勾股定理与旋转问题专题4

合集下载

专题04 勾股定理压轴题型汇总(原卷版)

专题04 勾股定理压轴题型汇总(原卷版)

专题04 勾股定理压轴题型汇总一、单选题1.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=4,BF=2,△ADG的面积为52,则点F到BC的距离为()A B C D2.七巧板是我国祖先的一项卓越创造,下列四幅图是爱思考的小红同学用如图所示的七巧板拼成的,则这四个图形的周长从大到小排列正确的是()A.乙>丙>甲>丁B.乙>甲>丙>丁C.丙>乙>甲>丁D.丙>乙>丁>甲3.如图,在ABC中,点D是边AB上的中点,连接CD,将BCD△沿着CD翻折,得到ECD,CE与AB交于点F,连接AE.若6,42AB CD AE===,,则点C到AB的距离为()A.72B.C D.4.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为斜边作三个等腰直角ABD △,ACE ,BCF △,图中阴影部分的面积分别记为1S ,2S ,3S ,4S ,若已知Rt ABC 的面积,则下列代数式中,一定能求出确切值的代数式是( )A .4SB .143S S S +-C .234S S S ++D .123S S S +-5.已知a 、b 为两正数,且12a b += ) A .12B .13C .14D .156.如图,在Rt ABC △中,90,30,ACB ABC CD ︒∠︒=∠=平分ACB ∠.边AB 的垂直平分线DE 分别交,CD AB 于点,D E .以下说法错误的是( )A .60BAC ∠=︒B .2CD BE =C .DE AC =D 12BC AB =+7.如图,直角三角形纸片ABC 中,6AB =,8AC =,D 为斜边BC 中点,第1次将纸片折叠,使点A 与点D 重合,折痕与AD 交于点1P ;设1P D 的中点为1D ,第2次将纸片折叠,使点A 与点1D 重合,折痕与AD 交于点2P ;设21P D 的中点为2D ,第3次将纸片折叠,使点A 与点2D 重合,折痕与AD 交于点3P ,则3AP 的长为()A .46325⨯B .36352⨯C .35325⨯D .23352⨯8.如图,等边ABC 的边长为8.P ,Q 分别是边,AC BC 上的点,连结,AQ BP ,交于点O .以下结论:①若AP CQ =,则BAP ACQ ≌;②若AQ BP =,则120AOB ∠=︒;③若,7AP CQ BP ==,则5PC =;④若点P 和点Q 分别从点A 和点B 同时出发,以相同的速度向点C 运动(到达点C 就停止),则点O 经过的路径长为 )A .①②③B .①④C .①②D .①③④9.图中不能证明勾股定理的是( )A .B .C .D .10.如图,在△ABC 和△ADE 中,△BAC =△DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接B ,D 和B ,E .下列四个结论:①BD =CE , ②BD △CE , ③△ACE +△DBC=30°,④()2222BE AD AB =+.其中,正确的个数是( )A .1B .2C .3D .4二、填空题11.如图,△ABC 中,AB =BC ,AD △BC 垂足为D ,BE =AC ,△EAC =3△C ,BD =7,AC ﹣2AE =8,则AE 的长为 __.12.如图,在ABC ∆中,90ACB ∠=︒,点D 、E 分别在AC 、BC 上,且AD BE =,连接DE ,若四边形BADE 的面积是5,6AB =,则DE 的长为________.13.如图,在Rt ABC △中,AB AC =,90BAC ∠=︒,D 、E 为BC 上两点,45DAE ∠=︒,F 为ABC 外一点,且FB BC ⊥,FA AE ⊥,则下列结论:①CE BF =;②222BD CE DE +=;③14ADE EF SAD ⋅=;④2223CE BE AE +=,其中正确的是(写代号)________.14.在Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,2BC =,D 为AC 中点,E 为边AB 上一动点,当四边形BCDE 有一组邻边相等时,则AE 的长为_____________.15.如图,在四边形ABCD 中,45B C ∠=∠=︒,P 是BC 上一点,PA PD =,90APD ∠=︒,AB CDBC+=______.16.如图,在Rt ABC 中,90C ∠=︒,点D 在BC 上,点E 为Rt ABC △外一点,且ADE 为等边三角形,60CBE ∠=︒,若7BC =,4BE =,则ADE 的边长为__________.三、解答题17.如图,△MON =90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =2,BC =1,求运动过程中,点D 到点O 的最大距离.18.如图,是由边长为1的小正方形构成的10×10网格,每个小正方形的顶点叫做格点.五边形ABCDE 的顶点在格点上,仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题: (1)五边形ABCDE 的周长为 .(2)在AB 上找点F ,使E ,C 两点关于直线DF 对称;(3)设DF 交CE 于点G ,连接AG ,直接写出四边形AEDG 的面积; (4)在直线DF 上找点H ,使△AHB =135°.19.已知△ACB和△ECD都是等腰直角三角形,△ACB=△ECD=90°.(1)如图1,若D为△ACB内部一点,请判断AE与BD的数量关系,并说明理由;(2)如图2,若D为AB边上一点,AD=5,BD=12,求DE的长.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,已知△CAE=90°,AC=AE,∠=︒,AB=BC=1,求BE的长.45ABC图1 图2 图320.已知在△ABC中,AB=AC,点D是BC边上一点,连接AD,在直线AD右侧作等腰△ADE,AD=AE.(1)如图1,若△BAC=△DAE=90°,连接CE.求证:△ABD△△ACE;(2)如图2,若△BAC=△DAE=120°,AB=AC=2.①当AE△BC时,求线段BD的长;②取AC边的中点F,连接EF.当点D从点B运动到点C过程中,求线段EF长度的最小值与最大值.一、单选题1.(2020·苏州市吴江区盛泽第二中学)如图,在△ABC中,AC=BC,△ACB=90°,点D在BC 上,BD=6,DC=2,点P是AB上的动点,则PC+PD的最小值为()A .8B .10C .12D .142.(2020·宁波市第十五中学九年级期中)如图,ACB ∆和ECD ∆都是等腰直角三角形,CA CB =,CE CD =,ACB ∆的顶点A 在ECD ∆的斜边DE 上,AB 、CD 交于F ,若6AE =,8AD =,则AF 的长为( )A .5B .407C .285D .63.(2020·四川)(2019秋•陇西县期中)若△ABC 中,AB =7,AC =8,高AD =6,则BC 的长是( )A .B .C .D .以上都不对4.(2019·浙江温州市·九年级)如图,在ABC 中,AC =13BC =,AD 、CE 分别是ABC 的高线与中线,点F 是线段CE 的中点,连接DF .若DF CE ⊥,则AB =( )A .10B .11C .12D .13称其为“赵爽弦图”.如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1+S 2+S 3=12,则下列关于S 1、S 2、S 3的说法正确的是( )A .S 1=2B .S 2=3C .S 3=6D .S 1+S 3=86.(2019·常熟市第一中学八年级月考)如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm7.(2020·四川省岳池中学八年级月考)在△ABC 中,△BCA=90△,AC=6,BC=8,D 是AB 的中点,将△ACD 沿直线CD 折叠得到△ECD ,连接BE ,则线段BE 的长等于( )A .5B .75C .145D .3658.(2021·山西)如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cm B .152cm C .7cm D .132cm二、填空题 9.(2021·华东师范大学青岛实验中学八年级期中)如图,在Rt ABC 中,ACB 90,AC 6,BC 8∠=︒==,AD 平分CAB ∠交BC 于D 点,E 、F 分别是AD 、AC 上的动点,则CE EF +的最小值为________.10.(2021·汝南县清华园学校九年级期末)如图,在Rt ABC 的纸片中,90C ∠=︒,5AC =,13AB =.点D 在边BC 上,以AD 为折痕将ADB △折叠得到ADB ',AB '与边BC 交于点E .若DEB '为直角三角形,则BD 的长是_______.11.(2019·浙江八年级期末)如图,在Rt ABC △中,90C ∠=︒,点D 为边AC 上的一点,3CD CB ==,//DE BC ,BF CE ⊥交AC 于点F ,交CE 于点G .若1DE =,图中阴影部分的面积为4,则BCG 的周长为______.12.(2020·成都嘉祥外国语学校)如矩形ABCD 中,AB =4,AD =5,点E 是线段CD 上的一点(不与端点重合),连接BE ,将△BCE 沿BE 折叠,使点C 落在C ′处,连接C ′C ,C ′D ,当△C ′CD 是等腰三角形时,CE 的长为_____.13.(2020·福建九年级)已知m 为______. 14.(2019·义乌市稠州中学教育集团八年级月考)如图,长方形ABCD 中,6AB CD ==,10AD BC ==,点E 为射线AD 上的一个动点,若ABE △与A BE '关于直线BE 对称,若A BC '为直角三角形,则AE 的长为______.三、解答题15.(2018·江苏苏州·八年级月考)如图,有一个直角三角形纸片,两直角边6cm AC =,8cm BC =,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出线段CD 长的平方吗?16.(2020·朝阳·北京八十中九年级月考)已知45AOB ∠=︒,H 为射线OA 上一定点,1OH =,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转135°,得到线段PN ,连接ON .(1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON QP =,并证明.17.(2020·四川成都实外八年级月考)在Rt ABC 中,90BAC ∠=︒,如图1,分别以AB ,AC ,BC 为边向外作等边三角形ABF ,ACE ,BCD(1)若ACE S =△,ABF S =△BCD S =△______. (2)如图2,将BCD △沿BC 翻折,点D 的对应点记为P ,①连接EP ,请求出AEP ∠的度数.②若AB =AC 的长度变化,点P 也随之运动,试探究AP 的值是否变化,若不变,求出AP 的值;若改变,求出AP 的最小值.18.(2021·四川内江·八年级期末)问题发现:(1)如图1,已知C 为线段AB 上一点,分别以线段AC 、BC 为直角边作等腰直角三角形,△ACD=90°,CA=CD ,CB=CE ,连接AE 、BD ,则AE 、BD 之间的数量关系为___;位置关系为 .拓展探究:(2)如图2,把Rt△ACD 绕点C 逆时针旋转,线段AE 、BD 交于点F ,则 AE 与 BD 之间的关系是否仍然成立?请说明理由.拓展延伸:(3)如图3,已知AC=CD ,BC=CE ,△ACD=△BCE=90°,连接AB 、AE 、AD ,把线段 AB 绕点A 旋转,若AB=5,AC=3,请直接写出旋转过程中线段AE 的最大值.19.(2020·浙江)定义:若一个三角形存在两边平方和等于第三边平方的3倍,则称此三角形为“平方倍三角形”.(1和2,次三角形是否为平方倍三角形?请你作出判断并说明理由;(2)若一个直角三角形是平方倍三角形,求该直角三角形的三边之比(结果按从小到大的顺序排列);(3)如图,Rt ABC 中,90ACB ∠=︒,5BC =,CD 为ABC 的中线,若BCD △是平方倍三角形,求ABC 的面积.20.(2020·浙江)如图,ABC和ADE都是等腰直角三角形,90∠=∠=︒.BAC DAE(1)如图1,点D、E都在ABC外部,连结BD和CE相交于点F.①判断BD与CE的位置关系和数量关系,并说明理由;②若2AB=,AD=2222BF CF DF EF+++的值.(2)如图2,当点D在ABC内部,点E在ABC外部时,连结BE、CD,当3AB=,AD 时,求22+的值.BE CD。

2023-2024学年八年级数学下册 专题04 勾股定理常考压轴题汇总(原卷版)

2023-2024学年八年级数学下册 专题04 勾股定理常考压轴题汇总(原卷版)

专题04勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.182.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm26.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.57.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.4109.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.611.如图,某小区有一块长方形花圃,为了方便居民不用再走拐角,打算用瓷砖铺上一条新路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.14413.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.1019.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.3020.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.4121.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC =S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.1423.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ,得到图2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为cm.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接PA,当△ABP为等腰三角形时,t的值为.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB 的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为.29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为寸.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A千米.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.37.如图,Rt△ABC中,.点P为△ABC内一点,PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.。

勾股定理与旋转问题专题

勾股定理与旋转问题专题
202X
勾股定理与旋 转问题专题
单击此处添加文本具体内容,简明扼要地阐述 你的观点
C
一.在△ABC中,∠ACB=90°,
P
AC=BC,P是△ABC内一点,
A
B
PB=1,PC=2,PA=3.
求∠BPC
P' C
P
A
B
A P
B
D
二.P是正方形ABCD内一点, PA=1,PB=2,PC=3,以B为旋转 中心,将△ABP按顺时针方向旋 转,使得点A与C重合,点P旋 转到点G.
E
A
D FC
C NP
BM
练习7、如图,在△ABC中,∠B=90°, M为AB上一点,AM=BC,N为BC上一 点,CN=BM,连接AN、CM交于点P。 求∠APM的大小。
A
求证:MN2=AM2+BN2 B
练习5、在等腰
C
Rt△ABC中,
∠CAB=90°,P是三角形
内一点,且
PA=1,PB=3,PC2=7
求:∠CPA的大小?
P
A
B
B
练习6.如图所示, △ABC是等腰直角三角 形,AB=AC,D是斜边 BC的中点,E、F分别 是AB、AC边上的点, 且DE⊥DF,若BE=12, CF=5.求线段EF的长。
求∠APB
C
A
练习2.P是正三角
P
形ABC内一点,且
PA=3a,PB=4a,PC
=5a.
B
C
求∠APB
A
练习3.在四边形
ABCD中,
B ∠ABC=30°,
∠ADC=60°,
AD=CD.
求证: BD2=AB2+BC 2

与勾股定理相关的旋转问题

与勾股定理相关的旋转问题

例3 如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC 边上的中点,过点D作DE⊥DF,交AB于点E,交BC于点F。求 证:AE2+CF2=DE2+DF2.
即学即练 已知凸四边形ABCD中,∠ABC =∠ADC = 45°,AC=AD,
求证:BD2=2AB2+BC2.
小结
1.这节课你学到了哪些解题的思想和方法? 2.本节课你还有什么困惑?
与勾股定理相关的旋转问题
学习目标
1.掌握与勾股定理相关的旋转问题模型; 2.会用旋转法做辅助线,构造直角三角形 使用勾股定理; 3.掌握与勾股定理相关的旋转问题的解题 方法和技巧。
方法指导:对于条件较分散而题中又含 公共顶点相等的边(一般是相邻的边) 时,常采用旋转法,将分散条件集中到 一个三角形中去。
例1 如图,在△ABC中,∠BAC=90°,AB=AC,点D,E在BC 上,且∠DAE=45°,求证:CD2+BE2=DE2.
即学即练 如图,等腰直角三角形ABC中,点D在斜边BC上,求证:
BD2+CD2=2AD2.

例2 如图所示,在△ABC中,∠ACB=90°,AC=BC,P是 △ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数。
即学即练 如图,P是等边三角形ABC内一点。
(1)若PA=4,PC=3,PB=5,求∠APC; (2)若∠APB:∠BPC:∠CPA=5:6:7,则以PA、PB、PC 为边的三角形的三个角分别是多少?
即学即练 如图,P是正方形ABCD内一点,且 PA 1, PB 2, PC 3 ,
求∠APB的度数。

题型十一 综合探究题 类型四 与旋转有关的探究题(专题训练)(解析版)

题型十一 综合探究题 类型四 与旋转有关的探究题(专题训练)(解析版)

题型十一综合探究题类型四与旋转有关的探究题(专题训练)D为BC的中点,E,F分1.(2022·重庆市B卷)在△ABC中,∠BAC=90°,AB=AC=别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.【答案】(1)解:如图1,连接CP,由旋转知,CF=CG,∠FCG=90°,∴△FCG为等腰直角三角形,∵点P是FG的中点,∴CP⊥FG,∵点D是BC的中点,BC,∴DP=12在Rt△ABC中,AB=AC==4,∴BC=∴DP=2;(2)证明:如图2,过点E作EH⊥AE交AD的延长线于H,∴∠AEH=90°,由旋转知,EG=EF,∠FEG=90°,∴∠FEG=∠AEH,∴∠AEG=∠HEF,∵AB=AC,点D是BC的中点,∴∠BAD=∠CAD=1∠BAC=45°,2∴∠H=90°―∠CAD=45°=∠CAD,∴AE=HE,∴△EGA≌△EFH(SAS),∴AG=FH,∠EAG=∠H=45°,∴∠EAG=∠BAD=45°,∵∠AMF=180°―∠BAD―∠AFM=135°―∠AFM,∵∠AFM=∠EFH,∴∠AMF=135°―∠EFH,∵∠HEF=180°―∠EFH―∠H=135°―∠EFH,∴∠AMF=∠HEF,∵△EGA≌△EFH,∴∠AEG=∠HEF,∵∠AGN=∠AEG,∴∠AGN=∠HEF,∴∠AGN=∠AMF,∵GN=MF,∴△AGN≌△AMF(AAS),∴AG=AM,∵AG=FH,∴AM=FH,∴AF +AM =AF +FH =AH;(3)解:∵点E 是AC 的中点,∴AE =12AC 根据勾股定理得,BE ==由折叠直,BE =B′E∴点B′是以点E由旋转知,EF =EG ,∴点G 是以点E 为圆心,EG 为半径的圆上,∴B′G 的最小值为B′E ―EG ,要B′G 最小,则EG 最大,即EF 最大,∵点F 在AD 上,∴点在点A 或点D 时,EF∴线段B′G2.(湖南省郴州市2021年中考数学试卷)如图1,在等腰直角三角形ABC 中,90BAC Ð=°.点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90°得到AG ,连接GC ,HB .(1)证明:AHB AGC V V ≌;(2)如图2,连接GF ,HC ,AF 交AF 于点Q .①证明:在点H 的运动过程中,总有90HFG Ð=°;②若4AB AC ==,当EH 的长度为多少时,AQG V 为等腰三角形?【答案】(1)见详解;(2)①见详解;②当EH 的长度为2时,AQG V 为等腰三角形【分析】(1)由旋转的性质得AH=AG ,∠HAG=90°,从而得∠BAH=∠CAG ,进而即可得到结论;(2)①由AHB AGC V V ≌,得AH=AG ,再证明AEH AFG V V ≌,进而即可得到结论;②AQG V 为等腰三角形,分3种情况:(a )当∠QAG=∠QGA=45°时,(b )当∠GAQ=∠GQA=67.5°时,(c )当∠AQG=∠AGQ=45°时,分别画出图形求解,即可.【详解】解:(1)∵线段AH 绕点A 逆时针方向旋转90°得到AG ,∴AH=AG ,∠HAG=90°,∵在等腰直角三角形ABC 中,90BAC Ð=°,AB=AC ,∴∠BAH=90°-∠CAH=∠CAG ,∴AHB AGC V V ≌;(2)①∵在等腰直角三角形ABC 中,AB=AC ,点E ,F 分别为AB ,AC 的中点,∴AE=AF ,AEF V 是等腰直角三角形,∵AH=AG ,∠BAH =∠CAG ,∴AEH AFG V V ≌,∴∠AEH=∠AFG=45°,∴∠HFG=∠AFG+∠AFE=45°+45°=90°,即:90HFG Ð=°;②∵4AB AC ==,点E ,F 分别为AB ,AC 的中点,∴AE=AF=2,∵∠AGH=45°,AQG V 为等腰三角形,分3种情况:(a )当∠QAG=∠QGA=45°时,如图,则∠HAF=90°-45°=45°,∴AH 平分∠EAF ,∴点H 是EF 的中点,∴12==(b)当∠GAQ=∠GQA=(180°-45°)÷2=67.5°时,如图,则∠EAH=∠GAQ=67.5°,∴∠EHA=180°-45°-67.5°=67.5°,∴∠EHA=∠EAH,∴EH=EA=2;(c)当∠AQG=∠AGQ=45°时,点H与点F重合,不符合题意,舍去,V为等腰三角形.综上所述:当EH的长度为2时,AQG【点睛】本题主要考查等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定定理,根据题意画出图形,进行分类讨论,是解题的关键.3.(2021·四川中考真题)在等腰ABC V 中,AB AC =,点D 是BC 边上一点(不与点B 、C 重合),连结AD .(1)如图1,若60C Ð=°,点D 关于直线AB 的对称点为点E ,结AE ,DE ,则BDE Ð=________;(2)若60C Ð=°,将线段AD 绕点A 顺时针旋转60°得到线段AE ,连结BE .①在图2中补全图形;②探究CD 与BE 的数量关系,并证明;(3)如图3,若AB AD k BC DE==,且ADE C Ð=Ð,试探究BE 、BD 、AC 之间满足的数量关系,并证明.【答案】(1)30°;(2)①见解析;②CD BE =;见解析;(3)()AC k BD BE =+,见解析【分析】(1)先根据题意得出△ABC 是等边三角形,再利用三角形的外角计算即可(2)①按要求补全图即可②先根据已知条件证明△ABC 是等边三角形,再证明AEB ADC △≌△,即可得出CD BE=(3)先证明AC BC AD DE=,再证明ACB ADE △∽△,得出BAC EAD Ð=Ð,从而证明AEB ADC △≌△,得出BD BE BC +=,从而证明()AC k BD BE =+【详解】解:(1)∵AB AC =,60C Ð=°∴△ABC 是等边三角形∴∠B=60°∵点D 关于直线AB 的对称点为点E∴AB ⊥DE ,∴BDE Ð=30°故答案为:30°;(2)①补全图如图2所示;②CD 与BE 的数量关系为:CD BE =;证明:∵AB AC =,60BAC Ð=°.∴ABC V 为正三角形,又∵AD 绕点A 顺时针旋转60°,∴AD AE =,60EAD Ð=°,∵60BAD DAC Ð+Ð=°,60BAD BAE Ð+Ð=°,∴BAE DAC Ð=Ð,∴AEB ADC △≌△,∴CD BE =.(3)连接AE .∵AB AD k BC DE ==,AB AC =,∴AC AD BC DE=.∴AC BC AD DE =.又∵ADE C Ð=Ð,∴ACB ADE △∽△,∴BAC EAD Ð=Ð.∵AB AC =,∴AE AD =,∴BAD DAC BAD BAE Ð+Ð=Ð+Ð,∴DAC BAE Ð=Ð,∴AEB ADC △≌△,CD BE =.∵BD DC BC +=,∴BD BE BC +=.又∵AC k BC=,∴()AC k BD BE =+.【点睛】本题考查相似三角形的证明及性质、全等三角形的证明及性质、三角形的外角、轴对称,熟练进行角的转换是解题的关键,相似三角形的证明是重点4.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα°<≤°,得到矩形'''AB C D [探究1]如图1,当90α=°时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.【答案】[探究1]BC =;[探究2]'D M DM =,证明见解析;[探究3]2MN PN DN =×,证明见解析【分析】[探究1] 设BC x =,根据旋转和矩形的性质得出''//D C DA ,从而得出''D C B ADB D D ∽,得出比例式'''D C D B AD AB=,列出方程解方程即可;[探究2] 先利用SAS 得出''AC D DBA D D ≌,得出'DAC ADB Ð=Ð,'ADB AD M Ð=Ð,再结合已知条件得出''MDD MD D Ð=Ð,即可得出'D M DM =;[探究3] 连结AM ,先利用SSS 得出ADM ADM D D ≌,从而证得MN AN =,再利用两角对应相等得出NPA NAD D D ∽,得出PN AN AN DN=即可得出结论.【详解】[探究1]如图1,设BC x =.∵矩形ABCD 绕点A 顺时针旋转90°得到矩形'''AB C D ,∴点A ,B ,'D 在同一直线上.∴'AD AD BC x ===,'1DC AB AB ===,∴''1D B AD AB x =-=-.∵'90BAD D Ð=Ð=°,∴//D C DA ¢¢.又∵点'C 在DB 延长线上,∴''D C B ADB D D ∽,∴''D C AD 1x =解得1x =2x (不合题意,舍去)∴BC =[探究2] 'D M DM =.证明:如图2,连结'DD .∵'//'D M AC ,∴'''AD M D AC Ð=Ð.∵'AD AD =,''90AD C DAB Ð=Ð=°,''D C AB =,∴()''AC D DBA SAS D D ≌.∴'D AC ADB ¢Ð=Ð,'ADB AD M Ð=Ð,∵AD AD =,''ADD AD D Ð=Ð,∴''MDD MD D Ð=Ð,∴'D M DM =.[探究3]关系式为2MN PN DN =×.证明:如图3,连结AM .∵'D M DM =,'AD AD =,AM AM =,∴()ADM AD M SSS ¢D D ≌.∴'MAD MAD Ð=Ð,∵AMN MAD NDA Ð=Ð+Ð,'NAM MAD NAP Ð=Ð+Ð,∴AMN NAM Ð=Ð,∴MN AN =.在NAP D 与NDA D 中,ANP DNA Ð=Ð,NAP NDA Ð=Ð,∴NPA NAD D D ∽,∴PN AN AN DN=,∴2AN PN DN =×.∴2MN PN DN =×.【点睛】本题考查了矩形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,解一元二次方程等,解题的关键是灵活运用这些知识解决问题.5.(2021·浙江中考真题)如图,在菱形ABCD 中,ABC Ð是锐角,E 是BC 边上的动点,将射线AE 绕点A 按逆时针方向旋转,交直线CD 于点F .(1)当AE BC EAF ABC ,^Ð=Ð时,①求证:AE AF =;②连结BD EF ,,若25EF BD =,求ABCDn AEF菱形SS的值;(2)当12EAF BAD Ð=Ð时,延长BC 交射线AF 于点M ,延长DC 交射线AE 于点N ,连结AC MN ,,若42AB AC ==,,则当CE 为何值时,AMN V 是等腰三角形.【答案】(1)①见解析;②825;(2)当43CE =或2或45时,AMN V 是等腰三角形.【分析】(1)根据菱形的性质得到边相等,对角相等,根据已知条件证明出BAE DAF Ð=Ð,得到ABE ADF V V ≌,由=AE AF ,CE CF =,得到AC 是EF 的垂直平分线,得到//EF BD ,CEF CBD ∽△△,再根据已知条件证明出AEF BAC V V ∽,算出面积之比;(2)等腰三角形的存在性问题,分为三种情况:当AM AN =时,ANC MAC V V ≌,得到CE=43;当NA NM =时,CEN BEA V V ≌,得到CE=2;当=MA MN 时,CEN BEA ∽△△,得到CE=45.【详解】(1)①证明:在菱形ABCD 中,//AB AD ABC ADC AD BC ,,=Ð=Ð,AE BC AE AD Q ,^\^,90ABE BAE EAF DAF \Ð+Ð=Ð+Ð=°,,EAF ABC BAE DAF Ð=Ð\Ð=ÐQ ,∴ABE ADF V V ≌(ASA),∴=AE AF .②解:如图1,连结AC .由①知,ABE ADF BE DF CE CF V V ≌,,\=\=,AE AF AC EF Q ,=\^.在菱形ABCD 中,//AC BD EF BD CEF CBD V V ,,∽^\\,∴25EC EF BC BD ==,设=2EC a ,则534AB BC a BE a AE a ,,===\=.AE AF AB BC EAF ABC Q ,,==Ð=Ð,∴AEF BAC V V ∽,∴22625=415AEF BAC S AE a S AB a V V æöæöç÷ç÷==ç÷ç÷èøèø,∴1168222525AEF AEF BAC ABCD S S S S V V V 菱形==´=. (2)解:在菱形ABCD 中,1122BAC BAD EAF BAD Q ,Ð=ÐÐ=Ð,BAC EAF BAE CAM ,\Ð=Ð\Ð=Ð,//C AB CD BAE AN ANC CAM Q ,,\Ð=Ð\Ð=Ð,同理,AMC NAC Ð=Ð,∴AC AM MAC ANC CN NAV V ∽,\=.AMN V 是等腰三角形有三种情况:①如图2,当AM AN =时,ANC MAC V V ≌,2CN AC \==,//AB CN CEN BEA Q V V ,∽\,142CE CN AB BE AB Q ,=\==,14433BC CE BC Q ,=\==.②如图3,当NA NM =时,NMA NAM BAC BCA Ð=Ð=Ð=Ð,12AM AC ANM ABC AN AB V V ∽,\==,24CN AC CEN BEA V V ,≌\==\,∴122CE BE BC ===.③如图4,当=MA MN 时,MNA MAN BAC BCA AMN ABC V V ,∽Ð=Ð=Ð=Ð\,1212AM AB CN AC AN AC ,\==\==,14CE CN CEN BEA BE AB QV V ∽,\==,1455CE BC \==.综上所述,当43CE =或2或45时,AMN V 是等腰三角形.【点睛】本题主要考查了菱形的基本性质、相似三角形的判定与性质、菱形中等腰三角形的存在性问题,解决本题的关键在于画出三种情况的等腰三角形(利用两圆一中垂),通过证明三角形相似,利用相似比求出所需线段的长.6.(2020·山东中考真题)在等腰△ABC 中,AC =BC ,ADE V 是直角三角形,∠DAE =90°,∠ADE =12∠ACB ,连接BD ,BE ,点F 是BD 的中点,连接CF .(1)当∠CAB =45°时.①如图1,当顶点D 在边AC 上时,请直接写出∠EAB 与∠CBA 的数量关系是 .线段BE 与线段CF 的数量关系是 ;②如图2,当顶点D 在边AB 上时,(1)中线段BE 与线段CF 的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC 底边上的高CM ,并取BE 的中点N ,再利用三角形全等或相似有关知识来解决问题;思路二:取DE 的中点G ,连接AG ,CG ,并把CAG V 绕点C 逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB =30°时,如图3,当顶点D 在边AC 上时,写出线段BE 与线段CF 的数量关系,并说明理由.【答案】(1)①EAB ABC Ð=Ð,12CF BE =;②仍然成立,证明见解析;(2)BE =,理由见解析.【分析】(1)①如图1中,连接BE ,设DE 交AB 于T .首先证明,,AD AE BD BE ==再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2﹣1中,取AB 的中点M ,BE 的中点N ,连接CM ,MN .证明CMF BMN V V ≌(SAS ),可得结论.解法二:如图2﹣2中,取DE 的中点G ,连接AG ,CG ,并把CAG V 绕点C 逆时针旋转90°得到CBT V ,连接DT ,GT ,BG .证明四边形BEGT 是平行四边形,四边形DGBT 是平行四边形,可得结论.(2)结论:BE =.如图3中,取AB 的中点T ,连接CT ,FT .证明BAE CTF V V ∽,可得结论.【详解】解:(1)①如图1中,连接BE ,设DE 交AB 于T .∵CA=CB,∠CAB=45°,∴∠CAB=∠ABC=45°,∴∠ACB=90°,∵∠ADE=12∠ACB=45°,∠DAE=90°,∴∠ADE=∠AED=45°,∴AD=AE,90,DAEÐ=°Q45, EAB DAT ABC\Ð=Ð=Ð=°∴AT⊥DE,DT=ET,∴AB垂直平分DE,∴BD=BE,∵∠BCD=90°,DF=FB,∴CF=12BD,∴CF=12BE.故答案为:∠EAB=∠ABC,CF=12BE.②结论不变.解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.∵∠ACB =90°,CA =CB ,AM =BM ,∴CM ⊥AB ,CM =BM =AM ,由①得:,AD AE =设AD =AE =y .FM =x ,DM =a ,Q 点F 是BD 的中点,则DF =FB =a+x ,∵AM =BM ,∴y+a =a+2x ,∴y =2x ,即AD =2FM ,∵AM =BM ,EN =BN ,∴AE =2MN ,MN ∥AE ,∴MN =FM ,∠BMN =∠EAB =90°,∴∠CMF =∠BMN =90°,∴CMF BMN V V ≌(SAS ),∴CF =BN ,∵BE =2BN ,∴CF =12BE .解法二:如图2﹣2中,取DE 的中点G ,连接AG ,CG ,并把△CAG 绕点C 逆时针旋转90°得到CBT V ,连接DT ,GT ,BG .∵AD =AE ,∠EAD =90°,EG =DG ,∴AG ⊥DE ,∠EAG =∠DAG =45°,AG =DG =EG ,∵∠CAB =45°,∴∠CAG =90°,∴AC ⊥AG ,∴AC ∥DE ,∵∠ACB =∠CBT =90°,//,AC BT \∴AC ∥BT ∥DE ,∵AG =BT ,∴DG =BT =EG ,∴四边形BEGT 是平行四边形,四边形DGBT 是平行四边形,∴BD 与GT 互相平分,,BE GT =∵点F 是BD 的中点,∴BD 与GT 交于点F ,∴GF =FT ,由旋转可得;,90,CG CT GCT =Ð=°\ GCT V 是等腰直角三角形,∴CF =FG =FT ,∴CF =12BE .(2)结论:BE =.理由:如图3中,取AB 的中点T ,连接CT ,FT .∵CA =CB ,∴∠CAB =∠CBA =30°,∠ACB =120°,∵AT =TB ,∴CT ⊥AB ,tan 30CT AT \°==∴AT ,∴AB =,∵DF =FB ,AT =TB ,∴TF ∥AD ,AD =2FT ,∴∠FTB =∠CAB =30°,∵∠CTB =∠DAE =90°,∴∠CTF =∠BAE =60°,∵∠ADE =12∠ACB =60°,tan 60AE AD\°==∴AE =,∴AB AE CT FT==,∴BAE CTF V V ∽,∴BE BA CF CT ==,∴BE =.【点睛】本题属于相似形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,锐角三角函数的应用,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.7.(2021·江苏中考真题)已知正方形ABCD 与正方形AEFG ,正方形AEFG 绕点A 旋转一周.(1)如图①,连接BG 、CF ,求CF BG的值;(2)当正方形AEFG 旋转至图②位置时,连接CF 、BE ,分别去CF 、BE 的中点M 、N ,连接MN 、试探究:MN 与BE 的关系,并说明理由;(3)连接BE 、BF ,分别取BE 、BF 的中点N 、Q ,连接QN ,AE=6,请直接写出线段QN 扫过的面积.【答案】(12)1;2MN BE MN BE ^=;(3)9p 【分析】(1)由旋转的性质联想到连接AF AC 、,证明CAF BAG D D ∽即可求解;(2)由M 、N 分别是CF 、BE 的中点,联想到中位线,故想到连接BM 并延长使BM=MH ,连接FH 、EH ,则可证BMC HMF D D ≌即可得到HF BC BA ==,再由四边形BEFC 内角和为360°可得BAC HFE Ð=Ð,则可证明BAE HFE D D ≌,即BHE D 是等腰直角三角形,最后利用中位线的性质即可求解;(3)Q 、N 两点因旋转位置发生改变,所以Q 、N 两点的轨迹是圆,又Q 、N 两点分别是BF 、BE 中点,所以想到取AB 的中点O ,结合三角形中位线和圆环面积的求解即可解答.【详解】解:(1)连接AF AC、Q 四边形ABCD 和四边形AEFG 是正方形,,90AB BC AG FG BAD GAE CBA AGF \==Ð=Ð=Ð=Ð=°Q AF AC 、分别平分,EAG BADÐÐ45BAC GAF \Ð=Ð=°BAC CAG GAF CAG \Ð+Ð=Ð+Ð即BAG CAFÐ=Ð且,ABC AGF D D 都是等腰直角三角形AC AF AB AG\==CAF BAG \D D ∽CF AC BG AB \==(2)连接BM 并延长使BM=MH ,连接FH 、EHM Q 是CF 的中点CM MF\=又CMB FMHÐ=ÐCMB FMH\D D ≌,BC HF BCM HFM\=Ð=Ð在四边形BEFC 中360BCM CBE BEF EFC Ð+Ð+Ð+Ð=°又90CBA AEF Ð=Ð=°3609090180BCM ABE AEB EFC \Ð+Ð+Ð+Ð=°-°-°=°即180HFM EFC ABE AEB Ð+Ð+Ð+Ð=°即180HFE ABE AEB Ð+Ð+Ð=°180BAE ABE AEB Ð+Ð+Ð=°Q HFE BAE\Ð=Ð又四边形ABCD 和四边形AEFG 是正方形,BC AB FH EA EF\===BAE HFE\D D ≌.BE HE BEA HEF\=Ð=Ð90HEF HEA AEF Ð+Ð=Ð=°Q 90BEA HEA BEH\Ð+Ð=°=Ð\三角形BEH 是等腰直角三角形Q M 、N 分别是BH 、BE 的中点1//,2MN HE MN HE \=190,2MNB HEB MN BE \Ð=Ð=°=1,2MN BE MN BE \^=(3)取AB 的中点O ,连接OQ 、ON ,连接AF在ABF D 中,O 、Q 分别是AB 、BF 的中点12OQ AF \=同理可得12ON AE =AF ==Q3OQ ON \==所以QN扫过的面积是以O为圆心,3为半径的圆环的面积(2239\=-=.S p p p【点睛】本题考察旋转的性质、三角形相似、三角形全等、正方形的性质、中位线的性质与应用和动点问题,属于几何综合题,难度较大.解题的关键是通过相关图形的性质做出辅助线.8.(2020•内江)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.(1)连结CQ,求证:AP=CQ;(2)若AP=1AC,求CE:BC的值;4(3)求证:PF=EQ.【分析】(1)证明△BAP≌△BCQ(SAS)可得结论.AC,可以假设AP=CQ=a,则(2)过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.由AP=14PC=3a,解直角三角形求出CH.BT,利用平行线分线段成比例定理解决问题即可.(3)证明△PGB≌△QEB,推出EQ=PG,再证明△PFG是等腰直角三角形即可.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD 是正方形,∴BA =BC ,∠ABC =90°.∴∠ABC =∠PBQ .∴∠ABC ﹣∠PBC =∠PBQ ﹣∠PBC ,即∠ABP =∠CBQ .在△BAP 和△BCQ 中,∵BA =BC ∠ABP =∠CBQ BP =BQ,∴△BAP ≌△BCQ (SAS ).∴CQ =AP .(2)解:过点C 作CH ⊥PQ 于H ,过点B 作BT ⊥PQ 于T .∵AP =14AC ,∴可以假设AP =CQ =a ,则PC =3a ,∵四边形ABCD 是正方形,∴∠BAC =∠ACB =45°,∵△ABP ≌△CBQ ,∴∠BCQ =∠BAP =45°,∴∠PCQ =90°,∴PQ ==,∵CH ⊥PQ ,∴CH =PC ⋅CQ PQ =,∵BP =BQ ,BT ⊥PQ ,∴PT =TQ ,∵∠PBQ =90°,∴BT =12PQ =,∵CH ∥BT ,∴CEEB =CH BT ==35,∴CE CB =38.(3)解:结论:PF =EQ ,理由是:如图2,当F 在边AD 上时,过P 作PG ⊥FQ ,交AB 于G ,则∠GPF =90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.9.(2020•郴州)如图1,在等腰直角三角形ADC中,∠ADC=90°,AD=4.点E是AD的中点,以DE为边作正方形DEFG,连接AG,CE.将正方形DEFG绕点D顺时针旋转,旋转角为α(0°<α<90°).(1)如图2,在旋转过程中,①判断△AGD与△CED是否全等,并说明理由;②当CE=CD时,AG与EF交于点H,求GH的长.(2)如图3,延长CE交直线AG于点P.①求证:AG⊥CP;②在旋转过程中,线段PC的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【分析】(1)①结论:△AGD≌△CED.根据SAS证明即可.②如图2中,过点A作AT⊥GD于T.解直角三角形求出AT,GT,再利用相似三角形的性质求解即可.(2)①如图3中,设AD交PC于O.利用全等三角形的性质,解决问题即可.②因为∠CPA=90°,AC是定值,推出当∠ACP最小时,PC的值最大,推出当DE⊥PC时,∠ACP的值最小,此时PC的值最大,此时点F与P重合(如图4中).【解析】(1)①如图2中,结论:△AGD≌△CED.理由:∵四边形EFGD是正方形,∴DG=DE,∠GDE=90°,∵DA=DC,∠ADC=90°,∴∠GDE=∠ADC,∴∠ADG=∠CDE,∴△AGD≌△CED(SAS).②如图2中,过点A作AT⊥GD于T.∵△AGD≌△CED,CD=CE,∴AD=AG=4,∵AT⊥GD,∴TG=TD=1,∴AT==∵EF∥DG,∴∠GHF=∠AGT,∵∠F=∠ATG=90°,∴△GFH∽△ATG,∴GHAG =FGAT,=∴GH∴GH=(2)①如图3中,设AD交PC于O.∵△AGD≌△CED,∴∠DAG=∠DCE,∵∠DCE+∠COD=90°,∠COD=∠AOP,∴∠AOP+∠DAG=90°,∴∠APO=90°,∴CP⊥AG.②∵∠CPA=90°,AC是定值,∴当∠ACP最小时,PC的值最大,∴当DE⊥PC时,∠ACP的值最小,此时PC的值最大,此时点F与P重合(如图4中),∵∠CED=90°,CD=4,DE=2,∴EC==∵EF=DE=2,∴CP=CE+EF=∴PC的最大值为。

专题1-4 勾股定理的应用-重难点题型(举一反三)(北师大版)(原卷版)

专题1-4 勾股定理的应用-重难点题型(举一反三)(北师大版)(原卷版)

专题1.4 勾股定理的应用-重难点题型【北师大版】【题型1 勾股定理的应用(最短路径问题)】【例1】(2021春•肥乡区月考)如图所示,是一个三级台阶,它的每一级的长、宽、高分别为55cm,10cm,6cm,点A和点B是这个台阶的两个相对的端点,A点处有一只蚂蚁,那么这只蚂蚁从点A爬到点B的最短路程是多少?【变式1-1】(2020秋•长春期末)如图所示,有一个圆柱,底面圆的直径AB=16π,高BC=12cm,在BC的中点P处有一块蜂蜜,聪明的蚂蚁总能找到距离食物的最短路径,求蚂蚁从A点爬到P点的最短距离.【变式1-2】(2020秋•碑林区校级月考)如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上底面距离为4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为多少?【变式1-3】(2020秋•淅川县期末)如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程是多少?【题型2 勾股定理的应用(方位角问题)】【例2】(2020秋•龙口市期中)甲、乙两船同时从港口A出发,甲船以30海里/时的速度沿北偏东35°方向航行,乙船沿南偏东55°向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,问乙船的速度是每小时多少海里?【变式2-1】(2020春•孟村县期末)如图,甲、乙两艘轮船同时从港口O出发,甲轮船以20海里/时的速度向南偏东45°方向航行,乙轮船向南偏西45°方向航行.已知它们离开港口O两小时后,两艘轮船相距50海里,求乙轮船平均每小时航行多少海里?【变式2-2】(2020春•鹿邑县期中)如图,北部湾诲面有一艘解放军军舰正在基地A的正东方向且距A地40海里的B处训练,突然接到基地命令,要该舰前往C岛接送一名患病的渔民到基地的医院救治.已知C岛在基地A的北偏东58°方向且距基地A32海里,在B处的北偏西32°的方向上.军舰从B处出发,平均每小时行驶40海里.问至少需要多长时间能把患病渔民送到基地?【变式2-3】(2020春•灌阳县期中)如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,6分钟后同时到达C处将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西23°.(1)求甲巡逻艇的航行方向;(2)成功拦截后,甲、乙两艘巡逻艇同时沿原方向返回且速度不变,3分钟后甲、乙两艘巡逻艇相距多少海里?【题型3 勾股定理的应用(范围影响问题)】【例3】(2021春•江岸区校级月考)国家交通法规定:汽车在城市街道上行驶速度不得超过60km/h,一辆汽车在解放大道上由西向东行驶,此时小汽车在A点处,在它的正南方向21m处的B点处有一个车速检测仪,过了4s后,测得小汽车距离测速仪75m.这辆小汽车超速了吗?通过计算说明理由.【变式3-1】(2021春•南川区期中)为了积极宣传防疫,南川区政府采用了移动车进行广播,如图,小明家在南大街这条笔直的公路MN的一侧点A处,小明家到公路MN的距离为600米,假使广播车P周围1000米以内能听到广播宣传,广播车P以250米/分的速度在公路MN上沿PN方向行驶时,若小明此时在家,他是否能听到?若能,请求出他总共能听到多长时间的广播?【变式3-2】(2020秋•雁江区期末)拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?【变式3-3】(2020秋•内江期末)台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB由A行驶向B,已知点C为一海港,且点C与直线AB上的两点A,B的距离分别为AC=300km,BC=400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E处时,海港C刚好受到影响,当台风运动到点F 时,海港C刚好不受影响,即CE=CF=250km,则台风影响该海港持续的时间有多长?【题型4 勾股定理的应用(梯子问题)】【例4】(2021春•前郭县月考)如图,一高层住宅发生火灾,消防车立即赶到距大厦8米处(车尾AE到大厦墙面CD),升起云梯到火灾窗口B.已知云梯AB长17米,云梯底部距地面的高AE=1.5米,问发生火灾的住户窗口距离地面多高?【变式4-1】(2020秋•玄武区期末)如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC与AE的长度一样,滑梯的高度BC=4m,BE=1m.求滑道AC的长度.【变式4-2】(2020秋•阜宁县期中)如图,教学楼走廊左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜在右墙时,顶端距离地面2米,求教学楼走廊的宽度.【变式4-3】(2020秋•惠来县期末)如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.(1)若梯子底端离墙角的距离OB为1.5米,求这个梯子的顶端A距地面有多高?(2)在(1)的条件下,如果梯子的顶端A下滑0.5米到点A',那么梯子的底端B在水平方向滑动的距离BB'为多少米?【题型5 勾股定理的应用(九章算术问题)】【例5】(2021春•合肥期中)《九章算术》是我国古代数学的经典著作.书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?【变式5-1】(2021春•汉阳区期中)“引葭赴岸”是《九章算术》中的一道题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个边长为10尺的正方形池塘,一棵芦苇AB生长在它的中央,高出水面BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).问水深和芦苇长各多少?(画出几何图形并解答)【变式5-2】(2020春•安庆期中)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=4,求AC的长.【变式5-3】(2020•庐阳区一模)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?【题型6 勾股定理的应用(其他问题)】【例6】(2020秋•沙坪坝区期末)如图是某“飞越丛林”俱乐部新近打造的一款儿童游戏项目,工作人员告诉小敏,该项目AB段和BC段均由不锈钢管材打造,总长度为26米,长方形CDEF为一木质平台的主视图.小敏经过现场测量得知:CD=1米,AD=15米,于是小敏大胆猜想立柱AB段的长为10米,请判断小敏的猜想是否正确?如果正确,请写出理由,如果错误,请求出立柱AB段的正确长度.【变式6-1】(2020秋•宽城区期末)如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA少多少千米?【变式6-2】(2021春•越秀区校级期中)八年级11班松松同学学习了“勾股定理”之后,为了测量如图的风筝的高度CE,测得如下数据:①测得BD的长度为8米:(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的松松身高1.6米.(1)求风筝的高度CE.(2)若松松同学想风筝沿CD方向下降9米,则他应该往回收线多少米?【变式6-3】(2020秋•荥阳市期中)随着疫情的持续,各地政府储存了充足的防疫物品.某防疫物品储藏室的截面是由如图所示的图形构成的,图形下面是长方形ABCD,上面是半圆形,其中AB=1.8m,BC =2m,一辆装满货物的运输车,其外形高2.3m,宽1.6m,它能通过储藏室的门吗?请说明理由.。

第19章 专题04勾股定理压轴题专练(学生版)

第19章 专题04勾股定理压轴题专练(学生版)

专题04勾股定理压轴题专练(学生版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2021·上海九年级专题练习)如图,在Rt ABC ∆中,90,BAC BA CA ∠=︒==D 为BC 边的中点,点E 是CA 延长线上一点,把CDE ∆沿DE 翻折,点C 落在C '处,EC '与AB 交于点F ,连接BC '.当43FA EA =时,BC '的长为( )AB.CD.二、填空题2.(2019·上海上外附中八年级月考)如图,ABC ∆为等腰三角形,5AB AC ==,6BC =,点E ,F 分别为AB ,AC 中点,点M ,N 在边BC 上,且3MN =,则图中阴影部分的面积为__________3.(2019·上海上外附中八年级月考)如图,正方形ABCD 中,E 为边BC 中点,折叠正方形使得点A 与点E 重合,折痕为MN ,设梯形ADMN 面积为1S ,梯形BNMC 面积为2S ,则12S S =_________4.(2020·上海)在Rt ABC △中,90ABC ∠=︒,8AB =,6BC =,点D 、E 分别在边AB 、AC 上.如果D 为AB 中点,且AD DE AB BC=,那么AE 的长度为__________. 5.(2019·上海华二紫竹双语学校或华二双语学校九年级月考)如图,从点A (0,2)发出一束光,经x 轴反射,过点B (3,1C ),则这束光从点A 到点B 所经过的路径的长为____________.6.(2020·黑龙江九年级二模)如图,Rt△ABC 中,△BAC=90°,CE 平分△ACB ,点 D 在 CE 的延长线上,连接 BD ,过B 作BF△BC 交 CD 于点 F ,连接 AF ,若CF=2BD ,DE :CE=5:8 , BF =AF 的长为_________.7.(2019·河南师大附中九年级其他模拟)如图,在Rt ABC 中,90,10,6ACB AB AC ∠=︒==,D 是AB 的中点,E 是直线BC 上一点,把BDE 沿直线ED 翻折后,点B 落在点F 处,当FD BC ⊥时,线段BE 的长________.8.(2020·河南九年级月考)如图,AC 是△ABCD 的对角线,△BAC =90°,ABC 的边AB ,AC ,BC 的长是三个连续偶数,E ,F 分别是边AB ,BC 上的动点,且EF△BC ,将BEF 沿着EF 折叠得到PEF ,连接AP ,DP .若APD 为直角三角形时,BF 的长为_____.9.(2020·山东周村二中九年级月考)如图所示的网格由边长为1个单位长度的小正方形组成,点A 、B 、C 、在直角坐标系中的坐标分别为()3,6,()3,3-,()7,2-,则ABC 内心的坐标为______.10.(2020·上海徐汇区·八年级期末)一次函数24y x =+的图像与x y 、轴分别用交于点A 和点B ,点C 在直线4x =上,点D 是直角坐标平面内一点,若四边形ABCD 是菱形,则点D 的坐标为___________.11.(2020·重庆九年级其他模拟)如图,在矩形纸片ABCD 中,AB =8,BC =6,点E 是AD 的中点,点F 是AB 上一动点.将△AEF 沿直线EF 折叠,点A 落在点A '处.在EF 上任取一点G ,连接GC ,GA ',CA ’,则△CGA '的周长的最小值为__.12.(2021·上海九年级专题练习)如图,在矩形ABCD 中,AD=13,AB=24,点E 是边AB 上的一个动点,将△CBE 沿CE 折叠,得到△CB′E 连接AB′,DB′,若△ADB′为等腰三角形,则BE 的长为_____.13.(2021·上海九年级专题练习)如图,正方形ABCD 的对角线AC 上有一点E ,且4CE AE =,点F 在DC 的延长线上,连接EF ,过点E 作EG EF ⊥,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,若10AB =,4CF =,则线段EP 的长是__________.14.(2021·上海九年级专题练习)如图,Rt ABC 中,90ABC ∠=︒,6AB =,8BC =,点D 为AC 的中点,点F 为BC 上一个动点,以DF 为对称轴折叠CDF 得到EDF ,点C 的对应点为点E ,EF 交BD 于点M ,当DEM △为直角三角形时,BF 的长为________.15.(2021·上海九年级专题练习)在矩形ABCD 中,P 在边BC 上,联结AP ,DP ,将△ABP ,△DCP 分别沿直线AP ,DP 翻折,得到1AB P △,1DC P △,且点1B ,1C ,P 在同一直线上,线段1C P 交边AD 于点M ,联结1AC ,若1135AC D ∠=︒,则PC DM=_________. 16.(2021·上海杨浦区·九年级一模)新定义:有一组对角互余的凸四边形称为对余四边形.如图,已知在对余四边形ABCD 中,10AB =,12BC =,5CD =,3tan 4B =,那么边AD 的长为______.17.(2021·上海)如图,正方形ABCD的对角线AC,BD相交于点O,AB=E为OC上一点,2OE=,连接BE,过点A作AF BE⊥于点F,与BD交于点G,则EF的长是______.18.(2021·上海九年级专题练习)如图,Rt△ABC中,AC=BC=3,D为AB中点,点E 在线段BC上,且BE=2CE,连接AE,过点C作CF△AE,垂足为F,连接DF,则DF 的长为_____.19.(2021·上海金山区·九年级二模)如图,在矩形ABCD中,AB=3,BC=4,点E在对角线BD上,联结AE,作EF△AE交边BC于F,若BF=3916,那么BE=_____.20.(2021·上海上外附中八年级期末)如图,△ABCD中,AE△BC与E,AF△CD于F,H是△AEF三条高的交点,已知AE=a,EC=b,EF=c,则AH=___.三、解答题21.(2019·上海八年级期末)梯形ABCD 中,AD BC ∥,4=AD ,10BC =,60ABC ∠=︒,M 、N 在BC 上,AN 平分BAD ∠,DM 平分ADC ∠,E 、F 分别为AB 、CD 的中点,AN 和DM 分别与EF 交于G 和H ,AN 和DM 交于点P .(1)求证:12HF CD =; (2)当点P 在四边形EBCF 内部时,设EG x =,HF y =,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当1GH =时,求EG 的长.22.(2019·上海黄浦区·八年级期中)如图,将边长为3的正方形ABCD 置于平面直角坐标系第一象限,使边AB 落在x 轴的正半轴上,直线l :332y x =-经过点C 且与x 轴交于点E .(1)求C 点坐标;(2)求EBC 的面积;(3)若直线l 与y 轴交于点F ,在x 轴上是否存在点P ,使得CFP 是直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.23.(2019·上海八年级期末)如图,已知直角梯形ABCD ,//AD BC ,90DCB ∠=︒,过点A 作AH BC ⊥,垂足为点H ,4CD =,2BH =,点F 是CD 边上的一动点,过F 作线段AB 的垂直平分线,交AB 于点E ,并交射线BC 于点G .(1)如图1,当点F 与点C 重合时,求BC 的长;(2)设AD x =,DF y =,求y 与x 的函数关系式,并写出定义域;(3)如图2,联结DE ,当DEF 是等腰三角形时,求AD 的长.24.(2021·上海九年级专题练习)如图,已知在四边形ABCD 中△A=△ABC=90°,点E是CD 的中点,△ABD 与 △EBD 关于直线BD 对称,1AD =,AB =(1)求点A 和点E 之间的距离;(2)联结AC 交BE 于点F ,求AF AC的值. 25.(2018·上海崇明区·八年级期中)已知:如图,在直角坐标平面中,点A 在x 轴的负半轴上,直线y kx =+经过点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =+C ,如果60MAO ∠=︒.(1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标. 26.(2021·上海九年级专题练习)如图1,在Rt△ABC 中,△ACB =90°,AB =5,cos△BAC 45=,点O 是边AC 上一个动点(不与A 、C 重合),以点O 为圆心,AO 为半径作△O ,△O 与射线AB 交于点D ,以点C 为圆心,CD 为半径作△C ,设OA =x .(1)如图2,当点D 与点B 重合时,求x 的值;(2)当点D 在线段AB 上,如果△C 与AB 的另一个交点E 在线段AD 上时,设AE =y ,试求y 与x 之间的函数解析式,并写出x 的取值范围;(3)在点O 的运动过程中,如果△C 与线段AB 只有一个公共点,请直接写出x 的取值范围.27.(2020·上海九年级二模)如图,已知△O 经过A B 、两点,6AB =,点C 是弧AB 的中点,连接OC 交弦AB 于点D ,1CD =.(1)求△O 的半径;(2)过点B O 、分别作AO AB 、的平行线,交于点,G E 是△O 上一点,连接EG 交△O 于点F ,且EF AB =时,求sin OGE ∠的值.28.(2021·上海九年级专题练习)在Rt△ABC 中,△ACB =90°,AC =15,sin△BAC =45.点D 在边AB 上(不与点A 、B 重合),以AD 为半径的△A 与射线AC 相交于点E ,射线DE 与射线BC 相交于点F ,射线AF 与△A 交于点G .(1)如图,设AD =x ,用x 的代数式表示DE 的长;(2)如果点E 是DG 的中点,求△DFA 的余切值;(3)如果△AFD 为直角三角形,求DE 的长.29.(2021·上海九年级专题练习)如图,在直角梯形ABCD 中,//AB DC ,△DAB =90°,AB =8,CD =5,BC(1)求梯形ABCD 的面积;(2)联结BD ,求△DBC 的正切值.30.(2020·上海徐汇区·八年级期末)已知:如图,在正方形ABCD 中,点E 、F 分别在边BC 和CD 上.(1)若BE =DF ,△求证:△BAE =△DAF ;△联结AC 交EF 于点O ,过点F 作FM△AE ,交AC 的延长线于M ,联结EM ,求证:四边形AEMF 是菱形.(2)联结BD ,交AE 、AF 于点P 、Q .若△EAF =45°,AB =1,设BP x =,DQ y =,求y 关于x 的函数关系及定义城.31.(2018·上海松江区·八年级期末)如图,已知ABC ∆中,90ACB ∠=︒,点D 在边AB 上,满足2CDB B ∠=∠,(1)求证:2AB CD =;(2)若:DB 1:5AD =,且ABC ∆,试求边AB 的长度.32.(2020·上海九年级月考)如图,梯形ABCD 中,AD//BC ,DC BC ⊥,且45B ∠=,1AD DC ==.点M 为边BC 上一动点,连接AM 并延长交射线DC 于点F ,作45FAE ∠=交射线BC 于点E 、交边DC 于点N ,联结EF .(1)当:1:4CM CB =时,求CF 的长;(2)连接AC ,求证:2AC CE CF =⋅(3)设CM x =,CE y =,求y 关于x 的函数关系式,并写出定义域.33.(2021·上海九年级专题练习)在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F . ()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.34.(2020·上海浦东新区·)如图,在平面直角坐标系中,已知矩形AOBC 的顶点C 的坐标是6),动点P 从点A 出发,沿线段AO 向终点O 运动,同时动点Q 从点B 出发,沿线段BC 向终点C 运动.点P Q 、的运动速度均为每秒1个单位,运动时间为(06)t t <<秒,过点P 作PE AO ⊥交AB 于点E .(1)求直线AB 的解析式;(2)设PEQ 的面积为S ,求当03t <<时,S 与t 时间的函数关系;(3)在动点P Q 、运动的过程中,点H 是矩形AOBC 内(包括边界)一点,且以B Q E H 、、、为顶点的四边形是菱形,直接写出t 值和与其对应的点H 的坐标.35.(2020·上海民办华二浦东实验学校九年级期中)已知,在ABC 中,6AB =,5BC =,4tan 3B =,点P 是边BC 上的一个动点,点E 在BA 的延长线上,且ACE BAP ∠=∠,设BP x =,AE y =.(1)当AP 平分BAC ∠(如图1)时,求y 的值;(2)当EC BC ⊥时,求BAP ∠的正弦值;(3)求y 关于x 的函数关系式,并写出定义域.36.(2021·上海九年级专题练习)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域; (3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.37.(2021·上海长宁区·八年级期末)如图,在直角坐标平面内,点O 是坐标原点,点A 坐标为(3,4),将直线OA 绕点O 顺时针旋转45︒后得到直线(0)y kx k =≠.(1)求直线OA 的表达式;(2)求k 的值;(3)在直线(0)y kx k =≠上有一点B ,其纵坐标为1.若x 轴上存在点C ,使ABC 是等腰三角形,请直接写出满足要求的点C 的坐标.38.(2021·上海长宁区·八年级期末)如图,在△ABC 中,△BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,联结CE .(1)求证:AD △CE ;(2)求CE 的长.39.(2021·上海奉教院附中八年级期末)如图,已知AC BC ⊥,直线AM//CB ,点P 在线段AB 上,点D 为射线AC 上一动点,连接PD ,射线PE PD ⊥交直线AM 于点E .已知BP =AC BC 4==.(1)如图1,当点D 在线段AC 上时,求证:PD PE =;(2)当BA BD =时,请在图2中画出相应的图形,并求线段AE 的长;(3)如果EPD ∠的平分线交射线AC 于点G ,设AD x =,GD y =,求y 关于x 的函数关系式,并写出自变量x 的取值范围.40.(2021·上海九年级专题练习)综合与实践(1)问题发现:正方形ABCD 和等腰直角△BEF 按如图△所示的方式放置,点F 在AB 上,连接AE 、CF ,则AE 、CF 的数量关系为 ,位置关系为 . (2)类比探究:正方形ABCD 保持固定,等腰直角△BEF 绕点B 顺时针旋转,旋转角为α(0°<α ≤360°),请问(1)中的结论还成立吗?请就图△说明你的理由:(3)拓展延伸:在(2)的条件下,若AB = 2 BF = 4,在等腰直角△BEF 旋转的过程中,当CF 为最大值时,请直接写出DE 的长.41.(2021·上海九年级专题练习)(1)证明推断:如图(1),在正方形ABCD 中,点E ,Q 分别在边BC ,AB 上,DQ AE ⊥于点O ,点G ,F 分别在边CD ,AB 上,GF AE ⊥.求证:FG AE =;(2)类比探究:如图(2),在矩形ABCD 中,23BC AB =将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形EFGP ,EP 交CD 于点H ,连接AE 交GF 于点O .试探究GF 与AE 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,若34BE BF =,GF =,求CP 的长.42.(2021·上海市实验学校九年级二模)如图,矩形ABCD 中,AB=6,AD=8,点P 是对角线BD 上一动点,PQ△BD 交BC 于点Q ,以PQ 为一边作正方形PQMN ,使得N 点落在射线PD 上,点O 是边CD 上一点, 且OD :BP=3:4.(1)联结DQ ,当DQ 平分△BDC 时,求PQ 的长;(2)证明:点O 始终在QM 所在直线的左侧;(3)若以O 为圆心,半径长为0.8作△O,当QM 与△O 相切时,求BP 的长.43.(2021·上海九年级二模)如图,在Rt △ABC 中,△ACB =90°,AC =3,sin△ABC =13,D 是边AB 上一点,且CD =CA ,BE △CD ,垂足为点E .(1)求AD 的长;(2)求△EBC 的正切值.44.(2021·上海中考真题)如图,在梯形ABCD 中,//,90,,AD BC ABC AD CD O ∠=︒=是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于E .(1)当点E 在边CD 上时,△求证:DAC OBC ∽;△若BE CD ⊥,求AD BC的值; (2)若2,3DE OE ==,求CD 的长.45.(2021·上海杨浦区·八年级期末)如图,在正方形ABCD 中,点E 是边BC 延长线上一点,联结DE ,过点B 作BF △DE ,垂足为点F ,BF 与边CD 相交于点G .(1)求证:CG=CE ;(2)联结CF ,求证:△BFC =45°;(3)如果正方形ABCD 的边长为2,点G 是边DC 的中点,求EF 的长.46.(专题09动点产生的相似三角形-决胜2020年中考数学压轴题全揭秘精品(上海专用))如图,已知梯形ABCD 中,//AD BC ,AB BC ⊥,AB =4,AD=CD =5,3cot 4C ∠=.点P 在边BC 上运动(点P 不与点B 、点C 重合),一束光线从点A 出发,沿AP 的方向射出,经BC 反射后,反射光线PE 交射线CD 于点E .联结PD ,若以点A 、P 、D 为顶点的三角形与PCE 相似,试求BP 的长度.47.(2019·上海)如图1,在Rt ABC ∆中,90,3,4,ACB AC BC ∠===点P 在边AC 上(点P 与点A 不重合),以点P 为圆心,PA 为半径作△P 交边AB 于另一点D ,ED DP ⊥,交边BC 于点E .(1)求证:BE DE =;(2)若,BE x AD y ==,求y 关于x 的函数关系式并写出定义域;(3)延长ED 交CA 的延长线于点F ,联结BP ,若BDP ∆与DAF ∆相似,求线段AD 的长.48.(2021·上海九年级专题练习)如图,在ABC 中,90ABC ∠=︒,3AB =,4BC =,过点A 作射线//AM BC ,点D 、E 是射线AM 上的两点(点D 不与点A 重合,点E 在点D 右侧),连接BD 、BE 分别交边AC 于点F 、G ,DBE C ∠=∠. (1)当1AD =时,求FB 的长(2)设AD x =,FG y =,求y 关于x 的函数关系式,并写出x 的取值范围; (3)联结DG 并延长交边BC 于点H ,如果DBH △是等腰三角形,请直接写出AD 的长.49.(2021·上海九年级二模)如图,已知半圆O 的直径AB =4,点P 在线段OA 上,半圆P 与半圆O 相切于点A ,点C 在半圆P 上,CO △AB ,AC 的延长线与半圆O 相交于点D ,OD 与BC 相交于点E .(1)求证:AD •AP =OD •AC ;(2)设半圆P 的半径为x ,线段CD 的长为y ,求y 与x 之间的函数解析式,并写出定义域;(3)当点E 在半圆P 上时,求半圆P 的半径.50.(2021·上海静安区·八年级期末)已知:如图,平行四边形ABCD 中,AB =5,BD =8,点E 、F 分别在边BC 、CD 上(点E 、F 与平行四边形ABCD 的顶点不重合),CE =CF ,AE =AF .(1)求证:四边形ABCD 是菱形;(2)设BE=x,AF=y,求y关于x的函数解析式,并写出定义域;(3)如果AE=5,点P在直线AF上,△ABP是以AB为腰的等腰三角形,那么△ABP 的底边长为.(请将答案直接填写在空格内)。

勾股定理复习与常见题型总结

勾股定理复习与常见题型总结

勾股定理复习一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证. cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a =②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 22222mn m n m n -+,,(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CBA ADB CCDA题型一:直接考查勾股定理 例1. 在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为例3. 如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =,2.5BD =,求AC 的长21EDCBA例4. 如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5. 如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6. 已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =例7. 三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用例8. 已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =例题9 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41=那么△DEF 是直角三角形吗?为什么?题型六:关于翻折问题例10.如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E 为BC上一点,将矩形纸片沿AE折叠,点B恰好落在CD边上的点G处,求BE的长.变式:如图,AD是△ABC的中线,∠ADC=45°,把△ADC 沿直线AD翻折,点C落在点C’的位置,BD=4,求BC’的长.题型七:旋转问题:例11.△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△AC P′重合,若AP=3,求PP′的长。

用旋转解与勾股定理有关的几何证明题

用旋转解与勾股定理有关的几何证明题

用旋转解与勾股定理有关的几何证明题:
证明:两角平分线在异面直线上,它们的平分点连线与两条异面直线的夹角为90°
步骤一:画出图形:
在ABC中,∠BAC的两个平分线分别是AE和CD,那么平分点E和D 分别在AE和CD上。

步骤二:旋转AE到CD位置:
用旋转画出AE以E为轴旋转到CD位置,得到EF。

步骤三:应用勾股定理:
因为EF是AE经过旋转得到的,所以EF和AE两条线段相等,
由勾股定理可得:
EF·CD=AE·ED,
即EF和CD两条线段都等于ED和AE两条线段的平方和,EF和CD是相等的,故它们的夹角也是相等的,
即ED·CD两条线段的夹角EGD是90°。

综上所述,证明得证。

2022-2023学年初二数学第二学期培优专题04 旋转之角度问题

2022-2023学年初二数学第二学期培优专题04 旋转之角度问题

2022-2023学年初二数学第二学期培优专题04 旋转之角度问题【模型讲解】【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC=11,求∠APB的度数.【解答】(1)如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP′≌△CBP,∴∠PBP′=90°,BP′=BP=2,AP′=CP=3,在Rt△PBP′中,BP=BP′=2,∴∠BPP′=45°,根据勾股定理得,PP′=2BP=22,∵AP=1,∴AP2+PP′2=1+8=9,∵AP′2=32=9,∴AP2+PP′2=AP′2,∴△APP′是直角三角形,且∠APP′=90°,∴∠APB=∠APP′+∠BPP′=90°+45°=135°;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP′≌△CBP,∴∠PBP′=90°,BP′=BP=1,AP′=CP=11,在Rt△PBP′中,BP=BP′=1,∴∠BPP′=45°,根据勾股定理得,PP′=2BP=2,∵AP=3,∴AP2+PP′2=9+2=11,∵AP′2=(11)2=11,∴AP2+PP′2=AP′2,∴△APP′是直角三角形,且∠APP′=90°,∴∠APB=∠APP′﹣∠BPP′=90°﹣45°=45°.【模型演练】1.如图,已知点P 是等边三角形ABC 内一点,且6PA =,8PB =,10PC =(1)在图中画出将BPC △绕点B 逆时针旋转60︒后得到的BEA △.(2)求APB ∠的度数.2.如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将ABE 绕点B 顺时针旋转90︒到CBF 的位置,连接EF ,EF 的长为22.(1)求BF 的长;(2)若1,3AE EC ==,求AEB ∠的度数.3.一节数学课上,老师提出一个这样的问题:如图,点P 是正方形ABCD 内一点,P A =1,PB =2,PC =3,你能求出∠APB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△PBC 绕点B 逆时针旋转90°,得到△P 'BA ,连接P P ',求出∠APB 的度数.思路二:将△APB 绕点B 顺时针旋转90°,得到△C P 'B ,连接P P ',求出∠APB 的度数.请参考小明的思路,任选一种写出完整的解答过程.4.已知△AOB ,将△AOB 绕O 点旋转到△COD 位置,使C 点落在OB 边上,连接AC 、BD .(1)若∠AOB =90°(如图1),小亮发现∠BAC =∠BDC ,请你证明这个结论;(2)若∠AOB =60°(如图2),小亮发现的结论是否仍然成立?说明理由;(3)若∠AOB 为任意角α(如图3),小亮发现的结论还成立吗?说明理由;5.如图1,在正方形ABCD 中,4=AD ,点E 是AD 的中点,以DE 为边作正方形DEFG ,连接AG CE 、.将正方形DEFG 绕点D 顺时针旋转,旋转角为()090αα︒<<︒.(1)如图2,在旋转过程中,判断AGD △与CED △是否全等,并说明理由;(2)如图3,延长CE 交直线AG 于点P .①求证:AG CP ⊥;②在旋转过程中,线段PC 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.6.如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至''CE FD ,旋转角为α.(1)当点D 恰好落在边EF 上时,点D 到边DC 的距离为____________,旋转角α=____________︒;(2)如图2,G 为BC 的中点,且090α︒<<︒,求证:GD E D ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD '与CBD '△能否全等?若能,直接写出旋转角α的值;若不能,说明理由.7.已知:在Rt ABC 中,90ABC ∠=︒,30BAC ∠=︒,将ABC 绕点A 顺时针旋转一定的角度α得到AED △,点B 、C 的对应点分别是E 、D .(1)如图1,若60α=︒时,连接BE ,求证:AB BE =;(2)如图2,当点E 恰好在AC 上时,求CDE ∠的度数;(3)如图3,点B 、C 的坐标分别是()0,0,()0,2,点Q 是线段AC 上的一个动点,点M 是线段AO 上的一个动点,是否存在这样的点Q 、M 使得CQM 为等腰三角形且AQM 为直角三角形?若存在,请求出满足条件的点M 的坐标;若不存在,请说明理由.8.同题提出 如图(1),已知ABC ,90ABC ∠=︒,将边AB 绕点A 顺时针旋转α︒至AD 处,连接CD ,O 为CD 的中点,E 为边BC 中垂线上一点,EO AO ⊥.探究BEC ∠的值.问题探究 (1)先将问题特殊化.①如图(2),当180α=︒时,不存在确定的E 点,请说明理由;②如图(3),当D 在CA 的延长线上时,连接DE ,发现180BEC α∠=︒-︒,请证明这个结论; (2)再探究一般情形.如图(1),当90180α︒<<︒时,证明(1)②中的结论仍然成立.问题拓展 (3)当0360α<≤︒︒时,若AO OE =,请直接写出α的值.9.问题提出(1)如图,点M 、N 是直线l 外两点,在直线l 上找一点K ,使得MK NK +最小.问题探究(2)在等边三角形ABC 内有一点P ,且3PA =,4PB =,5PC =,求APB ∠度数的大小.问题解决(3)如图,矩形ABCD 是某公园的平面图,303AB =60BC =米,现需要在对角线BD 上修一凉亭E ,使得到公园出口A 、B ,C 的距离之和最小.问:是否存在这样的点E ?若存在,请画出点E 的位置,并求出EA EB EC ++的和的最小值;若不存在,请说明理由.10.【问题背景】如图1,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,连接EF ,我们可以通过把ABE 绕点A 逆时针旋转90°到ADG △,容易证得:EF BE DF =+.(1)【迁移应用】如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E 、F 分别在边BC 、CD 上,45EAF ∠=︒,若B ∠、D ∠都不是直角,且180B D ∠+∠=︒,试探究EF 、BE 、DF 之间的数量关系,并说明理由.(2)【联系拓展】如图3,在ABC 中,90BAC ∠=︒,AB AC =,点D 、E 均在边BC 上,且45DAE =︒∠.猜想BD 、DE 、EC 满足的等量关系(直接写出结论,不需要证明).11.【发现奥秘】(1)如图1,在等边三角形ABC 中,2AB =,点E 是ABC 内一点,连接,,AE EC BE ,分别将,AC EC 绕点C 顺时针旋转60°得到,DC FC ,连接,,AD DF EF .当B ,E ,F ,D 四个点满足______时,BE AE CE ++的值最小,最小值为_______.【解法探索】(2)如图2,在ABC 中,90,ACB AC BC ∠=︒=,点P 是ABC 内一点,连接,,PA PB PC ,请求出当PA PB PC ++的值最小时BCP ∠的度数,并直接写出此时::PA PB PC 的值.(提示:分别将,PC AC 绕点C 顺时针旋转60°得到,DC EC ,连接,,PD DE AE )【拓展应用】(3)在ABC 中,90,30,2ACB BAC BC ︒︒∠=∠==,点P 是ABC 内一点,连接,,PA PB PC ,直接写出当PA PB PC ++的值最小时,::PA PB PC 的值.12.【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P 是正方形ABCD 内一点,P A =1,PB =2,PC =3.你能求出∠APB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC=11,求∠APB的度数.答案与解析【模型讲解】【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC=11,求∠APB的度数.【解答】(1)如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP′≌△CBP,∴∠PBP′=90°,BP′=BP=2,AP′=CP=3,在Rt△PBP′中,BP=BP′=2,∴∠BPP′=45°,根据勾股定理得,PP′=2BP=22,∵AP=1,∴AP2+PP′2=1+8=9,∵AP′2=32=9,∴AP2+PP′2=AP′2,∴△APP′是直角三角形,且∠APP′=90°,∴∠APB=∠APP′+∠BPP′=90°+45°=135°;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△AB P′≌△CBP,∴∠PBP′=90°,BP′=BP=1,AP′=CP=11,在Rt△PBP′中,BP=BP′=1,∴∠BPP′=45°,根据勾股定理得,PP′=2BP=2,∵AP=3,∴AP2+PP′2=9+2=11,∵AP′2=(11)2=11,∴AP2+PP′2=AP′2,∴△APP′是直角三角形,且∠APP′=90°,∴∠APB=∠APP′﹣∠BPP′=90°﹣45°=45°.【模型演练】 1.如图,已知点P 是等边三角形ABC 内一点,且6PA =,8PB =,10PC =(1)在图中画出将BPC △绕点B 逆时针旋转60︒后得到的BEA △.(2)求APB ∠的度数. 【答案】(1)见解析(2)150︒【分析】(1)根据要求作出图形即可;(2)证明PBE △是等边三角形,利用勾股定理的逆定理证明90APE ∠=︒即可.【解答】(1)(1)如图,BEA △即为所求;(2)∵PBC EBA ≌,∴PB =EB ,60EBP =ABC =∠∠︒,∴PBE △为等边三角形,∴8PE =PB =,60EPB =∠︒,∵10AE =PC =,6PA =,∴222PE AP =AE +,∴APE 为直角三角形,∴90APE =∠︒,∴9060150APB ==∠︒+︒︒.【点评】本题主要考查的是全等三角形的性质、等边三角形的判定、勾股定理的逆定理的应用,证得PBE △为等边三角形、APE 为直角三角形是解题的关键.2.如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将ABE 绕点B 顺时针旋转90︒到CBF 的位置,连接EF ,EF 的长为22.(1)求BF 的长;(2)若1,3AE EC ==,求AEB ∠的度数. 【答案】(1)BF =2(2)∠AEB =135°【分析】(1)由旋转的性质得到△BEF 为等腰直角三角形,根据勾股定理即可求出BF 的长; (2)根据AE =1,可得1CF AE ==,根据勾股定理逆定理()2222122CF EF +=+=9=32=CE 2得出90EFC ∠=︒,根据等腰直角三角形可求45EFB ∠=︒,再求135BFC EFB EFC ∠=∠+∠=︒,根据旋转性质,可得135AEB BFC ∠=∠=︒即可.(1)解:∵△ABE 绕点B 顺时针旋转90°得到△CBF ,∴BE =BF ,∠EBF =∠ABC =90°∴△BEF 为等腰直角三角形,设 BE =BF =x ,则x 2+x 2=(22)2 ,解得: x =2;(2)解:∵△ABE 绕点B 顺时针旋转90°得到△CBF ,∴∠AEB = ∠BFC ,AE =CF =1,在△CEF 中,EF =22,CF =1,EC =3,∵CF 2+EF 2=12+(22)2=9,CE 2=9,∴CF 2+EF 2=CE 2,∴△CEF 为直角三角形,∠EFC =90°,∴∠BFC =∠BFE +∠CFE =135°,∴∠AEB =135°.【点评】本题考查正方形的性质,旋转性质,等腰直角三角形判定与性质,勾股定理逆定理,掌握,三角形旋转性质,等腰直角三角形判定与性质,勾股定理逆定理是解题关键.3.一节数学课上,老师提出一个这样的问题:如图,点P 是正方形ABCD 内一点,P A =1,PB =2,PC =3,你能求出∠APB 的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△PBC 绕点B 逆时针旋转90°,得到△P 'BA ,连接P P ',求出∠APB 的度数.思路二:将△APB 绕点B 顺时针旋转90°,得到△C P 'B ,连接P P ',求出∠APB 的度数.请参考小明的思路,任选一种写出完整的解答过程. 【答案】∠APB =135°,解答过程见解析【分析】利用旋转法构造全等三角形以及直角三角形即可解决问题.【解答】解:思路一:如图1,将△BPC 绕点B 逆时针旋转90°,得到△B P 'A ,连接P P ',则△AB P '≌△CBP ,A P '=CP =3,B P '=BP =2,∠PB P '=90°∴∠BP P '=45°,根据勾股定理得,224422P P PB P B ''=+=+=,∵AP =1,∴22189AP P P '+=+=,又∵2239P A '==,∴222AP P P P A ''+=,∴△AP P '是直角三角形,且∠AP P '=90°,∴∠APB =∠AP P '+∠BP P '=90°+45°=135°.思路二:将△P AB 绕点B 顺时针旋转90°,得到△P 'CB ,连接P P ',∴P 'B =PB =2,P 'C =AP =1,∠P 'BP =90°,∠APB =∠B P 'C ,∴∠B P 'P =45°,224422P P PB P B ''=+=+=,∵PC =3,P 'C =1,∴222P C PP PC ''+=,∴∠P P 'C =90°,∴∠B P 'C =∠B P 'P +∠P P 'C =45°+90°=135°,∴∠APB =∠B P 'C =135°.【点评】本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,勾股定理等知识,利用旋转法构造全等三角形是解题的关键.4.已知△AOB ,将△AOB 绕O 点旋转到△COD 位置,使C 点落在OB 边上,连接AC 、BD .(1)若∠AOB =90°(如图1),小亮发现∠BAC =∠BDC ,请你证明这个结论;(2)若∠AOB =60°(如图2),小亮发现的结论是否仍然成立?说明理由;(3)若∠AOB 为任意角α(如图3),小亮发现的结论还成立吗?说明理由;【答案】(1)证明见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析.【分析】(1)根据旋转的性质得OA =OC ,OB =OD ,∠BAO =∠DCO ,根据等腰直角三角形的性质得∠CAO=∠OCA=45°,∠ODB=∠OBD=45°,根据BAC BAO CAO∠=∠-∠,BDC DCO DBO∠=∠-∠,即可得;(2)根据旋转的性质得OA=OC,OB=OD,∠BAO=∠DCO,即可得△ACO、△OBD是等边三角形,即可得∠OCA=∠OBD=∠OAC=60°,推出∠OCA=∠OBD=∠OAC=60°,根据∠BAC=∠BAO﹣∠CAO=∠BAO﹣60°,∠BDC=∠DCO﹣∠DBO=∠DCO﹣60°,即可得;(3)根据旋转的性质得OA=OC,OB=OD,∠BAO=∠DCO,推出∠CAO=∠ACO,∠OBD=∠ODB,根据三角形内角和定理和角之间的关系得∠CAO=∠OBD,根据∠BAC=∠BAO﹣∠CAO,∠BDC=∠DCO﹣∠DBO,即可得.【解答】(1)证明:∵将△AOB绕O点旋转到△COD位置,∴OA=OC,OB=OD,∠BAO=∠DCO,∵∠AOB=∠COD=90°,∴∠CAO=∠OCA=45°,∠ODB=∠OBD=45°,∴BAC BAO CAO∠=∠-∠,∠=∠-∠,BDC DCO DBO∠=∠;∴BAC BDC(2)仍成立,理由如下:解:将△AOB绕O点旋转到△COD位置,∴OA=OC,OB=OD,∠BAO=∠DCO,∵∠AOB=∠COD=60°,∴△ACO、△OBD是等边三角形,∴∠OCA=∠OBD=∠OAC=60°,∴∠BAC=∠BAO﹣∠CAO=∠BAO﹣60°,∠BDC=∠DCO﹣∠DBO=∠DCO﹣60°,∴∠BAC=∠BDC;(3)仍成立,理由如下:解:将△AOB绕O点旋转到△COD位置,∴OA=OC,OB=OD,∠BAO=∠DCO,∴∠CAO=∠ACO,∠OBD=∠ODB,∵∠CAO+∠ACO+∠AOB=180°,∠OBD +∠ODB +∠BOD =180°,∴∠CAO =∠OBD ,∵∠BAC =∠BAO ﹣∠CAO ,∠BDC =∠DCO ﹣∠DBO ,∵∠BAO =∠DCO ,∴∠BAC =∠BDC .【点评】本题考查了等腰直角三角形,三角形内角和定理,等边三角形的判定,旋转的性质,解题的关键是掌握这些知识点.5.如图1,在正方形ABCD 中,4=AD ,点E 是AD 的中点,以DE 为边作正方形DEFG ,连接AG CE 、.将正方形DEFG 绕点D 顺时针旋转,旋转角为()090αα︒<<︒.(1)如图2,在旋转过程中,判断AGD △与CED △是否全等,并说明理由;(2)如图3,延长CE 交直线AG 于点P .①求证:AG CP ⊥;②在旋转过程中,线段PC 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【答案】(1)C AGD ED ≅.理由见解析(2)①见解析;②存在,PC 的最大值为223+【解答】(1)如图2中,结论:C AGD ED ≅.证明:∵四边形EFGD 是正方形,∴DG DE =,90GDE ∠=︒,∵DA DC =,90ADC ∠=︒,∴GDE ADC ∠=∠,∴ADG CDE ∠=∠,∴C AGD ED ≅(SAS ).(2)①证明:如图3中,设AD 交PC 于O .∵C AGD ED ≅,∴DAG DCE ∠=∠,∵COD AOP ∠=∠,∴在APO 与COD 中90APO ADC ∠=∠=︒,∴CP AG ⊥.②存在∵90CPA ∠=︒,AC 是定值,∴当AP 最小时,PC 的值最大,∴当DE PC ⊥时,ACP ∠的值最小,此时PC 的值最大,此时点F 与P 重合,∵9042CED CD DE ∠===︒,,,∴22224223EC CD DE =-=-=,∵2EF DE ==, ∴223CP CE EF =+=+,∴PC 的最大值为223+.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会寻找特殊位置解决最值问题,属于中考压轴题. 6.如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至''CE FD ,旋转角为α.(1)当点D 恰好落在边EF 上时,点D 到边DC 的距离为____________,旋转角α=____________︒;(2)如图2,G 为BC 的中点,且090α︒<<︒,求证:GD E D ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD '与CBD '△能否全等?若能,直接写出旋转角α的值;若不能,说明理由.【答案】(1)1,30(2)见解析(3)能,α为135︒或315︒【分析】(1)根据矩形的性质可知点D 到边DC 的距离等于F 到边DC 的距离,即DF =1,可知点D 到边DC 的距离为1;根据旋转的性质得2CD CD '==,即可判定30CD E ,然后根据平行线的性质即可得到30CD E α'∠=∠=︒ ;(2)由G 为BC 中点可得CG =CE ,然后根据“SAS” 可判断E GCD CD ''≌△△,则GD E D ''=; (3)根据正方形的性质得CB =CD ,而CD CD '=,则 BCD '和DCD '为腰相等的两等腰三角形,当两顶角相等时它们全等,当 BCD '和DCD '为钝角三角 形时,可计算出α=135°,当 BCD '和DCD '为锐角三角形时,可计算得到α=315°.(1)解:由题意可知,当点D 恰好落在边EF 上时,点D 到边DC 的距离等于F 到边DC 的距离,即DF =1, ∴点D 到边DC 的距离为:1,∵CE =1,2CD '=,∴在Rt CED '△中,30CD E ,∵CD EF ∥,∴30CD E α'∠=∠=︒,故答案为:1,30;(2)证明:∵G 为BC 中点,∴1CG =,∴CG CE =,∵长方形CEFD 绕点C 顺时针旋转至CE F D ''',∴90,'∠=∠=︒''==D CE DCE CE CE CG ,∴90∠=∠+'︒='GCD DCE α,在GCD '△和E CD '△中,∵CD CD GCD DCE CG CE =⎧⎪∠=∠⎨⎪=''⎩' ∴(SAS)''△≌△GCD E CD ,∴GD E D ''=;(3)能,理由如下:∵四边形ABCD 为正方形,∴CB =CD ,∵CD CD '=,∴BCD '和DCD '为腰相等的两等腰三角形,当BCD DCD ''∠=∠时,BCD DCD ''≅,当BCD '和DCD '为钝角三角形时,则旋转角α=360901352︒-︒=︒, 当BCD '和DCD '为锐角三角形时,1452BCD DCD BCD ''∠=∠=∠=︒ , 则α=903603152︒︒-=︒, 即旋转角α的值为135°或315°时,BCD '和DCD '全等.【点评】此题属于四边形的综合题,考查了旋转的性质、正方形的性质、矩形的性质以及三角形全等的判定与性质,注意掌握旋转前后图形的对应关系是解此题的关键.7.已知:在Rt ABC 中,90ABC ∠=︒,30BAC ∠=︒,将ABC 绕点A 顺时针旋转一定的角度α得到AED △,点B 、C 的对应点分别是E 、D .(1)如图1,若60α=︒时,连接BE ,求证:AB BE =;(2)如图2,当点E 恰好在AC 上时,求CDE ∠的度数;(3)如图3,点B 、C 的坐标分别是()0,0,()0,2,点Q 是线段AC 上的一个动点,点M 是线段AO 上的一个动点,是否存在这样的点Q 、M 使得CQM 为等腰三角形且AQM 为直角三角形?若存在,请求出满足条件的点M 的坐标;若不存在,请说明理由.【答案】(1)见解析;(2)15°;(3)存在,23,03M ⎛⎫ ⎪⎝⎭或()423,0- 【分析】(1)由旋转的性质可知, ABE 是等边三角形,即可求证;(2)由旋转的性质可知,CA AD =,从而()118030752ACD ADC ∠=∠=︒-︒=︒,即可求解; (3)分两种情况:若90QMA ∠=︒,CQ MQ =时;若90AQM ∠=︒,CQ QM =时,分别求解即可.【解答】(1)证明:由旋转的性质可知60BAE α∠==︒,BA BE =,∴ABE 是等边三角形,∴AB BE =.(2)解:∵90ABC ∠=︒,30BAC ∠=︒,∴60ACB ∠=︒,∵ABC 绕点A 顺时针旋转α得到AED △,点E 恰好在AC 上,∴CA AD =,30EAD BAC ︒∠=∠=,∴()118030752ACD ADC ∠=∠=︒-︒=︒, ∵60EDA ACB ∠=∠=︒,∴15CDE ADC EDA ∠=∠-∠=︒.(3)存在,理由如下:∵点B 、C 的坐标分别是()0,0,()0,2,∴2BC =,∵90ABC ∠=︒,30BAC ∠=︒,∴24AC BC ==,223AB AC BC 2=-=,如图1,若90QMA ∠=︒,CQ MQ =时,图1设CQ QM x ==,∵30CAB ∠=︒,∴22==AQ QM x ,223=-=AM AQ QM x ,∴234=+=+==AC AQ CQ x x x ,∴43x =,∴433AM =, ∴43232333BM AB AM =-=-=, ∴点23,03M ⎛⎫ ⎪ ⎪⎝⎭.如图2,若90AQM ∠=︒,CQ QM =时,图2设CQ QM x ==,30CAB ∠=︒,∴22==AM QM x ,223=-=AQ AM QM x ,∴34AC x x =+=,∴232x =-,∴434AM =-,∴()23434423BM =--=-,∴点()423,0M -; 综上所述:23,03M ⎛⎫ ⎪⎝⎭或()423,0-. 【点评】本题主要考查了图形的变换——旋转,等边三角形的判定和性质,等腰三角形的性质,勾股定理,能够利用旋转的性质和分类讨论的思想是解题的关键.8.同题提出 如图(1),已知ABC ,90ABC ∠=︒,将边AB 绕点A 顺时针旋转α︒至AD 处,连接CD ,O 为CD 的中点,E 为边BC 中垂线上一点,EO AO ⊥.探究BEC ∠的值.问题探究 (1)先将问题特殊化.①如图(2),当180α=︒时,不存在确定的E 点,请说明理由;②如图(3),当D 在CA 的延长线上时,连接DE ,发现180BEC α∠=︒-︒,请证明这个结论; (2)再探究一般情形.如图(1),当90180α︒<<︒时,证明(1)②中的结论仍然成立.问题拓展 (3)当0360α<≤︒︒时,若AO OE =,请直接写出α的值. 【答案】(1)①见解析.②见解析;(2)180BEC α∠=︒-︒.(3)90︒或270︒.【分析】(1)①当180α=︒时,在图中找到BC 的中垂线,看能否满足EO AO ⊥即可;②先证明DEA △≌BEA △,根据D ABE ∠=∠,得到BAC BEC ∠=∠,最后利用180DAB BAC ∠+∠=︒,即可证明结论;(2)先证明出AOD FOC ≅△△,得到AE FE =,再证明出ABE CFE ≅△△,通过性质可证明出AOD FOC ≅△△,得到D DCF ∠=∠,根据AD GC ∥,得到AGC DAB α∠=∠=︒,最后根据180AGC BGC ∠+∠=︒,即可得证;(3)仿照(2)的过程依次证明AOE FOE ≅,ABE CFE ≅△△,再通过角的转换即可得到答案.【解答】解:(1)①当180α=︒时,AO 为DBC △的中位线,经过O 点的AO 的垂线与BC 的中垂线重合,∴此时E 点在BC 的中垂线上任何位置都能满足EO AO ⊥,故不存在确定的E 点.②证明:连接AE .∵OE 垂直平分DC ,∴DE EC =,∴D ECD ∠=∠.∵E 在BC 的中垂线上,∴BE CE =,∴DE BE =.∵AD AB =,∴DEA △≌BEA △.∴D ABE ∠=∠.∴ABE ACE =∠∠.∴BAC BEC ∠=∠.∵180DAB BAC ∠+∠=︒,∴180BEC α∠=︒-︒.(2)延长AO 至F ,使得OF AO =,连接AE ,EF .连接CF 并延长交AB 于点G .∵OD OC =,AOD FOC ∠=∠,∴AOD FOC ≅△△.∴FC AD AB ==.∵OE AF ⊥,AO OF =,∴AE FE =.又∵BE CE =,∴ABE CFE ≅△△.∴ABE FCE ∠=∠,∴BGC BEC ∠=∠.∵AOD FOC ≅△△,∴D DCF ∠=∠.∴AD GC ∥.∴AGC DAB α∠=∠=︒,∵180AGC BGC ∠+∠=︒,∴180BEC α∠=︒-︒.(3)延长AO 至F ,使得OF AO =,连接EF 、CF 并延长交AB 于点G ,连接AE ,∵AO OE ⊥,AO OE =,∴45EAO OEA ∠=∠=︒,90AOE ∠=︒,∴()AOE FOE SAS ≅,∴45OEF ∠=︒,∵AE EF ⊥,由(2)可得()ABE CFE SAS ≅,∴AEB CEF ∠=∠,90BEC AEF ∠=∠=︒,∴18090BEC α∠=︒-=︒,∴90α=︒,当180360α︒<<︒时,延长AO 至F ,使得OF AO =,连接EF 、CF ,同理可得90BEC ∠=︒,∵36090BAD α∠=︒-=︒∴270α=︒,综上所述,α的值为90︒或270︒.【点评】本题考查三角形旋转的综合问题、全等三角形的性质和判定及辅助线作图,解题关键是作出正确的辅助线并找出三角形全等.9.问题提出(1)如图,点M 、N 是直线l 外两点,在直线l 上找一点K ,使得MK NK +最小.问题探究(2)在等边三角形ABC 内有一点P ,且3PA =,4PB =,5PC =,求APB ∠度数的大小.问题解决(3)如图,矩形ABCD 是某公园的平面图,303AB =米,60BC =米,现需要在对角线BD 上修一凉亭E ,使得到公园出口A 、B ,C 的距离之和最小.问:是否存在这样的点E ?若存在,请画出点E 的位置,并求出EA EB EC ++的和的最小值;若不存在,请说明理由.【答案】(1)见解析(2)150︒(3)对角线BD 上不存在这样的点E ,使得到公园出口A 、B ,C 的距离之和最小,理由见解析【分析】(1)根据两点间线段距离最短,连接点MN ,与直线l 交于点K ,点K 即为所求.;(2)把APB △绕点A 逆时针旋转60︒得到AP C '△,由旋转的性质可知APP '是等边三角形,从而得到60AP P ∠'=︒,由勾股定理逆定理可知90PP C ∠'=︒,从而求得150AP C ∠'=︒,即可求解;(3)连接AC ,设在ABC 内一点M ,把ABM 绕点B 逆时针旋转60︒得到GBM ',,由旋转的性质,M BM '、GAB △是等边三角形,根据两点间线段距离最短,可得当MA MB MC GC ++=时最短,从而得到MA MB MC ++最小值为BF 的长,点M 为CG 、BF 的交点,即可求解.【解答】(1)解:如图1,连接点MN ,与直线l 交于点K ,点K 即为所求.(2)解:如图2,把APB △绕点A 逆时针旋转60︒得到AP C '△,由旋转的性质,3P A PA '==,4P C PB '==,60PAP ∠'=︒,APP '∴是等边三角形,3PP PA '∴==,60AP P ∠'=︒,22223425PP P C '+'=+=,22525PC ==,222PP P C PC ∴'+'=,90PP C ∴∠'=︒,6090150AP C AP P PP C ∴∠'=∠'+∠'=︒+︒=︒;故150APB AP C ∠=∠'=︒;(3)解:如图,连接AC ,设在ABC 内一点M ,把ABM 绕点B 逆时针旋转60︒得到GBM ',由旋转的性质,303GB AB ==,BM BM '=,GM AM =,GB AB =,60M BM '∠=︒,60GBA ∠=︒, ∴M BM '、GAB △是等边三角形,BM MM '∴=,MA MB MC GM MM MC '∴++='++,根据两点间线段距离最短得:当MA MB MC GC ++=时最短,GAB 是等边三角形,∴以AC 为一边作等边三角形ACF ,MA MB MC ∴++最小值为BF 的长,此时点M 在线段BF 上,∴点M 为CG 、BF 的交点.若点M 与点E 重合,即M 在对角线BD 上,则点M 为BF 与BD 的交点,此时点M (E )与点B 重合,显然不符合题意,故点M 不在对角线BD 上,即对角线BD 上不存在这样的点E ,使得到公园出口A 、B ,C 的距离之和最小.【点评】本题是四边形综合题,主要考查了旋转知识、三角形全等、特殊角直角三角形、等边三角形的性质和勾股定理,熟练掌握旋转知识构建全等三角形是解题的关键.10.【问题背景】如图1,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,连接EF ,我们可以通过把ABE 绕点A 逆时针旋转90°到ADG △,容易证得:EF BE DF =+.(1)【迁移应用】如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E 、F 分别在边BC 、CD 上,45EAF ∠=︒,若B ∠、D ∠都不是直角,且180B D ∠+∠=︒,试探究EF 、BE 、DF 之间的数量关系,并说明理由.(2)【联系拓展】如图3,在ABC 中,90BAC ∠=︒,AB AC =,点D 、E 均在边BC 上,且45DAE =︒∠.猜想BD 、DE 、EC 满足的等量关系(直接写出结论,不需要证明). 【答案】(1)EF BE DF =+,理由见解析(2)222DE BD EC =+【分析】(1)把ABE 绕点A 逆时针旋转90°到ADG △,证明()AFG AFE SAS △≌△,进而即可得到结论;(2)把ACE △绕点A 逆时针旋转90°到ABF △,连接DF ,证明()ADF ADE SAS ≌,从而得90DBF ABF ABC ∠=∠+∠=,进而即可得到结论.(1)解:数量关系是EF BE DF =+,理由如下:由题意得,AB AD =,90BAD ∠=︒,把ABE 绕点A 逆时针旋转90°到ADG △,如图2所示,则DAG BAE ∠∠=,ADG B ∠=∠,AG AE =,∵180B ADC ∠+∠=︒,∴180ADG ADC ∠+∠=︒,∴点F 、D 、G 在同一条直线上;∵45EAF ∠=︒,∴904545GAF DAG DAF BAE DAF ∠=∠+∠=∠+∠=︒-︒=︒,∴GAF EAF ∠=∠,∵AF AF =,∴()AFG AFE SAS △≌△,∴EF GF DG DF BE DF ==+=+.(2)解:数量关系是222DE BD EC =+,理由如下:把ACE △绕点A 逆时针旋转90°到ABF △,连接DF ,如图3所示,∴ABF ACE ≌△△,90FAE ∠=,∴FAB CAE ∠=∠,BF CE =,ABF C ∠=∠,∴90FAE BAC ∠=∠=,∵45DAE ∠=,∴904545FAD ∠=-=,∴45FAD DAE ∠=∠=,在ADF △和ADE 中,AF AE FAD DAE AD AD =⎧⎪∠=∠⎨⎪=⎩,∴()ADF ADE SAS ≌,∴DF =DE ,∵90BAC ∠=,AB =AC ,∴45ABC C ∠=∠=,∴45C ABF ∠=∠=,∴90DBF ABF ABC ∠=∠+∠=,∴BDF 是直角三角形,∴222DF BD BF =+,∴222DE BD EC =+.【点评】本题主要考查了全等三角形的性质和判定,勾股定理,图形旋转的性质等知识,关键是正确画出图形.11.【发现奥秘】(1)如图1,在等边三角形ABC 中,2AB =,点E 是ABC 内一点,连接,,AE EC BE ,分别将,AC EC 绕点C 顺时针旋转60°得到,DC FC ,连接,,AD DF EF .当B ,E ,F ,D 四个点满足______时,BE AE CE ++的值最小,最小值为_______.【解法探索】(2)如图2,在ABC 中,90,ACB AC BC ∠=︒=,点P 是ABC 内一点,连接,,PA PB PC ,请求出当PA PB PC ++的值最小时BCP ∠的度数,并直接写出此时::PA PB PC 的值.(提示:分别将,PC AC 绕点C 顺时针旋转60°得到,DC EC ,连接,,PD DE AE )【拓展应用】(3)在ABC 中,90,30,2ACB BAC BC ︒︒∠=∠==,点P 是ABC 内一点,连接,,PA PB PC ,直接写出当PA PB PC ++的值最小时,::PA PB PC 的值.【答案】(1)四点共线,23(2)PA PB PC ++的值最小时45BCP ∠=,此时()::2:2:31PA PB PC =- (3)::4:2:1PA PB PC =【分析】(1)证明AEC DFC 得到AE DF =进而得到B ,E ,F ,D 四个点满足四点共线时,BE AE CE ++的值最小为BD ,再由等边△ABC 及2AB =求出BD 的长;(2)同(1)中思路证明()APC EDC SAS △≌△得到PA DE =,当B ,P ,D ,E 四点共线时,PA PB PC ++的值最小为BE ;进一步得到150BCE ∠=︒,BC CE =即可求出45BCP ∠=,再过点C 作CF AB ⊥于点F ,利用30FBP 即可求出::PA PB PC 的值;(3)同(2)中思路即可求解.(1)解:由旋转的性质,可知,,60CE CF CA CD ECFACD , 60ACE ECF ACF ACF ,60DCF ACDACF ACF , ∴ACE DCF ∠=∠,∴()ACE DCF SAS △≌△,∴AE DF =,且EC EF =,∴BE AE CE BE DF EF ,∴当B ,E ,F ,D 四点共线时,BE DF EF ++的值最小为BD ,如图所示:连接AC ,设AC 与BD 交于点O ,∵ABCD 为菱形,∴AC ⊥BD ,∵△ABC 为等边三角形,∴∠OCB =60°,∴332322BO BC ,此时223BD BO ==.(2)解:由旋转的性质,可知,,60PC CD AC CE PCD ACE ==∠=∠=︒, 60PCA PCD ACD ACD ,60DCE ACE ACD ACD ,∴PCA DCE ,∴()APC EDC SAS △≌△,∴PA DE =,且PDC ACE △,△均为等边三角形,PC PD =, ∴PA PB PC DE PB PD ++=++,∴当B ,P ,D ,E 四点共线时,PA PB PC ++的值最小,如图1所示.∵PDC ACE △,△均为等边三角形, ∴1209060150BPC CDE CPA BCE ,,∵,AC BC AC CE ==,∴BC CE =.∴15PBC DEC ∠=∠=︒,∴45BCP ∠=︒,∴当B ,P ,D ,E 四点共线时,PA PB PC ++的值最小,此时45BCP ∠=︒; 过点C 作CF AB ⊥于点F ,如图1所示.∵,PB PA CB CA ,∴CP 是线段AB 的中垂线,∴C ,P ,F 三点共线,45FBC FAC ∠=∠=︒∴,30PA PB FBP FAP =∠=∠=︒,设1PF =,则2,3PB PA CF BF ====.∴31PC =-,∴::2:2:(31)PA PB PC =-.(3)解:分别将,PC AC 绕点C 顺时针旋转60°得到,DC EC ,连接,,PD DE AE ,过点E 作EF BC ⊥,交BC 的延长线于点F ,如图2所示:由(2)可知,当B ,P ,D ,E 四点共线时,PA PB PC ++的值最小,此时120BPC CDE CPA ∠=∠=∠=︒, 由(2)知:9060150APC EDC BCE △≌△,,∴30ECF ∠=︒,∵2BC =,∴23AC CE ==,∴3,3EF CF ==.∴235BF =+=,∴在Rt BEF △中由勾股定理得到22225(3)27BE BF EF =+=+=,过点C 作CG BE ⊥,垂足为G ,如图2所示. ∵1122BCE S BC EF BE CG =⨯⨯=⨯⨯△, ∴11232722CG ⨯=⨯⨯⨯, ∴217CG =, ∴3217377PG DG , ∴在Rt BCG 中由勾股定理得到22222157277BG BC CG , ∴27577472,7777PD PC PG BP BG PG ====-=-=, ∴47278727777PD DE BE BP PD ==--=--=, ∴::4:2:1PA PB PC =.【点评】本题考察了图形旋转的性质、三角形全等的判定方法、勾股定理求线段长等知识点,本题综合性强,难度大,需要根据题意做出合适的辅助线,属于中考常考压轴题.。

2023年中考数学讲练必考重点04 几何变换之旋转问题(含答案)

2023年中考数学讲练必考重点04 几何变换之旋转问题(含答案)

[选择题]必考重点04 几何变换之旋转问题几何变换中的旋转问题,江苏省各地考查频率较高且考查难度较高,综合性较强,通常有线段的旋转、三角形及四边形的旋转问题,在解决此类问题时,要牢牢把握旋转的性质,即旋转前后的图形全等,对应角相等,对应边相等,结合几何图形本身的性质,找到旋转过程中变化的量和不变的量,运用三角形全等或相似的有关知识,求解有关角、线段及面积问题。

0,2,点B是x轴正半轴上的一点,将线段AB绕点A按逆时[2022·江苏苏州·中考母题]如图,点A的坐标为()m,则m的值为()针方向旋转60°得到线段AC.若点C的坐标为(),3A B C D.3[考点分析]本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.[思路分析]过C作CD⊥x轴于D ,CE⊥y轴于E ,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC ,可得△ABC是等边三角形,又A(0 ,2),C(m ,3),即得AC BC AB=,可得=,即可解得m=.BD,OB=,m<,将ABC以点A为中心逆时针旋转得到ADE,点[2022·江苏扬州·中考母题]如图,在ABC∆中,AB ACD 在BC 边上 ,DE 交AC 于点F .下列结论:①AFE DFC △△ ;②DA 平分BDE ∠ ;③CDF BAD ∠=∠ ,其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③[考点分析]本题考查了性质的性质 ,等边对等角 ,相似三角形的性质判定与性质 ,全等三角形的性质 ,掌握以上知识是解题的关键.[思路分析]根据旋转的性质可得对应角相等 ,对应边相等 ,进而逐项分析判断即可求解.[2020·江苏宿迁·中考母题]如图 ,在平面直角坐标系中 ,Q 是直线y=﹣12x+2上的一个动点 ,将Q 绕点P(1 ,0)顺时针旋转90° ,得到点Q ' ,连接OQ ' ,则OQ '的最小值为( )A B C D [考点分析]本题考查了一次函数图象上点的坐标特征 ,一次函数的性质 ,三角形全等的判定和性质 ,坐标与图形的变换-旋转 ,二次函数的性质 ,勾股定理 ,表示出点的坐标是解题的关键.[思路分析]利用等腰直角三角形构造全等三角形 ,求出旋转后Q′的坐标 ,然后根据勾股定理并利用二次函数的性质即可解决问题.1.(2022·江苏·九年级专题练习)如图将△ABC 绕点C 逆时针旋转得到△A ’B ’C ,点B 恰好落在A ’B ’上 ,若∠A =25° ,∠BCA ’=45° ,则∠A ’CA = ( )A.30°B.35°C.40°D.45°2.(2022·江苏泰州·九年级专题练习)在正方形ABCD中,AB=8 ,若点E在对角线AC上运动,将线段DE 绕点D逆时针旋转90°得到线段DF ,连接EF、CF.点P在CD上,且CP=3PD.给出以下几个结论①222=+,②EF, ③线段PF的最小值是,④△CFE的面积最大是16.其中正确的是EF AE CE()A.①②④B.②③④C.①②③D.①③④3.(2022·江苏苏州·一模)如图,直角三角形ACB中,两条直角边AC=8 ,BC=6 ,将△ACB绕着AC中点M旋转一定角度,得到△DFE ,点F正好落在AB边上,DE和AB交于点G ,则AG的长为()A.1.4 B.1.8 C.1.2 D.1.64.(2022·江苏徐州·二模)如图,△ABC中,∠ABC=45° ,BC=8 ,tan∠ACB=3 ,AD⊥BC于D ,若将△ADC 绕点D逆时针方向旋转得到△FDE ,当点E恰好落在AC上,连接AF.则AF的长为()A B C .D .45.(2022·江苏盐城·一模)如图 ,在AOB 中 ,2AO = ,3BO AB ==.将AOB 绕点O 逆时针方向旋转90° ,得到A OB ''△ ,连接AA '.则线段AA '的长为( )A .2B .3C .D .6.(2022·江苏·宜兴外国语学校一模)如图 ,在矩形ABCD 中 ,AB =3 ,BC =4 ,P 是对角线AC 上的动点 ,连接DP ,将直线DP 绕点P 顺时针旋转使∠DPE =∠DAC ,且过D 作DE ⊥PE ,连接CE ,则CE 最小值为( )A .65B .3625C .3225D .857.(2022·江苏扬州·模拟)如图 ,将矩形ABCD 绕点B 按顺时针方向旋转一定角度得到矩形A B C D ''''.此时点A 的对应点A '恰好落在对角线AC 的中点处.若AB =3 ,则点B 与点D 之间的距离为( )A.3 B.6 C.D.8.(2022·江苏·九年级专题练习)如图所示,已知ABC是等边三角形,点D是BC边上一个动点(点D不与,B C重合) ,将ADC绕点A顺时针旋转一定角度后得到AFB△,过点F作BC的平行线交AC于点E,连接②为等边三角形;③四边形BCEF为平行四边形;DF,下列四个结论中:①旋转角为60︒;ADF④.其中正确的结论有()=BF AEA.1B.2C.3D.49.(2022·江苏南京·模拟)如图,在Rt ABC中,∠ACB=90° ,BC=2 ,∠BAC=30° ,将ABC绕顶点C逆时针旋转得到△A'B'C' , M是BC的中点,P是A'B'的中点, 连接PM ,则线段PM的最大值是()A.4 B.2 C.3 D.10.(2022·江苏苏州·二模)如图,将ABC绕点A顺时针旋转角α,得到ADE,若点E恰好在CB的延长线上,则BED∠等于()A .2αB .23αC .αD .180α︒-11.(2022·江苏·阳山中学一模)如图 ,在△ABC 中 ,∠BAC =45° ,AC =8 ,动点E 从点A 出发沿射线AB 运动 ,连接CE ,将CE 绕点C 顺时针旋转45°得到CF ,连接AF ,则△AFC 的面积变化情况是( ).A .先变大再变小B .先变小再变大C .逐渐变大D .不变12.(2022·江苏·南通市启秀中学九年级阶段练习)如图 ,点E 是正方形ABCD 的边DC 上一点 ,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20 ,DE=2 ,则AE 的长为( )A .4B .C .6D .13.(2022·江苏·九年级专题练习)如图1 ,在Rt ABC 中 ,AC BC = ,90C ∠=︒ ,点D 为AB 边的中点 ,90EDF ∠=︒ ,将EDF ∠绕点D 旋转 ,它的两边分别交AC 、CB 所在直线于点E 、F ,有以下4个结论:①CE BF = ;②180DEC DFC ∠+∠=︒ ;③222EF DE = ;④如图2 ,当点E 、F 落在AC 、CB 的延长线上时 ,12DEF CEF ABC S S S -=△△△ ,在旋转的过程中上述结论一定成立的是( )A .①②B .②③C .①②③D .①③④14.(2022·江苏扬州·三模)如图 ,已知正方形ABCD 的边长为4 ,点E 是AB 边上一动点 ,连接ED ,将ED 绕点E 顺时针旋转90°到EF ,连接DF ,CF ,则DF +CF 的最小值是( )A .B .C .D .15.(2022·江苏南京·一模)在平面直角坐标系中 ,点A 的坐标是()2,3- ,将点A 绕点C 顺时针旋转90°得到点B .若点B 的坐标是()5,1- ,则点C 的坐标是( )A .()0.5, 2.5--B .()0.25,2--C .()0, 1.75-D .()0, 2.75-16.(2022·江苏南京·模拟)如图 ,在Rt ABC 中 ,AB =AC =10 ,∠BAC =90°,等腰直角三角形ADE 绕点A 旋转 ,∠DAE =90°,AD =AE =4 ,连接DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点 ,连接MP 、PN 、MN .①PMN为等腰直角三角形 ;②MN ≤;③△PMV 面积的最大值是494;④PMN 周长的最小值为6+ )A.4个B.3个C.2个D.1个17.(2022·江苏无锡·一模)如图,已知直线AB与y轴交于点(0,A,与x轴的负半轴交于点B ,且∠ABO =60° ,在x轴正半轴上有一点C ,点C坐标为()1,0,将线段AC绕点A逆时针旋转120° ,得线段AD ,连接BD.则BD的长度为()A.B.4C D.15 218.(2022·江苏·无锡市积余实验学校一模)如图1 ,在Rt△ABC中,90A∠=︒,AB AC=,点D ,E分别在边AB ,AC上,AD AE=,连接DC ,点M、P、N分别为DE、DC、BC的中点.将△ADE绕点A在平面内自由旋转(如图2),若4=AD,10AB=,则△PMN面积的最大值是()A.494B.18 C.492D.25219.(2022·江苏·无锡市天一实验学校一模)如图,扇形OAB中,90AOB∠=︒,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则ADAC的值为()A B C D 20.(2022·江苏·苏州市平江中学校二模)如图 ,在BAC 中 ,90BAC ∠=︒ ,2AB AC = ,将BAC 绕点A 顺时针旋转至DAE △ ,点D 刚好落在BC 直线上 ,则BDE 的面积为( )A .24BD B .22BC C .4BC BD ⋅ D .22AB 21.(2022·江苏·淮安市浦东实验中学九年级开学考试)如图 ,直线1y x =+与x 轴、y 轴分别相交于点A 、B ,过点B 作BC AB ⊥ ,使2BC BA =.将 ABC ∆绕点O 顺时针旋转 ,每次旋转90︒.则第2022次旋转结束时 ,点C 的对应点C '落在反比例函数k y x=的图象上 ,则k 的值为( )A .4-B .4C .6-D .622.(2022·江苏无锡·九年级期末)如图 ,在Rt △ABC 中 ,90BAC ∠=︒ ,6AB AC == ,点D 、E 分别是AB 、AC 的中点.将△ADE 绕点A 顺时针旋转60°,射线BD 与射线CE 交于点P ,在这个旋转过程中有下列结论:①△AEC ≌△ADB ;②CP 存在最大值为3+;③BP 存在最小值为3 ;④点P 运动的路径长为.其中 ,正确的( )A .①②③B .①②④C .①③④D .②③④23.(2022·江苏无锡·模拟)如图 ,在正方形ABCD 中 ,6AB = ,点H 为BC 中点 ,点E 绕着点C 旋转 ,且4CE = ,在DC 的右侧作正方形DEFG ,则线段FH 的最小值是( )A.9-B .8- C .9-D .10-24.(2022·江苏·常州市金坛区水北中学二模)如图 ,在矩形ABCD 中 ,5AB = ,BC =,点P 在线段BC 上运动(含B 、C 两点) ,连接AP ,以点A 为中心 ,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为( )A .52B .CD .325.(2022·江苏南京·模拟)如图 ,在ABC ∆中 ,5,AB AC BC === ,D 为边AC 上一动点(C 点除外) ,把线段BD 绕着点D 沿着顺时针的方向旋转90°至DE ,连接CE ,则CDE ∆面积的最大值为( )A .16B .8C .32D .10[选择题]必考重点04 几何变换之旋转问题几何变换中的旋转问题,江苏省各地考查频率较高且考查难度较高,综合性较强,通常有线段的旋转、三角形及四边形的旋转问题,在解决此类问题时,要牢牢把握旋转的性质,即旋转前后的图形全等,对应角相等,对应边相等,结合几何图形本身的性质,找到旋转过程中变化的量和不变的量,运用三角形全等或相似的有关知识,求解有关角、线段及面积问题。

专题勾股定理培优版(综合)

专题勾股定理培优版(综合)

专题 勾股定理在动态几何中的应用一.勾股定理与对称变换 (一)动点证明题1.如图,在△ABC 中,AB =AC ,(1)若P 为边BC 上的中点,连结AP ,求证:BP ×CP =AB 2-AP 2;(2)若P 是BC 边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由;(3)若P 是BC 边延长线上一点,线段AB 、AP 、BP 、CP 之间有什么样的关系?请证明你的结论.(二)最值问题2.如图,E 为正方形ABCD 的边AB 上一点,AE =3 ,BE =1,P 为AC 上的动点,则PB +PE 的最小值是ABPCBCPADPED C C将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;(3)当AM +BM +CM 的最小值为13 时,求正方形的边长.D C CD C C长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决. (1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD 和AB 的长.图① 图②DB C图2图1A'PPA ABCBC5.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。

小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ’BC,连接A A ',当点A 落在C A '上时,此题可解(如图2).请你回答:AP 的最大值是 .参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt △ABC .边AB=4,P 为△ABC 内部一点, 则AP+BP+CP 的最小值是 .(结果可以不化简)6.如图,P 是等边三角形ABC 内一点,AP=3,BP=4,CP=5,求∠APB的度数. BAC图3CABP变式1:∆ABC 中, ∠ACB=90º,AC=BC ,点P 是∆ABC 内一点,且PA=6,PB=2,PC=4,求∠BPC 的度数变式2:问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决. 请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹); (2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3CBAPCA BEF MN图① 7. 已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(1)当扇形CEF 绕点C 在∠ACE 的内部旋转时,如图①,求证:222BN AM MN +=;(2)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.变式1:如图,在Rt ABC ∆中, 90,,45BAC AC AB DAE ∠=︒=∠=︒ 且3BD =,4CE =,则DE =变式2:如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕 点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ≌△ACD ; ③BE DC DE +=;④222BE DC DE +=其中正确的是( ) CABE F MN 图②BCDEFA(三)其它应用7. 在ABC △中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC △(即ABC △三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC △的高,而借用网格就能计算出它的面积.(1)请你将ABC △的面积直接填写在横线上__________________; 思维拓展:(2)我们把上述求ABC △面积的方法叫做构图法....若ABC △三边的长分别为2a 、13a 、17a (0a >),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的ABC △,并求出它的面积填写在横线上__________________; 探索创新:(3)若ABC △中有两边的长分别为2a 、10a (0a >),且ABC △的面积为22a ,试运用构图..法.在图3的正方形网格(每个小正方形的边长为a )中画出所有符合题意的ABC △(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上__________________.8.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连结QE并延长交BP于点F.(1)如图1,若AB=32,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果);(2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB=32,设BP=x,以QF为边的等边三角形的面积y,求y关于x的关系式.。

专题04 几何证明之三角形中的旋转综合问题(解析版)

专题04 几何证明之三角形中的旋转综合问题(解析版)

专题04 几何证明之三角形中的旋转综合问题1、如图,点P是∠MON内的一点,过点P作PA⊥OM于点A,PB⊥ON于点B,且OA=OB.(1)求证:PA=PB;(2)如图②,点C是射线AM上一点,点D是线段OB上一点,且∠CPD+∠MON=180°,若OC=8,OD=5.求线段OA的长.(3)如图③,若∠MON=60°,将PB绕点P以每秒2°的速度顺时针旋转,12秒后,PA开始绕点P以每秒10°的速度顺时针旋转,PA旋转270°后停止,此时PB也随之停止旋转.旋转过程中,PA所在直线与OM所在直线的交点记为G,PB所在直线与ON所在直线的交点记为H.问PB旋转几秒时,PG=PH?(1)证明:如图①中,连接OP.∵PA⊥OM,PB⊥ON,∴∠OAP=∠OBP=90°,∵OA=OB,OP=OP,∴Rt△OPA≌Rt△OPB(HL),∴PA=PB.(2)如图②中,∵∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠CPD+∠AOB=180°,∴∠CPD=∠APB,∴∠APC=∠BPD,∵PA=PB,∠PAC=∠PBD=90°,∴△PAC≌△PBD(ASA),∴AC=BD,∴OC+OD=OA+AC+OB﹣BD=2OA=13,∴OA=6.5.(3)设点P的旋转时间为t秒.①当0<t<12时,不存在.②当12≤t<21时,如图3﹣1中,∠APG=(10t﹣120)°,∠BPH=2t°,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时10t﹣120=2t,t=15.③当21≤t<30时,如图3﹣2中,∠APG=180°﹣∠APA′=180°﹣(10t﹣120)°=(300﹣10t)°,∠BPH =2t,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时300﹣10t=2t,t=25.④当30≤t<39时,如图3﹣3中,∠APG=(10t﹣300)°,∠BPH=2t,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时10t﹣300=2t,t=37.5,综上所述,满足条件的t的值为15s或25s或37.5s.2、(1)问题发现:如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=50°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究:如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,CD=2OD,AB=2OB,连接AC交BD的延长线于点M.请求出的值及∠AMB的度数,并说明理由;(3)拓展延伸:在(2)的条件下,将△OCD绕点O在平面内旋转,AC、BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.解:(1)问题发现①如图1,∵∠AOB=∠COD=50°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=50°,∴∠OAB+∠ABO=130°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣130°=50°,故答案为:①1;②50°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DOC=90°,CD=2DO,∴∠DCO=30°,∴=tan30°=,同理得:=tan30°=,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图1,同(2)得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴,整理得:x2﹣x﹣6=0,∴(x﹣3)(x+2)=0,∴x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图2,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴+(x+2)2=,整理得x2+x﹣6=0,∴(x+3)(x﹣2)=0,∴x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.3、已知在平面直角坐标系中,A(a,0),B(b,0)、C(0,c),其中a、b、c满足=0.(1)求△ABC的面积;(2)将线段BC向右平移至AD(点B对应点A,点C对应点D).①当点M为x轴上任意点(不与原点重合),ME、CF分别平分∠CMO与∠DCM,若∠AME=α,∠DCF=β,试用含α的代数式表示β;②点P为线段CD上一点(不与点C、D重合),P的横坐标为t,连接BP、AC,BP交y轴于点E,交AC于点Q,若△CQE与△PQA的面积分别为S1,S2,试用含t的代数式表示S2﹣S1.解:(1)如图1中,∵=0,又∵≥0,|b+2|≥0,(c﹣4)2≥0,∴a=5,b=﹣2,c=4,∴A(5,0),B(﹣2,0),C(0,4),∴OA=5,OB=2,OC=4,∴AB=OB+OA=2+5=7,∴S△ABC=•AB•OC=×7×4=14.(2)①如图2﹣1中,当点E在射线OB上时,α+β=90°理由:∵CD∥AM,∴∠DCM+∠AMC=180°,∵∠DCF=∠DCM=β,∠AME=∠AMC=α,∴α+β=90°.当点M在线段AB上时,如图2﹣2中,α+β=180°.理由:∵CD∥AM,∴∠DCM+∠AMC=180°,∠DCM=∠CMB,∵∠DCM=2∠DCF=2β,∠FCM=∠DCM,∠EMC=∠CMB,∴∠FCM=∠EMC=β,∴∠AMC=180°﹣2β,∵∠AME=∠AMC+∠EMC,∴α=β+180°﹣2β,∴α+β=180°.当点M在线段OA的延长线上时,如图2﹣3中,α=β.理由::∵CD∥AM,∴∠DCM=∠CMB,∵∠DCF=∠DCM,∠AME=∠CMB,∴∠DCF=∠AME,∴α=β.②如图3中,设E(0,m).由题意:P(t,4),A(5,0),B(﹣2,0),C(0,4),∴S△BCP=S△BCE+S△ECP,∴×t×4=×(4﹣m)×2+×(4﹣m)×t,∴m=,∴S2﹣S1=S△PCA﹣S△PCE′=×t×4﹣×t×(4﹣)=.4、如图,在平面直角坐标系中,O为原点,点A(0,4),B(﹣4,0),C(4,0).(Ⅰ)如图①,若∠BAD=15°,AD=3,求点D的坐标;(Ⅱ)如图②,AD=2,将△ABD绕点A逆时针方向旋转得到△ACE,点B,D的对应点分别为C,E.连接DE,BD的延长线与CE相交于点F.①求DE的长;②证明:BF⊥CE.(Ⅲ)如图③,将(Ⅱ)中的△ADE绕点A在平面内旋转一周,在旋转过程中点D,E的对应点分别为D1,E1,点N,P分别为D1E1,D1C的中点,请直接写出△OPN面积S的变化范围.解:(Ⅰ)∵OA=OB=4,∠AOB=90°,∴∠OAB=∠ABO=45°.∴∠DAO=∠OAB﹣∠DAB=30°.如图①中,过点D作DG⊥OA,垂足为G.在Rt△ADG中,∠DAG=30°,∴,,∴,∴点D的坐标为.(Ⅱ)①如图②中,∵∠DAE=∠BAC=90°,AD=AE=2,∴在Rt△DAE中,,②∵OA=OB=OC=4,∠AOB=∠AOC=90°,∴∠OAB=∠ABO=∠ACO=∠OAC=45°,∴∠BAC=90°,∵△ABD旋转得到△ACE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,在△BFC中,则有∠FBC+∠FCB=∠FBC+∠BCA+∠ACE=∠FBC+∠BCA+∠ABD=∠ABC+∠BCA=90°,∴BF⊥CE.(Ⅲ)如图③中,∵OB=OC,PC=PD1,NE1=ND1,∴OP=BD1,PN=E1C,OP∥BD1,PN∥CE1∵BD1⊥E1C,BD1=E1C,∴OP⊥PN,OP=PN,∴△OPN是等腰直角三角形,∵AB=4,AD1=2,∴4﹣2≤BD1≤4+2,∴2﹣1≤OP≤2+1,∴△OPN面积的最小值=(2﹣1)2=﹣2,△OPN的面积的最大值=+2,∴.5、问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重合时,BH与AE的位置关系为,BH与AE的数量关系为;问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt△BDE绕点B旋转的过程中,当DE∥BC时,请直接写出BH2的长.解:问题发现:如图1中,结论:AE=2BH,AE⊥BH.理由:在Rt△ABC中,∵BC=6,∠A=30°,∴AE=2BC=12,在Rt△CDB中,∵∠DCB=30°,∴CD==4,∵CH=DH,∴==2,∴AE=2BH.故答案为AE⊥BH,AE=2BH.问题证明:如图2中,(1)中结论成立.理由:延长BH到F使得HF=BH,连接CF.设AE交BF于O.∵CH=DH,BH=HF,∠CHF=∠BHD,∴△CHF≌△DHB(SAS),∴BD=CF,∠F=∠DBH,∴CF∥BD,∵AB=BC,BE=BD,∴BE=CF,∵CF∥BD,∴∠BCF+∠CBD=180°,∵∠ABC+∠DBE=∠ABD+∠CBD+∠CBD+∠CBE=∠CBD+∠ABE=180°,∴∠BCF=∠ABE,∴△ABE∽△BCF,∴∠CBF=∠BAE,==,∴AE=BF=2BH,∵∠CBF+∠ABF=90°,∴∠ABF+∠BAE=90°,∴∠AOB=90°,∴BH⊥AE.拓展应用:如图3﹣1中,当DE在BC的下方时,延长AB交DE于F.∵DE∥BC∴∠ABC=∠BFD=90°,由题意BC=BE=6,AB=6,BD=2,DE=4,∵•BD•BE=•DE•BF,∴BF==3,∴EF=BF=3,∴AF=6+3,∴AE2=AF2+EF2=(6+3)2+(3)2=144+36.∵AE=2BH,∴AE2=12BH2,∴BH2=12+3如图3﹣2中,当DE在BC的上方时,同法可得AF=6﹣3,EF=3,∴BH2==(=12﹣3.6、已知△ABC是等边三角形,D是BC上一点,△ABD绕点A逆时针旋转到△ACE的位置.(1)如图,旋转中心是,∠DAE=°;(2)如图,如果M是AB的中点,那么经过上述旋转后,点M转动了度;(3)如果点D为BC边上的三等分点,且△ABD的面积为3,那么四边形ADCE的面积为.解:(1)∵△ABC为等边三角形,∴∠BAC=60°∵△ABD绕点A逆时针旋转到△ACE的位置,∴旋转中心是点A,∠DAE=∠BAC=60°;(2)∵AB和AC为对应边,∴经过上述旋转后,点M转到了AC的中点位置,如图,∴∠MAM′=60°,∴点M转动了60°;(3)∵△ABD绕点A逆时针旋转到△ACE的位置,∴△ABD≌△ACE,∵BD=BC,或BD=BC,∴CD=2BD,或CD=BD,∴S△ABC=3S△ABD=3×3=9,或S△ABC=S△ABD=3×=,∴S=S△ABC=9或.四边形ADCE故答案为点A,60;60;9或.7、如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN=2+5=7,最大∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.8、如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.(1)观察猜想如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是.(2)探究证明把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若AC=BC=13,DE=10,当A、E、D三点在直线上时,请直接写出AD的长.解:(1)如图1中,延长AE交BD于H.∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEH,∴∠BEH+∠EBH=90°,∴∠EHB=90°,即AE⊥BD,故答案为AE=BD,AE⊥BD.(2)结论:AE=BD,AE⊥BD.理由:如图2中,延长AE交BD于H,交BC于O.∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,即AE⊥BD.(3)①当射线AD在直线AC的上方时,作CH⊥AD用H.∵CE=CD,∠ECD=90°,CH⊥DE,∴EH=DH,CH=DE=5,在Rt△ACH中,∵AC=13,CH=5,∴AH==12,∴AD=AH+DH=12+5=17.②当射线AD在直线AC的下方时时,作CH⊥AD用H.同法可得:AH=12,故AD=AH﹣DH=12﹣5=7,综上所述,满足条件的AD的值为17或7.9、如图1,在Rt△ABC中,∠ABC=90°,AB=BC=4,点D、E分别是边AB、AC的中点,连接DE,将△ADE绕点A按顺时针方向旋转,记旋转角为α,BD、CE所在直线相交所成的锐角为β.(1)问题发现当α=0°时,=;β=°.(2)拓展探究试判断:当0°≤α<360°时,和β的大小有无变化?请仅就图2的情形给出证明.(3)在△ADE旋转过程中,当DE∥AC时,直接写出此时△CBE的面积.解:(1)如图1中,∵∠B=90°,BA=BC,∴∠A=45°,AC=AB,∵点D、E分别是边AB、AC的中点,∴BD=AB,EC=AC,∴=,β=45°,故答案为,45°.(2)结论:和β的大小无变化.理由:如图2中,延长CE交AB于点O,交BD于K.∵AE=AD,AC=AB,∴==,∴=,∵∠DAE=∠BAC,∴∠DAB=∠EAC,∴△DAB∽△EAC,∴==,∠OBK=∠OCA,∵∠BOK=∠COA,∠BKO=∠CAO=45°,∴和β的大小无变化.(3)当点E在线段AB上时,S△BCE=×4×(4﹣2)=8﹣4,当点E在线段BA的延长线上时,S△BCE=×4×(4+2)=8+4.综上所述,△BCE的面积为8﹣4或8+4.10、如图乙,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图甲,将△ADE绕点A旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个.(回答直接写序号)①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)(2)若AB=6,AD=3,把△ADE绕点A旋转:①当∠CAE=90°时,求PB的长;②直接写出旋转过程中线段PB长的最大值和最小值.(1)解:如图甲:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确.②∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴②正确.③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确.④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2),∴④错误.故答案为①②③.(2)①解:a、如图乙﹣1中,当点E在AB上时,BE=AB﹣AE=3.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=.b、如图乙﹣2中,当点E在BA延长线上时,BE=9.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=.综上,PB=或.②解:a、如图乙﹣3中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE最大,因此PB最大)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=2,∴PB=BD+PD=3+3.综上所述,PB长的最大值是3+3.b、如图乙﹣4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.理由:此时∠BCE最小,因此PB最小,(△PBC是直角三角形,斜边BC为定值,∠BCE最小,因此PB最小)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=4,∴PB=BD﹣PD=3﹣3.综上所述,PB长的最小值是3﹣3.11、如图1,在等腰直角△ABC中,∠A=90°,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0°<α<360°),如图2.(1)请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;(2)请你在图3中,画出当α=45°时的图形,连接CE和BE,求出此时△CBE的面积;(3)若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是.解:(1)如图1中,连接EC,BD.结论:BD=CE.理由:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS).∴BD=CE.(2)如图2中,由题意:∠CAE=45°,∵AC=AB,∠CAB=90°,∴∠ACB=∠ABC=45°,∴AE∥BC.∴△CBE的面积与△ABC的面积相等.∵△ABC的面积为4.5,∴△CBE的面积4.5.(3)如图3中,延长AM到N,使得MN=AM,连接CN,DM.∵AM=MN,CM=MD,∴四边形ADNC是平行四边形,∴AD=CN=1,∵AC=3,∴3﹣1≤AN≤3+1,∴2≤2AM≤4,∴1≤AM≤2,∴AM的最小值为1.故答案为1.12、综合与实践问题情境数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题(1)如图①,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,连接AE、AD、BD,当△DEC绕点C继续旋转到如图②所示的位置时,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由;探索发现(3)如图③,勤奋小组在前两个小组的启发下,继续旋转△DEC,当B、A、E三点共线时,求BD的长;(4)在图①的基础上,写出一个边长比为1::2的三角形(可添加字母)解:(1)如图①中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)如图②中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC=S△AEC.(3)如图③中,作CH⊥AD于H.∵∴AC=CD=AB=2,∵B,A,E共线,∴∠BAC+∠EAC=180°,∴∠EAC=120°,∵∠EDC=60°,∴∠EAC+∠EDC=180°,∴A,E,D,C四点共圆,∴∠CAD=∠CED=30°,∠BAD=90°,∵CA=CD,CH⊥AD,∴AH=DH=AC•cos30°=,∴AD=2,∴BD===2.(4)如图①中,设DE交BC于T.因为含有30°的直角三角形的三边之比为1::2,由(1)可知△BDT,△DCT,△ECT都是含有30°的直角三角形,∴△BDT,△DCT,△ECT符合条件.。

专题04 勾股定理与网格问题(解析版)

专题04 勾股定理与网格问题(解析版)

专题04 勾股定理与网格问题一、单选题1.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有()A.1 条B.2条C.3条D.4条【答案】B【分析】由勾股定理求出a、b、c、d,即可得出结果.【解析】=,=d=2,5∵长度是无理数的线段有2条,故选B.【小结】本题考查了勾股定理、无理数,熟练掌握勾股定理是解决问题的关键.A B C E为格点.O为大正方形的内切圆,BC 2.如图,在22⨯的网格中,每个小正方形的边长均为1,,,,∠=()交O于点D,则cos AEDA B C.D5【答案】B【分析】由圆周角定理得到∵AED=∵ABD ,再由勾股定理求出BC 的长,即可求出cos∵AED 的值.【解析】由题意可得,∵AED=∵ABD在Rt∵ABC 中,AC=1,AB=2,由勾股定理可得:==所以cos∵AED=cos∵ABD=AB BC == 故选:B .【小结】本题考查了圆周角定理,利用锐角三角函数,勾股定理解直角三角形,解题的关键是找到直角三角形,从而利用锐角三角函数,勾股定理解直角三角形3.如图,各正方形的边长均为1,则四个阴影三角形中,一定相似的一对是( )A .∵∵B .∵∵C .∵∵D .∵∵【答案】A【分析】 利用勾股定理,求出四个图形中阴影三角形的边长,然后判断哪两个三角形的三边成比例即可.【解析】由图,根据勾股定理,可得出∵图中阴影三角形的边长分别为:;∵∵图中阴影三角形的边长分别为:∵图中阴影三角形的边长分别为:可以得出∵∵22===,所以图∵∵两个阴影三角形相似;故答案为:A.【小结】本题考查相似三角形的判定,即如果两个三角形三条边对应成比例,则这两个三角形相似;本题在做题过程中还需注意,阴影三角形的边长利用勾股定理计算,有的图形需要把小正方形补全后计算比较准确. 4.如图所示的正方形网格中,每个小正方形的边长为1,A 、B 、C 三点均在正方形格点上,则BAC ∠的大小是( )A .30BAC ∠=B .45BAC ∠= C .60BAC ∠=D .90BAC ∠=【答案】D【分析】 根据勾股定理以及其逆定理即可得到问题答案.【解析】2AB ==AC ==5BC ==∵AB 2+AC 2=BC 2=25,∵∵ACB 是直角三角形,∵∵BAC=90°.故选:D .【小结】本题考查了勾股定理以及逆定理的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.熟记勾股定理的内容是解题得关键.5.在正方形网格中,ABC ∆的位置如图所示,则sin BAC ∠的值为( )A .35B .34C .45D .43【答案】A【分析】延长AB 至D ,使AD=4个小正方形的边长,连接CD ,先证出∵ADC 是直角三角形和CD 的长,即可求出sin BAC ∠的值.【解析】延长AB 至D ,使AD=4个小正方形的边长,连接CD ,如下图所示,由图可知:∵ADC 是直角三角形,CD=3个小正方形的边长根据勾股定理可得:5=个小正方形的边长 ∵3sin 5CD BAC AC ∠== 故选A .【小结】此题考查的是求一个角的正弦值,掌握构造直角三角形的方法是解决此题的关键.6.如图,正方形ABCD 是由9个边长为1的小正方形组成,每个小正方形的顶点都叫格点,连接AE ,AF ,则EAF ∠=( )A .30B .45︒C .60︒D .75︒【答案】B【解析】【分析】 连结EF ,分别在格点三角形中,根据勾股定理求出AE ,EF ,AF 的长度,继而可得出∵EAF 的度数.【解析】如图,连接EF .根据勾股定理,得225AE EF ==,210AF =.因为5510+=,所以222AE EF AF +=,所以AEF ∆是等腰直角三角形,所以45EAF ∠=︒.故选B.【小结】本题考查了勾股定理及其逆定理,判断∵AEF 是等腰直角三角形是解决本题的关键.7.如图,在44⨯的正方形网格中,点A ,B ,M ,N 都在格点上.从点M ,N 中任取一点,与点A ,B 顺次连接组成一个三角形,则下列事件是必然事件的是( )A.所得三角形是锐角三角形B.所得三角形是直角三角形C.所得三角形是钝角三角形D.所得三角形是等腰三角形【答案】D【分析】根据勾股定理,勾股定理的逆定理,等腰三角形的性质以及随机事件的概念解答.【解析】如图,连接AN,AM,BM.A、如图,由AB2+BN2=AN2=8得到∵ABN是直角三角形,∵ABM是锐角三角形,则所得三角形是锐角三角形属于随机事件,故本选项说法错误.B、如图,由AB2+BN2=AN2=8得到∵ABN是直角三角形,∵ABM是锐角三角形,则所得三角形是直角三角形属于随机事件,故本选项说法错误.C、如图,由AB2+BN2=AN2=8得到∵ABN是直角三角形,∵ABM是锐角三角形,则所得三角形是钝角三角形属于不可能事件,故本选项说法错误.D、如图,由AB=BN,AM=BM得到∵ABN和∵ABM是等腰三角形,则所得三角形是等腰三角形属于必然事件,故本选项说法正确.故选D.【小结】考查了勾股定理,勾股定理的逆定理,等腰三角形的性质以及随机事件,解题时,利用了数形结合的数学思想,难度不大.,则AC边上的高是()8.如图,小正方形边长为1,连接小正方形的三个顶点得ABCA B C D 【答案】D【分析】首先根据大正方形的面积减去三个直角三角形的面积计算,再根据勾股定理求得AC 的长,最后根据三角形的面积公式求出AC 边上的高.【解析】∵三角形ABC 的面积等于正方形的面积减去三个直角三角形的面积,即S ∵ABC =2×2-12×1×2-12×1×2-12×1×1=32,=,∵AC 边上的高=3122÷. 故本题答案为:D.【小结】本题主要考查了勾股定理、正方形及三角形的面积公式,根据题意求出∵ ABC 的面积及AC 的长是解题的关键.9.如图,A ,B ,C 是正方形网格中的格点(小正方形的顶点),则sin ACB ∠的值为( )A B C .12 D .3【答案】A【解析】【分析】设小正方形的边长为1,过点B 作BD∵AC 于D ,过点B 作BF∵AE 于点F ,由勾股定理可求AC ,BC 的长,由三角形的面积公式可求BD 的长,即可求sin∵ACB 的值.设小正方形的边长为1,过点B 作BD∵AC 于D ,过点B 作BF∵AE 于点F , ∵S ∵ABC =2×7-12×1×3−12×1×7−12×2×4=5, 由勾股定理可知:AC=221752+= ,∵12AC•BD=5, ∵BD=2,由勾股定理可知:BC=221310+= ,∵sin∵ACB=BD BC =25510= . 故选:A .【小结】本题考查锐角三角函数的定义,解题的关键是运用面积法求BD 的长.10.如图,ABC 的顶点都是正方形网格中的格点,则sin∵CAB 等于( )A .12BCD .2【答案】B【分析】根据题意和图形,可以得到AC 、BC 和AB 的长,然后根据等面积法可以求得CD 的长,从而可以得到sin∵CAB【解析】作CD ∵AB ,交AB 于点D ,由图可得,AC BC =2,AB ∵322AB CD BC ⋅⨯=,∵2322CD ⨯=,解得,CD∵sin∵CAB =CD AC ==, 故选:B .【小结】本题主要考查三角函数,构造出直角三角形是解题的关键.11.如图,∵ABC 的顶点是正方形网格的格点,则cos∵C =( )A .12B .2C .2D 【答案】D【分析】连接BD ,根据图形,可以求得AB 、AD 、DB 的长,然后根据勾股定理的逆定理可以得到∵ADB 时直角三角形,再根据图形,可以得到AC 、BC 的长,即可得到CD 的长,然后即可得到cos∵C 的值.【解析】连接BD ,由图可得,BD ,AD AB ,∵BD 2+AD 2=AB 2,∵∵ADB 是直角三角形,∵ADB =90°,∵AC=AD BC 5=,∵CD =,∵cos∵C =CD CB =, 故选:D .【小结】本题考查了锐角三角函数的定义以及勾股定理,根据题意得出cos∵C =CD CB,是解题的关键. 12.在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,ABC ∆是格点三角形,在图中的88⨯正方形网格中,将ABC ∆绕点A 旋转,得到ADE ∆(不含ABC ∆),使得ADE ∆也是格点三角形(同一位置的格点三角形ADE ∆只算一个),这样的格点三角形ADE ∆一共有 ( )A .1个B .2个C .3个D .4个【分析】利用勾股定理求出AB=5=AC ,利用旋转角等于∵BAC ,90°,90°+∵BAC ,可得3个∵ADE 即可.【解析】利用勾股定理=5=AC ,以点A 为圆心旋转∵BAC 得∵AD 1E 1,以点A 为圆心旋转90°得∵AD 2E 2,以点A 为圆心旋转90°+∵BAC 得∵AD 3E 3,在网格中将ABC ∆绕点A 旋转,得到ADE ∆共有 3个.故选择:C .【小结】本题考查三角形全等变换,掌握全等变换的方法,关键利用旋转角等于∵BAC ,90°,90°+∵BAC . 13.在如图的网格中,小正方形的边长均为1,A 、B 、C 三点均在正方形格点上,则下列结论错误的是()A .S ∵ABC =10B .∵BAC =90°C .AB =D .点A 到直线BC 的距离是2【答案】A【分析】根据三角形的面积公式、勾股定理、勾股定理的逆定理计算,判断即可.A 、S ∵ABC =4×4﹣12×3×4﹣12×1×2﹣12×2×4=5,本选项结论错误,符合题意; B 、∵AC 2=12+22=5,AB 2=22+42=20,BC 2=32+42=25,∵AC 2+AB 2=BC 2,∵∵BAC =90°,本选项结论正确,不符合题意;C 、∵AB 2=20,∵AB =D 、设点A 到直线BC 的距离为h ,则1212×5×h , 解得,h =2,本选项结论正确,不符合题意;故选:A .【小结】本题考查了勾股定理以及逆定理的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.熟记勾股定理的内容是解题得关键.14.如图,在四个44⨯的正方形网格中,三角形相似的是( )A .∵和∵B .∵和∵C .∵和∵D .∵和∵【答案】D【分析】 根据网格结构以及勾股定理可得所给图形的三条边长,然后利用相似三角形的判定方法选择答案即可.【解析】如图∵=2=如图∵==、3如图∵,该三角形的三条边长分别是:2==如图∵,该三角形的三条边长分别是:35.只有图∵中的三角形的三条边与图∵中的三条边对应成比例,故选:D .【小结】本题考查了相似三角形的判定和勾股定理,熟悉相关性质是解题的关键.15.在45⨯网格中,A ,B ,C 为如图所示的格点(小正方形的顶点),则下列等式正确的是()A .sin 2A =B .1cos 2A = C .tan 3A = D .cos A =【答案】D【分析】本题需要构造出直角三角形,求出A ∠的度数,进而得出结论.【解析】如图将各顶点分别记为D 、E 、F ,连接BC ,由题意可得每个小格是一个正方形,设正方形的边长为1,∵1AF =,1AE =,1DC =,3BF =,2CE =,2BD =,根据勾股定理得:ABAC = BC ==∵2210+=,即 222AC BC AB +=,∵ACB 是直角三角形,且AC BC =,∵ACB 是等腰直角三角形,∵45A ∠=︒,∵cos A =故选:D .【小结】此题主要考查了勾股定理及其逆定理,等腰直角三角形的相关知识,正确理解题意是解题的关键. 16.如图,在33⨯的正方形网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是ABC 的边AC 上的高,则BD 的长为( )A B C D 【答案】D【分析】根据勾股定理计算AC 的长,利用割补法可得∵ABC 的面积,由三角形的面积公式即可得到结论.【解析】由勾股定理得:AC =∵S ∵ABC =3×3−12×1×2−12×1×3−12×2×3=72, ∵12AC•BD =72,=7,∵BD 故选:D .【小结】本题考查了勾股定理与三角形的面积的计算,掌握勾股定理是解题的关键.17.如图,∵ABC 的顶点都在正方形网格的格点上,则tan∵ACB 的值为( )A .13B .35C .23D .12【答案】D【分析】根据题意连接BD 可知90ADB ∠=︒,进而利用勾股定理得出BD 和CD ,最后即可得出tan∵ACB 的值.【解析】如图,连接BD ,根据图象可知454590ADB ∠=︒+︒=︒,则有BD CD ====,所以12BD tan ACB CD ∠===. 故选:D .【小结】本题考查网格与勾股定理以及锐角三角函数的定义,注意掌握在直角三角形中,一锐角的正切等于它的对边与邻边的比值.18.三角形在正方形网格纸中的位置如图所示(顶点均落在格点上),则cos α的值是( )A.35B.34C.45D.53【答案】C【分析】在直角三角形ABC中,先求解AB的长,再由锐角的余弦的定义直接可得答案.【解析】如图,标注三角形的顶点,,,A B C904,3,ACB AC BC∠=︒==,5,AB∴=由余弦的定义可得:4 cos.5ACABα==故选:.C【小结】本题考查的是余弦的定义,勾股定理的应用,掌握锐角余弦的定义是解题的关键.19.如图,在3×3的正方形网格中,每个小正方形的边长都为1,ABC的三个顶点均在格点上,则AB边上的高为()A B C D 【答案】A【分析】首先,根据勾股定理求得ABC ∆各边的长度;然后,根据勾股定理逆定理推知ABC ∆是直角三角形;最后,根据面积法来求ABC ∆中AB 边上的高.【解析】设ABC ∆中AB 边上的高为h .210AB ,28AC =,22BC =,222AB AC BC ∴=+,90ACB ∴∠=︒, 1122ABC S BC AC AB h ,即112221022h .解得,h =. 故选:A .【小结】本题考查了勾股定理,勾股定理的逆定理,直角三角形面积的计算,熟悉相关性质是解题的关键. 20.图中的大正方形是由4个小正方形组成的,小正方形边长为1,连接小正方形的三个顶点,得到∵ABC ,则AC 边上的高为( )A B C D.2【答案】A【分析】利用勾股定理求出AC的长,再利用网格采取分割法求出三角形ABC的面积,利用面积公式求出AC边上的高即可.【解析】小正方形边长为1,利用网格与勾股定理求得S∵ABC=S正方形ADEF-S∵ADC-S∵CEB-S∵AFB=4-1-12-1=32,设AC边上的高为h,∵13 AC h22=,∵h5=,故选择:A.【小结】本题考查勾股定理,正方形面积,三角形面积,掌握勾股定理以及面积额的求法,会利用面积求三角形的高是解题关键.21.如图,网络中的每个小正方形的边长为1,A、B是格点,则以A,B,C为等腰三角形顶点的所有格点C的位置的个数是()A.6B.5C.4D.3【分析】由勾股定理求出AB=∵当A为顶角顶点时;∵当B为顶角顶点时;∵当C为顶角顶点时;即可得出结果.【解析】由勾股定理得:AB=∵当A为顶角顶点时,符合∵ABC为等腰三角形的C点有1个;∵当B为顶角顶点时,符合∵ABC为等腰三角形的C点有2个;∵当C为顶角顶点时,符合∵ABC为等腰三角形的C点有1个;综上所述:以A,B,C为等腰三角形顶点的所有格点C的位置有1+2+1=4(个).故选:C.【小结】本题考查了等腰三角形的判定、勾股定理的应用,熟练掌握等腰三角形的判定,分类讨论是解决问题的关键.22.如图,在5×5的网格中,每个小正方形的边长均为1,点A、B、O都在格点上.若将∵OAB绕点O逆时针旋转90°,得到∵OA′B′,A、B的对应点分别为A′、B′,则A、B′之间的距离为()A.B.5C D【答案】C【分析】由旋转的性质作出∵A'OB',连接AB',由勾股定理可求解.如图,由旋转的性质作出∵A'OB',连接AB',∵每个小正方形的边长均为1,∵AB'=故选:C.【小结】本题考查了旋转的性质,勾股定理,确定点B'的位置是本题的关键.23.雷达通过无线电的方法发现目标并测定它们的空间位置,因此雷达被称为“无线电定位”.现有一款监测km那么能半径为5km的雷达,监测点旳分布情况如图,如果将雷达装置设在Р点,每一个小格的边长为1,被雷达监测到的最远点为()A.G点B.H点C.M点D.N点【答案】B【分析】根据网格特征结合勾股定理分别求得点P到各点的距离即可判断.【解析】PG=3,PN=4,=,5=>,不在监测范围内,5∵能被雷达监测到的最远点为H点,故选:B.【小结】本题考查了勾股定理与网格问题,熟练掌握勾股定理是解题的关键.24.如图,每个小正方形的边长都为1,A、B、C是小正方形的顶点,则∵ABC的度数是()A.30°B.45°C.60°D.150 °【答案】B【分析】利用勾股定理的逆定理证明∵ACB为等腰直角三角形即可得到∵ABC的度数.【解析】连接AC,由勾股定理得:,∵AC2+BC2=AB2=10,∵∵ABC为等腰直角三角形,∵∵ABC=45°,故选:B.【小结】本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.25.如图,在正方形网格中,每个小正方形的边长都是1,有AB ,CD ,EF ,GH 四条线段,其中能构成直角三角形三边的线段是( ).A .AB ,CD ,EFB .AB ,CD ,GHC .AB ,EF ,GHD .CD ,EF ,GH【答案】B【分析】 先运用勾股定理计算出四条线段的平方,在每个选项中:把三条线段的平方按大小排序.若两个小数之和不等于最大的数,则不能构成直角三角形,该选项错误;若较小的两数之和等于最大的数就能构成直角三角形,该选项正确.【解析】由题意可得222125GH =+=,222228EF =+=,2223425AB =+=,2222420DC =+=,对于A 选项,∵222228EF =+=2223425AB =+=2222420DC =+=20+8≠25∵AB ,CD ,EF 三条线段不能构成直角三角形.对于B 选项,∵222125GH =+=2223425AB =+=2222420DC =+=∵GH ,DC ,AB 三条线段能构成直角三角形.对于C 选项,∵222125GH =+=222228EF =+=2223425AB =+=5+8≠25∵AB ,EF ,GH 三条线段不能构成直角三角形.对于D 选项,∵222125GH =+=222228EF =+=2222420DC =+=5+8≠20∵CD ,EF ,GH 三条线段不能构成直角三角形.综上讨论只有B 选项中三条线段能构成直角三角形.故选:B .【小结】本题考查勾股定理及其逆定理的应用.运用勾股定理计算长度时,要分清直角边和斜边,计算斜边用平方和,计算直角边用平方差;运用勾股定理的逆定理时,先把三角形三边按大小排序,再看最大边的平方是否等于较小两边的平方和,若相等则构成直角三角形,否则不构成直角三角形.26.如图,在由边长为1个单位长度的小正方形组成的网格中,点A , B 都是格点,则线段AB 的长为( )A .5B .6C .7D .2【答案】A【分析】 建立格点三角形,利用勾股定理求解AB 的长度即可.【解析】5AB ==,故选:A .【小结】本题考查了勾股定理的知识,关键是作出图形使用勾股定理求解.27.如图,网格中所有小正方形的边长均为1,有A 、B 、C 三个格点,则ABC ∠的余弦值为( )A .12BCD .2【答案】B【分析】过点B 作BD∵AC 于点D ,过点C 作CE∵AB 于点E ,则BD=AD=3,CD=1,利用勾股定理可求出AB ,BC 的长,利用面积法可求出CE 的长,再利用余弦的定义可求出∵ABC 的余弦值.【解析】过点B 作BD∵AC 于点D ,过点C 作CE∵AB 于点E ,则BD=AD=3,CD=1,如图所示.AB=2232BD AD +=,BC=2210BD CD +=.∵12AC•BD=12AB•CE ,即12×2×3=12•CE ,,=∵cos∵ABC=5BE BC ==. 故选:B .【小结】本题考查了解直角三角形、勾股定理以及三角形的面积,利用面积法及勾股定理求出CE ,BC的长度是解题的关键.28.如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都在格点上,以AB 为直径的圆经过点C 、D ,则cos∵ADC 的值为( )A .13BC .13D .23【答案】C【分析】根据圆周角定理得到ADC ABC ∠=∠,再根据余弦的定义计算即可;【解析】由图可知ADC ABC ∠=∠,在Rt∵ABC 中,2AC =,3BC =,∵AB =∵cos∵ADC 3cos13BC ABC AB =∠===; 故答案选C .【小结】本题主要考查了圆周角定理、余弦定理、勾股定理,准确计算是解题的关键.∠的度数为()29.如图,每个小正方形的边长都相等,A,B,C是小正方形的顶点,则ABCA.45︒B.50︒C.55︒D.60︒【答案】A【分析】由勾股定理及其逆定理可得三角形ABC是等腰直角三角形,从而得到∵ABC 的度数.【解析】如图,连结AC,由题意可得:=====AB AC BC∵AC=BC,222AB AC BC=+,∵∵ABC是等腰直角三角形,∵∵ABC=∵BAC=45°,故选A .【小结】本题考查勾股定理的应用,熟练掌握勾股定理及其逆定理、等腰直角三角形的性质是解题关键.30.为准备一次大型实景演出,某旅游区划定了边长为12m的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O为中心,A,B,C,D是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节目演出过程中增开人工喷泉.喷头位于演出区域东侧,且在中轴线l上与点O相距14m处.该喷泉喷出的水流落地半径最大为10m,为避免演员被喷泉淋湿,需要调整的定位点的个数是()A .1个B .2个C .3个D .4个【答案】B【分析】 把此题转化成一个直角坐标系的问题,然后求各点坐标,最后利用勾股定理即可判断.【解析】设喷头在点P ,则A(6,0),B (3,0);C (3,3);D (4.5;1.5);P (14,0)则AP=14-6=8m<10m ,故A 需调整;BP=14-3=11m>10m ,故B 不需调整;=,不需调整;=<10m ,故D 需调整;故选:B【小结】此题考查了勾股定理的应用,根据坐标系找到相应点的坐标,根据勾股定理计算长度是解答此题的关键. 31.如图,小正方形的边长均为1,A 、B 、C 分别是小正方形的三个顶点,则sin BAC ∠的值为( )A .12B .2C .1 D【答案】B【分析】连接BC ,先根据勾股定理求得AB 、BC 、AC 的长,然后再利用勾股定理逆定理证得ABC ∆是直角三角形,最后根据正弦的定义解答即可【解析】如图:连接BC ,每个小正方形的边长均为1,AB ∴==BC ==AC ==,222AB BC AC +=,ABC ∆∴是直角三角形,sin2BC BAC AC ∴∠=== 故答案为B .【小结】本题主要考查了勾股定理、勾股定理逆定理以及正弦的定义,根据题意证得ABC ∆是直角三角形是解答本题的关键.32.如图,设每个小方格的边长都为1 )A .1条B .2条C .3条D .4条【答案】D【分析】2,3【解析】2,3的直角三角形的斜边,如图所示,AB,CD,BE,DF故选:D.【小结】本题考查的知识点是勾股定理,找到无理数是直角边长为哪两个有理数的直角三角形的斜边长是解决本题的关键.33.如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则ABC中AB边上的高长为()A B C D.2【答案】A【分析】首先利用大正方形的面积减去周围三个三角形的面积计算出∵ABC的面积和AB的长,利用三角形面积公式可得答案.【解析】过C作CD∵AB于D,如图:∵2111321211122222ABC S =-⨯⨯-⨯⨯-⨯⨯=△, 且12ABC S AB CD =⋅△,∵AB == ∵1322AB CD ⋅=,则CD ==, 故选:A .【小结】本题主要考查了勾股定理与网格问题,关键是正确求出三角形面积.34.如图,方格纸中每个小正方形的边长为1,ABC 和DEF 的顶点都在格点上(小正方形的顶点).1P ,2P ,3P ,4P ,5P 是DEF 边上的5个格点,请在这5个格点中选取2个作为三角形的顶点,使它和点D 构成的三角形与ABC 相似,所有符合条件的三角形的个数为( )A .2B .3C .4D .5【答案】B【分析】 欲求有几个符合条件的三角形与ABC 相似,先利用勾股定理求出ABC 的三边的长度,然后再去求以D ,1P , 5P 为顶点构成的三角形的三边长,比较对应三边时否成比例,便可判定是不符合.按这种方法一一计算判定可得结论.【解析】根据题意得AC =AB =5BC =. 连接25P P,5DP =2DP =25P P =. 故522AC AB BC DP DP P P ==,∵52ACB DP P .同理可找到24P P D ,54P DP 和ACB △相似.故选B.【小结】本题考查的是相似三角形的判定方法“三边对就成比例,两三角形相似”, 理解题意,会根据勾股定理计算边的长度是关键.35.长和宽分别是19和15矩形内,如图所示放置5个大小相同的正方形,且A 、B 、C 、D 四个顶点分别在矩形的四条边上,则每个小正方形的边长是( )AB .5.5 CD .【答案】A【分析】 设正方形边长为x ,由EF 与DT 边成的角为θ,PJ 与PC 边成的角为θ,利用θ的正弦值、余弦值表示出矩形的长和宽,进一步求得结论解决问题.【解析】设正方形边长为x ,由EF 与DT 边成的角为θ,PJ 与PC 边成的角为θ,在Rt∵DET、Rt∵POT、Rt∵PHA,Rt∵ABM中,可得EF=ET+OT+AH+AM=2x sinθ+3x cosθ=19, ∵JH=PJ+PH=3x cosθ=15, ∵解得x sinθ=2,x cosθ=5;两边平方相加得x2=29,所以正方形的边长x.故选:A.【小结】此题考查正方形的性质,以及直角三角形中的边角关系,关键是利用函数值表示矩形的长和宽.二、填空题36.如图所示,∵ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD∵AC于点D,则BD的长为____________【答案】3【分析】BD即为∵ABC中AC上的高,利用等面积法即可求得BD.【解析】根据网格可知,BC=5,5AC==,11153=5222ABC S AC BD BD , 解得BD=3,故答案为:3.【小结】本题考查勾股定理,三角形的面积等知识.掌握等面积法是解题关键.37.如图,在正方形网格中,每个小正方形的边长都为1,点,,A B C 在小正方形的格点上,连接,AB BC ,则ABC ∠=________.【答案】45【分析】 连接,AC 利用勾股定理求解222,,,AB AC BC 证明ABC 为等腰直角三角形,从而可得答案.【解析】如图,连接,AC由勾股定理得:2222222221310,1310,2420,AB AC BC =+==+==+=222,,AB AC AB AC BC ∴=+=ABC ∴为等腰直角三角形,90,BAC ∠=︒45,ABC ∴∠=︒故答案为:45︒,【小结】本题考查的是勾股定理的应用,勾股定理的逆定理的应用,掌握以上知识是解题的关键.38.如图,点A、点B均在边长为1的正方形网格的格点上,则线段AB的长度_______________3.(填“>”,“=”或“<”)【答案】<【分析】根据勾股定理即可得到结论.【解析】AB==∵(28=,239=,89<,∵3,故答案为:<.【小结】本题考查了勾股定理以及实数的大小比较,熟练掌握勾股定理是解题的关键.39.如图,网格中的小正方形的边长均为1,小正方形的顶点叫做格点,∵ABC 的三个顶点都在格点上,则AB 边上的高为___________.【答案】65【分析】 如图(见解析),先根据网格的特点、勾股定理求出AB 的长,再根据三角形的面积公式即可得.【解析】设AB 边上的高为h如图,由网格的特点得:2,4,3,5AC AD BD AB =====1122ABC S AC BD AB h =⋅=⋅ 1123522h ∴⨯⨯=⨯⋅ 解得65h = 故答案为:65.【小结】本题考查了勾股定理的网格问题,熟记勾股定理是解题关键.40.如图,ABC 在三个顶点均在正方形网格格点上,求AB AC=______.【分析】设正方形网格边长为x ,再根据勾股定理求得AB 、AC 的长度,从而求得其比值即可.【解析】设正方形网格边长为x ,=,=,∵10AB AC ==.. 【小结】考查了勾股定理,解决关键是根据勾股定理求出AB 和AC 的值.41.在如图所示的正方形网格中,∵ABC 的三个顶点A 、B 、C 均在格点上,则点C 到AB 的距离为_____.【答案】85【分析】设点C 到AB 的距离为h ,根据勾股定理和三角形的面积公式即可得到结论.【解析】设点C 到AB 的距离为h ,∵AB 5,∵S ∵ABC =12×2×4=12×5×h ,∵h =85, 故答案为:85. 【小结】本题考查了勾股定理,三角形的面积公式,熟练掌握勾股定理是解题的关键.42.如图所示,已知网格中每个小正方形的边长均为1,ABC 的三个顶点均为格点,CD AB ⊥,垂足为D ,则CD =________.【答案】【分析】如图,根据SABC ABG BCF AEC BGEF S S S S =---矩形,12ABC S AB DC =△据此可求. 【解析】 115S 5420,448,51222ABG BCF BGEF S S =⨯==⨯⨯==⨯⨯=矩形, 131322AEC S =⨯⨯=△, ABC ABG BCF AEC BGEF S S S S S ∴=---矩形,5320822=---, 8=,Rt ABG A B ===在中,CD AB ⊥,1142822ABC S AB CD CD ∴==⨯=△,CD ∴=,故答案为:【小结】本题考查三角形的面积,解题的关键是明确三角形面积的计算公式,会运用割补法求三角形的面积. 43.如图,已知∵ABC 的3个顶点均在格点上,则tanA 的值为__.【答案】12【分析】 如图,连接BD ,根据勾股定理的逆定理得到BD∵AC ,解直角三角形即可得到结论.【解析】如图,连接BD ,根据勾股定理的逆定理得到BD ∵AC ,解直角三角形即可得到结论.如图,连接BD ,∵BC =2,BD ,CD∵22222224CD BD BC +=+=+==,∵BD ∵AC ,∵BD AD∵tanA =BD AD =12, 故答案为:12. 【小结】本题考查了解直角三角形,正确的识别图形是解题的关键.44.如图,若ABC 与DEF 都是正方形网格中的格点三角形(顶点在格点上),则DEF 与ABC 的周长比为_________.【分析】设正方形网格的边长为1,根据勾股定理求出∵EFD 、∵ABC 的边长,运用三边对应成比例,则两个三角形相似这一判定定理证明∵EDF ∵∵BAC ,即可解决问题.【解析】设正方形网格的边长为1,由勾股定理得:DE 2=22+22,EF 2=22+42,∵DE =EF =同理可求:AC ,BC ,∵DF =2,AB =2,∵1EF DE DF BC AB AC ===, ∵∵EDF ∵∵BAC ,∵DEF 与ABC ,.。

中考数学 易错易错压轴勾股定理选择题专题练习(4)

中考数学 易错易错压轴勾股定理选择题专题练习(4)

中考数学易错易错压轴选择题精选:勾股定理选择题专题练习(4)一、易错易错压轴选择题精选:勾股定理选择题1.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.217B.25C.42D.72.如图,A、B两点在直线l的两侧,点A到直线l的距离AC=4,点B到直线l的距离BD=2,且CD=6,P为直线CD上的动点, 则PA PB-的最大值是()A.62B.22C.210D.63.在ΔABC中,211a b c=+,则∠A( )A.一定是锐角B.一定是直角C.一定是钝角D.非上述答案4.圆柱形杯子的高为18cm,底面周长为24cm,已知蚂蚁在外壁A处(距杯子上沿2cm)发现一滴蜂蜜在杯子内(距杯子下沿4cm),则蚂蚁从A处爬到B处的最短距离为()A.813B.28 C.20 D.1225.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A .25394+B .25392+C .18253+D .253182+ 6.如图,已知45∠=MON ,点A B 、在边ON 上,3OA =,点C 是边OM 上一个动点,若ABC ∆周长的最小值是6,则AB 的长是( )A .12B .34C .56D .17.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )A .2B .2.5C .3D .48.在△ABC 中,∠BCA=90∘,AC=6,BC=8,D 是AB 的中点,将△ACD 沿直线CD 折叠得到△ECD ,连接BE ,则线段BE 的长等于( )A .5B .75C .145 D .365 9.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .910.如图,在等边△ABC 中,AB =15,BD =6,BE =3,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 右侧按如图方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是( )A .8B .10C .43D .1211.如图,等边ABC ∆的边长为1cm ,D ,E 分别是AB ,AC 上的两点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为( )A .1cmB .1.5cmC .2cmD .3cm12.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm ,在容器内壁离容器底部4 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm ,则该圆柱底面周长为( )cm .A .9B .10C .18D .2013.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是( )cm .A .25B .20C .24D .514.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( )A .49B .25C .12D .10 15.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .1016.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( )A .36B .9C .6D .1817.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A .7.5平方千米B .15平方千米C .75平方千米D .750平方千米18.如图,正方体的棱长为4cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )A .9B .10C .326+D .1219.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )A .3B .5C .4.2D .420.下列以线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( ) A .9,41,40a b c ===B .5,5,52a b c ===C .::3:4:5a b c =D .11,12,13a b c === 21.以下列各组数为边长,不能构成直角三角形的是( ) A .3,4,5B .1,1,2C .8,12,13D .2、3、522.有一个直角三角形的两边长分别为3和4,则第三边的长为( ) A .5B .7C .5D .5或7 23.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm ,则该圆柱底面周长为( )A .12cmB .14cmC .20cmD .24cm24.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( )A 5B 51C 51D .51-25.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .626.若△ABC 中,AB=AC=25,BC=4,则△ABC 的面积为( )A .4B .8C .16D .5227.以线段a 、b 、c 的长为边长能构成直角三角形的是( )A .a =3,b=4,c=6B .a =1,b=2,c=3C .a =5,b=6,c=8D .a =3,b=2,c=5 28.下列条件中,不能..判定ABC 为直角三角形的是( ) A .::5:12:13a b c =B .A BC ∠+∠=∠ C .::2:3:5A B C ∠∠∠=D .6a =,12b =,10c = 29.由下列条件不能判定△ABC 为直角三角形的是( )A .∠A+∠B=∠CB .∠A :∠B :∠C=1:3:2C .a=2,b=3,c=4D .(b+c)(b-c)=a² 30.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF 的长是( )A .14B .13C .3D .2【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.A解析:A【解析】试题解析:作AD ⊥l 3于D ,作CE ⊥l 3于E ,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE ,{BAD CBEAB BC ADB BEC∠=∠=∠=∠,∴△ABD ≌△BCE∴BE=AD=3在Rt △BCE 中,根据勾股定理,得BC=25+9=34, 在Rt △ABC 中,根据勾股定理,得AC=342=217⨯.故选A .考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.2.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE'为矩形,6, 2.B E CD EC BD BD∴=====''2.AE∴=AB'=PA PB-的最大值为:故答案为:3.A解析:A【解析】【分析】根据211a b c=+以及三角形三边关系可得2bc>a 2,再根据(b-c)2≥0,可推导得出b 2 +c 2>a 2,据此进行判断即可得.【详解】∵211a b c =+,∴2b ca bc+ =,∴2bc=a(b+c),∵a、b、c是三角形的三条边,∴b+c>a,∴2bc>a·a,即2bc>a 2,∵(b-c)2≥0,∴b 2 +c 2 -2bc≥0,b 2 +c 2≥2bc,∴b 2 +c 2>a 2,∴一定为锐角,故选A.【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b 2 +c 2>a 2是解题的关键.4.C解析:C【解析】分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.详解:如图所示,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B=2222'++ (cm)=1216=20A D BD故选C.点睛:本题考查了勾股定理、最短路径等知识.将圆柱侧面展开,化曲面为平面并作出A关于EF的对称点A′是解题的关键.5.A解析:A【解析】分析:将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点F.AP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.详解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF 中,AF=12AP=32,PF=32AP=332. ∴在直角△ABF 中,AB 2=BF 2+AF 2=(4+332)2+(32)2=25+123. 则△ABC 的面积是34•AB 2=34•(25+12)253 故选A . 点睛:本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.6.D解析:D【分析】作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C ,此时△ABC 周长最小,根据题意及作图可得出△OAD 是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,从而证明△BOE 是直角三角形,然后设AB=x ,则OB=3+x ,根据周长最小值可表示出BE=6-x ,最后在Rt △OBE 中,利用勾股定理建立方程求解即可.【详解】解:作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C , 此时△ABC 周长最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE ,∵△ABC 周长的最小值是6,∴AB+BE=6,∵∠MON=45°,AD ⊥OM ,∴△OAD 是等腰直角三角形,∠OAD=45°,由作图可知OM 垂直平分AE ,∴OA=OE=3,∴∠OAE=∠OEA=45°,∴∠AOE=90°,∴△BOE 是直角三角形,设AB=x ,则OB=3+x ,BE=6-x ,在Rt △OBE 中,()()2223+3+6x x =-,解得:x=1,∴AB=1.故选D.【点睛】本题考查了利用轴对称求最值,等腰直角三角形的判定与性质,勾股定理,熟练掌握作图技巧,正确利用勾股定理建立出方程是解题的关键.7.C解析:C【分析】作DE⊥AB于E,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用等等面积法列方程、解方程即可解答.【详解】解:作DE⊥AB于E,如图,在Rt△ABC中,BC22106-8,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=12DE•AB=12AC•BD,即10x=6(8﹣x),解得x=3,即点D到AB边的距离为3.故答案为C.【点睛】本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..8.C解析:C【分析】根据勾股定理及直角三角形的中线、翻折得CD=DE=BD=5,CE=AC=6,作DH⊥BE于H,EG⊥CD于G,证明△DHE≌△EGD,利用勾股定理求出75EH DG==,即可得到BE.【详解】∵∠BCA=90∘,AC=6,BC=8, ∴22226810AB AC BC ,∵D 是AB 的中点,∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC ,CE=AC=6,∴BD=DE ,作DH ⊥BE 于H ,EG ⊥CD 于G ,∴∠DHE=∠EGD=90︒,∠EDH=12∠BDE=12(180︒-2∠EDC )=90︒-∠EDC , ∴∠DEB= 90︒-∠EDH=90︒-(90︒-∠EDC)=∠EDC ,∵DE=DE ,∴△DHE ≌△EGD ,∴DH=EG ,EH=DG ,设DG=x ,则CG=5-x ,∵2EG =2222DE DG CE CG -=-,∴222256(5)x x -=--,∴75x =, ∴75EH DG ==, ∴BE=2EH=145, 故选:C.【点睛】此题考查翻折的性质,勾股定理,等腰三角形的性质,将求BE 转换为求其一半的长度的想法是关键,由此作垂线,证明△DHE ≌△EGD ,由此求出BE 的长度.9.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 10.D解析:D【分析】首先利用等边三角形的性质和含30°直角三角形的运用,判定△DPE ≌△FDH ,△DF 2Q ≌△ADE ,然后利用全等三角形的性质,得出点F 运动的路径长.【详解】∵△ABC 为等边三角形,∴∠B =60°,过D 点作DE ′⊥AB ,过点F 作FH ⊥BC 于H ,如图所示:则BE ′=12BD =3, ∴点E ′与点E 重合,∴∠BDE=30°,DEBE,∵△DPF为等边三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,在△DPE和△FDH中,90PED DHFEDP DFHDP FD︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△DPE≌△FDH(AAS),∴FH=DE∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则四边形DF1F2Q是矩形,∵∠BDE=30°,∠ADF2=60°,∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,∵∠ADE+∠DAE=90°,∴∠F2DQ=∠DAE,在△DF2Q和△ADE中,222F QD DEA90F DQ DAEDF AD︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△DF2Q≌△ADE(AAS),∴DQ=AE=AB﹣BE=15﹣3=12,∴F1F2=DQ=12,∴当点P从点E运动到点A时,点F运动的路径长为12,故选:D.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是作好辅助线. 11.D解析:D【分析】根据折叠的性质可得AD=A'D,AE=A'E,易得阴影部分图形的周长为=AB+BC+AC,则可求得答案.【详解】解:因为等边三角形ABC的边长为1cm,所以AB=BC=AC=1cm,因为△ADE沿直线DE折叠,点A落在点A'处,所以AD=A'D,AE=A'E,所以阴影部分图形的周长=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm ).故选:D .【点睛】此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用以及折叠前后图形的对应关系.12.C解析:C【分析】将容器侧面展开,建立A 关于上边沿的对称点A’,根据两点之间线段最短可知A’B 的长度为最短路径15,构造直角三角形,依据勾股定理可以求出底面周长的一半,乘以2即为所求.【详解】解:如图,将容器侧面展开,作A 关于EF 的对称点'A ,连接'A B ,则'A B 即为最短距离, 根据题意:'15A B cm =,12412BD AE cm =-+=,2222'15129A D A B BD ∴--'==.所以底面圆的周长为9×2=18cm.故选:C .【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.13.A解析:A【分析】分三种情况讨论:把左侧面展开到水平面上,连结AB ;把右侧面展开到正面上,连结AB ,;把向上的面展开到正面上,连结AB ;然后利用勾股定理分别计算各情况下的AB ,再进行大小比较.【详解】把左侧面展开到水平面上,连结AB ,如图1()2210205925537AB =++==把右侧面展开到正面上,连结AB ,如图2()()222010562525AB =++== 把向上的面展开到正面上,连结AB ,如图3()()2210205725529AB =++==925725625>>∴53752925>>∴需要爬行的最短距离为25cm故选:A .【点睛】本题考查了平面展开及其最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.14.C解析:C【解析】试题解析:如图,∵大正方形的面积是25,∴c 2=25,∴a 2+b 2=c 2=25,∵直角三角形的面积是(25-1)÷4=6, 又∵直角三角形的面积是12ab=6, ∴ab=12.故选C. 15.C解析:C【分析】根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD 的长,即可得出BC 的长.【详解】在△ABC 中,AB =AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BC=2BD.∴∠ADB=90°在Rt △ABD 中,根据勾股定理得:22-AB AD 225-3=4∴BC=2BD=2×4=8.故选C.【点睛】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.16.A解析:A【分析】先根据角平分线的定义、角的和差可得90ECF ∠=︒,再根据平行线的性质、等量代换可得,ACE CEF ACF F ∠=∠∠=∠,然后根据等腰三角形的定义可得,EM CM FM CM ==,从而可得6EF =,最后在Rt CEF 中,利用勾股定理即可得.【详解】 CE 平分ACB ∠,CF 平分ACD ∠,,1122ACB ACD BCE ACE DCF ACF ∴∠∠=∠=∠=∠∠=,111(90222)ACB AC E D ACB ACD CF ACE ACF ∠=∠+∴∠+∠=∠∠∠=+=︒, //EF BC ,,BCE CEF DCF F ∠=∴∠∠=∠,,ACE CEF ACF F ∴∠=∠∠=∠,3,3EM CM FM CM ∴====,6EF EM FM ∴=+=,在Rt CEF 中,由勾股定理得:2222636CE CF EF +===,故选:A .【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.17.A解析:A【解析】分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.详解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:12×5×500×12×500=7500000(平方米)=7.5(平方千米). 故选A .点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键. 18.B解析:B【分析】将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB =22(24)2210++=.故选:B .【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.19.C解析:C【分析】根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度.【详解】设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺,由勾股定理可得:222=OA OB AB +即:()2224=10x x +-,解得:x =4.2故折断处离地面的高度OA 是4.2尺.故答案选:C .【点睛】本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.20.D解析:D【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可;反之不符合的不能构成直角三角形.【详解】解:A 、因为92+402=412,故能构成直角三角形;B 、因为52+52=(252,故能构成直角三角形; C 、因为()()()222345x x x +=,故能构成直角三角形;D 、因为112+122≠152,故不能构成直角三角形;故选:D .【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足222a b c +=关系时,则三角形为直角三角形. 21.C解析:C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=(2)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.(2)2+(3)2=(5)2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.22.D解析:D【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边=2234+=5,当4是斜边时,另一条直角边=22473-=,故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.23.D解析:D【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.【详解】解:如图:将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A',连接A'B 交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm ,延长BG ,过A'作A'D ⊥BG 于D ,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:12=cm∴则该圆柱底面周长为24cm.故选:D.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.B解析:B【分析】-,点A表示的数为1,得PA=2,根据勾股定理得PB由数轴上点P表示的数为1而即可得到答案.【详解】-,点A表示的数为1,∵数轴上点P表示的数为1∴PA=2,AB=,又∵l⊥PA,1∴PB=∵∴数轴上点C1.故选B.【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.25.C解析:C【详解】如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C.考点:勾股定理的证明.26.B解析:B【分析】作AD⊥BC,则D为BC的中点,即BD=DC=2,根据勾股定理可以求得AD,则根据S=12×BC×AD 可以求得△ABC 的面积. 【详解】解:作AD ⊥BC ,则D 为BC 的中点,则BD=DC=2,∵AB=2522AB BD -,∴△ABC 的面积为S=12×BC×AD=12×4×4=8, 故选:B .【点睛】本题考查了勾股定理的运用,三角形面积的计算,本题中正确的运用勾股定理求AD 是解题的关键. 27.B解析:B【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】A 、222346+≠,C 、222568+≠,D 、222325+≠,故错误; B 、2221233+==,能构成直角三角形,本选项正确. 故选B .【点睛】本题考查了勾股定理的知识点,解题的关键是熟练的掌握勾股定理的定理与运算.28.D解析:D 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90︒即可.【详解】解:A 、22251213+=,ABC ∆∴是直角三角形,故能判定ABC ∆是直角三角形;B 、A BC ∠+∠=∠,90C ∴∠=︒,故能判定ABC ∆是直角三角形; C 、::2:3:5A B C ∠∠∠=,518090235C ∴∠=⨯︒=︒++,故能判定ABC ∆是直角三角形;D 、22261012+≠,ABC ∆∴不是直角三角形,故不能判定ABC ∆是直角三角形;故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.29.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,错误;B、∠A:∠B:∠C=1:3:2,可得∠B=90°,是直角三角形,错误;C、∵22+32≠42,故不能判定是直角三角形,正确;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,错误;故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.30.D解析:D【分析】24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF的长.【详解】解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24-10=14,∴=故选D.【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.。

中考压轴专题(四):旋转问题

中考压轴专题(四):旋转问题

中考压轴专题(四):旋转问题考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。

旋转性质----对应线段、对应角的大小不变,对应线段的夹角等于旋转角。

注意旋转过程中三角形与整个图形的特殊位置。

一、 直线的旋转1、(2009年浙江省嘉兴市)如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M点N ,使M 、N 两点重合成一点C ,构成△(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?2、(2009年河南)如图,在Rt △ABC 中,∠ACB =90°, ∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D .过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________;②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________;(2)当α=90°时,判断四边形EDBC 是否为菱AB NM (第1题)形,并说明理由.3、(2009年北京市)在ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90得到线段EF(如图1)(1)在图1中画图探究:①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E 逆时针旋转90得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=43,AE=1,在①的条件下,设CP1=x,S11P FC=y,求y与x之间的函数关系式,并写出自变量x的取值范围.分析:此题是综合开放题-------已知条件、问题结论、解题依据、解题方法这四个要素中缺少两个或两个以上,条件需要补充,结论需要探究,解题方法、思考方向有待搜寻。

勾股定理4(新编201912)

勾股定理4(新编201912)

思考
如图是一个长方体盒子(尺寸如图所示), 在长方体下底部的A点有一只蚂蚁,它想吃 到上底面B点的食物(BC=3cm),需爬行的 最短路程是多少?
B C
16cm
A 9cm
12cm
动脑想一想
小明想知道学校旗杆的高,他发现旗杆顶 端的绳子垂到地面还多1米,当他把绳子的 下端拉开5米后,发现下端刚好接触地面, 求旗杆的高度。
已知,一轮船以16海里/时的速度从港口A 出发向西北方向航行,另一轮船以12海里/ 时的速度同时从港口A出发向东北方向航行, 离开港口2小时后,则两船相距( )

A、25海里 B、30海里
C、35海里 D、40海里
一个圆柱状的杯子,由内部测得其底面直 径为4cm,高为10cm,现有一支12cm的 吸管任意斜放于杯中,则吸管 _露出杯 口外. (填“能”或“不能”)
的C,D,E处.如图,
如果∠ABC= ∠ABD= ∠ABE=90°,那么 BC,BD,BE这三条线段的长度有怎样的关系?
练习
一艘轮船以16海里/时的速度离开港口A向 东南方向航行,另一艘轮船同时以12海里/时 的速度离开港口A向西南方向航行,它们离 开港口1.5小时以后,相距多远?

西
A

C B

;https:///ner/

自己的缺点和错误。 B.同学们在考场上能否保持一颗平常心,是正常发挥水平的关键。 C.我生长在京剧之家,京剧对我一点都不陌生。 D.我从来没有这样的镇定,这样的安静。 41.下面文段中划线句子有毛病,请任选2句改在答题卡上。(4分) 在网络发达的今天,有人厌倦纸质图书, 更喜欢网上快速阅读。但是网上阅读好像乘火车出差,直来直去毫无悬念;而纸质阅读则好像坐牛车去姥姥家,慢悠悠地观景赏花。①

勾股定理旋转解题思路

勾股定理旋转解题思路

勾股定理旋转解题思路在数学的世界里,勾股定理就像一颗璀璨的明珠,闪闪发光。

想象一下,咱们在一个阳光明媚的下午,坐在公园的长椅上,阳光洒在脸上,旁边有小鸟在唱歌,心情那叫一个好啊。

突然,有个小朋友在玩球,球滚到了一个斜坡上。

他们想知道,这个斜坡有多高。

我们心中立刻浮现出勾股定理,想要用它来解这个问题。

就像小朋友的球一样,直接往上滚,这样的思路真是让人眼前一亮。

说到勾股定理,很多人可能一开始就皱起了眉头,觉得这玩意儿太复杂了。

但是,亲爱的朋友们,听我说,这其实简单得不能再简单了。

勾股定理告诉我们,直角三角形的两条直角边的平方和等于斜边的平方。

这就好比你把两个小房间拼起来,最后形成一个大房间。

简单明了,不是吗?现在想象一下,如果我们把这个直角三角形旋转一圈,那会发生什么呢?就像是给你的房间换了个新样子,真是妙趣横生。

好啦,我们回到那个小朋友和球的故事。

小朋友想知道斜坡的高度,于是我们就可以运用勾股定理,把这个高度变成一个数学问题。

假设斜坡的底边是3米,高是4米,那么斜坡的长度就是5米。

这个过程就像是做一道简单的数学题,轻轻松松就解开了。

于是小朋友高兴得手舞足蹈,像小鸟一样在草地上跳来跳去,快乐得不得了。

如果我们更深入一点,想象一下,如果把这个直角三角形旋转成一个圆锥体,那这个形状又会有什么样的变化呢?这就像是把一个普通的冰淇淋球放在了一个美丽的华丽蛋糕上。

旋转的过程中,直角三角形的各个边就像是不断在舞蹈一样,优雅而又神秘。

咱们不仅可以用勾股定理来计算直角三角形的边长,还能用它来研究这些旋转后形状的特征。

这个过程就像是揭开了一个个秘密,让人忍不住想要一探究竟。

再说说实际生活中的例子吧。

咱们去爬山,路上有很多斜坡,这时候勾股定理就派上用场了。

比如,咱们站在山脚下,想知道到达山顶的最短路径。

通过测量山脚到山顶的水平距离和高度,我们就能用勾股定理来算出这条最短的路径,简单又实用,难怪大家都说它是数学界的“万金油”呢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 1.在△ABC中,∠ACB=90°,AC=BC,P是 △ABC内一点,PB=1,PC=2,PA=3. C • 求∠BPC
P
A
B
海通中学
季茂法
P' C
A
P
B
海通中学
季茂法
• 2.P是正方形ABCD内一点,PA=1,PB=2,PC=3, 以B为旋转中心,将△ABP按顺时针方向旋 转,使得点A与C重合,点P旋转到点G. • (1)请画出旋转后的图形,说出此时△APB D A 绕点B旋转了多少度。
D E A
海通中学 季茂法
F
C
• 练习7、如图,在△ABC中,∠B=90°,M为 AB上一点,AM=BC,N为BC上一点,CN=BM, 连接AN、CM交于点P。求∠APM的大小。
C N P A
B
M
海通中学
季茂法
P
B
Cቤተ መጻሕፍቲ ባይዱ
海通中学
季茂法
• 练习2.P是正三角形ABC内一点,且 PA=3a,PB=4a,PC=5a. A • 求∠APB
P
B
海通中学 季茂法
C
• 练习3.在四边形ABCD中,∠ABC=30°, ∠ADC=60°,AD=CD. • 求证:BD2=AB2+BC2
A D C B
海通中学
季茂法
• 练习4.等腰直角三角形ABC的斜边上取两点 M、N,使得∠MCN=45° C • 求证:MN2=AM2+BN2
A
M
N
B
海通中学
季茂法
• 练习5、在等腰Rt△ABC中,∠CAB=90°,P 是三角形内一点,且PA=1,PB=3,PC2=7 C • 求:∠CPA的大小?
P A
海通中学 季茂法
B
• 练习6.如图所示,△ABC是等腰直角三角形, AB=AC,D是斜边BC的中点,E、F分别是AB、 AC边上的点,且DE⊥DF,若BE=12, CF=5.求线段EF的长。 B
P
B
C
海通中学
季茂法
• • • •
(2)求出PG的长度。 (3)猜想△PGC的形状,并说明理由 A (4)求∠APB P (5)求出此正方形ABCD的面积
B
D
C
海通中学
季茂法
• 3.P为正三角形ABC内一点,且 PA=5,PB=4,PC=3. A • 求∠BPC
P B C
海通中学
季茂法
• 练习1.P是正三角形ABC内一点,且 PA=6,PB=8,PC=10. A • 求∠APB
相关文档
最新文档