【浙教版】九年级数学上册第三章圆的基本性质能力提升训练(一)及答案
浙教版数学九年级上册 第3章 圆的基本性质(含答案)
第3章 圆的基本性质班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1. 下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题是( )A. ①②B. ②③C. ①③D. ①②③2. 如图,AB 是⊙O 的直径,C,D 是⊙O 上位于AB 异侧的两点,下列四个角中一定与∠ACD 互余的是 ( )A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD3.如图,点A,B,C,D,E 均在⊙O 上,∠BAC=15°,∠CED=30°,则∠BOD 的度数为( )A. 45°B. 60°C. 75°D. 90°4.如图,AB 是圆O 的弦,OC⊥AB,交圆O 于点C,连结OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°5. 如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径 2₂倍,则∠ASB 的度数是( )A. 22.5°B. 30°C. 45°D. 60°6.(2020·中考)如图,在等腰△ABC 中, AB =AC =25,BC =8,,按下列步骤作图:①以点 A 为圆心,适当的长度为半径作弧,分别交 AB ,AC 于点E ,F ,再分别以点 E ,F 为圆心,大 12₂EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点 A ,B为圆心,大 12₂AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心线段OA 的长为半径作圆,则⊙O 的半径为( )A.25B. 10C. 4D. 57. 如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于点 D,连结BE,若 AB =27,CD =1,则BE 的长是( )A. 5B. 6C. 7D. 88.已知⊙O 中,弦AB 的长等于半径,P 为弦AB 所对的弧上一动点,则∠APB 的度数为( )A. 30°B. 150°C. 30°或150°D. 60°或120°9. 已知⊙O 的直径CD=10cm,AB 是⊙O 的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为…… ( ) A.25cm B.45cmC.25cm 或 45cmD.23cm 或 43cm10. 如图,AB为⊙O的直径,AC交⊙O于点E,BC交⊙O于点D,CD=BD,∠C=70°,现给出以下三个结论:①∠A=45°;②AC=AB;③AE=BE.其中正确的有( )A. 1个B. 2 个C. 3个D. 0个二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,一次函数y= kx+b的图象与x轴,y轴分别相交于A,B两点,⊙O经过A,B两点,已知AB=2,则 kb的值为 .12. 如图,AB是⊙O的直径,点C,D在圆上,∠D=65°,则∠BAC等于度.13. 如图,已知矩形ABCD的边AB=3,AD=4.(1)以点 A为圆心,4为半径作圆A,则点B,C,D与圆A 的位置关系分别是;(2)若以A点为圆心作圆A,使B,C,D三点中至少有一个点在圆内,且至少有一个点在圆外,则圆A的半径r的取值范围是 .14. 如图,BC是半圆O 的直径,D,E是BC上两点,连结BD,CE 并延长交于点A,连结OD,OE.如果∠A=70°,那么∠DOE的度数为 .15. 如图所示,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30∘,CD=23,则⊙O的半径是 .16. 如图所示,⊙O的直径AB=16cm,P是OB 中点,∠ABP=45°,则CD= cm.三、解答题(本大题有8小题,共66分)17.(6分)如图,点A,B,C都在⊙O上,OC⊥OB,点A 在劣弧BC上,且OA=AB,求∠ABC的度数.18. (6分)如图,在同一平面内,有一组平行线l₁,l₂,l₃,,相邻两条平行线之间的距离均为4,点O在直线l₁上,⊙O与直线l₃的交点为A,B,AB=12,求⊙O的半径.19.(6分)如图,在△ABC的外接圆上AB,BC,CA三弧的度数比为12:13:11.在劣弧BC上取一点D,过点D分别作直线AC,直线AB的平行线,分别交 BC于E,F两点,求∠EDF的度数.20. (8分)如图,△ABC内接于⊙O,AB=AC,,D在弧AB 上,连结CD交AB 于点E,B 是弧CD 的中点,求证:∠B=∠BEC.21.(8分)已知:如图,点M是/AB的中点,过点M的弦MN交AB 于点C,设⊙O的半径为4cm,. MN=43cm.(1)求圆心 O到弦MN的距离;(2)求∠ACM的度数.22.(10分)如图,已知方格纸中每个小正方形的边长为1个单位,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以C 为旋转中心旋转180°,得到△A₁B₁C,请画出△A₁B₁C;(2)平移△ABC,使点 A的对应点.A₂的坐标为(−2,−6),请画出平移后对应的图形△A₂B₂C₂;(3)若将△A₁B₁C绕某一点旋转可得到△A₂B₂C₂.请直接写出旋转中心的坐标.23.(10分)如图,已知AB是⊙O的直径,C是圆周上的动点,P 是ABC的中点.(1)求证:OP//BC;(2)如图,连结PA,PC交直径AB于点D,当(OC=DC时,求∠A的度数.24.(12分)我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦,弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等弦心距指从圆心到弦的距离如图(1)中的 OC,OC′,弦心距也可以说成圆心到弦的垂线段的长度 l请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.如图(2),点O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交于点A,B,C,D.(1)求证:AB=CD.(2)若角的顶点 P 在圆上或圆内,上述结论还成立吗? 若不成立,请说明理由;若成立,请加以证明.第3章 圆的基本性质1. A2. D3. D4. D5. C6. D7. B8. C9. C 10. A 11. 1212. 25 13. (1)B 在圆内、C 在圆外、D 在圆上(2)3<r<5 14. 40° 15. 2 16. 1417. 解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB 是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB= 90°,∴∠COA = 90°- 60°= 30°,∴∠ABC=15°.18. 解:如图,连结 OA,过点O 作OD⊥AB 于点 D.∵ AB =12,∴AD =12AB =12×12=6.相邻两条平行线之间的距离均为4,∴OD=8.在 Rt△AOD 中,∵AD =6,OD =8,∴OA =AD 2+OD = 62+82=10.∴⊙O 的半径为 10.19. 解: ∵AB ,BC ,CA 三弧的度数比为12:13:11,∴ ABm.1212+13+11×360∘=120∘,AC−m m 1112+13+11×360∘=110∘,∴∠ACB =12×120∘= 0∘,∠ABC =12×110∘=55∘,∵ACED,AB DF,∴∠FED=∠ACB=60°,∠EFD=∠ABC= 55°,∴∠EDF =180°−60°−55°=65°20. 证明:∵B 是弧 CD 的中点, ∴BC =BD ,∴∠BCE = =∠BAC.:∠BEC =180°−∠BCE,∠ACE ,=180°-∠BAC--∠B,∴∠BEC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠BEC.21. 解:(1)连结 OM.∵点 M 是. AB 的中点,∴OM⊥AB.过点 O 作OD⊥MN 于点 D,由垂径定理,得 MD =12MN =23cm,在Rt△ODM 中,OM=4cm, MD =23cm,∴OD =OM 2−MD 2=2(cm ).故圆心 O 到弦MN 的距离为 2cm. (2)∵OD=2cm,OM=4cm,∴∠M=30°,∴∠ACM=60°.22. 解:(1)(2)图略.(3)旋转中心的坐标为(0,-2).23. (1)证明:连结AC,延长 PO 交AC 于点 H,如图,∵P 是 ABC 的中点,∴PH⊥AC,∵A B 是⊙O 的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC. (2)解:∵P 是 ABC 的中点, P C,∴∠PAC=∠PCA,:OA=OC, ∴ ∠OA C= ∠OCA,∴∠PAO=∠C O=CD 时,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD =2x,∴∠ODC=∠POD+∠OP C=3x,∵CD=CO,∴∠DOC=∠ODC=3x.在△POC 中,x+x+5x=180°,解得 x =180∘7,即 ∠PAO =180∘7.24. (1)证明:过点 O 作OM⊥AB 于点M,ON⊥CD 于点 N,连结OB,OD,则∠OMB=∠OND=90°,∵PO 平分∠EPF,∴O M=ON,∵OM⊥AB,ON⊥CD,∴AB=CD.(2)成立.当点 P 在圆上时如图;作OM⊥PB,ON⊥PD,垂足分别为M,N,∵PC平分∠EPF,∴OM=ON,∵OM⊥AB,ON⊥CD,∴PB=PD;当点P 在圆内时:过点 O作OM⊥AB,ON⊥CD,∵PO平分∠BPF,∴OM=ON.∵OM⊥AB,ON⊥CD,∴AB=CD.。
浙教版九年级数学上册 第三章 圆的基本性质能力提升训练(一)及答案
第三章 圆的基本性质能力提升训练(一)一.选择题:1.在⊙O 上作一条弦AB ,再作一条与弦AB 垂直的直径CD ,CD 与AB 交于点E ,则下列 结论中不一定正确是( )A. BE AE =B. AC BC =C. EO CE =D. AD BD = 2、如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD =( ) A 、20°B 、40°C 、50°D 、80°3、在一个圆中,给出下列命题,其中正确的是( )A 、若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直.B 、若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有四个公共点.C 、若两条弦所在直线平行,则这两条弦之间的距离一定小于圆的直径.D 、若两条弦所在直线不平行,则这两条弦一定在圆内有公共点.4.已知⊙O 的半径r =3,设圆心O 到一条直线的距离为d ,圆上到这条直线的距离为2的 点的 个数为m ,给出下列命题:①若d >5,则m =0;②若d =5,则m =1;③若1<d <5,则m =2;④若d =1,则m =3;⑤若d <1,则m =4、其中正确命题的个数是( ) A.5B.4C.3D.25.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC 、若AB =8,CD =2,则EC 的长为( )D. 8 6.如图,AB 是⊙O 的直径,==,∠COD =34°,则∠AEO 的度数是( )A.51°B.56°C.68°D.78°7.如图,圆O 的内接四边形ABCD 中,BC =DC ,∠BOC =130°,则∠BAD 的度数是( )A.120°B.130°C.140°D.150°8.如图,MN 是半径为2的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,点B 为劣弧AN 的中点、点P 是直径MN 上一动点,则P A +PB 的最小值为( ) A 、42 B 、2C 、4D 、229.如图,在半径为6cm 的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且030=∠D ,下列四个结论:①BC OA ⊥;②BC = 63cm ;③四边形ABOC 是菱形、其中正确结论的序号是( )A. ①③B. ①②③C. ②⑨D. ①②10.某景点有一座圆形的建筑,如图,小江从点A 沿AO 匀速直达建筑中心点O 处,停留拍照后,从点O 沿OB 以同样的速度匀速走到点B ,紧接着沿BCA 回到点A ,下面可以近似地刻画小江与中心点O 的距离S 随时间t 变化的图象是( )二、填空题:11、如图,在O Θ中,040ACB ∠=,则AOB ∠= 度、12. 如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm .13、正n 边形的一个内角比一个外角大100º,则n = .14、如图,点P (3a ,a )是反比例函xky =(k >0)图像与⊙O 的一个交点,图中阴影部分的面积为π10,则反比例函数的解析式为___________15.如下图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E , CE =4,CD =6,则AE 的长为__________16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =, 那么CD =17.如图,⊙O 的半径是4,△ABC 是⊙O 的内接三角形,过圆心O 分别作AB 、BC 、AC 的垂线,垂足为E 、F 、G ,连接EF 、若OG ﹦1,则EF =18.如图,四边形ABCD 内接于⊙O ,AD 、BC 的延长线相交于点E ,AB 、DC 的延长线相 交于点F 、若∠E +∠F =80°,则∠A =19.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE , ∠E =36º,则∠ADC 的度数是20、如图,在扇形AOB 中,∠AOB =90,半径OA =6、将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,整个阴影部分的而积____________ 三、解答题:21.如图,点A 、B 、C 在⊙O 上,且四边形OABC 是一平行四边形、 (1)求∠AOC 的度数; (2)若⊙O 的半径为3,求图中阴影部分的面积.22.如图,点E是边长为1的正方形ABCD的边AB上任意一点(不含A、B),过B、C、E 三点的圆与BD相交于点F,与CD相交于点G,与∠ABC的外角平分线相交于点H、(1)求证:四边形EFCH是正方形;(2)设BE=x,△CFG的面积为y,求y与x的函数关系式,并求y的最大值、Array 23.(1)如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF. 求证:BF=DF;(2)如图,在□ABCD中,AD=4,AB=8,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,求阴影部分的面积、(结果保留π)24.正方形纸片ABCD 的对称中心为O ,翻折∠A 使顶点A 重合于对角线AC 上一点P ,EF 是折痕:(1)证明:AE =AF ;(2)尺规作图:在图中作出当点P 是OC 中点时的△EFP (不写画法,保留作图痕迹);完成作图后,标注所作△EFP 的外接圆心M .25.如图,菱形ABCD 的边长为4,∠BAD =60°,AC 为对角线、将ACD ∆ 绕点A 逆时针旋转60°得到AC D ''∆,连结DC '、(1)求证:ADC ∆≌ADC '∆、 (2)求在旋转过程中线段CD 扫过图形的面积、(结果保留π).参考答案一.选择题:二.解答题: 21.(1)连结OB∵四边形OABC 是一平行四边形,∴AB =OC ;又∵⊙O 中,OA =OB =OC ,∴AB =OA =OB ,即△OAB 是等边三角形∴∠AOB =60º,同理∠BOC =60º,∴∠AOC =120º (2)S 阴影=439634336122-=⨯-⨯ππ22.(1)证明:∵B 、H 、C 、F 、E 在同一圆上,且∠EBC =90° ∴∠EFC =90°,∠EHC =90° 又∠FBC =∠HBC =45°,∴CF =CH ∵∠HBF +∠HCF =180°,∴∠HCF =90°∴四边形EFCH 是正方形 (2)∵∠BFG +∠BCG =180°,∴∠BFG =90°由(1)知∠EFC =90°,∴∠CFG +∠BFC =∠BFE +∠BFC∴∠CFG =∠BFE ,∴CG =BE =x ∴DG =DC -CG =1-x易知△DFG 是等腰直角三角形∴△CFG 中CG 边上的高为DG 21()x -=121()1612141121212+⎪⎭⎫ ⎝⎛--=-⋅=∴x x x y∴当21=x 时,y 有最大值 16123.(1)证明:∵四边形ABCD 和AEFG 都是正方形, ∴AB =AD ,AE =AG =EF =FG ,∠BEF =∠DGF =90°, ∵BE =AB ﹣AE ,DG =AD ﹣AG , ∴BE =DG ,在△BEF 和△DGF 中,⎪⎩⎪⎨⎧=∠=∠=GF EF DGF BEF DGBF∴△BEF ≌△DGF (SAS ) ∴BF =DF ;(2)解:过D 点作DF ⊥AB 于点F 、∵AD =4,AB =8,∠A =30° ∴DF =2 EB =AB -AE =4∴阴影部分的面积=8×2-2303604π⨯⨯-4×2×12=16-34π-4 =12-43π、24.(1)证明:设AP 交EF 于点Q ,∵P 是A 的对称点, ∴AP ⊥EF , 在△AEQ 和△AFQ 中:∵点P 在AC 上,∴∠EAQ =∠F AQ =45° AQ 公共边,∠AQE =∠AQF =90°∴△AEQ ≌△AFQ (ASA ) ∴AE =AF(注:也可以证明△AEP ≌△AFP ,或证AEPF 是正方形.)(2)尺规作图:OC 中点P 作AP 垂直平分线EF 、 或PE 、PF 用角平分线、或过P 作垂直线等方法获得△EFP△EFP 的外接圆心M 的位置是EF 与AC 的交点(位置正确即可)()SAS C AD ADC ADAD C A AC CAD AD C ADC D C A AC D BAC ABCD '∆≅∆∴='=∴=∠='∠∴∆''∆='∠=∠∴ 000306030,.25得到旋转是由菱形。
第3章 圆的基本性质 浙教版数学九年级上册测试(含答案)
浙教版数学九年级上册第三章圆的基本性质一、选择题1.下列说法正确的是( )A.三个点可以确定一个圆B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.长度相等的弧是等弧2.已知一个扇形的面积是24π,弧长是2π,则这个扇形的半径为( )A.24B.22C.12D.63.如图,点A、B、C在⊙O上,∠C=40∘,则∠AOB的度数是( )A.50∘B.60∘C.70∘D.80∘4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,AE=1,则弦CD的长是()A.5B.5C.25D.65.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )A.28°B.30°C.36°D.56°6.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为( )A .103πB .109πC .59πD .518π7.如图, AB 是半圆O 的直径,点C ,D 在半圆O 上.若 ∠ABC =50° ,则 ∠BDC 的度数为( )A .90°B .100°C .130°D .140°8. 如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .239.如图,正五边形ABCDE 内接于⊙O ,阅读以下作图过程:①作直径AF ;②以点F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接AM ,MN ,AN .结论Ⅰ:△AMN 是等边三角形;结论Ⅱ:从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正十八边形.对于结论Ⅰ和结论Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对10.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E (0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是( )A.3B.412C.72D.5二、填空题11.如图,在⊙O中,弦AB,CD相交于点P.若∠A=40°,∠APD=75°,则∠B= °.12.如图,AB、AC是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N.如果MN=2.5,那么BC= .13.如图,四边形ABCD内接于⊙O ,若四边形ABCD的外角∠DCE=65°,则∠BAD的度数是 .14.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为 .15.我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的割圆术:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O,若用圆内接正十二边形作近似估计,可得π的估计值为 .的面积,可得π的估计值为33216.如图,点M(2,0)、N(0,4),以点M为圆心5为半径作⊙M交y轴于A、B两点,点C为⊙M上一动点,连接CN,取CN中点D,连接AD、BD,则A D2+B D2的最大值为 .三、解答题17.如图,四边形ABCD为⊙O的内接四边形,AC是⊙O的直径,AD=BD,∠CAB=32°.求∠ACD的度数.18.如图,OC为⊙O的半径,弦AB⊥OC于点D,OC=10,CD=4,求AB的长.19.如图,正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求解答下列问题:(1)△A1B1C1与△ABC关于坐标原点O成中心对称,则B1的坐标为__________;(2)BC与B1C1的位置和数量关系为___________;(3)将△ABC绕某点逆时针旋转90°后,其对应点分别为A2(―1,―2),B2(1,―3),C2(0,―5),则旋转中心的坐标为___________.20.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,(1)求∠ACB的度数;(2)求BC的长;(3)求AD,BD的长.21.如图,AB是⊙O的直径,C是⏜BD的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF.(2)若CD=6,AC=8,求⊙O的半径及CE的长.22.如图所示,AB为☉O的直径,AC是☉O的一条弦,D为BC的中点,作DE⊥AC于点E,交AB的延长线于点F,连接DA.(1)若AB=90 cm,则圆心O到EF的距离是多少?说明你的理由.(2)若DA=DF=63,求阴影部分的面积(结果保留π).23.如图,AB是⊙O的直径,弦CD⊥AB与点E,已知AB=10,AE=8,点P为AB上任意一点,(点P不与A、B重合),连结CP并延长与⊙O交于点Q,连QD,PD,AD.(1)求CD的长.(2)若CP=PQ,直接写出AP的长.(3)①若点P在A,E之间(点P不与点E重合),求证:∠ADP=∠ADQ.②若点P在B,E之间(点P不与点E重合),求∠ADP与∠ADQ满足的关系.答案解析部分1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】C11.【答案】3512.【答案】513.【答案】65°14.【答案】15°15.【答案】316.【答案】49217.【答案】61°18.【答案】1619.【答案】(1)(2,2);(2)平行且相等;(3)(0,―1).20.【答案】(1)∠ACB=90°(2)BC=8cm(3)BD=AD=52cm21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°-∠ABC.∵CE⊥AB,∴∠ECB=90°-∠ABC,又∵C是BD的中点,∴CD=BC,∴∠DBC=∠A,∴∠ECB=∠DBC,∴CF= BF;(2)解:∵BC=CD,∴BC=CD=6.在Rt△ABC中,AB= BC2+AC2=62+82=10,∴⊙O的半径为5;∵S△ABC= 12AB×CE= 12BC×AC,∴CE= BC×ACAB =6×810=245.22.【答案】(1)解:如图所示,连接OD,∵D为BC的中点,∴∠CAD=∠BAD.∵OA=OD,∴∠BAD=∠ADO.∴∠CAD=∠ADO.∴OD∥AE.∵DE⊥AC,∴OD⊥EF.∴OD的长是圆心O到EF的距离.∵AB=90 cm,∴OD=12AB=45 cm.(2)解:如图所示,过点O作OG⊥AD交AD于点G.∵DA=DF,∴∠F=∠BAD.由(1),得∠CAD=∠BAD,∵∠F+∠BAD+∠CAD=90°,∴∠F=∠BAD=∠CAD=30°.∴∠BOD=2∠BAD=60°,OF=2OD.∵在Rt△ODF中,OF2-OD2=DF2,∴(2OD)2-OD2=(63)2,解得OD=6.在Rt△OAG中,OA=OD=6,∠OAG=30°,AG=OA2―O G2=33,AD=23,S△AOD=1×63×3=93.2+93=6π+93.∴S阴影=S扇形OBD+S△AOD=60π×6236023.【答案】(1)解:连接OD,∵直径AB=10,AE=8,∴BE=2.∴OE=5-2=3.又∵AB⊥CD,在Rt△PED中,P D2=P E2+E D2∴ED=52―32=4∴CD=2ED=8(2)解:若CP=PQ,则点P与点O重合,或点P与点E重合.所以AP=5或8(3)解:①连接AC,由图可知∠ACQ=∠ADQ,因为AB是⊙O的直径,AB⊥CD,所以CE=DE,即AB是CD的垂直平分线,所以AC=AD,PC=PD,因为AP=AP,所以∠ACP=∠ADP ,所以∠ADP=∠ADQ .②∠ADP+∠ADQ=180°.理由如下:连接AC ,因为AB 是直径,AB ⊥CD ,所以AC=AD ,CE=DE ,所以△ACP ≌△ADP (SSS ),所以∠ACP=∠ADP ,因为∠ACP=12ADQ ,∠ADQ=12ACQ ,所以∠ACP+∠ADQ=12(ADQ +ACQ )=180°.。
浙教版九年级上册数学 3.1 圆提高题(包含答案)
3.1 圆的概念
1.辨析
(1)弧分为优弧劣弧(×,半圆也是弧)
(2)最长的弦是直径(√)
(3)直径是圆的对称轴(×,直径所在的直线是圆的对称轴)
(4)外心到三角形三边的距离相等(×,外心到三角形三个顶点的距离相等)
2.若所在⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为。
解:如图①当此点在圆外时,圆的直径是a-b,因而半径是;
如图②当此点在圆的内部时,圆的直径为a+b,因而半径为;
∴答案为或
3.直角三角形边长分别是3和4,则外接圆半径是 2或2.5
4.平面上有四个点,过其中任意3个点一共能确定圆的个数为 0或1或3或4
5.如图,锐角△ABC三条高交于点H,四点共圆共有 6 组
解;分别是BDHF、BCEF……
6.如图在矩形ABCD 中,AD=2AB=2,P 为AB 中点,Q 为BC 边上的动点,将△PBQ 沿PQ 翻折得到△PQB ’,求B ’D 最小值
解:
由折叠得PB ’=PB=1
则点P 在以P 为圆心,1为半径的圆上
∴ B ’D min =DP-r=117
7.如图,正方形ABCD,边长为2,⊙A 半径为1,点P 为圆上一动点,将线段PD 绕点D 逆时针旋转90°得到DQ ,求AQ min
解;双垂直得∠PDA=∠CDQ
∴△PDA ≌△CDQ (SAS )
∴CQ=AP=1
∴点Q 在以点C 为圆心1为半径的圆上
∴AQ min =AC-r=1-22。
浙教版九年级数学上册第三章圆的基本性质单元综合能力测试卷(含答案)
第三章圆的基天性质综合能力测试卷班级姓名学号一、选择题(共10 小题,每题 3 分,满分30 分)1、以下图,体育课上,小丽的铅球成绩为 6.4m,她投出的铅球落在()A. 地区①B.地区②C. 地区③D.地区④2、以下命题中正确的选项是()A. 三点确立一个圆B.两个等圆可能内切C. 一个三角形有且只有一个内切圆D.一个圆有且只有一个外切三角形3、如图,从圆O外一点P引圆O的两条切线PA, PB ,切点分别为A,B .假如APB60 ,PA8,那么弦AB 的长是()A. 4B.8C. 4 3D.8 34、已知圆1、圆 2 的半径不相等,圆 1 的半径长为3,若圆2上的点A 知足 1 = 3,则圆O O O O AO1 与圆2 的地点关系是()O OA. 订交或相切B. 相切或相离C.订交或内含D.相切或内含5、在半径为 27m的圆形广场中心点O的上空安装了一个照明光源S, S 射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°( 以下图 ) ,则光源离地面的垂直高度SO为() .A. 54m B.m C.m D.m6、一条弦的两个端点把圆周分红4:5 两部分,则该弦所对的圆周角为() .A. 80°B.100°C.80°或100°D.160°或200°7、如,AB是⊙O的直径,AC是⊙O的切,接OC交⊙ O于点 D,接 BD,∠ C=40°.∠ABD的度数是()A . 30 °B.25°C.20°D.15°8、“ 材埋壁”是我国古代有名的数学著作《九章算》中的:“今有材,埋在壁中,不知大小,以之,深一寸,道一尺,径几何?”用数学言可表示:如所示, CD⊙ O的直径,弦AB⊥CD于 E,CE=1寸, AB=10寸,直径CD的() A. 12.5 寸 B . 13寸C.25寸D.26寸9、如是一△ABC余料,已知 AB=20cm,BC=7cm,AC=15cm,将余料裁剪成一个形资料,的最大面是()2222 A.πcm B.2πcm C.4πcm D . 8 πcm10、如,正六形A1B1C1D1E1F1的2,正六形A2B2C2D2E2F2的外接与正六形A1 B1C1D1E1F1的各相切,正六形A3B3C3D3E3F3的外接与正六形A2B2C2D2E2F2的各相切,⋯按的律行下去,A10B10C10D10E10F10的()A.B.C.D.二、填空题(共 6 小题,每题 4 分,满分 24 分)11、已知圆心角为120°的扇形的面积为2cm.12πcm,则扇形的弧长是12、如图,已知圆心角∠AOB的度数为100°,则圆周角∠ACB等于(度)13、在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.14、以下图,△ABC的三个极点的坐标分别为A(-1,3)、 B (- 2,- 2) 、C (4,- 2) ,则△ABC外接圆半径的长度为.15、已知半径为R的半圆,过直径AB上一点,作⊥ 交半圆于点,且3O C CD AB D CD R ,2则 AC的长为.16、如图①,O1,O2,O3,O4为四个等圆的圆心,A, B, C, D为切点,请你在图中画出一条直线,将这四个圆分红面积相等的两部分,并说明这条直线经过的两个点是;如图②,O1,O2,O3, O4, O5为五个等圆的圆心,A,B,C,D, E为切点,请你在图中画出一条直线,将这五个圆分红面积相等的两部分,并说明这条直线经过的两个点是....三、解答题(此题有7 个小题,共66 分)解答应写出证明过程或推演步骤.17、(6 分)作图题:用直尺和圆规作出△ABC的外接圆 O(不写作法,保存作图印迹);18、(8 分)如图,点 D 在⊙O的直径 AB 的延伸线上,点 C 在⊙O 上,且,∠° .(1)求证:CD是⊙O的切线;(2)若⊙O的半径为 2,求图中暗影部分的面积 .19、(8 分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥ BC,OD与 AC交于点E.( 1)若∠B=70°,求∠CAD的度数;( 2)若AB=4,AC=3,求DE的长.20、( 10 分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的均分线交⊙ O于点D.(Ⅰ)如图①,若BC为⊙ O的直径, AB=6,求 AC,BD, CD的长;(Ⅱ)如图②,若∠CAB=60°,求 BD的长.21、( 10 分)如图,在单位长度为 1 的正方形网格中成立平面直角坐标系,一段圆弧经过网格的交点为 A、 B、C.(1)在图中标出该圆弧所在圆的圆心D,并连结 AD、 C D.(2)在( 1)的基础上,达成以下填空:①写出点的坐标:C()、D();②⊙ D的半径是2(结果保存根号);③若扇形 DAC是一个圆锥的侧面睁开图,则该圆锥的底面的面积(结果保存π).22、( 12 分)已知:如图,⊙O和⊙ O’订交于 A、 B两点, AC是⊙ O’的切线,交⊙O于 C 点,连结 CB并延伸交⊙ O’于点 F, D为⊙ O’上一点,且∠DAB=∠ C,连结 DB交延伸交⊙ O于点E。
第3章 圆的基本性质 浙教版九年级上册单元提升必刷卷B及答案
【单元测试】第3章圆的基本性质(提升能力)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10有个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若∠ACB=20°,则∠ACD的度数是()A.55°B.60°C.65°D.70°【答案】D【分析】由旋转的性质得∠BCD=90°,再利用∠ACB=20°求解即可.【详解】解:∵将△ABC绕点C顺时针旋转90°得到△EDC,∴∠BCD=90°,∵∠ACB=20°,∴∠ACD=∠BCD-∠ACB=90°-20°=70°,故选:D【点睛】此题考查了旋转的性质,熟练掌握旋转的性质是解题的关键.2.⊙O的直径为10cm,点A到圆心O的距离OA=6cm,则点A与⊙O的位置关系为()A.点A在圆上B.点A在圆外C.点A在圆内D.无法确定【答案】B【分析】根据题意得⊙O的半径为5cm,则点A到圆心O的距离大于圆的半径,则根据点与圆的位置关系可判断点A在⊙O外.【详解】解:∵⊙O的直径为10cm,∴⊙O的半径为5cm,而点A到圆心O的距离OA=6cm>5cm,∴点A在⊙O外.故选B.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外,则d>r;点P在圆上,则d=r;点P在圆内,则d<r.3.如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为( )A.3B.C.D.3【答案】C【分析】利用圆的周长先求出圆的半径,正六边形的边长等于圆的半径,正六边形一条边与圆心构成等边三角形,根据边心距即为等边三角形的高用勾股定理求出OG.【详解】∵圆O的周长为,设圆的半径为R,∴∴R=3连接OC和OD,则OC=OD=3∵六边形ABCDEF是正六边形,∴∠COD=,∴△OCD是等边三角形,OG垂直平分CD,∴OC=OD=CD,∴故选C【点睛】本题考查了正多边形,熟练掌握圆内接正多边形的相关概念是解题的关键.4.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等【答案】B【分析】根据圆的相关知识进行逐一判断即可.【详解】解:A.过圆心且两个端点在圆上的线段是直径,故该选项说法错误;B. 面积相等的圆,则半径相等,是等圆,故该选项说法正确;C. 同圆或等圆中两个半圆是等弧,故该选项说法错误;D. 同圆或等圆中相等的圆心角所对的弧相等,故说法说法错误;故选:B.【点睛】本题主要考查圆的基本知识,熟知圆的相关知识是解题的关键.5.如图,是直径,点,在半圆上,若,则()A.B.C.D.【答案】C【分析】连接BC,由直径所对的圆周角是直角可求得∠B的度数,再由圆内接四边形的性质即可求得∠ADC 的度数.【详解】解:连接,是直径,,,,四边形是圆的内接四边形,,,故选:.【点睛】本题考查了直径所对的圆周角是直角及圆内接四边形的性质,连接BC并运用这两个性质是解题的关键.6.如图,在⊙O中,点C是的中点,若,则∠D的度数是( )A.B.C.D.【答案】C【分析】利用等弧对相等的圆周角可求得,然后在中利用三角形的内角和即可求得,最后利用同弧所对的圆周角相等即可求解.【详解】解:∵点C是的中点,∴,∴AC=BC,∴,∵,∴,故选:C.【点睛】本题考查了圆周角定理及三角形的内角和定理,熟练掌握圆周角定理是解题的关键.7.如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为()A.38°B.52°C.76°D.104°【答案】C【分析】根据半径相等得到OM=ON,则∠M=∠N=52°,然后根据三角形内角和定理计算∠MON的度数.【详解】∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°-2×52°=76°.故选C.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).8.如图,正方形的边,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.C.D.【答案】A【分析】根据图中1、2、3、4图形的面积和为正方形的面积,求出它们的面积,再用两个扇形的面积的和-正方形的面积=无阴影两部分的面积之差来求解.【详解】解:如图:正方形的面积;①两个扇形的面积;②②①,得:.故选:A.【点睛】本题主要考查了扇形的面积计算公式及不规则图形的面积计算方法.找出正方形内四个图形面积之间的联系是解题的关键.9.如图,是的直径,点、在上,,,则()A.70°B.60°C.50°D.40°【答案】D【分析】根据邻补角的定义可求得∠AOC的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD 的度数.【详解】∵∠BOC=110°,∠BOC+∠AOC=180°,∴∠AOC=70°,∵AD∥OC,OD=OA,∴∠D=∠A=70°,∴∠AOD=180°-2∠A=40°,故选:D.【点睛】本题考查了圆的有关性质,平行线性质及三角形内角和定理的运用.正确的识别图形是解题的关键.10.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以闹息“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆形滚木的截面图()有如下四个结论:①勒洛三角形是中心对称图形;②使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动;③图2中,等边三角形的边长为,则勒洛三角形的周长为;④图3中,在中随机以一点,则该点取自勒洛三角形部分的概率为,上述结论中,所有正确结论的序号是() A.①②B.②④C.②③D.③④【答案】C【分析】根据轴对称的性质,圆的性质,等边三角形的性质,概率的概念分别判断即可.【详解】解:①勒洛三角形是轴对称图形,不是中心对称图形,故①错误;②夹在平行线之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故②正确;③设等边三角形DEF的边长为2,∴勒洛三角形的周长=,圆的周长=,故③正确;④设等边三角形DEF的边长为,∴阴影部分的面积为:;△ABC的面积为:,∴概率为:,故④错误;∴正确的选项有②③;故选:C.【点睛】本题考查了平行线的距离,等边三角形的性质,轴对称的性质,概率的定义,正确的理解题意是解题的关键.二、填空题(本大题共8有小题,每题3分,共24分)11.如图,一块直角三角板的30°角的顶点落在上,其两条边分别交于,两点,连接,,.若弦,则的半径为__________.【答案】3【分析】根据圆周角等于同弧所对圆心角的一半得到∠BOC=60°,推出△BOC是等边三角形,即可求出OB=BC=3.【详解】解:∵∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OB=BC=3,即的半径为3,故答案为:3.【点睛】此题考查了圆周角定理,等边三角形的判定及性质,正确理解同弧所对的圆心角等于圆周角的二倍是解题的关键.12.如图,BC是圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE,如果∠A=65°,那么∠DOE的度数为_____.【答案】50°.【分析】利用三角形内角和定理求出∠B+∠C=115°,再利用等腰三角形的性质求出∠BOD+∠EOC即可解决问题.【详解】解:∵∠A=65°,∴∠B+∠C=115°,∵OB=OD,OC=OE,∴∠B=∠ODB,∠C=∠OEC,∴∠BOD+∠EOC=180°﹣2∠B+180°﹣2∠C=130°,∴∠DOE=180°﹣(∠BOD+∠EOC)=180°﹣130°=50°,故答案为:50°.【点睛】本题考查了等腰三角形的性质,圆的性质和三角形内角和,掌握知识点是解题关键.13.如图,⊙O的半径为1cm,正六边形内接于⊙O,则图中阴影部分面积为_____.【答案】【分析】根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.【详解】解:如图,连接BO,CO,OA.由题意得,△OBC,△AOB都是等边三角形,∴∠AOB=∠OBC=60°,∴OA∥BC,∴△OBC的面积=△ABC的面积,∴图中阴影部分的面积等于扇形OBC的面积=.故答案为【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出阴影部分面积=S扇形OBC,属于中考常考题型.14.如图,已知、是⊙O的直径,,,则的度数为______度.【答案】【分析】根据对顶角的性质,再结合等弧所对的圆心角相等,即可求解.【详解】故答案为:64【点睛】本题考查了对顶角的性质,以及圆心角,弧,弦的关系,解题关键是熟练掌握等弧所对的圆心角相等.15.如图,是半圆的直径,四边形和都是正方形,其中,,在上,、在半圆上.若则正方形的面积与正方形的面积之和是16,则的长为________.【答案】8【分析】连接ON、OF,设正方形的边长为,正方形边长为,,根据正方形的性质和勾股定理可得、,进而得到,化简得,再代入,最后根据两正方形的和为16列方程求解即可.【详解】解:连接,,设正方形的边长为,正方形边长为,,则,,四边形和都是正方形,,,设,由勾股定理得:,,①,②,①②,得,,,,,,,,即,把代入①,得,正方形的面积与正方形的面积之和是16,,,解得(负值舍去),.故答案为:8.【点睛】本题主要考查了勾股定理在直角三角形中的运用、正方形的性质、圆的性质等知识点,灵活运用勾股定理解决实际问题成为解答本题的关键.16.如图,四边形ABCD内接于以BD为直径的⊙O,CA平分∠BCD,若四边形ABCD的面积是30cm2,则AC=______cm.【答案】【分析】过A点作AE⊥AC,交CD的延长线与点E,证明△ABC≌△ADE,从而得到四边形ABCD的面积等于△ACE的面积,然后证明出△ACE是等腰直角三角形,根据三角形的面积公式即可求出AC的长度.【详解】如图,过A点作AE⊥AC,交CD的延长线与点E.∵BD为⊙O的直径∴∠BAD=∠BCD=90°∵CA平分∠BCD∴∠BCA=∠ACD=45°∴∠E=∠ACD=45°∴AC=AE∵AE⊥AC∴∠CAE=90°∴∠CAD+∠DAE=90°又∵∠BAC+∠CAD=90°∴∠BAC=∠DAE又∵∠BCA=∠E=45°在△ABC≌△ADE中,∴△ABC≌△ADE(ASA)∴∴∴∴故答案为:【点睛】本题主要考查了圆周角定理和圆内接四边形的性质,关键在于运用转化思想,将四边形ABCD的面积转化为△ACE的面积.17.如图,在矩形ABCD中,BC=2AB,点P为边AD上的一个动点,线段BP绕点B顺时针旋转60°得到线段BP',连接PP' ,CP'.当点P' 落在边BC上时,∠PP'C的度数为________;当线段CP' 的长度最小时,∠PP'C的度数为________【答案】 120°##120度 75°##75度【分析】由旋转性质及旋转角知△BPP′为等边三角形,得到∠PP′B=60°;当点P' 落在边BC上时,∠PP'C=180°-∠PP′B=120°;将线段BA绕点B逆时针旋转60°后点A落在点E,连接BE,得到△ABP≌△EBP′(SAS),再证明△ABP为等腰直角三角形,进而得到∠EP′B=∠APB=45°,最后当CP′⊥EF于H时,CP′有最小值,由此可以求出∠PP'C=∠EP′C-∠EP′P=90°-15°=75°.【详解】解:由线段BP绕点B顺时针旋转60°得到线段BP'可知,△BPP′为等边三角形,∴∠PP′B=60°,当点P' 落在边BC上时,∠PP'C=180°-∠PP′B=180°-60°=120°;将线段BA绕点B逆时针旋转60°,点A落在点E,连接BE,设EP′交BC于G点,如下图所示:则∠ABP=∠ABE-∠PBE=60°-∠PBE,∠EBP′=∠PBP′-∠PBE=60°-∠PBE,∴∠ABP=∠EBP′,且BA=BE,BP=BP′,∴△ABP≌△EBP′(SAS),∴AP=EP′,∠E=∠A=90°,由点P' 落在边BC上时,∠PP'C=120°可知,∠EGC=120°,∴∠CGP′=∠EGB=180°-120°=60°,∴△EBG与△P′CG均为30°、60°、90°直角三角形,设EG=x,BC=2y,则BG=2EG=2x,CG=BC-BG=2y-2x,GP′=CG=y-x,∴EP′=EG+GP′=x+(y-x)=y=BC,又已知AB=BC,∴EP′=AB,又由△ABP≌△EBP′知:AP=EP′,∴AB=AP,∴△ABP为等腰直角三角形,∴∠EP′B=∠APB=45°,∠EP′P=60°-∠EP′B=60°-45°=15°,当CP′⊥EF于H时,CP′有最小值,此时∠PP'C=∠EP′C-∠EP′P=90°-15°=75°,故答案为:120°,75°.【点睛】本题考察了三角形全等的判定方法、矩形的性质、旋转的性质及等腰三角形的性质,属于四边形的综合题,难度较大,熟练掌握各图形的性质是解题的关键.18.如图,是正方形边上一个动点,线段与关于直线对称,连接并延长交直线于点,连接.(1)如图1,,直接写出=_____;(2)如图2,连接,是的中点,,若点从点运动到点,直接写出点的运动路径长为_____.【答案】 45°【分析】(1)由轴对称的性质可得,,由等腰三角形的性质和三角形内角和定理可求解;(2)先确定点在以为圆心,为半径的圆上运动,再用弧长公式可求解.【详解】解:(1),,线段与关于直线对称,,,,,,;(2)如图,连接,交于点,连接,四边形是正方形,,又是中点,,点在以为圆心,为半径的圆上运动,点从点运动到点,点的运动路径长,故答案为:,.【点睛】本题是四边形综合题,考查了正方形的性质,轴对称的性质,三角形中位线定理,求弧长等知识,灵活运用这些性质解决问题是本题的关键.三、解答题(本大题共6有小题,共66分;第19小题8分,第20-21每小题10分,第22-23每小题12分,第24小题14分)19.如图所示,已知∠CAE=65°,∠E=70°,且AD⊥BC,如果△ABC经过旋转后与△ADE重合.(1)旋转中心是哪个点?(2)旋转了多少度?(3)∠BAC的度数是多少?【答案】(1)点A(2)65°(3)85°【分析】(1)由旋转的定义可得;(2)由旋转的定义即可得;(3)根据旋转的性质知,旋转角∠CAE=∠BAD=65°,对应角∠C=∠E=70°,则在直角△ABF中易求∠B=25°,所以利用△ABC的内角和是180°来求∠BAC的度数即可.【详解】(1)由旋转的性质可得:旋转中心是点A;(2)由旋转的性质可得:旋转的角度即为∠CAE=65°;(3)根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F,则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.【点睛】本题考查了旋转的性质.解题的过程中,利用了三角形内角和定理和直角三角形的两个锐角互余的性质来求相关角的度数.20.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,,过点C作CD∥AB交BE 的延长线于D,AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF,若∠AOF=3∠FOE且AF=3,求的长.【答案】(1)证明见解析;(2)【分析】(1)先根据圆的性质得:∠CBD=∠ABD,由平行线的性质得:∠ABD=∠CDB,根据直径和等式的性质得:,,由一组对边平行且相等可得四边形ABCD是平行四边形,由AB=BC可得结论;(2)先设∠FOE=x,则∠AOF=3x,根据∠ABC+∠BAD=180°,列方程得:4x+2x+(180-3x)=180,求出x的值,接着求所对的圆心角和半径的长,根据弧长公式可得结论.【详解】(1)证明:∵,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形;(2)∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OFA=(180﹣3x)°,∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+(180﹣3x)=180,x=20°,∴∠AOF=3x=60°,∠AOE=80°,∴∠COF=80°×2﹣60°=100°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=3,∴的长==.【点睛】本题考查平行四边形和菱形的判定和性质、等边三角形的判定和性质、弧长公式,平行线的性质等知识,解题的关键是学会设未知数,列方程求角的度数,证明三角形是等边三角形是解题的突破点,属于中考常考题型.21.如图,☉O是正五边形ABCDE的外接圆,F是的中点,连接CF,EF.(1)请直接写出∠CFE= °;(2)求证:EF=CF;(3)若☉O的半径为5,求的长.【答案】(1)72°;(2)详见解析;(3)3π.【分析】(1)根据圆内接四边形的性质和正五边形的内角解答即可;(2)利用正五边形的性质和弧长关系证明即可;(3)利用弧长公式解答即可.【详解】解: (1)∵正五边形ABCDE,∴∠EDC=108°,∴∠CFE=180°−108°=72°,故答案为72°.(2)∵五边形ABCDE是正五边形,∴AE=BC,∴,又∵F是的中点,∴,∴,∴,∴EF=CF.(3)∵☉O是正五边形ABCDE的外接圆,∴,∵R=5,∴×2πR=2π,又∵=π,∴=3π.【点睛】本题考查了正多边形与圆,解题关键是根据圆内接四边形的性质和正五边形的性质解答.22.已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A 的平行线BC交O1O2于点C.(1)求证:BC是⊙O2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.【答案】(1)见解析;(2)【分析】(1)由题意得出O1P=AP=O2P=O1O2,则可得出∠O1AO2=90°,由平行线的性质可得出∠O1BC =90°,过点O2作O2D⊥BC交BC的延长线于点D,证得O2D=r2,则可得出结论;(2)由直角三角形的性质求出∠BO1C=60°,由勾股定理求出BC长,则可根据S阴影=求出答案.【详解】(1)证明:连接AP,∵以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,∴O1P=AP=O2P=O1O2,∴∠O1AO2=90°,∵BC//O2A,∴∠O1BC=∠O1AO2=90°,过点O2作O2D⊥BC交BC的延长线于点D,∴四边形ABDO2是矩形,∴AB=O2D,∵O1A=r1+r2,∴O2D=r2,∴BC是⊙O2的切线;(2)解:∵r1=2,r2=1,O1O2=6,∴O1A=O1O2,∴∠BO1C=60°,∴O1C=2O1B=4,∴BC==,∴S阴影==O1B×BC-==.【点睛】本题考查了切线的判定,平行线的性质,直角三角形的判定与性质,勾股定理,扇形的面积等知识,熟练掌握切线的判定是解题的关键.23.如图,⊙O的半径为2,O到顶点A的距离为5,点B在⊙O上,点P是线段AB的中点,若B在⊙O 上运动一周.(1)点P的运动路径是一个圆;(2)△ABC始终是一个等边三角形,直接写出PC长的取值范围.【答案】(1)见解析;(2)≤PC≤【分析】(1)连接OA、OB,取OA的中点H,连接OB,HP,则HP是△ABO的中位线,得出HP=OB =1,即P点到H点的距离固定为1,即可得出结论;(2)由等边三角形的性质和直角三角形的性质分别求出PC的最小值和最大值即可.【详解】(1)解:连接OA、OB,取OA的中点H,连接HP,如图1所示:则HP是△ABO的中位线,∴HP=OB=1,∴P点到H点的距离固定为1,∴B在⊙O上运动一周,点P运动的路径是以点H为圆心,半径为1的一个圆;(2)解:连接AO并延长AO交⊙O于点M、N,如图2所示:∵△ABC是等边三角形,点P是线段AB的中点,∴PC⊥AB,PA=PB=AB=BC,∴PC=PA=AB,当点B运动到点M位置时,点P运动到点P'位置,PC最短,∵AM=OA﹣OM=5﹣2=3,∴AP'=AM=,∴PC=;当点B运动到点N位置时,点P运动到点P''位置,PC最长,∵AN=OA+ON=5+2=7,∴AP''=AN=,∴PC=;∴PC长的取值范围是≤PC≤.【点睛】本题考查确定圆的条件、三角形中位线定理、等边三角形的性质、直角三角形的性质等知识;熟练掌握三角形中位线定理和等边三角形的性质是解题的关键.24.【模型构建】如图1,在四边形ABCD中,,AB=AD,,.求四边形ABCD的面积.琪琪同学的做法是:延长CD至E点,使DE=BC,连结AE.易证.进而把四边形ABCD的面积转化为的面积,则四边形ABCD的面积为________.【应用】如图2,为的外接圆,AB是直径,AC=BC,点D是直径AB左侧的圆上一点,连接DA,DB,D C.若CD=4,求四边形ADBC的面积;【灵话运用】如图3,在四边形ADBC中,连结AB、CD,,四边形ADBC的面积为,则线段CD=________.【答案】(1)9;(2)8;(3)4【分析】(1)根据可得,根据证明进而把四边形ABCD的面积转化为的面积,根据,,即可求解.(2)由旋转得到,可得,根据,可得,根据(1)的模型即可求解.(3)根据(1)的模型可得,根据等边的面积为,即可求解.【详解】(1),,,又,,,,,,,是等腰直角三角形,,故答案为:9(2)解:如图,旋转得到,使得与重合,∵AB是直径,∴,∵旋转得到,∴,∴CD=CE=4,,∴,∵点A、C、B、D在上,∴,∵,∴,∴D、B、E三点共线∴四边形ADBC的面积.(3)如图,将绕点旋转使得与重合,∵旋转得到,∴,,是等边三角形,,四点共圆,,,,是等边三角形,,,,四边形ADBC的面积为,,故答案为:4.【点睛】本题考查了旋转的性质,直径所对的圆周角相等,圆内接四边形对角互补,等边三角形的性质,勾股定理,全等的性质,理解题意,转化四边形的面积为三角形的面积是解题的关键.。
2024-2025学年浙教版九年级上册数学 第三章 圆的基本性质 单元培优测试卷 (含详解)
圆的基本性质单元培优测试卷一、选择题(每题3分,共30分)1.如图,分别延长圆内接四边形ABCD的两组对边,延长线相交于点E,F.若∠E=54°41',∠F=43°19',则∠A的度数为( )第1题图第2题图第4题图A.42°B.41°20'C.41°D.40°20'2.如图,⊙O中,弦AB的长为43,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是( )A.点P在⊙O上B.点P在⊙O内C.点P在⊙O外D.无法确定3.在平面直角坐标系中,已知点A(0,2),点B在第一象限内,AO=AB,∠OAB=120°,将△AOB绕点O逆时针旋转,每次旋转60°,则第2024次旋转后,点B的坐标为( )A.(−3,3)B.(−3,0)C.(3,3)D.(−23,0)4.如图,在半圆O中,直径AB=2,C是半圆上一点,将弧AC沿弦AC折叠交AB于D,点E是弧AD 的中点.连接OE,则OE的最小值为( )A.2−1B.2+1C.4−2D.22−25.△ABC内接于⊙O,过点A作直线EF,已知∠B=∠EAC,根据弦AB的变化,两人分别探究直线EF 与⊙O的位置关系:甲:如图1,当弦AB过点O时,EF与⊙O相切;乙:如图2,当弦AB不过点O时,EF也与⊙O相切;第5题图第6题图第7题图下列判断正确的是( )A .甲对,乙不对B .甲不对,乙对C .甲乙都对D .甲乙都不对6.如图,等圆⊙O 1和⊙O 2相交于A ,B 两点,⊙O 1经过⊙O 2的圆心O 2,若O 1O 2=2,则图中阴影部分的面积为( )A .2πB .43πC .πD .23π7.如图,正六边形ABCDEF 内接于⊙O ,点P 在边BC 上.结论Ⅰ:若⊙O 的半径为2,P 是边BC 的中点,则PE 的长为13;结论Ⅱ:连接PF .若S △PEF =32,则EF 的长为π3,关于结论Ⅰ、Ⅱ,判断正确的是( )A .只有结论Ⅰ对B .只有结论Ⅱ对C .结论Ⅰ、Ⅱ都对D .结论Ⅰ、Ⅱ都不对8.已知等腰直角三角形OAC ,∠OAC =90°,以O 为圆心,OA 为半径的圆交OC 于点F ,过点F 作AC的垂线交⊙O 于点E ,交AC 于点B.连结AE ,交OC 于点D ,若OD =1+22,则AB 的长为( )第8题图 第9题图 第10题图A .2B .22C .2+1D .2+29.如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交BC 于点D ,点E 为半径OB 上一动点.若OB =3,则阴影部分周长的最小值为( )A .62+π2B .22+π3C .62+π3D .2+2π310.如图,AB 是⊙O 的直径,点C ,点D 是半圆上两点,连结AC ,BD 相交于点P ,连结AD ,OD .已知OD ⊥AC 于点E ,AB =2.下列结论其中正确的是( )①∠DBC +∠ADO =90°;②AD 2+AC 2=4;③若AC =BD ,则DE =OE ;④若点P 为BD 的中点,则DE =2OE .A .①②③B .①③④C .②③④D .①②④二、填空题(每题4分,共24分)11.如图,OA 是⊙O 的半径,BC 是⊙O 的弦,OA ⊥BC 于点D ,AE 是⊙O 的切线,AE 交OC 的延长线于点E .若∠AOC =45°,BC =2,则线段AE 的长为 .第11题图 第12题图 第13题图12.如图,在矩形ABCD 中,AB =4,AD =2.以点A 为圆心,AD 长为半径作弧交AB 于点E ,再以AB为直径作半圆,与DE 交于点F ,则图中阴影部分的面积为 .13.如图,直线l 与⊙O 相切于点A ,点C 为⊙O 上一动点,过点C 作CB ⊥l ,垂足为B ,已知⊙O 的半径为6,则BC +43AB 的最大值为 .14.如图,正方形ABCD 内接于⊙O ,线段MN 在对角线BD 上运动,若⊙O 的面积为2π,MN =1,则(1)⊙O 的直径长为 ;(2)△AMN 周长的最小值是 .第14题图 第15题图 第16题图15.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的点,连接CD ,AC ,OD ,且AB =4,OD ∥AC ,设CD =x,AC =y ,则y 与x 之间的函数表达式为 .16.如图,AB 是半圆的直径,AC 是一条弦,D 是AC 的中点,DE ⊥AB 于点E ,交AC 于点F ,DB 交AC于点G ,连结AD .给出下面四个结论:①∠ABD =∠DAC ;②AF =FG ;③当DG =2,GB =3时,FG =142;④当BD =2AD ,AB =6时,△DFG 的面积是3,上述结论中,正确结论的序号有 .三、综合题(17-19每题6分,20-21每题8分,22题12分,共46分)17.如图,已知OA是⊙O的半径,过OA上一点D作弦BE垂直于OA,连接AB,AE.线段BC为⊙O的直径,连接AC交BE于点F.(1)求证:∠ABE=∠C;(2)若AC平分∠OAE,求AFFC的值18.如图,AC为⊙O的直径,BD是弦,且AC⊥BD于点E.连接AB、OB、BC.(1)求证:∠CBO=∠ABD;(2)若AE=4cm,CE=16cm,求弦BD的长.19.如图,AB是⊙O的直径,点C,D是⊙O上的点,且OD∥BC,AC分别与BD,OD相交于点E,F.(1)求证:点D为AC的中点;(2)若DF=4,AC=16,求⊙O的直径.20.如图,已知四边形ABCD内接于⊙O,对角线AC,BD交于点E,AC=BD,AC⊥BD.(1)猜想∠ACB的度数,并说明理由.(2)若⊙O的半径为10,∠BCD=60°,求四边形ABCD的面积.(3)若过圆心O作OF⊥BC于点F.求证:AD=2OF.21.已知:⊙O的两条弦AB,CD相交于点M,且AB=CD.(1)如图1,连接AD.求证:AM=DM.(2)如图2,若AB⊥CD,点E为弧BD上一点,BE=BC=α°,AE交CD于点F,连接AD、DE.①求∠E的度数(用含α的代数式表示).②若DE=7,AM+MF=17,求△ADF的面积.22.如图,在△ABC中,AB=BC,∠ABC=90°,D是AB上一动点,连接CD,以CD为直径的⊙M交AC 于点E,连接BM并延长交AC于点F,交⊙M于点G,连接BE.(1)求证:点B在⊙M上.(2)当点D移动到使CD⊥BE时,求BC:BD的值.(3)当点D到移动到使∠CMG=30°时,求证:A E2+C F2=E F2.答案解析部分1.【答案】C【解析】【解答】解:∵四边形ABCD 内接于圆O ,∴∠A+∠BCD=180°,∵∠BCD 、∠EBC 分别是△EBC 和△ABF 的一个外角,∠EBC=∠A+∠F ,∠BCD=∠E+∠EBC ,∴∠BCD=∠E+∠A+∠F ,∴∠A+∠E+∠A+∠F=180°,∴2∠A+54°41'+43°19'=180°,解之:∠A=41°.故答案为:C. 2.【答案】C【解析】【解答】解:如图,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵OC ⊥AB ,且AB =43,∴∠ADO=90°,且AD =12AB =23,∵sin ∠AOC=sin60°=AD AO,∴AO =ADsin60°=2332=4,∵OP=5>AO=4,∴点P 在圆O 外部.故答案为:C. 3.【答案】D【解析】【解答】解:过B 作BH ⊥y 轴于H ,在Rt△ABH中,∠AHB=90°,∠BAH=180°−120°=60°,AB=OA=2,∴∠ABH=30°,∴AH=12AB=1,OH=OA+AH=3,由勾股定理得BH=AB2−AH2=3,∴B(3,3),由题意,可得:B1(−3,3),B2(−23,0),B3(−3,−3),B4(3,−3),B5(23,0),B6(3,3),⋯,6次一个循环,∵2024÷6=337……2,∴第2024次旋转后,点B的坐标为(−23,0),故答案为:D.4.【答案】A【解析】【解答】解:连接CO,如图,由三角形两边之差小于第三边,当C、O、E共线时,OE最小,设⏜AC的弧度为x,则⏜BC的弧度为180°-x,∵∠CAB=∠CAD,∴⏜CD的弧度为180°-x,由折叠知:⏜AEC=⏜AC=x,⏜AD=x-(180°-x)=2x-180°,∵点E为弧AD的中点,∴⏜AE=12⏜AD=x-90°,∴⏜CE=⏜AC-⏜AE=90°,∴⏜CE所对圆心角为90°,∵直径AB=2,∴ CE=2,∴OE= CE-OC=2−1.故答案为:A.5.【答案】C【解析】【解答】解:甲:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°,∵∠EAC=∠B,∴∠EAC+∠BAC=90°,∴EF⊥AB,∵OA是半径,∴EF是⊙O的切线;乙:作直径AM,连接CM,如图所示:即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠EAC=∠B,∴∠EAC=∠AMC,∵AM是⊙O的直径,∴∠MCA=90°,∴∠MAC+∠AMC=90°,∴∠EAC+∠MAC=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.故答案为:C 6.【答案】D7.【答案】C【解析】【解答】解:如图,连接CE 、OB 、OC ,过点D 作DH ⊥CE 于点H ,∵六边形ABCDEF 为正六边形,∴∠BCD =∠CDE =(6−2)⋅180°6=120°,CD =DE ,∠BOC =360°6=60°,OB =OC ,∴∠DCE =∠DEC =12(180°−∠CDE)=30°,△OBC 是等边三角形,∴CH =EH =12CE =CD ⋅cos ∠DCE =3,∠PCE =∠BCD−∠DCE =90°,EF =BC =OB =OC =CD =2,∴CE =23,∵P 是边BC 的中点,∴CP =BP =12BC =1,∴PE =PC 2+CE 2=12+(23)2=13,故结论Ⅰ正确;设点N 是边BC 的中点,连接NO 并延长交EF 于点M ,连接OE 、OF ,过点D 作DH ⊥CE 于点H ,设正六边形ABCDEF 的边长为a ,∵六边形ABCDEF 为正六边形,∴NM ⊥EF ,NM ⊥BC ,FM =EM =12EF =12a ,∠EOF =360°6=60°,EF ∥BC ,∴S △NEF =S △PEF =32,由Ⅰ的解答过程可知,CH=EH=12CE=CD⋅cos∠DCE=32a,∠NCE=∠BCD−∠DCE=90°,EF=BC=OB=OC=a,∴CE=3a,四边形NCEM是矩形,∴MN=CE=3a,∴12EF⋅MN=12×a×3a=32,∴a=1,∴EF的长为60π×1180=π3,故Ⅱ正确,故答案为:C.8.【答案】C【解析】【解答】解:过点O作AE的垂线交BE于点H,连接AH,如图所示:设⊙O的半径为R∵∠OAC = 90°,OA=AC=R∴∠O=∠C=45°∴∠E=12∠O==22.5°在Rt△0AC中,由勾股定理得:OC = OA2+AC2=2R∵OD=2∴CD=OC-OD=2R−2∵EB⊥AC,∠C =45°∴△BFC为等腰直角三角形,∴∠BFC= ∠DFE=∠C = 45°∴∠ADC= ∠E + ∠DFE =22.5°+45°=67.5°在Rt△ABE中,∠E =22.5°,∠ABE = 90°∴∠CAE =90°-∠E=67.5°∴∠CAE = ∠ADC∴AC=CD,即R= 2R−2,解得:r=2+2,即OA=2+2∵OH⊥AEOH是AE的垂直平分线∴AH = EH∴∠EAH= ∠E= 22.5°∴∠HAB = ∠CAE- ∠EAH= 67.5°-22.5°=45°∴△ABH为等腰直角三角形∴AB =BH∴∠OAE= ∠OAC-∠OAE = 90° - 67.5°= 22.5°.'.∠OAH = ∠OAE + ∠EAH = 45°∴OH⊥AE,∠EAH=22.5°∴∠AHO =90°-∠EAH = 90° - 22.5°= 67.5°∴∠AOH = 180°- ∠OAH- ∠AHO=180°-45°-67.5°= 67.5°∴∠AHO = ∠AOH = 67.5°∴AH =OA=2+2,在Rt△ABH中,AB = BH,AH=2+2由勾股定理得:A B2+B H2=A H2即2A B2=(2+2)2∴AB=2+1故答案为:2+1.9.【答案】A【解析】【解答】解:由于CD是定值,要求阴影部分周长的最小值,即求CE+DE最小值即可作点D关于OB对称的对称点D′,连接CD′与直线OB交于点E,则OC=OD′,CE+DE=CD′,此时CE+DE为最小值连接OD′,∵OD平分∠BOC,∠BOC=60°,∴∠BOD =∠COD =12∠BOC =30°,∴∠BOD =∠BOD ′=30°,∠COD ′=90°,在Rt △COD ′中,CD ′=OC 2+OD ′2=2OC =2OB =32,CD =30π×3180=12π,阴影部分周长的最小值为12π+32=62+π2.故答案为:A .10.【答案】B【解析】【解答】解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵OD ⊥AC ,∴OD ∥BC ,∴∠DBC =∠BDO ,∵∠BDO +∠ADO =90°,∴∠DBC +∠ADO =90°,①正确;∵∠ACB =90°,∴B C 2+A C 2=A B 2=4,AB =2,根据条件无法得到BC =AD ,②错误;∵AC =BD ,∴⏜AD =⏜BD ,∴⏜AD =⏜BC ,∵OD ⊥AC ,∴⏜AD =⏜CD ,∴⏜AD=⏜BC=⏜CD,∴∠AOD=13×180°=60°,∵OA=OD,∴△AOD为等边三角形∵AE⊥OD,∴DE=OE,③正确;若点P为BD的中点,则PD=PB,∵∠PED=∠BCP=90°,∠EPD=∠CPB,∴△EPD≅△CPB(AAS),∴DE=BC,∵OD⊥AC,O为AB的中点,∴BC=2OE,∴DE=2OE,④正确;故答案为:B.11.【答案】212.【答案】3+23π【解析】【解答】解:连接AF,EF,过点F作FH⊥AB于点H,∵以点A为圆心,AD长为半径作弧交AB于点E,∴AD=AE=AF=2,∵再以AB为直径作半圆,与DE交于点F,∴AE=BE=2,AE=EF,∴AF=AE=EF=2,∴△AEF是等边三角形,∴∠FAE=∠AEF=60°,AH=1,∴FH=AH·tan∠FAE=AH·tan60°=3∴S扇形FAE=60π×22360=23π,S弓形AF=60π×22360−12×23=23π−3,∴S阴影部分=S半圆AB-S扇形FAE-S弓形AF=12×4π−23π−(23π−3)=3+23π故答案为:3+2 3π.13.【答案】83614.【答案】22;415.【答案】y=−12x2+416.【答案】①②③【解析】【解答】解:如图:连接DC,∵D是AC的中点,∴AD=DC,由圆周角定理的推论得:∠ABD=∠DAC,故①正确;∵AB是直径,∴∠ADB=90°,∴∠DAC+∠AGD=90°,∵DE⊥AB∴∠BDE+∠ABD=90°,∵∠ABD=∠DAC,∴∠BDE=∠AGD,∴DF=FG,∵∠BDE+∠ABD=90°,∠BDE+∠ADE=90°,∴∠ADE=∠ABD,∵∠ABD=∠DAC,∴∠ADE=∠DAC,∴AF=FD,∴AF=FG,即②正确;在△ADG和△BDA,{∠ADG =∠BDA∠DAG =∠DBA ,∴△ADG ∽△BDA ,∴AD BD =GDAD ,即:AD 2+3=2AD,解得:AD =10,由勾股定理得:AG =AD 2+DG 2=10+4=14,∵AF =FG ,∴FG =12AG =142,故③正确;如图:假设半圆的圆心为O ,连接OD ,CO ,CD ,∵BD =2AD ,AB =6,D 是AC 的中点,∴AD =DC =13AB ,∴∠AOD =∠DOC =60°,∵OA =OD =OC ,∴△AOD ,△ODC 是等边三角形,∴OA =AD =CD =OC =OD =6,∴四边形ADCO 是菱形,∴∠DAC =∠OAC =12∠DAO =30°,∵∠ADB =90°,∴tan ∠DAC =tan30°=DGAD ,即33=DG 6,解得:DG =23,∴S △ADG =12AD ⋅DG =12×6×23=63,∵AF =FG∴S △DFG =12S △ADG =33,故④错误.故答案为:①②③.17.【答案】(1)证明:∵OA ⊥BE ,∴AB=AE,∴∠ABE=∠C;(2)解:∵AC平分∠OAE,∴∠OAC=∠EAC,∵∠EAC=∠EBC,∴∠OAC=∠EBC,∵OA=OC,∴∠OAC=∠C,∴∠EBC=∠C,∴BF=CF,由(1)∠ABE=∠C,∴∠ABE=∠C=∠EBC,∵BC为直径,∴∠BAC=90°,∴∠ABE+∠C+∠EBC=90°,∴∠ABE=30°,∴AF=12 BF,∴AF=12 CF,即AFCF=12.18.【答案】(1)证明:∵AC是直径,AC⊥BD ∴AB=AD∴∠ABD=∠C又∵OB=OC∴∠OBC=∠C∴∠CBO=∠ABD(2)解:∵AE=4cm,CE=16cm∴直径AC=AE+CE=20cm∴OA=OB=10cm∴OE=OA-AE=10-4=6cm∵AC是直径,AC⊥BD∴BE=ED= BO2−OE2=8cm∴BD=2BE=16cm19.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠OFA=90°,∴OF⊥AC,∴AC=CD,即点D为AC的中点;(2)解:OF⊥AC,∴AF=12AC=8,∵DF=4,∴OF=OD−DF=OA−4,∵OA2=AF2+OF2,∴OA2=82+(OA−4)2,∴OA=10,∴⊙O的直径为20.20.【答案】(1)解:∠ACB=45°,理由如下:∵AC⊥BD,∴∠AEB=90°.∴∠ABE+∠BAE=90°.∴AD+BC=180°.∴AB+CD=180°.∵AC=BD,∴AC=BD.∴AC−AD=BD−AD.∴AB=CD.∴AB=90°.∴∠ACB=45°.(2)解:如图,连结BO,DO,过点O作OH⊥BD交BD于点H.∵∠BCD=60°, ∴∠BOD=120°.∵OH⊥BD,∴∠BOH=60°, BH=DH.在Rt△BHO中,∠BOH=60°,OB=10,∴OH=5,BH=53.∴BD=103=AC.∴S四边形ABCD=12×103×103=150.(3)证明:如图,延长BO交⊙O于点M,连结CM,DM.∵OF⊥BC,∴BF=CF,即点F是BC的中点.又∵点O是BM的中点,∴OF是△BCM的中位线.∴CM=2OF.∵DM⊥BD,AC⊥BD,∴DM∥AC.∴AD=CM.∴AD=2OF.21.【答案】(1)证明:如图1,∵AB=CD,∴AB=CD,即AC+BC=BD+BC,∴AC =BD ,∴∠A =∠D ,∴AM =DM ;(2)解:①∠M =90°−12α°.理由如下:连接AC ,如图,∵BE =BC =α°,∴∠CAB =12α°,∵AB ⊥CD ,∴∠AMC =90°,∴∠M =∠C =90°−12α°;②∵BE =BC =α°,∴∠CAB =∠EAB ,∵AB ⊥CD ,∴AC =AF ,∴∠ACF =∠AFC ,∵∠ACF =∠E ,∠AFC =∠DFE ,∴∠DFE =∠E ,∴DF =DE =7,∵AM =DM ,∴AM =MF +7,∵AM +MF =17,∴MF +7+MF =17,解得MF =5,∴AM =12,∴S △ADF =12×7×12=42.22.【答案】(1)证明:根据题意得CM=DM=12CD,∵∠ABC=90°,∴BM=12 CD,∴CM=DM=BM,∴点B在⊙M上.(2)解:连接DE,如图,∵CD⊥BE,CD为⊙M直径,∴BD=DE,∠ABC=∠DEC=90°,∵AB=BC,∠ABC=90°,∴∠DAE=∠ADE=45°,∴DE=AE,∴AD=2DE=2BD,∴AD+BD=AB=(2+1)BD,∴BC=(2+1)BD,∴BCBD=2+1.(3)证明:过点B作BN⊥BG,过点A作AN⊥AE,交BN于点N,连接DE,NE,∵AB=BC,∠ABC=90°,∴∠DAC=∠BCA=45°,∴∠BAN=∠BCF=45°,∵M为CD的中点,∴MD =MB =MC ,∵∠CMG =∠MBC +∠MCB =30°,∴∠MDB =∠MBD =75°,∠MBC =∠MCB =15°,∠DCE =∠BCE−∠MCB =30°,∴∠EDC =∠EBC =60°,∴∠EBF =∠EBC−∠MBC =45°,∴∠EBF =∠EBN =45°,∴∠ABN =90°−∠ABF =∠CBF ,∵{∠ABN=∠CBFAB =BC ∠BAN =∠BCF ,∴△BAN≌△BCF(ASA),∴AN =CF ,BN =BF ,∵{BN =BF∠NBE =∠FBE BE =BE ,∴△NBE≌△FBE(SAS),∴NE =EF ,在Rt △AEN 中,N E 2=A N 2+A E 2,∴E F 2=C F 2+A E 2.。
第3章 圆的基本性质 浙教版数学九年级上册单元能力提升卷(含解析)
浙教版数学九上第三章《圆的基本性质》单元能力提升卷一.选择题(共30分)1.如图,AB是⊙O的直径,CD是弦,AB⊥CD,垂足为点E,连接OD、CB、AC,∠DOB =60°,EB=2,那么CD的长为( )A.3B.23C.33D.43 2.如图,若干全等正五边形排成形状,图中所示的是前3个正五边形,则要完成这一圆环还需这样的正五边形( )A.6个B.7个C.9个D.10个3.如图,已知BD是⊙O的直径,BD⊥AC于点E,∠AOC=100°,则∠OCD的度数是( )A.20°B.25°C.30°D.40°4.扇子最早称“翣”,在我国已有两千多年历史.“打开半个月亮,收起兜里可装,来时荷花初放,去时菊花正黄.”这则谜语说的就是扇子.如图,一竹扇完全打开后,外侧两竹条,夹角为,的长为,扇面BD的长为,则扇面面积为()cm2A.B.C.D.5.如图,已知圆的内接正六边形的半径为2,则扇形的面积是()A.B.C.D.6.如图,正方形ABCD内接于⊙O,点P在AB上,则∠BPC的度数为( )A.30°B.45°C.60°D.90°7.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为( ).A.30°B.40°C.50°D.60°8.如图,六位朋友均匀的围坐在圆桌旁聚会.圆桌的半径为80cm,每人离桌边10cm,又后来两位客人,每人向后挪动了相同距离并左右调整位置,使8个人都坐下,每相邻两人之间的距离与原来相邻两人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为xcm.则根据题意,可列方程为( )A.60π(80+10)180=45π(80+10+x)180B.45π×80180=36π(80+x)180C.2π(80+10)×8=2π(80+x)×10 D.2π(80﹣x)×10=2π(80+x)×89.如图,在半径为3的⊙O中,B是劣弧AC的中点,连接AB并延长到D,使BD=AB,连接AC、BC、CD,如果AB=2,那么CD等于( )A.2B.1C.23D.4310.如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则S1S2的值是( )A.5π2B.3πC.5πD.11π2二.填空题(共24分)11.已知扇形的弧长为π,半径为1,则该扇形的面积为 12.如图,在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠D= .13.如图,在△ABC中,∠BAC=90°,AB=AC=4.将△ABC绕点B逆时针旋转45°,得△A′BC′,则阴影部分的面积为 .14.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A= °.15.如图,ΔABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为 .16.如图,在⊙O中,C是弦AB上的点,AC=2,CB=8.连接OC,过点C作DC⊥OC,与⊙O交于点D,DC的长为 .三‘解答题(共66分)17.(6分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=12,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求BD的长.18.(8分)如图,在⊙O中,点C是优弧ACB的中点,D、E分别是OA、OB上的点,且AD=BE,弦CM、CN分别过点D、E.(1)求证:CD=CE.(2)求证: AM = BN . 19.(8分)如图, AB 是 ⊙O 的直径,弦 CD ⊥AB ,E 是 CA 延长线上的一点,连结 DE 交 ⊙O 于点 F ,连结 AF ,CF .(1)若 BD 的度数是40°,求 ∠AFC 的度数; (2)求证: AF 平分 ∠CFE ;(3)若 AB =5,CD =4,CF 经过圆心,求 CE 的长.20.(10分)如图,点D 是△ABC 的外接圆⊙O 上一点,且 AD =BC =12AmB ,连接BD 交AC 于点E ,(1)求证AC=BD ;(2)若BD 平分∠ABC ,BC=1,求BD 的长;(3)已知圆心O 在△ABC 内部(不包括边上),⊙O 的半径为5.①若AB=8,求△ABC 的面积;②设 BDBE =x ,BC·AC=y ,求y 关于x 的函数关系式,并求出y 的取值范围。
第3章 圆的基本性质 浙教版九年级上册单元提升必刷卷A及答案
【单元测试】第3章圆的基本性质(夯实基础)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P( )A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定【答案】A【分析】由已知⊙O的直径为3cm,则半径为1.5cm,点P到圆心O的距离OP=2cm>1.5cm,所以点P在⊙O外.【详解】解:根据⊙O的直径为3cm,∴半径为1.5cm,点P到圆心O的距离OP=2cm>1.5cm,所以点P在⊙O外.故选:A.【点睛】此题主要考查了点与圆的位置关系,熟悉点与圆的位置关系的判定方法是解题关键.2.如图,已知、是的弦,,点C在弦上,连接CO并延长CO交于于点D,,则的度数是()A.30°B.40°C.50°D.60°【答案】C【分析】连接OA,根据圆的半径相等证明∠OAB=∠B和∠OAD=∠D,得到答案.【详解】解:连接OA,∵OA=OB,∴∠OAB=∠B=30°,∵OA=OD,∴∠OAD=∠D=20°,∴∠BAD=∠OAB+∠OAD=50°,故选:C.【点睛】本题考查的是圆的性质和等腰三角形的性质,掌握圆的半径相等和等边对等角是解题的关键.3.在图形的旋转中,下列说法不正确的是()A.旋转前和旋转后的图形一样B.图形上的每一个点到旋转中心的距离都相等C.图形上的每一个点旋转的角度都相同D.图形上可能存在不动的点【答案】B【分析】根据旋转的性质对A、B、C进行判断;利用旋转中心为图形上一点的情况可D进行判断.【详解】解:A、旋转前和旋转后的图形全等,故A选项不符合题意;B、在图形上的对应点到旋转中心的距离相等,故B选项符合题意;C、图形上每一点移动的角度相同,都等于旋转角,故C选项不符合题意;D、图形上可能存在不动的点,故D选项不符合题意.故选:B.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.4.如图所示,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组成的长方形,则这个窗户的外框总长为()A.B.C.D.【答案】A【分析】先求出上半圆的直径为,即可得出答案.【详解】解:由题意得,上半圆的直径为,∴窗户的外框总长为,故答案选A.【点睛】本题主要考查了圆的周长公式和列代数式,解题的关键是确定半圆的直径.5.如图,边长为1的正方形绕点A逆时针旋转得到正方形,连接,则的长是()A.1B.C.D.【答案】B【分析】连接、,根据图形旋转前后长度不变且旋转角为,可得是等边三角形,根据勾股定理,求出正方形的对角边长度即可.【详解】如图所示,连接、∵四边形是四边形逆时针旋转∴,∴是等边三角形∴在中,∴故选:B.【点睛】本题考查图形旋转、等边三角形的判定、正方形的性质及勾股定理等知识,熟练掌握图形旋转、等边三角形的性质、正方形的性质及勾股定理是解题的关键.6.如图,,,是上的三点,若,则的度数是()A.B.C.D.【答案】B【分析】由圆周角定理,即可求得的度数,又由,根据等边对等角与三角形内角和定理,即可求得的度数.【详解】解:连接,,,,.故选:B【点睛】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.7.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )A.28°B.30°C.36°D.56°【答案】A【分析】设半圆圆心为O,连OA,OB,则∠AOB=86°−30°=56°,根据圆周角定理得∠ACB=∠AOB,即可得到∠ACB的大小.【详解】设半圆圆心为O,连OA,OB,如图,∵∠AOB=86°−30°=56°,∴∠ACB=∠AOB=×56°=28°.故选A.【点睛】本题主要考查了圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分∠CHEC.整个图形不是中心对称图形D.是等边三角形【答案】D【分析】根据正八边形和圆的性质进行解答即可.【详解】解:A.∵根据正八边形的性质,四边形ABCH与四边形EFGH能够完全重合,即四边形ABCH 与四边形EFGH全等∴四边形ABCH与四边形EFGH的周长相等,故选项正确,不符合题意;B.连接DH,如图1,∵正八边形是轴对称图形,直线HD是对称轴,∴HD平分∠CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.∵八边形ABCDEFGH是正八边形,∴B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,∠DOE=∵OE=OH∴∠OEH=∠OHE=∠DOE=22.5°∴∠CHE=2∠OHE=45°∴∠HCE=∠HEC=(180°-∠CHE)=67.5°∴不是等边三角形,故选项错误,符合题意.故选:D.【点睛】本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.9.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:如图所示,CD为⊙O的直径,弦AB ⊥CD,垂足为E,CE为1寸,AB为10寸,求直径CD的长.依题意,CD长为()A.寸B.13寸C.25寸D.26寸【答案】D【分析】连结AO,根据垂径定理可得:,然后设⊙O半径为R,则OE=R-1.再由勾股定理,即可求解.【详解】解:连结AO,∵CD为直径,CD⊥AB,∴.设⊙O半径为R,则OE=R-1.Rt△AOE中,OA2=AE2+OE2,∴R2=52+(R-1)2,∴R=13,∴CD=2R=26(寸).故选:D【点睛】本题主要考查了垂径定理,勾股定理,熟练掌握垂径定理是解题的关键.10.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角形成的扇面,若,,则阴影部分的面积为()A.B.C.D.【答案】D【分析】根据S阴影=S扇形AOD-S扇形BOC求解即可.【详解】解:S阴影=S扇形AOD-S扇形BOC====2.25π(m2)故选:D.【点睛】本题考查扇形面积,不规则图形面积,熟练掌握扇形面积公式是解题的关键.二、填空题(本大题共8个小题,每题2分,共16分)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.【答案】.【详解】试题分析:根据勾股定理可求得BD=5,三个顶点A、B、C中至少有一个点在圆内,点A与点D 的距离最近,点A应该在圆内,所以r>3,三个顶点A、B、C中至少有一个点在圆外,点B与点D的距离最远,点B应该在圆外,所以r<5,所以r的取值范围是.考点:勾股定理;点和圆的位置关系.12.如图,将绕点C顺时针旋转30°得到,边,相交于点F,若,则的度数为______.【答案】118°##180度【分析】将△ABC绕点C顺时针旋转30°得到△DEC,得∠ACD=30°,∠A=∠D=32°,进而根据三角形的内角和定理得结果.【详解】解:∵将△ABC绕点C顺时针旋转30°得到△DEC,∴∠ACD=30°,∠A=∠D=32°,∴∠DFC=180°-(∠ACD+∠D)=180°-(32°+30°)=118°,故答案为:118°.【点睛】本题主要考查了旋转的性质,三角形内角和定理,熟练掌握旋转的性质是解题的关键.13.如图,中,弦,已知的半径为,,,那么与间的距离是________.【答案】7【分析】过O点作OM⊥AB于M点,延长MO交CD于点N,连接AO、CO,根据,OM⊥AB,可得ON⊥CD,利用垂径定理可得AM=3,CN=4,结合后⊙O的半径为5,在Rt△AMO和Rt△COD中,利用勾股定理可求得MO=4,NO=3,则问题得解.【详解】过O点作OM⊥AB于M点,延长MO交CD于点N,连接AO、CO,如图,∵,OM⊥AB,∴OM⊥CD,即ON⊥CD,∴AM=MB=AB,CN=ND=CD,∵AB=6,CD=8,∴AM=3,CN=4,∵⊙O的半径为5,∴AO=CO=5,∵OM⊥AB,即ON⊥CD,∴在Rt△AMO和Rt△COD中,利用勾股定理可求得MO=4,NO=3,∵MN⊥AB,,∴AB与CD的距离即为线段MN的长,∴MN=OM+ON=4+3=7,故答案为:7.【点睛】本题主要考查了垂径定理,构造辅助线,通过垂径定理得到MO=4,NO=3,是解答本题的关键.14.如图,点、分别在轴、轴上,直线与以为直径的圆交于点,则点的坐标为____.【答案】【分析】先根据直线y=x是一三象限角平分线得到∠AOC=∠BOC=45°,然后过点C分别作CE⊥OA,CF⊥OB,进而得到CE=CF,再利用圆的对称性得到AC=BC,进而可证三角形全等,从而得到AE=CF,那么可将OA+OB转化为OE+OF,又因为OE=OF,故可求得OE、OF的长,也便求出点C的坐标.【详解】解:如图,过点C分别作CE⊥OA,CF⊥OB,垂足分别为E、F,连接CA、CB,∵点C在直线y=x上,∴OC平分∠AOB,又∵CE⊥OA,CF⊥OB,∴CE=CF,∵OC平分∠AOB,∠AOB=90°,∴∠AOC=∠BOC=45°,∴AC=BC,在Rt△ACE与Rt△BCF中∴Rt△ACE≌Rt△BCF(HL)∴AE=BF,∴OA+OB= OE +AE+OB,= OE +BF+OB,= OE +OF,∵点、∴OA=m+6,OB=m,∴OE +OF= m+6+m=2m+6∵∠AOB= ∠CEO=∠CFO=90°,CE=CF,∴四边形CEOF为正方形,∴OE=OF=(2m+6)=m+3,∴点的坐标为.【点睛】本题主要综合考查了圆的对称性、全等三角形的判定,以及线段的转化,综合运用所学知识解决问题是本题的关键.15.如图,在中、三条劣弧、、的长都相等,弦与相交于点,弦与的延长线相交于点,且,则的度数为________.【答案】##70度【分析】连接,由弧、、的长相等,可得,设,在中,根据三角形内角和定理建立方程,解方程求得的值,进而即可求解.【详解】解:连接,弧、、的长相等,,设,,,,在中,,解得,,.故答案为:.【点睛】本题考查了弧与圆周角的关系,三角形的外角与内角和,掌握弧与圆周角的的关系是解题的关键.16.如图,是的弦,O是圆心,把的劣弧沿着对折,A是对折后劣弧上的一点,若,那么_________.【答案】20°【分析】由已知条件先求出∠A'=100,再利用圆内接四边形的性质即可求出∠B的度数,分别得到∠BCD+∠BDC和∠ACD+∠ADC,相减即可.【详解】解:如图,翻折△ACD,点A落在A'处,∴∠A'=∠A=100°,∴∠ACD+∠ADC=80°,∵四边形A'CBD是⊙O的内接四边形,∴∠A'+∠B=180°,∴∠B=80°,∴∠BCD+∠BDC=180°-80=100°,∴∠BCA+∠BDA=(∠BCD+∠BDC)-(∠ACD+∠ADC)=20°,故答案为:20°.【点睛】此题考查了几何图形折叠的问题以及圆内接四边形的性质,解本题的关键是得出∠A'=100°.17.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积来近似估计的面积,设的半径为1,则__________.【答案】【分析】如图,过点A作AC⊥OB,垂足为C,先求出圆的面积,再求出△ABC面积,继而求得正十二边形的面积即可求得答案.【详解】如图,过点A作AC⊥OB,垂足为C,∵的半径为1,∴的面积,OA=OB=1,∴圆的内接正十二边形的中心角为∠AOB=,∴AC=OB=,∴S△AOB=OB•AC=,∴圆的内接正十二边形的面积S1=12S△AOB=3,∴则,故答案为.【点睛】本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.18.如图,在扇形MON中,圆心角∠MON=60°,边长为2的菱形OABC的顶点A,C,B分别在ON,OM 和上,且ND∥AB,交CB的延长线于点D,则阴影部分的面积是_____.【答案】6﹣2【分析】由扇形的面积计算公式结合三角形、平行四边形的面积计算公式计算即可.【详解】解:如图连接OB,过C点做OB的垂线,垂足为E点,由四边形OABC为菱形,∠MON=60°,可得∠COB=∠BOA=∠COA=,可得,,在RT△OCE中,OC=2, ∠COB=,可得CE=1,OE=,则OB=,即圆的半径为,可得:==,=,,,阴影部分的面积即为四边形ABDN的面积,由BD∥AN,AB∥DN,可得四边形ABDN为平行四边形,过点B做BF⊥AN,可得BF=,,故阴影部分的面积为.【点睛】本题主要考查扇形的计算公式、三角形和平行四边形的面积公式,综合性较强,需综合运用所学知识求解.三、解答题(本大题共8个小题,共54分;第19-22每小题6分,23-24每小题7分,25-26每小题8分)19.如图,一艘轮船以30海里/小时的速度由西向东航行,途中接到台风警报,台风中心正以60海里/小时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区,当轮船到A处时,测得台风中心移动到位于点A正南方向的B处,且海里.若轮船以原方向、原速度继续航行,求轮船从A点出发到最初遇到台风的时间.【答案】轮船从点出发小时后最初遇到台风【分析】根据题意可得轮船正好在以台风中心为圆心、20海里长为半径的圆上即为轮船最初遇到台风的时间,设小时后最初遇到台风,画出图形(见解析),先求出的长,再利用勾股定理建立方程,解方程即可得.【详解】解:由题意可知,轮船正好在以台风中心为圆心、20海里长为半径的圆上即为轮船最初遇到台风的时间,因为海里,所以当台风中心到达点时,轮船恰好在台风区的边界,所以轮船从点出发到最初遇到台风时,台风中心位于点的下方,画出图形如下:其中点为台风中心,点为轮船,则海里,设小时后最初遇到台风,则海里,海里,海里,海里,由勾股定理得:,即,解得或,当时,,不符题意,舍去,答:轮船从点出发小时后最初遇到台风.【点睛】本题考查了点与圆的位置关系、一元二次方程的应用、勾股定理的应用,画出图形,正确建立方程是解题关键.20.如图1,边长为4的正方形与边长为()的正方形的顶点重合点在对角线上.(1)【问题发现】如图1,与的数量关系为______.(2)【类比探究】如图2,将正方形绕点顺时针旋转度(),问题发现中的结论是否还成立?如成立写出推理过程,如不成立,说明理由.(3)【拓展延伸】在图1中,若点为的中点,将正方形绕点顺时针旋转,在旋转过程中,当点,,在一条直线上时,直接写出此时线段的长度.【答案】(1)(2),证明见解答过程,(3)【分析】易证AB∥EF,由平行线分线段成比例可解.证明△ACE和△BCF相似可解.分情况讨论,连接CE交GF于H,由正方形的性质可得四边长度和对角线的长度,进而求出CF,GF,HE 等线段长度,最终得到AH的长度,得到答案.(1)证明:∵四边形ABCD和四边形EFCG是正方形,∴∠B=∠CFE=90°,∠FCE=∠BCA=45°,,CE⊥GF,∴AB∥EF,∴∴故答案为(2)上述结论还成立,证明,连接CE,如图,∵∠FCE=∠BCA=45°,∴∠BCF=∠ACE=45°-∠ACF,在Rt△CEG和Rt△CBA中,∴∴△ACE∽△BCF,则∴(3)分两种情况:连接CE交GF于H,如图,∵四边形ABCD和四边形EFCG是正方形,∴AB=BC=4,HF=HE=HC,∵点F为BC的中点,∴CF=BC=2,GF=CE=2,GH=HF=HE=HC=,∴则连接CE交GF于H,如图,由①可知:GH=HF=HE=HC=∴则故AG的长度为【点睛】题是四边形的综合题目,考查正方形的性质、图形旋转、平行线分线段成比例、相似三角形的判定和性质、勾股定理等知识,解题关键是熟练运用正方形的性质,证明三角形相似,得到对应边成比例.21.如图,在四边形ABCD中,,,AD不平行于BC,过点C作交的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形(2)连接CO,求证:CO平分.【答案】(1)见解析(2)见解析【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE/CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【详解】(1)证明:∵∠B=∠E,∠B=∠D,∴∠E=∠D,∵,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴,∴四边形AECD为平行四边形;(2)证明:作OM⊥BC于M,ON⊥CE于N,如图,∵四边形AECD为平行四边形,∴AD=CE,又∵AD=BC,∴CE=CB,∵OM⊥BC,ON⊥CE,∴∠ONC=∠OMC=90°,,∴,∵OC=OC,∴,∴ON=OM,∵OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点睛】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.22.如图,⊙O的弦AB、DC的延长线相交于点E.(1)如图1,若为120°,为50°,求∠E的度数;(2)如图2,若AE=DE,求证:AB=CD.【答案】(1)∠E=35°(2)见解析【分析】(1)先求出∠ACD,∠BAC的度数,再根据三角形外角的性质得出答案;(2)先根据“ASA”证明△ACE≌△DBE,得出BE=CE,再结合已知条件得出答案即可.【详解】(1)连接AC,∵为120°,为50°,∴,,∴∠E=∠ACD-∠BAC=60°-25°=35°;(2)证明:连接AC、BD,∵,∴∠A=∠D,在△ACE和△DBE中,,∴△ACE≌△DBE(ASA),∴BE=CE,∵AE=DE,∴AE-BE=DE-CE,即AB=CD.【点睛】本题考查了圆的相关计算与证明,三角形全等的判定和性质,正确理解圆心角、弧与弦的关系是解题的关键.23.如图,在四边形ABCD中,AD//BC,⊙O经过点A、C、D,分别交边AB、BC于点E、F,连接DE、DF,且DE=DF.(1)求证:AB//CD;(2)连接AF,求证:AB=AF.【答案】(1)见解析;(2)见解析.【分析】(1)借助弦相等对应的弧相等,弧相等所对的圆周角得到∠A=∠C,进而AB∥CD;(2)连接AF,,由(1)知四边形ABCD是平行四边形,得到∠B=∠AFB,故AB=AF.【详解】解:(1)∵AD//BC,∴∠A+∠B=180°,∵DE=DF,∴,∴,∴,∴∠A=∠C,∴∠B+∠C=180°,∴AB//CD;(2)连接AF,∵AB//CD,AD//BC,∴四边形ABCD是平行四边形,∴∠B=∠D,∵四边形AFCD是圆内接四边形,∴∠AFC+∠D=180°,∵∠AFC+∠AFB=180°,∴∠AFB=∠D=∠B,∴AB=AF.【点睛】本题主要考查圆周角定理,解题关键是熟练掌握在同圆或者等圆中,有两条弦、两条弧、两个圆周角,其中有一组量相等,其它的量全部相等.24.如图,已知AD是⊙O的直径,B、C为圆上的点,OE⊥AB、BC⊥AD,垂足分别为E、F.(1)求证:2OE=CD;(2)若∠BAD+∠EOF=150°,AD=4,求阴影部分的面积.【答案】(1)见解析(2)2π-【分析】(1)连接BD,先证,,再根据垂径定理,证得,最后通过等量代换证得结论.(2)将代入∠BAD+∠EOF=150°,结合,解得,,由,分别求得、、,计算即可.【详解】(1)证明:连接BD,∵AD是⊙O的直径,B为圆上的点,∴,∵OE⊥AB,∴,∴,∴,∵AD是⊙O的直径,即O为AD的中点,∴E为AB的中点,∴.∵AD是⊙O的直径,B、C为圆上的点,BC⊥AD,∴,∴,即.(2)解:∵,又∵∠BAD+∠EOF=150°,∴,即.∵,∴,∴,.如图,连接BD,∵AD=4,AD是⊙O的直径,,∴.同理,,,,∴,.∵AD是⊙O的直径,B、C为圆上的点,BC⊥AD,∴.∵AD=4,,∴.,,,∴.【点睛】本题考查了垂径定理,中位线的判定及性质,扇形相关的阴影面积计算,综合运用以上知识是解题的关键.25.石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长),设所在圆的圆心为,半径,垂足为.拱高(弧的中点到弦的距离).连接.(1)直接判断与的数量关系;(2)求这座石拱桥主桥拱的半径(精确到).【答案】(1)(2)这座石拱桥主桥拱半径约为【分析】(1)根据垂径定理即可得出结论;(2)设主桥拱半径为,在中,根据勾股定理列出方程,即可得出答案.【详解】(1)解:∵半径,∴.故答案为:.(2)设主桥拱半径为,由题意可知,,∴,,在中,由勾股定理,得,即,解得,∴,因此,这座石拱桥主桥拱半径约为.【点睛】此题考查垂径定理和勾股定理,是重要考点,根据题意利用勾股定理列出方程是解题关键.26.问题提出(1)如图①,的半径为8,弦,则点O到的距离是__________.问题探究(2)如图②,的半径为5,点A、B、C都在上,,求面积的最大值.问题解决(3)如图③,是一圆形景观区示意图,的直径为,等腰直角三角形的边是的弦,直角顶点P在内,延长交于点C,延长交于点D,连接.现准备在和区域内种植草坪,在和区域内种植花卉.记和的面积和为,和的面积和为.①求种植草坪的区域面积.②求种植花卉的区域面积的最大值.【答案】(1)8;(2)32;(3)①,②.【分析】(1)作交AB于点C,连接OA,利用垂径定理和勾股定理即可求出OC;(2)作交AB于点D,连接OA,可知当CD经过圆心O的时候面积最大,由垂径定理和勾股定理可求出,进一步可求出的面积;(3)①连接OD,OA,求出AD,进一步可求出;②表示出,利用完全平方公式求出,当时,有最大值为.【详解】解:作交AB于点C,连接OA,∵,由垂径定理可知:,∵,∴;(2)作交AB于点D,连接OA,∵,若使面积最大,则CD应最大,∴当CD经过圆心O的时候取值最大,由垂径定理可知:,∵,∴,∴,∴,(3)①连接OD,OA,则,∵是等腰直角三角形,∴,∴,即是等腰直角三角形,∴,∵,,∴是等腰直角三角形,∵,,∴,②由①可知:,设,,故,∵,∴,当时,等号成立,∴,当时,有最大值为.【点睛】本题考查垂径定理,勾股定理,完全平方公式的应用,等腰直角三角形的判定及性质,(3)小问较难,解题的关键是表示出,求出AD,利用完全平方公式求出.。
浙教版九年级上册第3章《圆的基本性质》测试卷(含答案)
九年級上冊第3章《圓の基本性質》測試卷滿分100分,考試時間90分鐘一、選擇題(每小題3分,共30分) 1.下列命題中,是真命題の為( ) A .同弦所對の圓周角相等 B .一個圓中只有一條直徑C .圓既是軸對稱圖形,又是中心對稱圖形D .同弧所對の圓周角與圓心角相等2.已知⊙O の半徑為5釐米,A 為線段OP の中點,當OP =6釐米時,點A 與⊙O の位置關係是( ) A .點A 在⊙O 內 B .點A 在⊙O 上 C .點A 在⊙O 外 D .不能確定 3.已知弧の長為3πcm ,弧の半徑為6cm ,則圓弧の度數為( ) A .45° B .90 ° C .60 ° D .180° 4.如圖,OAB △繞點O 逆時針旋轉80°得到OCD △,若110A ∠=°,40D ∠=°,則∠αの度數是( ) A .30° B .40° C .50° D .60°5.如圖,圓O の直徑CD 過弦EF の中點G ,∠DCF =20°,則∠EOD 等於( ) A .10° B .20°C .40°D .80°第5題圖6.鐘面上の分針の長為1,從9點到9點30分,分針在鐘面上掃過の面積是( ) A .12πB .14πC .18πD .π7.如圖,一種電子遊戲,電子螢幕上有一正六邊形ABCDEF ,點P 沿直線AB 從右向左移動,當出現點P 與正六邊形六個頂點中の至少兩個頂點距離相等時,就會發出警報,則直線AB 上會發出警報の點P 有( ) A .3個 B .4個 C .5個 D .6個第10题E CDFP8.如圖,A、B、P是半徑為2の⊙O上の三點,∠APB=45°,則弦ABの長為()A.2B.2 C.22D.4第8題圖9.如圖,在平面直角坐標系中,⊙A經過原點O,並且分別與x軸、y軸交於B、C兩點,已知B(8,0),C(0,6),則⊙Aの半徑為()A.3 B.4 C.5 D.8第9題圖10.如圖,⊙Oの半徑OD⊥弦AB於點C,連結AO並延長交⊙O於點E,連結E C.若AB=8,CD=2,則ECの長為()A.215B.8 C.210D.213第10題圖二、填空題(每小題3分,共30分)11.一條弧所對の圓心角為72°,則這條弧所對圓周角為°.12.已知⊙Oの面積為36π,若PO=7,則點P在⊙O.13.一紙扇柄長30cm,展開兩柄夾角為120°,則其面積為cm2.14.如圖,AB為⊙Oの直徑,弦CD⊥AB於點E,若CD=6,且AE:BE =1:3,則AB= .第14題圖15.如圖,AB是⊙Oの直徑,點C是圓上一點,∠BAC=70°,則∠OCB= °.第15題圖16.已知:如圖,圓內接四邊形ABCD中,∠BCD =110°,則∠BAD = °.第16題圖17.如圖,OC是⊙Oの半徑,AB是弦,且OC⊥AB,點P在⊙O上,∠APC=26°,則∠BOC= .第17題圖18.如圖,⊙O中,弦AB、DCの延長線相交於點P,如果∠AOD=120°,∠BDC=25°,那麼∠P= °.第18題圖19.如圖,AD、AC分別是直徑和絃,∠CAD=30°,B是AC上一點,BO⊥AD,垂足為O,BO=5cm,則CD 等於cm.第19題圖20.如圖:在⊙O中,AB、AC為互相垂直且相等の兩條弦,OD⊥AB,OE⊥AC,垂足分別為D、E,若AC =2 cm,則⊙Oの半徑為cm.第20題圖三、解答題(共40分) 21.(6分)某居民社區一處圓柱形の輸水管道破裂,維修人員為更換管道,需確定管道圓形截面の半徑,下圖是水準放置の破裂管道有水部分の截面. (1)請你補全這個輸水管道の圓形截面;(2)若這個輸水管道有水部分の水面寬AB =16cm ,水面最深地方の高度為4cm ,求這個圓形截面の半徑.22.(6分)如圖所示,AB =AC ,AB 為⊙O の直徑,AC 、BC 分別交⊙O 於E 、D ,連結ED 、BE .(1) 試判斷DE 與BD 是否相等,並說明理由; (2) 如果BC =6,AB =5,求BE の長.23.(6分)如圖,⊙O の直徑AB 為10cm ,弦AC 為6cm ,∠ACB の平分線交⊙O 於D ,求BC ,AD ,BDの長.24.(6分)如圖,將小旗ACDB 放於平面直角坐標系中,得到各頂點の座標為A (-6,12),B (-6,0),C (0,6),D (-6,6).以點B 為旋轉中心,在平面直角坐標系內將小旗順時針旋轉90°. (1)畫出旋轉後の小旗A ′C ′D ′B ′,寫出點C ′の座標; (2)求出線段BA 旋轉到B ′A ′時所掃過の扇形の面積.AOBCDE25.(8分)如圖,AB為⊙Oの直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA與⊙Oの另一個交點為E,連接AC,CE.(1)求證:∠B=∠D;(2)若AB=4,BC-AC=2,求CEの長.26.(8分)在⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB於點D,連結CD.(1)如圖1,若點D與圓心O重合,AC=2,求⊙Oの半徑r;(2)如圖2,若點D與圓心O不重合,∠BAC=25°,請直接寫出∠DCAの度數.资料内容仅供您学习参考,如有不当之处,请联系改正或者删除九年級上冊第3章《圓の基本性質》測試卷1.C2.A3.B4.C5.C6.A7.C资料内容仅供您学习参考,如有不当之处,请联系改正或者删除20.221.(1)圖略;(2)10cm .22.(1)連結AD . ∵AB 是⊙O の直徑,∴AD ⊥BC ,BE ⊥AC .∵AB=AC ,∴BD=CD ,∴DE=BD .(2)由畢氏定理,得BC 2-CE 2=BE 2=AB 2-AE 2.設AE =x ,則62-(5-x )2=52-x 2,解得x =75.∴BE 22245AB AE -=. 23.∵ AB 是直徑.∴ ∠ACB =∠ADB =90°.在Rt △ABC 中,BC 22221068AB AC -=-=(cm ).∵ CD平分∠ACB ,∴ AD BD =.∴ AD =BD .又在Rt △ABD 中,AD 2+BD 2=AB 2,∴ AD =BD =52(cm ). 24.(1)圖略,C ′(0,-6);(2)∵A (-6,12),B (-6,0),∴AB =12.∴線段BA 旋轉到B ′A ′時所掃過の扇形の面積=2901236360⋅π⋅=π.25.(1)∵AB 為⊙O の直徑,∴∠ACB =90°,∴AC ⊥BC ,∵DC =CB ,∴AD =AB ,∴∠B =∠D ;(2)解:設BC =x ,則AC =x -2,在Rt △ABC 中,AC 2+BC 2=AB 2,∴(x -2)2+x 2=42,解得:x 17x 2=17,∵∠B =∠E ,∠B =∠D ,∴∠D =∠E ,∴CD =CE ,∵CD =CB ,∴CE =CB 7. 26.(1)過點O 作OE ⊥AC 於E ,則AE =21AC =21×2=1,∵翻折後點D 與圓心O 重合,∴OE =21r ,在Rt △AOE 中,AO 2=AE 2+OE 2,即r 2=12+(21r )2,解得r 233(2)連接BC ,∵AB 是直徑,∴∠ACB =90°,∵∠BAC =25°,∴∠B =90°-∠BAC =90°-25°=65°,根據翻折の性質,⌒AC 所對の圓周角等於ADC 所對の圓周角,∴∠DCA =∠B -∠A =65°-25°=40°.。
九上数学第三章:圆的基本性质能力提升测试题答案
九上数学第三章:圆的基本性质能力提升测试题答案一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出1.答案:C解析:四边形ABCD 是⊙O 的内接四边形, ∴0180=∠+∠BCD A , ∴0059121180=-=∠A , ∴01185922=⨯=∠=∠A BOD , 故选:C2.答案:D解析:连接OF ,如图: ∵DE ⊥AB ,AB 过圆心O , ∴DE =EF ,AD AF = ∵D 为弧AC 的中点, ∴AD DC = ∴ADC DAF =, ∴AC =DF , ∵⊙O 的直径为10, ∴OF =OA =5, ∵AE =2,∴OE =OA ﹣AE =5﹣2=3,在Rt △OEF 中,由勾股定理得:EF =4352222=-=-OE OF , ∴DE =EF =4,∴AC =DF =DE +EF =4+4=8, 故选:D .3.答案:B解析:∵AB是⊙O的直径的直径,∴∠ADB=∠ADE=∠ACB=90°,∴∠AEB+∠EAD=90°,∵C是弧AB的中点,∴AC=BC,∴∠CAB=∠CBA=45°,∴∠EAD+∠BAD=45°,∵∠BCD=∠BAD,∴∠EAD+∠BCD=45°,∴∠AEB+∠EAD﹣(∠EAD+∠BCD)=90°﹣45°=45°,∴∠AEB﹣∠BCD=45°.故选:B.4.答案:D解析:作半径OC⊥AB于点D,连结OA,OB,∵将O沿弦AB折叠,圆弧较好经过圆心O,∴OD=CD,OD=12O C=12OA,∴∠OAD=30°(30°所对的直角边等于斜边的一半),同理∠OBD=30°,∴∠AOB=120°,∴∠APB =12∠AOB =60°.(圆周角等于圆心角的一半) 故选D.5.答案:D解析:连接AB 、BC ,如图, ∵A (0,3)、B (4,3), ∴AB ⊥y 轴, ∴∠BAC =90°,∴BC 为△ABC 外接圆的直径, ∵AC =3+1=4,AB =4,∴BC =244422=+,∴△ABC 外接圆的半径为22. 故选:D6.答案:D解析:过O 作OC AB ⊥于C ,连接OA ,则90OCA ∠=︒,6MO =,30OMA ∠=︒, 132OC MO ∴==,在Rt OCA △中,由勾股定理得:2222534AC OA OC -=-, OC AB ⊥,OC 过O ,BC AC ∴=,即2248AB AC ==⨯=, 故选:D .7.答案:D解析:在⊙O 中, ∵AB CD =∴AB CD =,AOB COD ∠=∠ 故A 、C 选项正确,不符合题意; ∵AB CD =,OA =OD ,OB =OC ∴OAB ODC ≌ ∴OABODCSS=∵OE ⊥AB ,OF ⊥CD , ∴1122AB OE CD OF ⋅=⋅ ∴OE =OF故B 选项正确,不符合题意. 故选D8.答案:C 解析:连接AC ,∵∠ABC =50°,四边形ABCD 是圆内接四边形, ∴∠ADC =130°, ∵点D 是弧AC 的中点, ∴CD =AC ,∴∠DCA =∠DAC =25°, ∵AB 是直径,∴∠BCA =90°,∴∠BCD =∠BCA +∠DCA =115°, 故选:C .9.答案:B解析:标注顶点,连接AB , 由对称性可得:阴影部分面积=S 扇形AOB -S △ABO = 290212223602ππ⨯-⨯⨯=-.故选:B .10.答案:B解析:∵六边形ABCDEF 是正六边形∴=120CDE ∠︒ 连接OE ,OC ,则60OCN OEM ∠=∠=︒ ∴OC OE CD DE === ∴四边形OCDE 是菱形, ∴120COE CDE ∠=∠=︒∵120POQ ∠=︒∴MOE CON ∠=∠在MOE ∆和NOC ∆中MOE CON OC OE OEM OCN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴MOE CON ∆≅∆ ∴MONDE OCDE S S =五边形菱形∵AB =2∴CD =DE =2过点C 作CD ⊥ED 的延长线于点H ∴60CDH ∠=︒∴30DCH ∠=︒ ∴DH =1∴3CH = ∴扇形半径长为23∴=23MONDE OCDE S S DE CH ==五边形菱形 ∴2120=(23)4360OQP S ππ⨯⨯=扇形 ∴==423OQP OCDE S S S π--阴影扇形菱形 故选:B二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.答案:0115 解析:连接AC ,∵∠ABC =50°,四边形ABCD 是圆内接四边形, ∴∠ADC =130°, ∵点D 是弧AC 的中点, ∴CD =AC ,∴∠DCA =∠DAC =25°, ∵AB 是直径, ∴∠BCA =90°,∴∠BCD =∠BCA +∠DCA =115°,12.答案:050 解析:根据题意, ∵,25DE AC CAD ⊥∠=︒, ∴902565ADE ∠=︒-︒=︒,由旋转的性质,则65∠=∠=︒B ADE ,AB AD =, ∴65ADB B ∠=∠=︒,∴180665550BAD ︒-∠=︒=︒-︒; ∴旋转角α的度数是50°; 故答案为:50°.13.答案:0≤PM ≤25且PM ≠1.5. 解析:如图:延长CP 交⊙O 于N ,连接DN . ∵AB ⊥CN , ∴CP =PN , ∵CM =DM , ∴PM =21DN , ∴当DN 为直径时,PM 的值最大,最大值为25, 当DN =NC 时,PM 最小,最小值为0, ∴PM 的范围是0≤PM ≤25且PM ≠1.5. 故答案为:0≤PM ≤25且PM ≠1.5.14.答案:)(27cm π 解析:第一次是以B 为旋转中心,BA 长5cm 为半径旋转90°, 此次点A 走过的路径是ππ255241=⨯⨯ 第二次是以C 为旋转中心,3cm 为半径旋转60°此次走过的路径是ππ=⨯⨯3261, ∴点A 两次共走过的路径是()cm πππ2725=+.15.答案:π1613839- 解析:如图,作AB 、BC 的垂直平分线,两线交于O ,连接OA 、OE 、OC , 由图形可知△ACD 是等腰直角三角形, ∴∠DAC =45°, ∴∠EOC =90°,∵AC =CD =133222=+, ∴OA =OE =213, ∴S 阴影=S △ACD ﹣S △AOE ﹣S 扇形EOC =ππ161383936021390213213211313212-=⎪⎪⎭⎫⎝⎛⨯-⨯⨯-⨯⨯.故答案为:π1613839-16.答案:12解析:连接OA、OD、OF,如图,设这个正多边形为n边形,∵AD,AF分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOD=3604︒=90°,∠AOF=3603︒=120°,∴∠DOF=∠AOF-∠AOD=30°,∴n=36030︒︒=12,即DF恰好是同圆内接一个正十二边形的一边.故答案为:12.三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.解析:连结OD,如图,∵直径AB=2CD,∴OD=CD,∴∠DOC=∠C=25°,∴∠EDO=∠DOC+∠C=50°,∵OD=OE,∴∠E=∠EDO=50°,∴∠AOE=∠E+∠C=75°18.解析:(1)如图,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.19.解析:连接OC,如图,∵AB为直径,弦CD⊥AB,∴CE=DE,∵AB=8,∴OA=OC=4,∴OE=OA-AE=4-1=3,在Rt△OCE中,C E=22-=,437∴CD=2CE=27.20.解析:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°﹣∠ABC.∵CE⊥AB,∴∠CEB=90°,∴∠ECB=90°﹣∠ABC,∴∠ECB =∠A . 又∵C 是BD 的中点,∴CD CB =,∴∠DBC =∠A ,∴∠ECB =∠DBC ,∴CF =BF ;(2)∵CD CB =∴BC =CD =6,∵∠ACB =90°,∴AB =10862222=+=+AC BC ,∴⊙O 的半径为5,∵S △ABC =21AB •CE =21BC •AC , ∴CE =5241086=⨯=⨯AB AC BC .21.(1)证明:连接AD ,∵点D 是BC 的中点,∴∠CAD =∠BAD ,∴CD =BD ,在△CAD 和△BAD 中,⎪⎩⎪⎨⎧=∠=∠=AD AD BAD CAD AB AC ,∴△CAD ≌△BAD (SAS ),∴∠ACD =∠ABD ,∴∠DCE =∠DBF ,在△CED 和△BFD 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BDF CDE DBCD DBF DCE , ∴△CED ≌△BFD (ASA ),∴DF =DE ;(2)∵四边形ABDC 是圆内接四边形,∴∠DBF =∠ACD ,∵∠ACD =∠ABD ,∴∠ABD =∠DBF ,∴∠ABD =90°,∴∠ECD =∠ABD =90°,∴AD 是⊙O 的直径,∵CD =BD =6,CE =8,∴DE =1022=+CE CD ,∴EB =10+6=16,在Rt △ABE 中,AB 2+BE 2=AE 2,设AB =AC =x ,则x 2+162=(x +8)2,解得x =12,∴AB =12,在Rt △ABD 中,AB 2+BD 2=AD 2,∴AD =5661222=+,∴⊙O 的半径为53.22.解析:(1)连接OD ,如图,∵BD 为∠ABC 平分线,∴∠1=∠2,∵OB =OD ,∴∠1=∠3, ∴∠2=∠3,∴OD ∥BC ,∵∠C =90°,∴∠ODA =90°,∴OD ⊥AC ,∴AC 是⊙O 的切线.(2)过O 作OG ⊥BC ,连接OE ,则四边形ODCG 为矩形, ∴GC =OD =OB =2,OG =CD =3,在Rt △OBG 中,利用勾股定理得:BG =1,∴BE =2,则△OBE 是等边三角形,∴阴影部分面积为2602360π⨯﹣12×2×3=233π-.23.解析:(1)如图,1ADE ∠=∠,2ABE ∠=∠,3DAF ∠=∠,4BAE ∠=∠在正方形ABCD 中,AB=AD在△ADF 和△ABE 中12AB AD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABE (SAS );(2)由(1)结论得:△ADF ≌△ABE∴AF=AE ,∠3=∠4正方形ABCD 中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF是等腰直角三角形∴EF2=AE2+AF2∴EF2=2AE2∴EF=2AE即DE-DF=2AE∴DE-BE=2AE;(3)连接BD,将△CBE绕点C顺时针旋转90°至△CDH∵四边形BCDE内接于圆∴∠CBE+∠CDE=180°∴E,D,H三点共线在正方形ABCD中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴BC CD=∴∠BEC=∠DEC=45°∴△CEH是等腰直角三角形在Rt△BCD中,由勾股定理得22在Rt△BDE中,由勾股定理得:227-=BD BE在Rt△CEH中,由勾股定理得:EH2=CE2+CH2∴(ED+DH)2=2CE2,即(ED+BE)2=2CE2∴64=2CE2∴2.。
浙教版数学九年级上册 第3章测试卷 圆的基本性质(含答案)
第3章测试卷圆的基本性质班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.已知⊙O的直径为10,点P到点O的距离大于8,那么点P的位置( )A. 一定在⊙O的内部B. 一定在⊙O的外部C. 一定在⊙O上D. 不能确定2.正六边形的每个内角度数为( )A. 90°B. 108°C. 120°D. 150°3.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为( )A. 60°B. 50°C. 40°D. 20°4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是( )A7 B. 7 C. 6 D. 85. 下列有关圆的一些结论:①与半径长相等的弦所对的圆周角是30°;②圆内接正六边形的边长与该圆半径相等;③垂直于弦的直径平分这条弦;④平分弦的直径垂直于弦.其中正确的是( )A. ①②③B. ①③④C. ②③D. ②④6. 如图,正方形ABCD 内接于⊙O,AB=22,则AB的长是( )A. πB.32π C. 2π D127.如图,已知 BC 是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点 A,点C重合),BD与OA交于点E,设∠AED=α,∠AOD=β,则( )A. 3α+β=180°B. 2α+β=180°C. 3α-β=90°D. 2α-β=90°8. 如图,在扇形 AOB中,∠AOB=90°,点C 是弧AB 的中点,点 D 在OB 上,点 E 在OB 的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为( )A. π-2B. 2π—2C. π—4D. 2π-49. 如图,四边形ABCD内接于⊙O,点I是△ABC角平分线的交点,∠AIC=124°,点 E 在AD 的延长线上,则∠CDE的度数为( )A. 56°B. 62°C. 68°D. 78°10. 如图,AB是半圆O 的直径,点 P 从点O 出发,沿OA→AB→BO(的路径匀速运动一周.设OP 的长为s,运动时间为t,则下列图象能大致地刻画s与t之间关系的是( )二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,点 A,B,C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为 .12. 如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB 的距离为 .13. 如图,在四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC 交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是 .14.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为 .15.如图,在半径2₂的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形面积为 .16. 如图所示,E,F分别是正方形ABCD 的边AB,BC上的点,BE=CF,连结CE,DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转了.三、解答题(本大题有8小题,共66分)17. (6分)已知扇形的半径为6cm,面积为10πcm²,求该扇形的弧长.18. (6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,点O,M也在格点上.(1)画出△ABC关于直线OM 对称的△A₁B₁C₁;(2)画出△ABC绕点O按顺时针方向旋转 90°后所得的△A₂B₂C₂.19. (6分)中国的拱桥始建于东汉中后期,已有一千八百余年的历史,如图,一座拱桥在水面上方部分是.AB,拱桥在水面上的跨度AB为8米,拱桥AB与水面的最大距离为3米.(1)用直尺和圆规作出AB所在圆的圆心O;(2)求拱桥 AB所在圆的半径.20.(8分)如图所示,在△ABC中,AB=AC,∠A=30°,,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点 B作BP 平行于DE,交⊙O于点P,连结OP,CP.(1)求证:BD=DC;(2)求∠BOP的度数.21.(8分)如图,AB是⊙O的直径,C是.AE的中点,CD⊥AB于点D,交AE于点F,连结AC.求证:AF=CF.22.(10分)如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1) 试判断△ABC是否为等边三角形? 为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,,求⊙O的半径长.23.(10分)如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的⊙O交BC 于点D,且.BD= DE.(1)求证:AB为⊙O的直径;(2)若AB=8,∠BAC=45°,,求阴影部分的面积.24.(12分)如图,点A,B,C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB;(2)如图,过点O作(OE⊥AB于点E,交AC于点 P.若AB=2,∠AOE=30°,求 PE的长.第3章测试卷 圆的基本性质1. B2. C3. B4. B5. C6. A7. D8. A9. C 10. C 11. 6 12. 3 13. 6π14 12 15. π 16. 9017. 解:由 S =12l ⋅R 得 l =2S R =2×106=103π(cm ).18. 解:(1)如图, △A₁B₁C₁即为所求作的三角形.(2)如图, △A₂B₂C₂即为所求作的三角形.19. 解:(1)如图1所示,点 O 即为所求;(2)如图2 所示,取 AB 的中点D ,连结OD 交AB 于点 E,连结OA,则 OD ⊥AB,且AE=EB=4米,由题意得,DE=3米,设圆的半径为r 米,在 Rt△AEO 中, AE +EO²=OA²,即 4²+(r−3)²=r²,解得 r =256.即拱桥AB 所在圆的半径为 256米.20. (1)证明:如图,连结 AD.∵AB 为⊙O 的直径,∴∠ADB=90°,即 AD⊥BC,∵AB=AC,∴BD=CD. (2)解:∵∠BAC= 30°,AB= AC,∴ ∠ABC =12×(180∘−30∘)=75°.∵四边形 ABDE 为圆O 的内接四边形,∴∠EDC=∠BAC=30°.∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠OBP=∠ABC--∠PBC=45°.∵OB =OP,∴∠OPB=∠OBP=45°,∴∠BOP =90°21. 证明:延长CD 交⊙O 于点 H,∵C 是 AE 的中点, ∴AC =CE ,∵CD ⊥AB,∴AC =AH ,∴CE =AH ,∴∠ACD=∠CAE,∴AF=CF.22. 解:(1)△ABC 是等边三角形.理由:∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB =180°−∠BAC−∠ABC =180°− 60°−60°=60°,∴△ABC 是等边三角形. (2)如图,连结OB,∵△ABC 为等边三角形,⊙O 为其外接圆,∴BO 平分∠ABC,∴∠OBC=30°,∵OD ⟂BC,∴BD =CD,BE =CE = 4,∠BOD =60∘,∴OE =433, OB =833.∴OO|的半径长 833.23. (1)证明:如图,连结.AD, ∵⌢BD =DE ,∴∠BAD =∠CAD.又∵AB = AC, ∴AD ⊥ BC, ∴∠ADB=90°,∴AB 为⊙O 的直径. (2)解:∵AB 为⊙O 的直径,∴O 在AB 上,如图,连结OE,∵AB=8,∠BAC=45°,∴∠AOE=∠BOE= ∴1∘∴AB =8,∴BO =EO =4,S 扇形AOE =90×π×42360 =4π,S BOE =12OB 2=12×16=8,∴S 阴影=S BOE24. (1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC,∴∠BAC=∠OAC,即AC 平分∠OAB. (2)解: COE⟂AB,∴AE =BE =12AB =1,又∵∠AOE 、30°,∠PEA=90°,∴∠OAE= 60∘,∴∠EAP =3∠OAE =30∘,∴PE =12PA.设PE=x,则 PA=2x,根据勾股定理得 x²+1²=(2x)²,解得 x =33,∴PE =33.。
【浙教版】九年级数学上册 第三章 圆的基本性质单元能力提升测试卷(含答案)
第三章圆的基本性质能力提升测试卷班级姓名学号一.选择题(共10小题,每小题3分,满分30分)1.下列标志既是轴对称图形又是中心对称图形的是()A B C D2.若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A 与⊙O的位置关系是()A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定3.如图,点A.B.C在圆O上,∠A=60°,则∠BOC的度数是()A.15°B.30°C.60°D.120°4..如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于( ).A.55°B.90°C.110°D.120°5.一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是( ).A.60°B.90°C. 120°D.180°6.如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( ).A.(2,-1)B.(2,2)C.(2,1)D.(3,1)7.若圆的一条弦把圆分成度数的比为1∶3的两条弧,则劣弧所对的圆周角等于()A. 45°B. 90°C. 13D. 270°8.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A. B.C. D.9.在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有( )A. 1条B. 2条C. 3条D. 4条10.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()A. 3B. 2C. 1D. 0二.填空题(共6小题,每小题4分,满分24分)11.如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有_____________.12.如图,已知直线CD与⊙O相切于点C,AB为直径,若∠BCD=40°,则∠ABC的大小等于(度)13.已知⊙O中,两弦AB和CD相交于点P,若AP:PB=2:3,CP=2cm,DP=12cm,则弦AB的长为cm。
浙教版九上第三章:圆的基本性质复习巩固练习和能力提升测试(附详细的解答过程)
浙教版九上第三章:圆的基本性质能力提升测试卷一,选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!1. 如图,在⊙O 中,弦AB ∥CD ,若︒=∠40ABC ,则=∠BOD ( ) A. ︒20 B. ︒40 C. ︒50 D. ︒802.如图,点A 、B 、C 在⊙O 上,∠ACB=30°,则sin ∠AOB 的值是( )A .B .C .D .3.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A .cmB .3cmC .4cmD .4cm4.如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别是: 甲:1、作OD 的中垂线,交⊙O 于B ,C 两点,2、连接AB ,AC ,△ABC 即为所求的三角形 乙:1、以D 为圆心,OD 长为半径作圆弧,交⊙O 于B ,C 两点。
2、连接AB ,BC ,CA .△ABC 即为所求的三角形。
对于甲、乙两人的作法,可判断( )A .甲、乙均正确B .甲、乙均错误C .甲正确、乙错误D .甲错误,乙正确 5.如图,已知BD 是⊙O 直径,点A 、C 在⊙O 上,⌒AB =⌒BC ,∠AOB =60°,则∠BDC 的 度数是( )A .20°B .25°C .30°D . 40°6.如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,已知CD=12,则⊙O 的直径为( ) A. 8 B. 10 C.16 D.20第2题 第3题 第4题 第5题DCBAO第6题第7题第8题7.如图所示,扇形AOB 的圆心角为120︒,半径为2,则图中阴影部分的面积为( )334.-πA 2334.-πB 3234.-πC 34.πD 8.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( ) A .CM=DM B .CB=DB C .∠ACD=∠ADC D .OM=MD9.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( ) A .CM=DM B .CB=DB C .∠ACD=∠ADC D .OM=MD10.如图所示,圆O 的弦AB 垂直平分半径OC ,则四边形OACB ( ) A 、是正方形 B 、是长方形 C 、是菱形 D 、以上答案都不对二,填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处!11.如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为 .12.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=23 ,0C=1,则半径OB 的长为________. 13.如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB=2.将△ABC 绕顶点A 顺时针方向旋转至△AB ′C ′的位置,B ,A ,C ′三点共线,则线段BC 扫过的区域面积为 .14.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成. 已知正三角形的边长为1,则凸轮的周长等于_________.15.如图所示,AB 为⊙O 的直径,AC 为弦,OD ∥BC 交AC 于点D ,若AB=20cm , ∠A=30°,则AD= cm .第9题ABCO第10题第11题第12题第13题第14题第15题第16题16.如图,⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交AB 于E ,交⊙O 于D .则AD=_____________.三,解答题(共7题,共66分)温馨提示:解答题必须将解答过程清楚地表述出来!17(本题8分)如图所示,已知F 是以O 为圆心,BC 为直径的半圆上任一点,A 是弧BF 的中点,AD ⊥BC 于点D.求证:AD=12BF.18(本题8分).如图,⊙O 的直径AB 和弦CD 相交于点E,已知AE=6cm,EB=2cm, ∠CEA=30°, 求CD 的长.19.(本题8分)如图所示,OA 、OB 、OC 都是圆O 的半径,∠AOB =2∠BOC . 求证:∠ACB =2∠BAC .CBAO. ODCFBAE D C AO20(本题10分)如图,弧AC 是劣弧,M 是弧AC 中点,B 为弧AC 上任意一点,自M 向BC 弦引垂线,垂足为D ,求证:AB+BD=DC 。
【期末复习提升卷】浙教版2022-2023学年九上数学第3章 圆的基本性质 测试卷1(解析版)
【期末复习提升卷】浙教版2022-2023学年九上数学第3章圆的基本性质测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE,其中∠AFB=()A.54°B.63°C.72°D.81°【答案】C【解析】∵正五边形ABCDE内角和为:180°(5−2)=540°,AB=AE,AE=ED∴∠BAE=∠AED=540°5=108°,∵AB=AE,AE=ED,∴∠AEB=∠ABE=12(180°−∠EAB)=36°,∠EAD=∠ADE=12(180°−∠AED)=36°,∴∠EAF=∠AEF=36°,∴∠AFB=∠EAF+∠AEF=72°.故答案为:C.2.如图,在平面直角坐标系中,C(0,4),A(3,0),⊙A半径为2,P为⊙A上任意一点,E是PC的中点,则OE的最小值是()A.1B.32C.2D.√2【答案】B【解析】如图,连接AC,取AC的中点H,连接EH,OH.∵CE=EP,CH=AH,∴EH=12PA=1,∴点E的运动轨迹是以H为圆心半径为1的圆,∵C(0,4),A(3,0),∴H(1.5,2),∴OH =√22+1.52=2.5 ,∴OE 的最小值 =OH −EH =2.5−1=1.5 , 故答案为:B. 3.如图所示的曲边三角形可按下述方法作出:作等边 △ABC ,分别以点A ,B ,C 为圆心,以 AB 长为半径作 BC⌢ , AC ⌢ , AB ⌢ ,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为 2π ,则此曲边三角形的面积为( )A .2π−2√3B .2π−√3C .2πD .π−√3 【答案】A【解析】∵区别三角形的周长为2π,等边三角形ABC , ∴BC ⌢=AC ⌢=AB ⌢=2π3,∠BAC=∠ABC=∠ACB=60°,∴2π3=60π·BC 180, ∴BC=2,∴S 扇形ABC =12×2π3×2=2π3,S ABC =12×2×√3=√3, ∴S 曲边三角形=S ABC +3(S 扇形ABC -S ABC )=√3+3×2π3-3√3=2π-2√3.故答案为:A.4.如图,在△ABC 中,∠C =90°,AC =BC =6,点D ,E 分别在AC 和BC 上,CD =2,若以DE 为直径的⊙O 交AB 的中点F ,则⊙O 的直径是( )A .2√3B .2C .2√5D .5【答案】C【解析】作FG ⊥AC ,FH ⊥CB ,垂足分别为G 、H ,如图则四边形BCGF 是矩形,AC//FH ,CB//FG , ∵AC =BC =6,点F 是AB 的中点,∴CG =CH =GF =HF =12×6=3,∴四边形BCGF 是正方形, ∴∠GFH=90°,∵DE 是直径,则∠DFE=90°,∴∠DFG +∠DFH =∠DFH +∠EFH =90°,∴∠DFG=∠EFH,∵∠DGF=∠EHF=90°,GF=HF=3,∴△DFG≌△EFH,∴DF=EF,∵在直角△DFG中,DG=3−2=1,GF=3,∴DF=√12+32=√10=EF,在直角△DEF中,DE=√(√10)2+(√10)2=2√5;故答案为:C.5.如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为()A.cosθ(1+cosθ)B.cosθ(1+sinθ)C.sinθ(1+sinθ)D.sinθ(1+cosθ)【答案】D【解析】当△ABC的高经过圆心时即点A和点A′重合时,此时△ABC的面积最大,∵A′D⊥BC,∴BC=2BD,∠BOD=∠BAC=θ,在Rt△BOD中,BD=OBsinθ=sinθ,OD=OBcosθ=cosθ,∴BC=2sinθ,AD=1+cosθ∴S△ABC=12BC·AD=12×2sinθ(1+cosθ)=sinθ(1+cosθ).故答案为:D.6.如图,点C,D在以AB为直径的⊙O上,且CD平分∠ACB,若CD=4 √3,∠CAB=75°,则AB的长是()A.8 √3B.4 √3C.8D.4【答案】C【解析】过点O作OE⊥CD交于点E,连接OC,则CE=DE=12CD=2√3,∵AB为直径,∴∠ACB=90°,∵∠CAB=75°,∴∠CBA=90°-∠CAB=15°,∵OC=OB,∴∠OCB=∠CBA=15°,∵CD平分∠ACB,∴∠BCD=12∠ACB=45°,∴∠OCE=∠BCD−∠OCB=45°−15°=30°,设OE=x,则OC=2x,在Rt△OCE中,由勾股定理得,OC2=OE2+CE2,(2x)2=x2+(2√3)2解得x1=2,x2=−2(舍),∴OC=4,∴AB=2OC=2×4=8,故答案为:C.7.如图,⊙O的半径为√5,其中BC⌢=AD⌢,∠CDE=30°,AD=2,则弦BE的长为()A.3B.3.5C.52√2D.2+√3【答案】D【解析】连接OC,OE,BC、CE,∵BC⌢=AD⌢,∴BC=AD=2,∵∠CDE=30°,∴∠COE=60°,∠CBE=∠CDE=30°,∴△OCE是等边三角形,∴CE=√5,过点C 作CH ⊥BE 交BE 于点H ,在Rt △BCH 中,CH=12BC=1,BH=√22−12=√3,在Rt △CEH 中,HE =√(√5)2−12=2,∴BE =2+√3.故答案为: D.8.如图,点A ,B ,C ,D 都在 ⊙O 上, BD 交 AC 于点E , BC⌢=CD ⌢,CE =1,BC =2 ,则 AE 的长为( )A .2B .3C .4D .5【答案】B【解析】∵BC ⏜=CD ⏜,∴∠A=∠EBC ,∵∠BCE=∠ACB , ∴△BCE ∽△ACB , ∴AC BC =BC CE 即AC 2=21 解之:AC=4,∴AE=AC-CE=4-1=3. 故答案为:B.9.如图1,是清代数学家李之铉在他的著作《几何易简集》中研究过的一个图形,小圆同学在研究该图形后设计了图2,延长正方形ABCD 的边BC 至点M ,作矩形ABMN ,以BM 为直径作半圆O 交CD 于点E ,以CE 为边做正方形CEFG ,G 在BC 上,记正方形ABCD ,正方形CEFG ,矩形CMND 的面积分别为S 1,S 2,S 3,则S 1S 2+S 3=( )A .3+√54B .1+√52C .3+√24D .1+√22【答案】A【解析】连接BF 、ME 、BE ,如图,∵EF ∥BM , ∴BF⌢=ME ⌢, ∴BF =ME ,∵∠BGF =∠MCE =90°,GF =CE , ∴Rt △BGF ≌Rt △MCE (HL ), ∴BG =CM ,∵BM 是⊙O 的直径, ∴∠BEM =90°,∴∠CEM+∠CEB =∠CEM+∠CME =90°, ∴∠CEB =∠CME , ∵∠BCE =∠ECM =90°, ∴△BCE ∽△ECM ,∴CE CB =CM CE,即CE 2=CB•CM , 设正方形ABCD 的边长为a ,正方形CEFG 的边长为b ,BG =CM =c , 则{b =a −c b 2=ac,∴(a ﹣c )2=ac , 整理得,a 2+c 2=3ac , 即a c +ca =3,∴a c =3+√52,或a c =3−√52 ∵a >c ,∴a c =3−√52舍去, ∴S 1S 2+S 3=a 2b 2+ac =a 2ac+ac =a 2c =3+√54, 故答案为:A. 10.如图, △ABC 是⊙O 的内接三角形,将劣弧AC 沿AC 折叠后刚好经过弦BC 的中点 D .若 AC=6,∠C=60°,则⊙O 的半径长为( )A .13√7B .23√7C .13√21D .23√21【答案】D【解析】如图1,设折叠后的所在圆的圆心为O′,连接O′A ,O′D ,∴∠AO′D =2∠ACB =120°, 连接OA ,OB ,同理:∠AOB =120°, ∴∠AOB =∠AO′D , ∵⊙O 与⊙O′是等圆, ∴AB =AD ,设⊙O 的半径为R , 过O 作OG ⊥AB 于G , ∵OA =OB ,∠AOB =120°, ∴∠OAB =∠OBA =30°,AB =2AG , ∴OG =12OA =12R ,∴AG=√OA 2−OG 2=√32R ,∴AB =2AG =√3R ,如图2,过A 作AM ⊥BC 于M ,∵AB =AD ,∴设BM =DM =x ,则BD =2x , ∵D 为BC 的中点, ∴CD =BD =2x ,∴MC =DM+CD =3x , ∵AM ⊥BC ,∠ACB =60°, ∴∠MAC =30°,在Rt △AMC 中,MC =12AC =3,∴3x =3, ∴x =1,∴AM =√AC 2−NC 2=3√3,BM =x =1, 在Rt △ABM 中,AB =√AM 2−BM 2=2√7, ∵AB =√3R ,∴R=2√213.故答案为:D.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.已知A 为⊙O 外一点,若点A 到⊙O 上的点的最短距离为2,最长距离为4,则⊙O 的半径为 . 【答案】1【解析】∵点A 在圆外,点A 到⊙O 上的点的最短距离为2,最长距离为4,∴⊙O 的半径为(4-2)÷2=1. 故答案为:1.12.如图,矩形ABCD 中,AB=1,BC=2,点E 为边BC 的中点,以点A 为圆心的弧经过点C ,分别与AD 、AE 的延长线交于点F 、G ,则弧FG 的长是 .(结果保留π)【答案】√54π或√5π4【解析】如图,连接AC由题意知, BE =CE =12BC =1∴BE =AB由矩形的性质可知∠BAD =∠B =90° ∴∠BAE =45°在Rt △ABC 中,由勾股定理得AC =√AB 2+BC 2=√5 ∴FG⌢=45×π×√5180=√54π 故答案为:√54π.13.如图,AB ,CD 是⊙O 的弦,且CD ∥AB ,连接OA ,OB ,OC ,OD ,AD ,BC .若∠COD +∠AOB =180°,AB =2√3,OA =2,则AD 的长是 .【答案】√2+√6 【解析】如图,过点A 作AE ⊥AB 交DC 的延长于E ,连接AC ,过点O 作OF ⊥AB 于点F ,过点O 作OG ∥CD∵AB =2√3,OA =2,∴AF =√3,AO =2∴cos∠OAB =AF AO =√32∴∠OAB =30° ∵AO =BO ∴∠AOB =120°∵∠COD +∠AOB =180°∴∠COD =60°∴△COD 是等边三角形,∴CO =AO =2∵CD ∥AB ,OG ∥CD∴OG ∥AB∴∠DOC =∠COG ,∠FAO =∠AOG∴∠COA =∠COG +∠AOG =∠OCD +∠FAO =30°+60°=90°∴△ACO 是等腰直角三角形∴AC =√2AO =2√2∵AC⌢=AC ⌢ ∴∠ADC =12∠AOC =45° ∴△EAD 是等腰直角三角形∴AD =√2AE ,ED =AE设EC =a ,则AF =CD +EC =2+a 在Rt △AEC 中,AE 2+EC 2=AC 2 ∴(2+a)2+a 2=(2√2)2解得a =√3−1或a =−√3−1∴AF =2+a =√3+1 ∴AD =√2AF =√2+√614.如图,AB ,CD 是⊙O 的直径,弦BE 与CD 交于点F ,F 为BE 中点,AF ∥ED .若AF =2√3,则BC 的长为 .【答案】2√6【解析】如图,连接AE .∵F 为BE 中点,CD 是⊙O 的直径, ∴CD ⊥BE .∵AB 是⊙O 的直径, ∴AE ⊥BE , ∴AE ∥DF . ∵AF ∥ED ,∴四边形AEDF 为平行四边形, ∴AE =DF .∵F 为BE 中点,O 为AB 中点,∴OF 为△ABE 中位线, ∴AE =2OF .设OF =x ,则AE =DF =2x , ∴OD =OF +DF =x +2x =3x , ∴AB =2OD =6x ,∴BE =√AB 2−AE 2=√(6x)2−(2x)2=4√2x ,∴EF =12BE =2√2x .∵AF 2=AE 2+EF 2,∴(2√3)2=(2x)2+(2√2x)2, 解得:x 1=1,x 2=−1(舍),∴OF =1,BF =2√2,OC =OD =3, ∴CF =OF +OC =4,∴BC =√CF 2+BF 2=√42+(2√2)2=2√6.故答案为:2√6.15.如图,AB 是半圆O 的直径,D 是半圆O 上一点,C 是 BD⌢ 的中点,连结AC 交BD 于点E ,连结AD ,若BE =4DE ,CE =6,则AB 的长为 .【答案】4√10【解析】如图,连接OC 交BD 于K.∵CD̂=BC ̂ , ∴OC ⊥BD , ∵BE =4DE ,∴可以假设DE =k.BE =4k ,则DK =BK =2.5k ,EK =1.5k , ∵AB 是直径,∴∠ADK =∠DKC =∠ACB =90°, ∴AD ∥CK ,∴AE :EC =DE :EK , ∴AE :6=k :1.5k , ∴AE =4,∵△ECK ∽△EBC , ∴EC 2=EK•EB ,∴36=1.5k×4k , ∵k >0, ∴k = √6 ,∴BC = √BE 2−EC 2 = √96−36 =2 √15 ,∴AB = √AC 2+BC 2 = √102+(2√15)2 =4 √10 .故答案为:4 √10 . 16.如图,在 ⊙O 中,弦 AB =1 ,点 C 在 AB 上移动,连接 OC ,过点 C 作 CD ⊥OC 交 ⊙O 于点 D ,则 CD 的最大值为 .【答案】12【解析】连接 OD ,如图,∵CD ⊥OC , ∴∠DCO =90° ,∴CD =√OD 2−OC 2=√r 2−OC 2 , 当OC 的值最小时, CD 的值最大,而OC ⊥AB 时, OC 最小,此时 OC =√r 2−(12AB)2 ,∴CD 的最大值为 √r 2−(r 2−14AB 2)=12AB =12×1=12.故答案为: 12.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图①,AE 是⊙O 的直径,点C 是⊙O 上的点,连结AC 并延长AC 至点D ,使CD=CA ,连结ED 交⊙O 于点B .(1)求证:点C 是劣弧 AB̂ 的中点; (2)如图②,连结EC ,若AE=2AC=4,求阴影部分的面积. 【答案】(1)解:连接CE , ∵AE 是⊙O 的直径, ∴CE ⊥AD , ∵AC=CD , ∴AE=ED ,∴∠AEC=∠DEC , ∴BĈ=AC ̂ ; ∴点C 是劣弧 AB̂ 的中点; (2)连接BC ,OB ,OC , ∵AE=2AC=4, ∴∠AEC=30°,AE=AD , ∴∠AED=60°,∴△AED 是等边三角形, ∴∠A=60°,∵BĈ = AC ̂ , ∴BÊ = BC ̂ = AC ̂ , ∴AE ∥BC ,∠BOC=60°, ∴S △OBC =S △EBC ,∴S 阴影=S 扇形= 60⋅π×22360= 23 π.18.如图,DE 是△DBC 的外角∠FDC 的平分线,交BC 的延长线于点E ,DE 的延长线与△DBC 的外接圆交于点A .(1)求证:AB =AC ;(2)若∠DCB =90°,sinE =√55,AD =4,求BD 的长.【答案】(1)证明:∵DE 是△DBC 的外角∠FDC 的平分线, ∴∠FDE =∠CDE ,∵∠ADB =∠ACB =∠FDE ,∠ABC =∠CDE , ∴∠ABC =∠ACB ,∴AB =AC(2)解:∵∠DCB =90°, ∴∠DCE =∠BAD =90°,∴∠E +∠CDE =∠ABD +∠ADB =90°, ∵∠ADB =∠FDE =∠CDE , ∴∠ABD =∠E ,∵sinE =√55,∴sin∠ABD =AD BD =√55, ∵AD =4, ∴BD =4√5.19.请阅读下列材料,并完成相应的任务。
浙教版九年级数学上册第3章圆的基本性质单元提高测试卷解析版
浙教版九年级数学上册第3章圆的基本性质单元提高测试卷解析版一、选择题(共10题;共30分)1.如图是几种常见的汽车轮毂图案,图案围绕中心旋转90°后能与原来的图案重合的是()A. B. C. D.2.矩形中,,,如果分别以、为圆心的两圆外切,且点在圆内,点在圆外,那么圆的半径的取值范围是()A. B. C. D.3.如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=70°,∠C=50°,则∠ADB的度数是()A. 70°B. 80°C. 82°D. 85°4.如图,已知AB是⊙O的直径,点C,D在⊙O上,弧AC的度数为100°,则∠D的大小为()A. 30°B. 40°C. 50°D. 60°5.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5,则AB的长为()A. 8B. 12C. 16D. 26.如图,四边形ABCD内接于半径为6的⊙O中,连接AC,若AB=CD,∠ACB=45°,∠ACD=∠BAC,则BC的长度为()A. 6B. 6C. 9D. 97.如图,将边长为3的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为()A. S1>S2B. S1=S2C. S1<S2D. S1=S28.如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A. 12B. 15 -6πC. 30 ﹣12πD. π9.如图,在矩形ABCD中,把矩形ABCD绕点C旋转,得到矩形FEGH,且点E落在AD上,连接BE,BG,交CE于点H,连接FH,若FH平分DEFG,则下列结论:① ;② ;③ ;④ ,其中正确的个数是()A. 1个B. 2个C. 3个D. 4个10.如图,正方形ABCD和等边△AEF都内接于圆O,EF与BC,CD别相交于点G,H.若AE=6,则EG 的长为()A. B. 3﹣ C. D. 2 ﹣3二、填空题(共6题;共18分)11.若扇形的圆心角为45°,半径为3,则该扇形的弧长为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 圆的基本性质能力提升训练
( 一)
.选择题:
1.在⊙ O 上作一条弦 AB ,再作一条与弦 AB 垂直的直径
圆一定有四个公共点 .
C. 若两条弦所在直线平行, 则这两条弦之间的距离一定小于圆 的直径.
D.若两条弦所在直线不平行,则这两条弦一定在圆内有CD , CD 与 AB 交于点 E ,则下列 结论中不一定正确是(
A.
AE BE
B. EO D.
在⊙ O 中,弦 )
B. 40° D. 80°
BC
BD AB ∥CD ,若∠ ABC =40°,则∠
BOD = 3. 在一个圆中,
A.若圆心到两条直线的距离都等于圆的半径, 可能垂直 . 则这两条直线不
B. 若圆心到两条直线的距离都小于圆的半径, 则这两条直线与
A.20
C.50
AC C. CE AD 2. 如给出下列命题,其中正确
公共点.
4.已知⊙ O 的半径 r =3,设圆心 O 到一条直线的距离为 d ,圆 上到这条直线的距离为 2的点的个数为 m ,给出下列命题:① 若 d >5,则 m =0;②若 d =5,则 m =1;③若 1<d <5,则 m =2; ④若 d =1,则 m =3;⑤若 d <1,则 m =4.其中正确命题的个数是 ( )
A.5
B.4
C.3
D.2
5. 如图,⊙ O 的半径 OD ⊥弦 AB 于点 C ,连结 AO 并延长交⊙ O 于点 E ,连结 EC .若 AB =8,CD =2,则 EC 的长为(
)
A. 2 10
B. 2 13
C. 2 15
D. 8 6. 如图, AB 是⊙ O 的直径, = = ,∠CO =D 34°,则∠ AEO 的度数是( )
A.51°
B.
56° C. 68° D. 78° 7. 如图,圆 O 的内接四边形 ABCD 中,BC =DC ,∠BOC =130°, 则∠BAD 的度数是( )
8. 如图,MN 是半径为 2的⊙ O 的直径,点A 在⊙ O 上,∠AM =N 30°,
点 B 为劣弧 AN 的中点.点 P 是直径 MN 上一动点,则
A. 120°
B. 130°
C. 140°
D. 150°
PA+PB的
最小值为()
A.4 2
B.2
C.4
D. 2 2
9.如图,在半径为 6cm的⊙ O中,点A是劣弧BC的中点,点D 是优弧BC 上一点,且 D 300,下列四个结论:①OA BC ; ② BC= 6 3 cm;③四边形ABOC是菱形.其中正确结论的序号是()
A. ①③
B. ①②③
C. ②⑨
D. ①②
10.某景点有一座圆形的建筑,如图,小江从点A沿AO匀速直达建筑中心点O处,停留拍照后,从点O沿OB以同样的速度匀速走到点B,紧接着沿BCA 回到点A,下面可以近似地刻画
11. 如图,在O中,ACB 400,则AOB 度.
12.如图,将长为 8cm的铁丝AB首尾相接围成半径为2cm的扇形,则S扇形= cm.
13.正n 边形的一个内角比一个外角大
100o,则n
14.如图,点P(3a,a)是反比例函y k(k> 0)图像与
⊙ O
的一个交点,图中阴影部分的面积为10 ,则反比例函
数的解析式为_
15.如下图,点A,B,C,D为⊙O上的四个点,AC平分∠ BAD,AC交BD于点E,CE=4,CD=6,则AE的长为
16.如图,已知在O中,弦CD 垂直于直径AB ,垂足为
点E,如果BAD 30 ,OE 2,那么CD
17.如图,⊙O的半径是 4,△ABC是⊙ O的内接三角形,过圆心O 分别作AB. BC. AC的垂线,垂足
为E. F. G,连接EF. 若OG﹦ 1,则EF=
18.如图,四边形ABCD内接于⊙ O,AD. BC的延长线相
交于点
E,AB. DC的延长线相交于点F.若∠E+∠F=80°,则∠A
19.如图,□ABCD的顶点A.B. D在⊙ O上,顶点C在⊙ O的直
径BE上,连接AE,∠E=36o,则∠ ADC的度数是
20.如图,在扇形AOB中,AOB=90,半径OA=6. 将扇形AOB
沿过点B 的直线折叠,点O恰好落在弧AB 上点D
处,折痕交OA于点C,整个阴影部分的而积
三. 解答题:
21.如图,点A. B. C在⊙O上,且四边形OABC是一
平行四边形 . (1)求∠AOC的度数;(2)若⊙ O的半
径为 3,求图中阴影部分的面积.
22.如图,点E是边长为 1 的正方形ABCD的边AB上
任意一点(不含A. B),过B. C. E 三点的圆与BD相交于点F,与CD 相交于点G,与∠ ABC的外角平分线相交于点H.
1)求证:四边形 EFCH 是正方形;( 2)设 BE =x ,△CFG 的
23.(1)如图,正方形 AEFG 的顶点 E . G 在正方形
ABCD 的边 AB . AD 上,连接 BF . DF . 求证:
BF =DF ;(2) 如图,在□ABCD 中, AD =4,AB =8,∠ A =30°,以点 A 为圆心, AD 的长为 半径画弧交 AB 于点 E ,连接 CE ,求阴影部分的面积 . (结 果保留 π )
24.正方形纸片 ABCD 的对称中心为 O ,翻折∠ A 使顶点 A 重合 于对角线 AC 上一点 P ,EF 是折痕:(1)证明: AE =AF ; ( 2)尺规作图:在图中作出当点
P 是 OC 中点时的△ EFP (不 写画法,保留
作图痕迹) ;完成作图后,标注所作 △ 面积为 y ,求 y 与 x 的函数关系式,并求
EFP的外接圆心M.
25. 如图,菱形ABCD的边长为 4,∠BAD=60° 将ACD 绕点A 逆时针旋转 60°得到AC D ,求证:ADC ≌ ADC .
(2)求在旋转过程中线段CD扫过图形
的面积,AC为对角
线. 连结DC .
(1)
22. (1)证明:∵ B . H . C . F . E 在同一圆
上,且∠ EBC =90°
∴∠EFC =90°,∠EHC =90°
又∠ FBC =∠ HBC =45°,∴ CF = CH ∵∠
HBF +∠ HCF =180°,∴∠ HCF =90°
参考答案 题号
1 2 3 4 5 6 7 8 9 10 答案
C D C A B A B D B C
解答题:
21. (1)连结 OB
∵四边形 OABC 是一平行四边形,∴ AB =⊙O 中,OA
∴∠ AOB =60o , 2)
.选择
=OB =OC ,∴AB =OA =OB ,即△OAB 是等边
S 阴影=1
6 A E B
∴四边形EFCH是正方形
(2)∵∠ BFG+∠ BCG=180°,∴∠ BFG=90°
由( 1)知∠ EFC=90°,∴∠ CFG+∠ BFC=∠BFE +∠BFC
∴∠ CFG=∠ BFE,∴ CG=BE=x
∴ DG=DC-CG=1-x
易知△ DFG是等腰直角三角形∴△ CFG中CG 边上的
高为11
DG 1 x
22
2
1 1 1 1
2 1
y x 1 x x
2 2 4 2 16
∴当x 1时,y 有最大值1
2 16
23.(1)证明:∵四边形ABCD和AEFG都是正方形,∴AB=AD,AE=AG=EF=FG,∠BEF=∠DGF=90°,
∵BE=AB﹣AE,DG=AD﹣AG,
∴BE=DG,
BF DG
在△ BEF和△ DGF中,BEF DGF
EF GF
∴△ BEF≌△ DGF(SAS)∴BF=DF;
(2)解:过D点作DF⊥AB于点F. ∵AD=4,AB=8,∠A=30°
∴DF=2 EB=AB- AE=4
2
∴ 阴影部分的面积 =8×2- 304 -4×2× 1 =16- 4π-4
360 2 3 =12- 4π.
3
24.(1)证明:设AP交EF于点Q,∵P是A
的对称点,∴AP⊥EF,在△ AEQ和△ AFQ中:
∵点P在AC上,∴∠EAQ=∠ FAQ =45°
AQ公共边,∠ AQE=∠ AQF=90°
∴△ AEQ≌△ AFQ(ASA)
∴AE=AF
(注:也可以证明△ AEP≌△ AFP,或证AEPF是正方形 .)( 2)尺规作图:OC中点P 作AP垂直平分线EF. 或PE. PF用角平分线.或过P作垂直线等方法获得△ EFP
△ EFP的外接圆心M的位置是EF与AC的交点(位置正确即可)25. 菱形ABCD,
BAC D AC 300
ACD 是由ADC旋转600得到
CAD CAD 300
AC AC
AD AD
ADC ADC SAS
⑵∙β *⅛<×A3CD =^X 2 J3 = 8Λ∕3=S ADC B e_ 60穴Xy S
「5斤扫过的面积为翻号+詈十+M
C
A。