②当n>1时,在①中令这时x>﹣1且x≠0,类似可得,③且当n=1时,③也成立.综合②,③得,④Ⅲ在④中,令,n分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由S的定义,得S=211.11.2012辽宁设fx=lnx+1++ax+ba,b∈R,a,b为常数,曲线y=fx与直线y=x在0,0点相切.I求a,b的值;II证明:当0<x<2时,fx<.解答I解:由y=fx过0,0,∴f0=0,∴b=﹣1∵曲线y=fx与直线在0,0点相切.∴y′|x=0=∴a=0;II证明:由I知fx=lnx+1+由均值不等式,当x>0时,,∴①令kx=lnx+1﹣x,则k0=0,k′x=,∴kx<0∴lnx+1<x,②由①②得,当x>0时,fx<记hx=x+6fx﹣9x,则当0<x<2时,h′x=fx+x+6f′x﹣9<<=∴hx在0,2内单调递减,又h0=0,∴hx<0∴当0<x<2时,fx<.12.2012福建已知函数fx=axsinx﹣a∈R,且在上的最大值为,1求函数fx的解析式;2判断函数fx在0,π内的零点个数,并加以证明.解答解:I由已知得f′x=asinx+xcosx,对于任意的x∈0,,有sinx+xcosx>0,当a=0时,fx=﹣,不合题意;当a<0时,x∈0,,f′x<0,从而fx在0,单调递减,又函数在上图象是连续不断的,故函数在上上的最大值为f0=﹣,不合题意;当a>0时,x∈0,,f′x>0,从而fx在0,单调递增,又函数在上图象是连续不断的,故函数在上上的最大值为f==,解得a=1,综上所述,得II函数fx在0,π内有且仅有两个零点.证明如下:由I知,,从而有f0=﹣<0,f=>0,又函数在上图象是连续不断的,所以函数fx在0,内至少存在一个零点,又由I知fx在0,单调递增,故函数fx在0,内仅有一个零点.当x∈,π时,令gx=f′x=sinx+xcosx,由g=1>0,gπ=﹣π<0,且gx在,π上的图象是连续不断的,故存在m∈,π,使得gm=0.由g′x=2cosx﹣xsinx,知x∈,π时,有g′x<0,从而gx在,π上单调递减.当x∈,m,gx>gm=0,即f′x>0,从而fx在,m内单调递增故当x∈,m时,fx>f=>0,从而x在,m内无零点;当x∈m,π时,有gx<gm=0,即f′x<0,从而fx在,m内单调递减.又fm>0,fπ<0且fx在m,π上的图象是连续不断的,从而fx在m,π内有且仅有一个零点.综上所述,函数fx在0,π内有且仅有两个零点.13.2012湖北设函数fx=ax n1﹣x+bx>0,n为正整数,a,b为常数,曲线y=fx在1,f1处的切线方程为x+y=1Ⅰ求a,b的值;Ⅱ求函数fx的最大值;Ⅲ证明:fx<.解答解:Ⅰ因为f1=b,由点1,b在x+y=1上,可得1+b=1,即b=0.因为f′x=anx n﹣1﹣an+1x n,所以f′1=﹣a.又因为切线x+y=1的斜率为﹣1,所以﹣a=﹣1,即a=1,故a=1,b=0.Ⅱ由Ⅰ知,fx=x n1﹣x,则有f′x=n+1x n﹣1﹣x,令f′x=0,解得x=在0,上,导数为正,故函数fx是增函数;在,+∞上导数为负,故函数fx是减函数;故函数fx在0,+∞上的最大值为f=n1﹣=,Ⅲ令φt=lnt﹣1+,则φ′t=﹣=t>0在0,1上,φ′t<0,故φt单调减;在1,+∞,φ′t>0,故φt单调增;故φt在0,+∞上的最小值为φ1=0,所以φt>0t>1则lnt>1﹣,t>1,令t=1+,得ln1+>,即ln1+n+1>lne所以1+n+1>e,即<由Ⅱ知,fx≤<,故所证不等式成立.14.2012湖南已知函数fx=e x﹣ax,其中a>0.1若对一切x∈R,fx≥1恒成立,求a的取值集合;2在函数fx的图象上取定点Ax1,fx1,Bx2,fx2x1<x2,记直线AB的斜率为K,证明:存在x0∈x1,x2,使f′x0=K恒成立.解答解:1f′x=e x﹣a,令f′x=0,解可得x=lna;当x<lna,f′x<0,fx单调递减,当x>lna,f′x>0,fx单调递增,故当x=lna时,fx取最小值,flna=a﹣alna,对一切x∈R,fx≥1恒成立,当且仅当a﹣alna≥1,①令gt=t﹣tlnt,则g′t=﹣lnt,当0<t<1时,g′t>0,gt单调递增,当t>1时,g′t<0,gt单调递减,故当t=1时,gt取得最大值,且g1=1,因此当且仅当a=1时,①式成立,综上所述,a的取值的集合为{1}.2根据题意,k==﹣a,令φx=f′x﹣k=e x﹣,则φx1=﹣﹣x2﹣x1﹣1,φx2=﹣x1﹣x2﹣1,令Ft=e t﹣t﹣1,则F′t=e t﹣1,当t<0时,F′t<0,Ft单调递减;当t>0时,F′t>0,Ft单调递增,则Ft的最小值为F0=0,故当t≠0时,Ft>F0=0,即e t﹣t﹣1>0,从而﹣x2﹣x1﹣1>0,且>0,则φx1<0,﹣x1﹣x2﹣1>0,>0,则φx2>0,因为函数y=φx在区间x1,x2上的图象是连续不断的一条曲线,所以存在x0∈x1,x2,使φx0=0, 即f′x0=K成立.15.2012四川已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设fn为该抛物线在点A处的切线在y轴上的截距.Ⅰ用a和n表示fn;Ⅱ求对所有n都有成立的a的最小值;Ⅲ当0<a<1时,比较与的大小,并说明理由.解答解:Ⅰ∵抛物线与x轴正半轴相交于点A,∴A对求导得y′=﹣2x∴抛物线在点A处的切线方程为,∴∵fn为该抛物线在点A处的切线在y轴上的截距,∴fn=a n;Ⅱ由Ⅰ知fn=a n,则成立的充要条件是a n≥2n3+1即知,a n≥2n3+1对所有n成立,特别的,取n=2得到a≥当a=,n≥3时,a n>4n=1+3n≥1+=1+2n3+>2n3+1当n=0,1,2时,∴a=时,对所有n都有成立∴a的最小值为;Ⅲ由Ⅰ知fk=a k,下面证明:首先证明:当0<x<1时,设函数gx=xx2﹣x+1,0<x<1,则g′x=xx﹣当0<x<时,g′x<0;当时,g′x>0故函数gx在区间0,1上的最小值gx min=g=0∴当0<x<1时,gx≥0,∴由0<a<1知0<a k<1,因此,从而=≥=>=16.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=fx﹣hx,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程log4fx﹣1﹣=log2ha﹣x﹣log2h4﹣x;Ⅲ试比较f100h100﹣与的大小.解答解:Ⅰ由Fx=fx﹣hx=x+﹣x≥0知,F′x=,令F′x=0,得x=.当x∈0,时,F′x<0;当x∈,+∞时,F′x>0.故x∈0,时,Fx是减函数;故x∈,+∞时,Fx是增函数.Fx在x=处有极小值且F=.Ⅱ原方程可化为log4x﹣1+log2 h4﹣x=log2ha﹣x,即log2x﹣1+log2=log2,①当1<a≤4时,原方程有一解x=3﹣;②当4<a<5时,原方程有两解x=3;③当a=5时,原方程有一解x=3;④当a≤1或a>5时,原方程无解.Ⅲ设数列{a n}的前n项和为s n,且s n=fngn﹣从而有a1=s1=1.当2<k≤100时,a k=s k﹣s k﹣1=,a k﹣=4k﹣3﹣4k﹣1==>0.即对任意的2<k≤100,都有a k>.又因为a1=s1=1,所以a1+a2+a3+…+a100>=h1+h2+…+h100.故f100h100﹣>.17.2011陕西设函数fx定义在0,+∞上,f1=0,导函数f′x=,gx=fx+f′x.Ⅰ求gx的单调区间和最小值;Ⅱ讨论gx与的大小关系;Ⅲ是否存在x0>0,使得|gx﹣gx0|<对任意x>0成立若存在,求出x0的取值范围;若不存在请说明理由.解答解:Ⅰ由题设易知fx=lnx,gx=lnx+,∴g′x=,令g′x=0,得x=1,当x∈0,1时,g′x<0,故gx的单调递减区间是0,1,当x∈1,+∞时,g′x>0,故gx的单调递增区间是1,+∞,因此x=1是gx的唯一极值点,且为极小值点,从而是最小值点,∴最小值为g1=1;Ⅱ=﹣lnx+x,设hx=gx﹣=2lnx﹣x+,则h′x=,当x=1时,h1=0,即gx=,当x∈0,1∪1,+∞时,h′x<0,h′1=0,因此,hx在0,+∞内单调递减,当0<x<1,时,hx>h1=0,即gx>,当x>1,时,hx<h1=0,即gx<,Ⅲ满足条件的x0 不存在.证明如下:证法一假设存在x0>0, 使|gx﹣gx0|<成立,即对任意x>0,有,但对上述x0,取时, 有Inx1=gx0,这与左边不等式矛盾,因此,不存在x0>0,使|gx﹣gx0|<成立.证法二假设存在x0>0,使|gx﹣gx0|成<立.由Ⅰ知,的最小值为gx=1.又>Inx,而x>1 时,Inx 的值域为0,+∞,∴x≥1 时,gx 的值域为1,+∞,从而可取一个x1>1,使gx1≥gx0+1,即gx1﹣gx0≥1,故|gx1﹣gx0|≥1>,与假设矛盾.∴不存在x0>0,使|gx﹣gx0|<成立.18.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=18fx﹣x2hx2,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程lg fx﹣1﹣=2lgha﹣x﹣2lgh4﹣x;Ⅲ设n∈N n,证明:fnhn﹣h1+h2+…+hn≥.解答解:ⅠFx=18fx﹣x2hx2=﹣x3+12x+9x≥0所以F′x=﹣3x2+12=0,x=±2且x∈0,2时,F′x>0,当x∈2,+∞时,F′x<0所以Fx在0,2上单调递增,在2,+∞上单调递减.故x=2时,Fx有极大值,且F2=﹣8+24+9=25.Ⅱ原方程变形为lgx﹣1+2lg=2lg,,①当1<a<4时,原方程有一解x=3﹣,②当4<a<5时,原方程有两解x=3±,③当a=5时,原方程有一解x=3,④当a≤1或a>5时,原方程无解.Ⅲ由已知得h1+h2+…+hn=,fnhn﹣=,从而a1=s1=1,当k≥2时,a n=s n﹣s n﹣1=,又===>0即对任意的k≥2,有,又因为a1=1=,所以a1+a2+…+a n≥,则s n≥h1+h2+…+hn,故原不等式成立.19.2010四川设,a>0且a≠1,gx是fx的反函数.Ⅰ设关于x的方程求在区间2,6上有实数解,求t的取值范围;Ⅱ当a=e,e为自然对数的底数时,证明:;Ⅲ当0<a≤时,试比较||与4的大小,并说明理由.解答解:1由题意,得a x=>0故gx=,x∈﹣∞,﹣1∪1,+∞由得t=x﹣127﹣x,x∈2,6则t′=﹣3x2+18x﹣15=﹣3x﹣1x﹣5列表如下:x 2 2,5 5 5,6 6t' + ﹣t 5 递增极大值32 递减25所以t最小值=5,t最大值=32所以t的取值范围为5,325分Ⅱ=ln=﹣ln令uz=﹣lnz2﹣=﹣2lnz+z﹣,z>0则u′z=﹣=1﹣2≥0所以uz在0,+∞上是增函数又因为>1>0,所以u>u1=0即ln>0即9分3设a=,则p≥1,1<f1=≤3,当n=1时,|f1﹣1|=≤2<4,当n≥2时,设k≥2,k∈N时,则fk=,=1+所以1<fk≤1+,从而n﹣1<≤n﹣1+=n+1﹣<n+1,所以n<<f1+n+1≤n+4,综上所述,总有|﹣n|<4.20.2010全国卷Ⅱ设函数fx=1﹣e﹣x.Ⅰ证明:当x>﹣1时,fx≥;Ⅱ设当x≥0时,fx≤,求a的取值范围.解答解:1当x>﹣1时,fx≥当且仅当e x≥1+x令gx=e x﹣x﹣1,则g'x=e x﹣1当x≥0时g'x≥0,gx在0,+∞是增函数当x≤0时g'x≤0,gx在﹣∞,0是减函数于是gx在x=0处达到最小值,因而当x∈R时,gx≥g0时,即e x≥1+x 所以当x>﹣1时,fx≥2由题意x≥0,此时fx≥0当a<0时,若x>﹣,则<0,fx≤不成立;当a≥0时,令hx=axfx+fx﹣x,则fx≤当且仅当hx≤0因为fx=1﹣e﹣x,所以h'x=afx+axf'x+f'x﹣1=afx﹣axfx+ax﹣fxi当0≤a≤时,由1知x≤x+1fxh'x≤afx﹣axfx+ax+1fx﹣fx=2a﹣1fx≤0,hx在0,+∞是减函数,hx≤h0=0,即fx≤ii当a>时,由i知x≥fxh'x=afx﹣axfx+ax﹣fx≥afx﹣axfx+afx﹣fx=2a﹣1﹣axfx当0<x<时,h'x>0,所以h'x>0,所以hx>h0=0,即fx>综上,a的取值范围是0,21.2010陕西已知函数fx=,gx=alnx,a∈R,Ⅰ若曲线y=fx与曲线y=gx相交,且在交点处有共同的切线,求a的值和该切线方程;Ⅱ设函数hx=fx﹣gx,当hx存在最小值时,求其最小值φa的解析式;Ⅲ对Ⅱ中的φa和任意的a>0,b>0,证明:φ′≤≤φ′.解答解:Ⅰf'x=,g'x=有已知得解得:a=,x=e2∴两条曲线的交点坐标为e2,e切线的斜率为k=f'e2=∴切线的方程为y﹣e=x﹣e2Ⅱ由条件知hx=﹣alnxx>0,∴h′x=﹣=,①当a>0时,令h′x=0,解得x=4a2.∴当0<x<4a2时,h′x<0,hx在0,4a2上单调递减;当x>4a2时,h′x>0,hx在4a2,+∞上单调递增.∴x=4a2是hx在0,+∞上的惟一极值点,且是极小值点,从而也是hx的最小值点.∴最小值φa=h4a2=2a﹣aln4a2=2a1﹣ln 2a.②当a≤0时,h′x=>0,hx在0,+∞上单调递增,无最小值.故hx的最小值φa的解析式为φa=2a1﹣ln 2aa>0.Ⅲ证明:由Ⅱ知φ′a=﹣2ln2a对任意的a>0,b>0=﹣=﹣ln4ab,①φ′=﹣2ln2×=﹣lna+b2≤﹣ln4ab,②φ′=﹣2ln2×=﹣2ln=﹣ln4ab,③故由①②③得φ′≤≤φ′.22.2009全国卷Ⅱ设函数fx=x2+aln1+x有两个极值点x1、x2,且x1<x2,Ⅰ求a的取值范围,并讨论fx的单调性;Ⅱ证明:fx2>.解答解:I令gx=2x2+2x+a,其对称轴为.由题意知x1、x2是方程gx=0的两个均大于﹣1的不相等的实根,其充要条件为,得1当x∈﹣1,x1时,f'x>0,∴fx在﹣1,x1内为增函数;2当x∈x1,x2时,f'x<0,∴fx在x1,x2内为减函数;3当x∈x2,+∞时,f'x>0,∴fx在x2,+∞内为增函数;II由Ig0=a>0,∴,a=﹣2x22+2x2∴fx2=x22+aln1+x2=x22﹣2x22+2x2ln1+x2设hx=x2﹣2x2+2xln1+x,﹣<x<0则h'x=2x﹣22x+1ln1+x﹣2x=﹣22x+1ln1+x1当时,h'x>0,∴hx在单调递增;2当x∈0,+∞时,h'x<0,hx在0,+∞单调递减.∴故.23.2009湖北在R上定义运算:b、c∈R是常数,已知f1x=x2﹣2c,f2x=x﹣2b,fx=f1xf2x.①如果函数fx在x=1处有极值,试确定b、c的值;②求曲线y=fx上斜率为c的切线与该曲线的公共点;③记gx=|f′x|﹣1≤x≤1的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.参考公式:x3﹣3bx2+4b3=x+bx﹣2b2解答解:①依题意,解得或.若,,′x=﹣x2+2x﹣1=﹣x﹣12≤0fx在R上单调递减,在x=1处无极值;若,,f′x=﹣x2﹣2x+3=﹣x﹣1x+3,直接讨论知,fx在x=1处有极大值,所以为所求.②解f′t=c得t=0或t=2b,切点分别为0,bc、,相应的切线为y=cx+bc或.解得x=0或x=3b;解即x3﹣3bx2+4b3=0得x=﹣b或x=2b.综合可知,b=0时,斜率为c的切线只有一条,与曲线的公共点只有0,0,b≠0时,斜率为c的切线有两条,与曲线的公共点分别为0,bc、3b,4bc和、.③gx=|﹣x﹣b2+b2+c|.若|b|>1,则f′x在﹣1,1是单调函数,M=max{|f′﹣1|,|f′1|}={|﹣1+2b+c|,|﹣1﹣2b+c|},因为f′1与f′﹣1之差的绝对值|f′1﹣f′﹣1|=|4b|>4,所以M>2.若|b|≤1,f′x在x=b∈﹣1,1取极值,则M=max{|f′﹣1|,|f′1|,|f′b|},f′b﹣f′±1=b12.若﹣1≤b<0,f′1≤f′﹣1≤f′b;若0≤b≤1,f′﹣1≤f′1≤f′b,M=max{|f′﹣1|,|f′b|}=.当b=0,时,在﹣1,1上的最大值.所以,k的取值范围是.24.2009湖北已知关于x的函数fx=﹣x3+bx2+cx+bc,其导函数为f′x.令gx=|f′x|,记函数gx 在区间﹣1、1上的最大值为M.Ⅰ如果函数fx在x=1处有极值﹣,试确定b、c的值:Ⅱ若|b|>1,证明对任意的c,都有M>2Ⅲ若M≧K对任意的b、c恒成立,试求k的最大值.解答Ⅰ解:∵f'x=﹣x2+2bx+c,由fx在x=1处有极值可得解得,或若b=1,c=﹣1,则f'x=﹣x2+2x﹣1=﹣x﹣12≤0,此时fx没有极值;若b=﹣1,c=3,则f'x=﹣x2﹣2x+3=﹣x+3x﹣1当x变化时,fx,f'x的变化情况如下表:x ﹣∞,﹣3 ﹣3 ﹣3,1 11,+∞f'x ﹣0 + 0 ﹣↘fx ↘极小值﹣12 ↗极大值∴当x=1时,fx有极大值,故b=﹣1,c=3即为所求.Ⅱ证法1:gx=|f'x|=|﹣x﹣b2+b2+c|当|b|>1时,函数y=f'x的对称轴x=b位于区间﹣之外.∴f'x在﹣1,1上的最值在两端点处取得故M应是g﹣1和g1中较大的一个,∴2M≥g1+g﹣1=|﹣1+2b+c|+|﹣1﹣2b+c|≥|4b|>4,即M>2证法2反证法:因为|b|>1,所以函数y=f'x的对称轴x=b位于区间﹣1,1之外,∴f'x在﹣1,1上的最值在两端点处取得.故M应是g﹣1和g1中较大的一个假设M≤2,则M=maxg{﹣1,g1,gb}将上述两式相加得:4≥|﹣1﹣2b+c|+|﹣1+2b+c|≥4|b|>4,导致矛盾,∴M>2Ⅲ解法1:gx=|f'x|=|﹣x﹣b2+b2+c|1当|b|>1时,由Ⅱ可知f'b﹣f'±1=b12≥0;2当|b|≤1时,函数y=f'x的对称轴x=b位于区间﹣1,1内,此时M=max{g﹣1,g1,gb}由f'1﹣f'﹣1=4b,有f'b﹣f'±1=b12≥0①若﹣1≤b≤0,则f'1≤f'﹣1≤f'b,∴g﹣1≤max{g1,gb},于是②若0<b≤1,则f'﹣1≤f'1≤f'b,∴g1≤maxg﹣1,gb于是综上,对任意的b、c都有而当时,在区间﹣1,1上的最小值故M≥k对任意的b、c恒成立的k的最大值为.解法2:gx=|f'x|=|﹣x﹣b2+b2+c|1当|b|>1时,由Ⅱ可知M>22当|b|≤1y=f'x时,函数的对称轴x=b位于区间﹣1,1内,此时M=max{g﹣1,g1,gb}4M≥g﹣1+g1+2gb=|﹣1﹣2b+c|+|﹣1+2b+c|+2|b2+c|≥|﹣1﹣2b+c+﹣1+2b+c﹣2b2+c|=|2b2+2|≥2, 即下同解法125.2008江苏请先阅读:在等式cos2x=2cos2x﹣1x∈R的两边求导,得:cos2x′=2cos2x﹣1′,由求导法则,得﹣sin2x2=4cosx ﹣sinx,化简得等式:sin2x=2cosxsinx.1利用上题的想法或其他方法,结合等式1+x n=C n0+C n1x+C n2x2+…+C n n x n x∈R,正整数n≥2,证明:.2对于正整数n≥3,求证:i;ii;iii.解答证明:1在等式1+x n=C n0+C n1x+C n2x2+…+C n n x n两边对x求导得n1+x n﹣1=C n1+2C n2x+…+n ﹣1C n n﹣1x n﹣2+nC n n x n﹣1移项得2i在式中,令x=﹣1,整理得所以ii由1知n1+x n﹣1=C n1+2C n2x+…+n﹣1C n n﹣1x n﹣2+nC n n x n﹣1,n≥3两边对x求导,得nn﹣11+x n﹣2=2C n2+32C n3x+…+nn﹣1C n n x n﹣2在上式中,令x=﹣1,得0=2C n2+32C n3﹣1+…+nn﹣1C n2﹣1n﹣2即,亦即 1又由i知 2由1+2得iii将等式1+x n=C n0+C n1x+C n2x2+…+C n n x n两边在0,1上对x积分由微积分基本定理,得所以26.2008天津已知函数fx=x4+ax3+2x2+bx∈R,其中a,b∈R.Ⅰ当时,讨论函数fx的单调性;Ⅱ若函数fx仅在x=0处有极值,求a的取值范围;Ⅲ若对于任意的a∈﹣2,2,不等式fx≤1在﹣1,1上恒成立,求b的取值范围.解答解:Ⅰf'x=4x3+3ax2+4x=x4x2+3ax+4.当时,f'x=x4x2﹣10x+4=2x2x﹣1x﹣2.令f'x=0,解得x1=0,,x3=2.当x变化时,f'x,fx的变化情况如下表:x ﹣∞,0 02 2,+∞0,,2f′x ﹣0 + 0 ﹣0 +fx ↘极小值↗极大值↘极小值↗所以fx在,2,+∞内是增函数,在﹣∞,0,内是减函数.Ⅱf'x=x4x2+3ax+4,显然x=0不是方程4x2+3ax+4=0的根.为使fx仅在x=0处有极值,必须4x2+3ax+4≥0成立,即有△=9a2﹣64≤0.解些不等式,得.这时,f0=b是唯一极值.因此满足条件的a的取值范围是.Ⅲ由条件a∈﹣2,2,可知△=9a2﹣64<0,从而4x2+3ax+4>0恒成立.当x<0时,f'x<0;当x>0时,f'x>0.因此函数fx在﹣1,1上的最大值是f1与f﹣1两者中的较大者.为使对任意的a∈﹣2,2,不等式fx≤1在﹣1,1上恒成立,当且仅当,即,在a∈﹣2,2上恒成立.所以b≤﹣4,因此满足条件的b的取值范围是﹣∞,﹣4.四.解答题共4小题27.2008福建已知函数fx=ln1+x﹣x1求fx的单调区间;2记fx在区间0,nn∈N上的最小值为b n令a n=ln1+n﹣b ni如果对一切n,不等式恒成立,求实数c的取值范围;ii求证:.解答解:1因为fx=ln1+x﹣x,所以函数定义域为﹣1,+∞,且f′x=﹣1=.由f′x>0得﹣1<x<0,fx的单调递增区间为﹣1,0;由f’x<0得x>0,fx的单调递减区间为0,+∞.2因为fx在0,n上是减函数,所以b n=fn=ln1+n﹣n,则a n=ln1+n﹣b n=ln1+n﹣ln1+n+n=n.i因为对n∈N恒成立.所以对n∈N恒成立.则对n∈N恒成立.设,n∈N,则c<gn对n∈N恒成立.考虑.因为=0,所以gx在1,+∞内是减函数;则当n∈N时,gn随n的增大而减小,又因为=1.所以对一切n∈N,gn>1因此c≤1,即实数c的取值范围是﹣∞,1.ⅱ由ⅰ知.下面用数学归纳法证明不等式n∈N+①当n=1时,左边=,右边=,左边<右边.不等式成立.②假设当n=k时,不等式成立.即.当n=k+1时,<===,即n=k+1时,不等式成立综合①、②得,不等式成立.所以,所以+<+…+=﹣1.即.28.2007福建已知函数fx=e x﹣kx,1若k=e,试确定函数fx的单调区间;2若k>0,且对于任意x∈R,f|x|>0恒成立,试确定实数k的取值范围;3设函数Fx=fx+f﹣x,求证:F1F2…Fn>n∈N.解答解:Ⅰ由k=e得fx=e x﹣ex,所以f'x=e x﹣e.由f'x>0得x>1,故fx的单调递增区间是1,+∞,由f'x<0得x<1,故fx的单调递减区间是﹣∞,1.Ⅱ由f|﹣x|=f|x|可知f|x|是偶函数.于是f|x|>0对任意x∈R成立等价于fx>0对任意x≥0成立.由f'x=e x﹣k=0得x=lnk.①当k∈0,1时,f'x=e x﹣k>1﹣k≥0x>0.此时fx在0,+∞上单调递增.故fx≥f0=1>0,符合题意.②当k∈1,+∞时,lnk>0.当x变化时f'x,fx的变化情况如下表:x 0,lnk lnk lnk,+∞f′x ﹣0 +fx 单调递减极小值单调递增由此可得,在0,+∞上,fx≥flnk=k﹣klnk.依题意,k﹣klnk>0,又k>1,∴1<k<e.综合①,②得,实数k的取值范围是0<k<e.Ⅲ∵Fx=fx+f﹣x=e x+e﹣x,∴Fx1Fx2=,∴F1Fn>e n+1+2,F2Fn﹣1>e n+1+2,FnF1>e n+1+2.由此得,F1F2Fn2=F1FnF2Fn﹣1FnF1>e n+1+2n故,n∈N.29.2006四川已知函数,fx的导函数是f′x.对任意两个不相等的正数x1、x2,证明:Ⅰ当a≤0时,;Ⅱ当a≤4时,|f′x1﹣f′x2|>|x1﹣x2|.解答解:证明:Ⅰ由得=而①又x1+x22=x12+x22+2x1x2>4x1x2∴②∵∴∵a≤0,aln≥aln③由①、②、③得x12+x22++aln>2++aln, 即.Ⅱ证法一:由,得∴=下面证明对任意两个不相等的正数x1,x2,有恒成立即证成立∵设,则,令u′x=0得,列表如下:tu′t ﹣0 +□ut □极小值∴∴对任意两个不相等的正数x1,x2,恒有|f'x1﹣f'x2|>|x1﹣x2|证法二:由,得∴=∵x1,x2是两个不相等的正数∴设,ut=2+4t3﹣4t2t>0则u′t=4t3t﹣2,列表:tu′t ﹣0 +□ut □极小值∴即∴即对任意两个不相等的正数x1,x2,恒有|f′x1﹣f′x2|>|x1﹣x2|30.2006辽宁已知f0x=x n,其中k≤nn,k∈N+,设Fx=C n0f0x2+C n1f1x2+…+C n n f n x2,x∈﹣1,1.1写出f k1;2证明:对任意的x1,x2∈﹣1,1,恒有|Fx1﹣Fx2|≤2n﹣1n+2﹣n﹣1.解答解:1由已知推得f k x=n﹣k+1x n﹣k,从而有f k1=n﹣k+12证法1:当﹣1≤x≤1 时,Fx=x2n+nc n1x2n﹣1+n﹣1c n2x2n﹣2+…+n﹣k+1c n k x2n﹣k+…+2c n n﹣1x2+1 当x>0时,F′x>0所以Fx在0,1上为增函数因函数Fx为偶函数,所以Fx在﹣1,0上为减函数所以对任意的x1,x2∈﹣1,1,|Fx1﹣Fx2|≤F1﹣F0F1﹣F0=C n0+nc n1+n﹣1c n2+…+n﹣k+1c n k+…+2c n n﹣1=nc n n﹣1+n﹣1c n n﹣2+…+n﹣k+1c n n﹣k+…+2c n1+c n0∵n﹣k+1c n n﹣k=n﹣kc n n﹣k+c n k=nc n﹣1k+c n k k=1,2,3,…,n﹣1F﹣F0=nc n﹣11+c n﹣12+…+c n﹣1k﹣1+c n1+c n2+…+c n n﹣1+c n0=n2n﹣1﹣1+2n﹣1=2n﹣1n+2﹣n﹣1因此结论成立.证法2:当﹣1≤x≤1 时,Fx=x2n+nc n1x2n﹣1+n﹣1c n2x2n﹣2+…+n﹣k+1c n k x2n﹣k+…+2c n n﹣1x2+1 当x>0时,F′x>0所以Fx在0,1上为增函数因函数Fx为偶函数所以Fx在﹣1,0上为减函数所以对任意的x1,x2∈﹣1,1,|Fx1﹣Fx2|≤F﹣F0F﹣F0=c n0+nc n1+n﹣1c n2+…+n﹣k+1c n k+…+2c n n﹣1又因F1﹣F0=2c n1+3c n2+…+kc n k﹣1+…+nc n n﹣1+c n0所以2F1﹣F0=n+2c n1+c n2+…+c n k﹣1+…+c n n﹣1+2c n0F1﹣F0=c n1+c n2+…+c n k﹣1+…+c n n﹣1+c n0=因此结论成立.证法3:当﹣1≤x≤1时,Fx=x2n+nc n1x2n﹣1+n﹣1c n2x2n﹣2+…+n﹣k+1c n k x2n﹣k+…+2c n n﹣1x2+1 当x>0时,F′x>0所以Fx在0,1上为增函数因函数Fx为偶函数所以Fx在﹣1,0上为减函数所以对任意的x1,x2∈﹣1,1,|Fx1﹣Fx2|≤F﹣F0F﹣F0=c n0+nc n1+n﹣1c n2+…+n﹣k+1c n k+…+2c n n﹣1由x1+x n﹣x n=xc n1x n﹣1+c n2x n﹣2+…+c n k x n﹣k+…+c n n﹣1+1=c n1x n+c n2x n﹣1+…+c n k x n﹣k+1+…+c n n﹣1x2+x对上式两边求导得1+x n﹣x n+nx1+x n﹣1﹣nx n=nc n1x n﹣1+n﹣1c n2x n﹣2+…+n﹣k+1c n k x n﹣k+…+2c n n﹣1x+1Fx=1+x2n+nx21+x2n﹣1﹣nx2n∴F1﹣F0=2n+n2n﹣1﹣n﹣1=n+22n﹣1﹣n﹣1.因此结论成立.。
求函数f(x)的解析式
例2 已知 f ( x 1) x 2 x ,求 f ( x )
2 解:令 t x 1,则 t 1 , x (t 1)
f ( x 1) x 2 x
f (t ) (t 1) 2 2(t 1) t 2 1,
2
f ( x) x 1 ( x 1)
2 a x+ab+b f[f(x)]=af(x)+b=a(ax+b)+b=
a 2 4 ab b 3
a 2 a 2 或 b 1 b -3
f ( x) 2x 1 或 f ( x) 2x - 3
二、【换元法】
已知f(g(x)),求f(x)的解析式,一般的可用换元法,具体为:令 t=g(x),在求出f(t)可得f(x)的解析式。换元后要确定新元t的取值 范围。
2
f ( x) ( x 1) 1
2
作业: 《全优课堂》 1、P23 例3 2、P24能力提高7
再
见
解:1、令x=1,y=0则有 f(1)-f(0)=2,由f(1)=0的f(0)=-2 。 2、令y=0则有 f(x)-f(0)=(x+1)x, 所以 f(x)=(x+1)x+2 .
求函数解析式的题型有:
(1)已知函数类型,求函数的解析式:待定系 数法;
(2)已知f(x)求f[g(x)]或已知f[g(x)]求f(x) :换元法、 配凑法; (3)已知含有两个不同变量的函数的关系式: 列方程组法(消去法) (4)已知关系式中的变量可任意取值:赋值法
练习:
1、若f (3x 1) 4 x 3, 求f ( x)的解析式。 2、已知f ( x 1) x 1, 求f ( x)的解析式。
例谈求函数(fx)解析式的方法
2013-01课堂内外求函数f (x )的解析式是函数一章的重要内容之一,本文列举数例,进行分类剖析,供解题时参考.一、直接变换法此方法是把所给函数的解析式,通过配凑、换元等方法使之变形为关于“自变量”的表达式,然后以x 代替“自变量”即得所求函数的解析式.例1.已知:f (x √+1)=x +2x √,求f (x )的解析式.解法1(配凑):∵x +2x √=(x √)2+2x √+1-1=(x √)2-1,∴f (x √+1)=(x √+1)2-1(x √+1≥1).即f (x )=x 2-1(x ≥1).解法2(换元):令t =x √+1,则x=(t-1)2(t ≥1),代入原式有,f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.∴f (x )=x 2-1(x ≥1).二、待定系数法此方法适用于所求函数的解析表达式是多项式的情形,首先确定多项式的次数,写出它的一般表达式,然后由已知条件,根据多项式相等的条件确定待定系数.例2.如果f [f (x )]=2x -1,求一次函数f (x )的解析式.解:∵f (x )为一次函数,设f (x )=ax+b (a ≠0),∴f [f (x )]=a ·f (x )+b=a (ax+b )+b =a 2x+ab+b.则由f [f (x )]=2x -1f [f (x )]=a 2x+ab+b{⇔a 2=2ab+b=-1{解之得a =2√b =1-2√{或a =-2√b =1+2√{∴f (x )=2√x +1-2√或f (x )=-2√x +1+2√.三、消去法此方法是将函数中解析式的变量(或关系式)进行适当的变量代换,得到一个新的等式,然后与原式联立,采用解方程的方法消去不需要的函数式子,即可求出所求的函数.例3.已知2f (x )+f (1x)=x ,求f (x ).解:在原式中将x 换成1x,再与原式联立,得2f (x )+f (1x)=x2f (1x )+f (x )=1x⎧⎩⏐⏐⏐⏐⏐⏐⎨⏐⏐⏐⏐⏐⏐消去f (1x ),得f (x )=2x 2-13x .四、赋值法此方法是在函数的定义域内,赋予变量一些特殊值,利用所给的函数关系式进行化简,从而使问题获得解决.例4.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x 、y ,有f (x-y )=f (x )-y (2x-y +1),求f (x )的表达式.解:∵对任意实数x 、y ,有f (x-y )=f (x )-y (2x-y +1),∴令x=y ,得f (0)=f (x )-x (2x-x +1)=f (x )-x 2-x .又f (0)=1,∴f (x )=x 2+x +1.五、递推法若函数的定义域为N *,且函数关系式是由递推关系给出的,可用递推法求出f (x ).例5.已知函数f (x )的定义域为N *,且对任意的n ∈N *,都满足f (n +1)=f (n )+2n +1,f (1)=1,求f (x ).解:由f (n +1)=f (n )+2n +1,依次令n =1,2,3,…n -1,则有f (2)=f (1)+3,f (3)=f (2)+5,…f (n )=f (n-1)+2n -1,又f (1)=1,则有f (2)=1+3,f (3)=1+3+5,…f (n )=1+3+5+…+(2n -1).则f (n )=1+3+5+…+(2n -1)=1+3+5+…+(2n -1)=n[1+(2n -1)]2=n 2.故f (x )=x 2(x ∈N *).(作者单位甘肃省民勤县职业中等专业学校)例谈求函数f (x )解析式的方法文/李玉杰86--Un Re gi st er ed. All Rights Reserved.。
高中函数fx解析式的求法
高中函数fx解析式的求法求解高中函数fx解析式的方法:1. 了解函数fx的定义:函数fx是定义在实数集上的一种特殊函数,其函数图像为一条曲线,它为每个x值都有一个特定的y值。
2. 认识函数fx解析式定义:函数fx解析式就是用x和y组成的有理函数,它可以描述曲线的性质,并指示函数的变化。
3. 简化解析式:要求求解函数fx解析式的时候,首先要将显示的解析式进行简化处理,并且将某些需要考虑的系数特别明确提出,以便更加方便的进行求解。
4. 分类讨论:接下来,就需要根据函数的形式把其分成几类高中解析式:一元函数,参数式函数和二元函数等四类函数。
一元函数:(1)一次函数:形式为 fx = ax+b,其中a为系数,若a > 0,曲线向右上方倾斜;若a<0 ,曲线向左下方倾斜。
(2)二次函数:形式为 fx = ax2 + bx + c,三个系数a、b、c都可以不为零,此函数为一个二元抛物线,若a > 0,曲线向右上方开;若a<0 ,曲线向左下方开。
参数式函数:(1)正弦函数:形式为 fx = a*sin(b×x+c),其中a为系数,b为周期,c为延迟角。
(2)余弦函数:形式为 fx = a*cos(b×x+c),其中a为系数,b为周期,c为延迟角。
二元函数:(1)直线:形式为 fx = ax + by + c,其中a、b、c均可以不为零,此函数为一条通过坐标原点的直线,当a,b都不为0时,曲线的倾斜程度为a/b。
(2)圆:形式为 fx = r2 - (x - a)2 - (y - b)2,其中r为圆的半径,(a,b)表示圆心的位置。
5. 求解:(1)一次函数和二次函数:根据解析式参数求解方程,以得到函数fx的极值、值域和范围等结果。
(2)参数式函数和二元函数:绘制函数图像,从而得到函数fx的极值、值域和范围等信息。
本文就介绍了求解高中函数fx解析式的方法:首先清楚地了解函数fx 的定义和解析式;其次简化解析式;然后根据函数的形式将其分成几类高中解析式;最后根据解析式参数求解方程,或者绘制函数图像,从而得到函数fx的极值、值域和范围等信息。
例析函数解析式的几种解法
例析函数解析式的几种解法作者:潘登柱来源:《中学生数理化·学研版》2015年第05期如何求一个函数的解析式是同学们在解题中常常碰到的问题。
函数的表示方法有列表法、图象法、解析法等。
本文就求函数解析式的几种常用方法做一整理归纳。
一、待定系数法根据已知条件设出一个含有待定系数的代数式或函数式或方程然后利用恒等式的性质或将已知条件代入建立起方程组)通过解方程组)而求出待定系数的值或者消除这些待定系数找出原来那些已知系数间存在的关系这种方法叫做待定系数法。
待定系数法是求函数解析式的基本方法之一。
例已知f{f[f(x)]}=7x+3,求f(x)。
解析:因为复合函数f{f[f(x)]}不改变f(x)的次数故可设f(x)=ax+b则:f[f(x)]=f(ax+b)=a(ax+b)+b=ax+b(a+)。
f{f[f(x)]}=f[ax+b(a+)]=a[ax+b(a+)]+b=a3x+b(a+a+)=7x+3。
所以a3=37b(a+a+)=3得a=3b=。
所以f(x)=3x+。
总结:解题的过程就是运用已知条件的过程已知条件要用得能揭示题目的本质。
二、换元法换元法就是通过引入一个或几个新的变量来替换原来的某些量的解题方法。
它的基本功能是化难为易、化繁为简以快速实现从未知向已知的转换从而达到顺利解题的目的。
常见的换元法是多种多样的诸如局部换元、整体换元、三角换元、分母换元、平均换元等它的应用极其广泛。
例已知f-x+x=-x+x,则f(x)的解析式可取为()。
A。
x+x。
-x+xC。
x+xD。
-x+x解析:视-x+x为一整体。
应用数学的整体化思想方法换元即得。
设-x+x=t则x=-t+t,代入到f-x+x=-x+x得:f(t)=--t+t+-t+t=t+t。
所以f(x)=x+x,选C。
总结:已知f[g(x)]是关于x的函数即f[g(x)]=F(x),求f(x)的解析式。
通常令g (x)=t,由此能解出x=φ(t)。
导数复习知识点总结
高考数学复习详细资料——导数概念与运算知识清单 1.导数的概念函数y=fx,如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=fx 0+x ∆-fx 0,比值x y∆∆叫做函数y=fx 在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00;如果当0→∆x 时,x y∆∆有极限,我们就说函数y=fx 在点x 0处可导,并把这个极限叫做fx 在点x 0处的导数,记作f’x 0或y’|0x x =;即fx 0=0lim→∆x x y∆∆=0lim→∆x x x f x x f ∆-∆+)()(00;说明:1函数fx 在点x 0处可导,是指0→∆x 时,x y ∆∆有极限;如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数;2x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零; 由导数的定义可知,求函数y=fx 在点x 0处的导数的步骤可由学生来归纳: 1求函数的增量y ∆=fx 0+x ∆-fx 0;2求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;3取极限,得导数f’x 0=x yx ∆∆→∆0lim;2.导数的几何意义函数y=fx 在点x 0处的导数的几何意义是曲线y=fx 在点px 0,fx 0处的切线的斜率;也就是说,曲线y=fx 在点px 0,fx 0处的切线的斜率是f’x 0;相应地,切线方程为y -y 0=f/x 0x -x 0; 3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();xxe e '=⑥()ln x xa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x ex '=.4.两个函数的和、差、积的求导法则法则1:两个函数的和或差的导数,等于这两个函数的导数的和或差,即:.)'''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -v ≠0;形如y=f [x (ϕ])的函数称为复合函数;复合函数求导步骤:分解——求导——回代;法则:y '|X = y '|U ·u '|X2010高考数学复习详细资料——导数应用 知识清单单调区间:一般地,设函数)(x f y =在某个区间可导,如果'f )(x 0>,则)(x f 为增函数; 如果'f 0)(<x ,则)(x f 为减函数;如果在某区间内恒有'f 0)(=x ,则)(x f 为常数;2.极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 3.最值:一般地,在区间a,b 上连续的函数f )(x 在a,b 上必有最大值与最小值; ①求函数ƒ)(x 在a,b 内的极值; ②求函数ƒ)(x 在区间端点的值ƒa 、ƒb ;③将函数ƒ )(x 的各极值与ƒa 、ƒb 比较,其中最大的是最大值,其中最小的是最小值;4.定积分1概念:设函数fx 在区间a,b 上连续,用分点a =x0<x1<…<xi -1<xi<…xn =b 把区间a,b 等分成n 个小区间,在每个小区间xi -1,xi 上取任一点ξii =1,2,…n 作和式In =∑ni f1=ξi △x 其中△x 为小区间长度,把n→∞即△x→0时,和式In 的极限叫做函数fx 在区间a,b 上的定积分,记作:⎰badxx f )(,即⎰badxx f )(=∑=∞→ni n f1lim ξi △x;这里,a 与b 分别叫做积分下限与积分上限,区间a,b 叫做积分区间,函数fx 叫做被积函数,x 叫做积分变量,fxdx 叫做被积式; 基本的积分公式:⎰dx 0=C ;⎰dx x m=111++m x m +Cm ∈Q, m≠-1;⎰x 1dx =ln x +C ;⎰dx e x=xe+C ;⎰dx a x =a a xln +C ;⎰xdx cos =sinx +C ;⎰xdx sin =-cosx +C 表中C 均为常数;2定积分的性质 ①⎰⎰=babadxx f k dx x kf )()(k 为常数;②⎰⎰⎰±=±bab ab adxx g dx x f dx x g x f )()()()(;③⎰⎰⎰+=ba ca bc dxx f dx x f dx x f )()()(其中a <c <b );3定积分求曲边梯形面积由三条直线x =a,x =ba<b,x 轴及一条曲线y =fxfx≥0围成的曲边梯的面积⎰=badxx f S )(;如果图形由曲线y1=f1x,y2=f2x 不妨设f1x≥f2x≥0,及直线x =a,x =ba<b 围成,那么所求图形的面积S =S 曲边梯形AMNB -S 曲边梯形DMNC =⎰⎰-babadxx f dx x f )()(21;课前预习1.求下列函数导数 1)11(32x x x x y ++= 2)11)(1(-+=x x y 32cos 2sin x x x y -= 4y=x x sin 25y =x x x x x 9532-+-2.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=3.过点-1,0作抛物线21y x x =++的切线,则其中一条切线为A 220x y ++=B 330x y -+=C 10x y ++=D 10x y -+=4.半径为r 的圆的面积Sr =πr2,周长Cr=2πr,若将r 看作0,+∞上的变量,则πr2`=2πr 错误!,错误!式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数;对于半径为R 的球,若将R 看作0,+∞上的变量,请你写出类似于错误!的式子: ;错误!式可以用语言叙述为: ;5.曲线1y x =和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积是 ;6.对于R 上可导的任意函数fx,若满足x -1f x '()≥0,则必有 A .f0+f2<2f1 B. f0+f2≤2f1 C .f0+f2≥2f1 D. f0+f2>2f17.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点A .1个B .2个C .3个D . 4个 8.已知函数()11axx f x e x -+=-;Ⅰ设0a >,讨论()y f x =的单调性;Ⅱ若对任意()0,1x ∈恒有()1f x >,求a 的取值范围;9.32()32f x x x =-+在区间[]1,1-上的最大值是 A -2 B0 C2 D410.设函数fx=3223(1)1, 1.x a x a --+≥其中 Ⅰ求fx 的单调区间;Ⅱ讨论fx 的极值;11.设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4PA PB =,点Q 是点P 关于直线2(4)y x =-的对称点.求I 求点A B 、的坐标; II 求动点Q 的轨迹方程.12.请您设计一个帐篷;它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥如右图所示;试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大 13.计算下列定积分的值 1⎰--312)4(dxx x2⎰-215)1(dxx ; 3dxx x ⎰+2)sin (π;4dxx ⎰-222cos ππ;14.1一物体按规律x =bt3作直线运动,式中x 为时间t 内通过的距离,媒质的阻力正比于速度的平方.试求物体由x =0运动到x =a 时,阻力所作的功;2抛物线y=ax2+bx 在第一象限内与直线x +y=4相切.此抛物线与x 轴所围成的图形的面积记为S .求使S 达到最大值的a 、b 值,并求Smax . 典型例题一 导数的概念与运算EG :如果质点A 按规律s=2t3运动,则在t=3 s 时的瞬时速度为A. 6m/sB. 18m/sC. 54m/sD. 81m/s 变式:定义在D 上的函数)(x f ,如果满足:x D ∀∈,∃常数0M >,都有|()|f x ≤M 成立,则称)(x f 是D 上的有界函数,其中M 称为函数的上界.文1若已知质点的运动方程为at t t S ++=11)(,要使在[0,)t ∈+∞上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a 的取值范围.理2若已知质点的运动方程为at t t S -+=12)(,要使在[0,)t ∈+∞上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a 的取值范围. EG :已知x f x f x x f x ∆-∆+=→∆)2()2(lim ,1)(0则的值是A.41-B. 2C. 41D. -2变式1:()()()为则设h f h f f h 233lim,430--='→A .-1 B.-2 C .-3 D .1变式2:()()()00003,limx f x x f x x f x x x ∆→+∆--∆∆设在可导则等于A .()02x f ' B .()0x f ' C .()03x f ' D .()04x f '根据所给的函数图像比较012(),,h t t t t 曲线在附近得变化情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:令 t x 1,则 t 1 x(t 1)2
Q f( x1)x2 x , f(t) (t 1 )2 2 (t 1 ) t2 1 , f(x)x21 (x 1)
f(x 1 ) (x 1 )2 1 x 2 2 x(x 0)
b
6
例二:f(x1)x22x2,求f(x)及
解:令 tx1,则 xf( x+t3)1
且f (0)1,求 f ( x).
解: 令xy得
f(0)f(x)2x2x2x
f(x)x2x1
b
17
b
18
作函数图象的三个步骤: (1)列表,先找出一些有代表性的自变量x的值,并计算出与 这些自变量相对应的函数值f(x),用表格的形式表示出来; (2)描点,把表中一系列的点(x,f(x))在坐标平面上描出来; (3)连线,用光滑的线把这些点按自变量由小到大的顺序连 接起来.
3
ff((3fxx(x11)))f((xtf)(t1)4)2 t(3t1113)2 1
4( x 1)
f (x)
3
3b
8
三、【配凑法(整体代换法)】
把形如f(g(x))内的g(x)当做整体,在解析式的右端整理成只含 有g(x)的形式,再把g(x)用x代替。 一般的利用完全平方公式
例二:已知
f(x1)x2 x
ft fx 1 t 1 2 2 t 1 2 t2 1
f xx21 y fx 3 ( x 3 ) 2 1 x 2 6 x 1 0
b
7
练习:
1、若 f(3x1)4x3,求f(x)的解析式 2、已f(知 x1)x21,求f(x)的解析式
12、、解:令令t t x3x 1,1则 , 则xx tt11
b
19
[例 1] 作出下列函数的图象并求出其值域. (1)y=x2+1,x∈{1,2,3,4,5}; (2)y=x2+2x,x∈[-2,2]. [ 思 路 点 拨 ] 列表 → 描点 → 用平滑的线连成图象 → 观察图象求值域
________. 解析:设反比例函数
f(x)=kx(k≠0),
则 f(3)=k3=-6,解得 k=-18.
∴f(x)=-1x8.
答案:-1x8
b
12
练习:
1、已f知 (x)是 函一 数次函系 数 3f(x , 1) 且 2f(x满 1)2 足 x1关 ,7 求 f(x)的解析式
2、求一个 f(x一 )使 , 次 f得 {f[函 f(x)]数 }8x7,
1
x2
(x
0)
,求f(x)的解析式
解:
f(x1)(x1)22
x
x
,
x
1 x
2
f(x)x22 (x 2)
b
9
练习:
1 、f已 (x 1 ) 知 x2 4 x ,解f方 (x 1 ) 程 0 .
2 、f已 (x 1 )知 x2 1 ,求 f(x)的解析式 3 、f(x 设 )2x23x 1 ,g(x 1 )f(x)求 ,g(x)及 f[g(2)]
例一: 设f(x)是一次函数,且f[f(x)]=4x+3,求f(x).
解:设f(x)=ax+b (a≠0),则
f[f(x)]=af(x)+b=a(ax+b)+b= a 2 x+ab+b
a2 4
ab b 3
ba12或ba-32
f(x)2x1 或 f(x) 2x- 3
b
11
例二:已知反比例函数f(x)满足f(3)=-6,则函数f(x)=
故 fba(x)722xaa327b8a
b
b
7则ba
2
1
b
13
故f (x) 2x 1
五.方程组法
已知的式子中含有f(x),f(1x)或f(x), f(-x)形式的函数,求f(x)的解析式.
解决此类问题1x 的方法为“方程组 法”,即用-x替换x1 x,或用替换x,组成 方程组进行求解.
b
14
例 1 (1)已知 af(x)+f(-x)=bx,其中 a≠±1,求 f(x); (2)已知 f(x)-2f1x=3x+2,求 f(x). 解析:(1)在原式中以-x替换x,得 af(-x)+f(x)=-bx, 于是得aaffx-+xf+-fxx==-bx,bx. 消去f(-x),得f(x)=a-bx1.
求函数f(x)的解析式
b
1
求函数解析式的题型有:
一、已知f(x)求f[g(x)]:代入法
二、已知f[g(x)]求f(x) :换元法、配凑法;
三、换元法与代入法的综合
四、已知函数类型,求函数的解析式:待定系数法;
五、解方程组法
六、赋值法
b
2
二、【换元法】
已知f(g(x)),求f(x)的解析式, 一般的可用换元法,具体为:令 t=g(x),在求出f(t)可得f(x)的解 析式。换元后要确定新元t的取值 范围。
1、2解 、f(: x解 1): f(x(x1)21)2x1(x(x11))2222(xx1)3 ff((xx)1()xx2(x21x)1 2)2322((xx1)13)02
解得 x1f, (2x,)x2x22 2x2
b
10
四、【待定系数法】 已知函数模型(如:一次函数,二次函数,反比例函数等)求 解析式,首先设出函数解析式,根据已知条件代入求系数 。
b
15
故f(x)的解析式为f(x)=a-b 1x.
(2)在原式中用1x替换x,得f1x-2f(x)=3x+2,
于是有ff1xx--22ff1xx==33x+x+22,. f(x)=Байду номын сангаасx-2x-2.
消去f1x,得
b
16
六.赋值法
例1: 已知定义在R上的函数f(x),对任意 实数x,y满足:f(x y )f(x ) 2 x y y2 y
b
3
例一:已知f(x+1)=x2+4x+1,求f(x)的解析式. 解:设x+1=t,则x=t-1, f(t)=(t-1)2+4(t-1)+1, 即f(t)=t2+2t-2. ∴所求函数为f(x)=x2+2x-2.
b
4
b
5
三、【换元法与代入法的综合】
例一: 已 f( x1)x2 x,求 f (x1) 知
求 f(x)的解析式。
1、解2、: f(解x)设 :a设xf b((xa)0a),x则 fb(x(a1)0)a,(则x1)b, f(x1)a(x1)b, 3f(xf1{)f [2ff((xx)]}1)3f[{a(fx[a1x)bb]]}2[af(x{a1()axb]b) b}
ax5aab[a(2axx1b7) b]b a3x a2b abb 8x 7