物理气相沉积
物理气相沉积技术

• 在电场E作用下,电子与氩 原子碰撞,电离产生Ar+和 新的电子。
• 新电子飞向衬底,Ar+电场 作用加速飞向阴极靶,以 高能量轰击,发生溅射。
• 靶原子沉积成膜,产生的 二次电子沿EXB所指方向 漂移。碰撞次数增加,二 次电子能量下降,逐渐远 离靶表面,最终沉积在衬 底上。传递能量很小,致 使衬底温升较低。
• ⑤溅射工艺适用于淀积合金,而且具有保持复杂 合金元组分的能力。比如常用的溅射AlSiCu合金中 靶材含有0.5%的Cu,那么淀积的薄膜也含有0.5% 的Cu。
3.溅射镀膜的缺点
• 溅射设备复杂,需要高压装置 • 溅射淀积的成膜速度低,真空蒸发镀膜淀积速率
为0.1~5μm/min,溅射速率为0.01~0.5 μm/min。 • 基片温升较高,易受杂质气体影响。
• 2).汤生放电区:这时,放电电流迅速增加,但是电压变 化不大。
• 3).辉光放电:在汤生放电之后,气体发生电击穿现象,I↑,U↓ • 继续增大电流,放电就会进入正常辉光放电区,显然电流的增大与电压
无关。 • 正常辉光放电时的电流密度比较小,所以溅射不选在这个区,而选在反
常辉光放电区。
• 4).反常辉光放电:I ↑,U ↑,发光仍为辉光(异于正常),增大至f点,不 稳定,I ↑,U ↓,放电系统马上会过渡到电弧放电区。
三、溅射方法
• 具体溅射方法较多。 • 直流溅射,射频溅射,磁控溅射,反应溅射,离
子束溅射,偏压溅射等。
1).直流溅射
• 靶材置于阴极,阳极 为衬底。
• 常用氩气作为工作气 体。
• 溅射电压1~5kV,靶电 流密度0.5mA/cm2,薄 膜淀积速率低于0.1 μm/min
物理气相沉积

图1 真空蒸镀装置示意图 1.衬底加热器;2.衬底;3. 原料;4.料舟;5.真空罩
蒸发源类型
(1)电阻加热蒸发源
选择原则:在所需蒸发温度下不软化,饱和蒸气压小,不发生反应; 一般采用高熔点金属如钨、钽、钼等材质,常作成螺旋丝状或箔舟状,如图2.所示。 特点:结构简单,造价低,使用广泛;存在污染,也不能蒸镀高Tm材料。
4. 二级溅射
影响溅射工艺的主要因素: a.放电气体压强P; b.放电电压VDC; c.放电电流IDC; d.可调参量: IDC ; P; 特点:方法及设备简单;放电不稳, 常因局部放电引起IDC变化;沉 积速率低。 最早采用的一种溅射方法,现在已经渐趋于淘汰。 图4 二极溅射装置示意图
5. 磁控溅射
离,使辉光放电持续不断的进行下去。
3. 溅射机理的两种假说
(1)Hippel理论(1926提出)
离子轰击靶产生的局部高温使靶材料(阴极材料)的局部蒸发,在阳极上沉积制膜。
(2)动能转移机理(Stark,1909,Langmuir, Henschk) (I) 溅射出的原子能量比热蒸发原子能量高一个数量级; (II) 轰击离子存在一个临界能量,低于这个能量,不能产生溅射; (Ⅲ) 溅射系数=溅射原子数/轰击离子数,既与轰击离子的能量有关,也与轰击离子的质量有关; (Ⅳ) 离子能量过高,溅射系数反而下降,可能是因为离子深入到靶材内部,能量没有交给表面附近原子的缘故; (Ⅴ) 溅射原子出射的角分布,对于单晶靶材,粒子主要沿几个方向出射。 最强的出射方向对应于晶格中原子最密集排列的方向,这种现象可用“聚焦碰撞”解释。
极),使其熔化便实现蒸镀。蒸镀时,基片加上负偏压即可从等离
子体中吸引氩离子向其自身轰击,从而实现离子镀。
物理气相沉积(PVD)

控制镀料成分:A1B25, 保证:P A :P B 1: 0 2 0 5 4 :1 A4B1膜料成分 若:一次性加料,A消耗快; ∴ 连续加料,保证熔池料为 A1B25, 从而膜料成分为A4B1;
dP Lv dT TV
(1)
∵ ∴
积分:
VV汽V固 、液V汽P 1R, T
dP dT
PLV RT 2
lnp ALV 1 RT
(2)
图8.2.2 几种材料的蒸气压——温度曲线
(3)蒸发速率和凝结速率
① 蒸发速率Ne:
——热平衡条件下,单位时间内,从蒸发源每单位 面积上射出的平均原子数。
N e1 4n 2 P m k3 .5 T1 13 20 2M P(T 1/cm2·s) (3)
设:物质含A,B成分,MA、MB,PA、PB, 则由(3)式,得 :
NA CA PA MB NB CB PB MA
(14)
改进工艺:
1)选择基片温度,使之有利于凝聚而不是分凝;
2)选用几个蒸发源,不同温度下分别淀积,但控制困难; 3)氧化物,可采用反应蒸镀法,引入活性气体。
4. 蒸发源类型
(1)电阻加热蒸发源
70年代,在阴极溅射基础上发展起来,能有效克服溅射速 率低,电子碰撞使基片温度升高的弱点。
(1)基本原理
在阴极靶面上加一环行磁场,使 BE , 控制二次电子运动轨迹,
电子运动方程: d e (EB)
(16)
dt m
运动轨迹为一轮摆线,电子在靶面上沿着垂直于E、B的方向前进,电 子被束缚在一定的空间内,减少了电子在器壁上的复合损耗;同时,延长 了电子路径,增加了同工作气体的碰撞几率,提高了原子的电离几率,使
物理气相沉积 CVD

Nodule
ITO 靶材表面突起
3. Sputter常见异常介绍
17
➢Nodule形成与增殖
3. Sputter常见异常介绍
ITO屑吸附在靶材上
ITO Sputter
Nodule
Arcin g
增殖
Nodule爆开形成更多ITO屑Biblioteka Nodule形成18
Sputter 在LTPS 中应用
4. Sputter工艺应用
13
➢Hillock起因分析-应力分析
3. Sputter常见异常介绍
成膜条件: 0.4Pa,110W(DC)
从上图可以看出在薄膜之弹性形变内,薄膜之应力由张应力至压应力呈线性变 化,而当压应力到达薄膜之降服点时(190℃),薄膜产生突起以释放薄膜之压 应力。 薄膜产生Hillock的主要起因是为了释放薄膜应力之产生。
Sputter工艺技术
2013.6.28
Summary
1
1.Sputter工艺介绍
PVD---物理气相沉积技术(Physical Vapor Deposition) ➢定义
物理气相沉积技术(Physical Vapor Deposition,PVD)表示在真空条件下, 采用物理方法,将材料气化成气体原子、分子或电离成离子,并通过气相过程, 在基体表面沉积具有特殊功能薄膜的技术。 ➢沉积基本过程 从原材料中发射粒子(通过蒸发、升华、溅射等过程) 粒子输运到基板(粒子间发生碰撞,产生离化、复合、反应,能量的交换和运 动方向的变化) 粒子在基板上凝结。成核、生长和成膜。 ➢分类
14
Splash
➢产生原因
治具
3. Sputter常见异常介绍
靶材局部散热不均,造成融化滴在基板上
物理气相沉积x

,
汇报人:
目录 /目录
01
点击此处添加 目录标题
04
物理气相沉积 技术的优缺点
02
物理气相沉积 技术概述
05
物理气相沉积 技术的发展趋 势
03
物理气相沉积 技术的应用领 域
06
物理气相沉积 技术的前景展 望
01 添加章节标题
02 物理气相沉积技术概述
物理气相沉积技术的定义
物理气相沉积技术 是一种利用物理方 法将气态物质转化 为固态薄膜的技术。
增强与其他表面处理技术的结合应用如电镀、化学镀等以提高沉积效率和 质量。
开发新型物理气相沉积技术如脉冲电弧放电、激光诱导等离子体等以满足 更广泛的应用需求。
深入研究物理气相沉积的机理和过程控制提高沉积层的均匀性和致密性。
加强与其他表面处理技术的结合应用如电镀、化学镀等以提高沉积效率和 质量。
06
物理气相沉积技术的前 景展望
新能源领域
太阳能电池: 物理气相沉积 技术用于制备 高效太阳能电 池提高光电转
换效率。
锂离子电池: 通过物理气相 沉积技术制备 电极材料提高 锂离子电池的 能量密度和循
环寿命。
燃料电池:利 用物理气相沉 积技术制备质 子交换膜和催 化剂降低燃料 电池的成本和
提高性能。
储能技术:物 理气相沉积技 术在储能领域 也有广泛应用 如超级电容器 和电池储能系
拓展应用领域和提高应用水平
拓展应用领域:随着技术的不断发展物理气相沉积技术的应用领域正在不断拓展例如在新能源、生物医学、 航空航天等领域的应用。
提高应用水平:通过不断的技术创新和改进物理气相沉积技术的应用水平也在不断提高例如在薄膜的均匀性、 附着力、耐久性等方面的提升。
物理沉积法

物理沉积法物理气相沉积法用物理的方法使镀膜材料气化,在基体表面沉积成膜的方法物理气相沉积(Physical Vapor Deposition简称PVD) 是用物理的方法(如蒸发、溅射等)使镀膜材料气化,在基体表面沉积成膜的方法。
除传统的真空蒸发和溅射沉积技术外,还包括近30 多年来蓬勃发展起来的各种离子束沉积,离子镀和离子束辅助沉积技术。
其沉积类型包括: 真空蒸镀、溅射镀、离子镀等。
物理气相沉积技术虽然五花八门,但都必须实现气相沉积三个环节,即镀料(靶材) 气化一气相输运一沉积成膜。
中文名物理气相沉积法沉积类型真空蒸镀、溅射镀、离子镀等各种沉积技术的不同点主要表现为在上述三个环节中能源供给方式不同,同一气相转变的机制不同,气粒子形态不同,气相粒子荷能大小不同,气相粒子在输运过程中能量补给的方式及粒子形态转变不同,镀料粒子与反应气体的反应活性不同,以及沉积成膜的基体表面条件不同而已。
与化学气相沉积相比,主要优点和特点如下:I)镀膜材料广泛,容易获得:包括纯金属、合金、化合物,导电或不导电,低熔点或高熔点,液相或固相,块状或粉末,都可以使用或经加工后使用。
2)镀料汽化方式:可用高温蒸发,也可用低温溅射。
3)沉积粒子能量可调节,反应活性高。
通过等离子体或离子束介人,可以获得所需的沉积粒子能量进行镀膜,提高膜层质量。
通过等离子体的非平衡过程提高反应活性。
4)低温型沉积:沉积粒子的高能量高活性,不需遵循传统的热力学规律的高温过程,就可实现低温反应合成和在低温基体上沉积,扩大沉积基体适用范围。
可沉积各类型薄膜:如金属膜、合金膜、化合物膜等。
5)无污染,利于环境保护。
物理气相沉积技术已广泛用于各行各业,许多技术已实现工业化生产。
其镀膜产品涉及到许多实用领域。
物理气相沉积法名词解释

物理气相沉积法名词解释
物理气相沉积法(Physical相沉积法)是一种化学沉积技术,通过物理过程
将化学物质沉积到基材表面,从而制备出具有特殊结构或功能的膜、涂层或颗粒。
物理气相沉积法通常涉及三个基本步骤:气相沉积反应、沉积时间和冷却。
其中,气相沉积反应是指将化学物质溶解在气相中,并通过气相流在基材表面形成沉积物的过程。
沉积时间是指沉积物从气相中形成到脱落的时间。
冷却则是指使用气流或喷淋等方式将沉积物表面降温,从而使其更加稳定。
物理气相沉积法的应用非常广泛,包括制备膜材料、涂层材料、纳米材料、生物材料、催化剂等。
其中,膜材料是物理气相沉积法最为著名的应用之一。
膜材料可以用于水处理、废气处理、药物分离等领域,具有高效过滤、分离、浓缩等功能。
此外,物理气相沉积法还可以用于制备纳米材料、生物材料等,具有治疗疾病、提高材料性能等潜在应用价值。
除了应用价值外,物理气相沉积法还存在一些挑战和限制。
例如,沉积物质量的影响因素很多,包括气相组成、反应条件、温度、压力等。
因此,在实际应用中需要不断调整反应条件,以达到最优的沉积效果。
此外,由于沉积物表面通常需要经过清洗和表征等步骤,因此需要对沉积物表面进行处理,以获得所需的表征结果。
总之,物理气相沉积法是一种制备高性能材料的有效方法,具有广泛的应用前景和研究价值。
随着技术的不断发展和完善,相信它将在未来发挥更加重要的作用。
物理气相沉积

工料件;不带后电者,真包空括条件电下、金属磁加、热蒸声发、沉积光到等工件功表能面薄 无物膜气理材孔 气,相料但沉等膜积层。(PV缺D陷) 较多。
而物理气相沉积,并不需要发生化学反应,其只是通过各种方法(如加热蒸发,溅射等等),将源材料气化,然后沉积于基片表面成
膜,沉积前会后的被物溅质都射是出一样来的而。 沉积到工件表面。
低温时密度较小但表面平滑
物等理能气 量相形沉式溅积产生(P射h气ys镀相ica原l膜V子ap纯、or分度De子p高、osi离t、io子n,均(气P态V匀D,)是,等指离而把子固且态态)基进(液行板态输)温镀运料,度通在低过固高态。温表因蒸面发上此、沉适溅积射凝用、聚性电(包子广括束与,、其可等他离沉反子应积体气、纯相离物金子质束进、行激化光学束反、应电生弧
气孔少,但混入溅射气体较多
工4、件离为基子阳镀片极膜,温(靶镀升材膜为较材阴料高极蒸,,发利、易用离氩受化离、杂子加溅质速射、气,沉靶体积材)影原子响击。出而沉积。
物④理无气环溅相境沉射污积染的(P;V用D) 途
因此适溅用性射广薄, 可膜沉积按纯其金属不、同合金的或功化合能物和。 应用可 原会大理被致是 溅充射分氩出为(来Ar而机)气沉械的积真到功空工能条件件表膜下面和,。使物氩理气进功行能辉光膜放两电,大(Ar)
★ 缺点:设备复杂,一次 较大。
(1)真空蒸镀
真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后 沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子束、激 光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面。
真空蒸镀的设备相对简单, 工艺操作容易, 可镀材料广, 镀膜纯洁, 广泛用于光 学、电子器件和塑料制品的表面处理。缺点是膜一基结合力弱,镀膜不耐磨, 并有方向性。
物理气相沉积

离子镀膜
反应性离子镀
特点
多弧离子镀
离子镀膜的基本特点是采用某种方法(如电子束蒸发磁控溅射,或多弧蒸发离化等)使中性粒子电离成离子 和电子,在基体上必须施加负偏压,从而使离子对基体产生轰击,适当降低负偏压后使离子进而沉积于基体成膜, 适用于高速钢工具,热锻模等材料的表面处理过程。
离子镀膜的优点如下: ①膜层和基体结合力强,反应温度低。种基体材料均适合于离子镀。
多弧离子镀又称作电弧离子镀,由于在阴极上有多个弧斑持续呈现,故称作“多弧”。 多弧离子镀的主要特点如下 : ①阴极电弧蒸发离化源可从固体阴极直接产生等离子体,而不产生熔池,所以可以任意方位布置,也可采用 多个蒸发离化源。 ②镀料的离化率高,一般达60%~90%,显著提高与基体的结合力改善膜层的性能。 ③沉积速率高,改善镀膜的效率。 ④设备结构简单,弧电源工作在低电压大电流工况,工作较为安全。
PVD(物理气相沉积)镀膜技术主要分为三类:真空蒸发镀膜、真空溅射镀膜和真空离子镀膜。物理气相沉积 的主要方法有:真空蒸镀、溅射镀膜、电弧等离子体镀膜、离子镀膜和分子束外延等。相应的真空镀膜设备包括 真空蒸发镀膜机、真空溅射镀膜机和真空离子镀膜机。
随着沉积方法和技术的提升,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半 导体、聚合物膜等。
溅射镀膜可分为直流溅射、射频溅射和磁控溅射,其对应的辉光放电电压源和控制场分别为高压直流电、射 频(RF)交流电和磁控(M)场 。
等离子体镀膜
在物理气相沉积中通常采用冷阴极电弧蒸发,以固体镀料作为阴极,采用水冷使冷阴极表面形成许多亮斑, 即阴极弧斑。弧斑就是电弧在阴极附近的弧根。在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极) 之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为 主要成分的电弧等离子体,并能迅速将镀料沉积于基体。
科学11-班——物理气相沉积(PVD)

1、直流溅射
设备简单,操作方便,适合于溅射金属薄膜 但直流溅射中靶材只接收正离子,如果靶材是绝缘材料,阴 极表面聚集的大量正离子无法被电子中和使其电位不断上 升,阴阳两极电势减小,使溅射不能持续进行.
惰性气体
2、射频溅射
射频溅射原理:交变电场使得靶材正半周接收电子,负半周接收 正离子,相互中和,从而使阴阳两极电位的大小保持稳定,使溅射 能够持续进行.
入射粒子引起靶材表面 原子的级联碰撞示意图
在溅射过程中,通过动量传递,95%的离子能量作为热量而被损耗,仅有5%的能量传递 给二次发射的粒子。 溅射的中性粒子:二次电子:二次离子=100:10:1
辉光放电
离子束溅射
工艺昂贵
溅射过程的物理模型
阴极溅射镀膜原理示意图
1-高压屏蔽 2-高压线 3-基片 4-钟罩 5-阴极屏蔽 6-阴极 (靶材)
离子镀的类型:(从离子来源的角度可分为) 蒸发源离子镀和溅射离子镀两大类。
离子镀技术的特征:在基片上施加负偏压, 用来加速离子,增加调节离子的能量。
二极直流放电离子镀示意图
离子镀的主要优点:⑴等离子体的活性有利于降低化合物的合成温度;⑵离子 轰击提高了薄膜的致密度;⑶改善了膜层的组织结构;⑷提高膜/基结合力。
1. 所生长的材料以物理的方式由固体转化为气体 2. 生长材料的蒸汽经过一个低压区域到达衬底 3. 蒸汽在衬底表面上凝结,形成薄膜
Substrate
Substrate Substrate Substrate Substrate
热运动 原子团簇
岛 薄膜
PVD所需实验条件及实验配置
实验条件
高真空 (HV) 高纯材料
物理气相沉积技术

物理气相沉积技术1简介物理气相沉积(Physical Vapor Deposition,PVD)是一种表面处理技术,它基于原子、分子或离子在真空条件下从固体源“蒸发”或“剥离”,并在另外一个表面生成薄膜或涂层的过程。
PVD技术广泛应用于半导体、电子、机械、医疗等领域,可以改善材料表面的性能、延长使用寿命,也可以改变物体的颜色和外观。
2工艺流程PVD技术是在真空下完成的,因此主要工具是真空室,其次是沉积源,对于不同的应用场景,沉积源也会有所不同。
例如,如果是进行金属沉积,则沉积源可以是纯净金属,或者是通过将金属块或箔片加热,使其蒸发或溅射而得到的。
如果需要沉积金属氧化物,则需要放置源材料和氧气在沉积室中进行反应。
在PVD过程中,首先需要将材料放入真空室中,制备必要的工艺条件,使得沉积源的物质能够蒸发、溅射并扩散到目标基板上。
其中一个关键参数是真空度,PVD通常在10^-4~10^-8torr的高真空条件下进行。
另一个参数是沉积源与基板的距离,过近会导致过度热量和膜的不均匀厚度,过远影响膜的成形。
3分类根据真空沉积源材料的不同,PVD可分为四种类型:蒸发、离子镀、磁控溅射和分子束外延。
其中,蒸发和离子镀常常被用于制备功能性和装饰性薄膜涂层,磁控溅射则常被用于制备金属、半导体和陶瓷等薄膜,而分子束外延则适用于高质量、高洁净度的材料制备。
4应用PVD技术的应用涵盖了许多领域。
其中,电子和半导体产业是其中的重要应用领域之一。
在芯片制造过程中,PVD技术用于制备镀膜、金属连线等的处理;在随着显示技术的发展,PVD技术也被广泛应用于液晶显示器、有机EL显示器、柔性显示器等各种显示器领域。
此外,在航空航天、汽车、医疗、光学等领域都有PVD技术的应用。
5结论总的来说,PVD技术是一种成熟、广泛应用的表面处理技术。
它可以对各种材料表面进行处理,使其具有功能性和装饰性,可以改善产品的表面性能。
然而,由于技术的复杂性和设备的昂贵性,PVD技术在应用过程中也存在一定的限制性。
《物理气相沉积》课件

电源设备
高压电源
01
提供高电压以产生电离气体。
直流电源
02
提供直流电流以加热沉积材料。
射频电源
03
提供射频能量以实现射频物理气相沉积。
控制设备
控制系统
用于控制物理气相沉积过程的各项参数,如温度、压力、电流等 。
监控系统
用于实时监测物理气相沉积过程的状态和参数。
数据采集系统
用于采集和记录物理气相沉积过程中的数据。
缺陷。
涂层制备工艺
真空系统建立
通过真空泵将沉积室内的气体抽至一定的真空度 ,为涂层制备创造必要的环境条件。
气相沉积
在真空条件下,通过物理方法将气态物质转化为 固态涂层,附着在工件表面。
涂层厚度控制
通过控制沉积时间和工艺参数,精确控制涂层的 厚度和均匀性。
后处理工艺
退火处理
通过加热使涂层内部原子重新排列,提高涂层的硬度 和稳定性。
详细描述
在溅射沉积中,高能粒子(如离子)轰击靶材表面,使靶材 原子或分子从表面溅射出来,并在基体上沉积形成薄膜。该 方法可用于制备金属、合金、陶瓷和其它无机材料。
离子镀
总结词
离子镀是一种物理气相沉积技术,通过将材料离子化并在电场作用下加速到基体 上,实现高能离子束沉积成膜。
详细描述
在离子镀中,将材料离子化后形成离子束,通过电场加速作用将离子束导向基体 表面,在基体上沉积形成薄膜。该方法可用于制备金属、合金、陶瓷和其它无机 材料,具有高沉积速率和良好的附着力。
由金属和非金属材料组成,具有优异 的力学性能和耐磨性,常用于制造机 械零件和刀具等。
04
物理气相沉积工艺
前处理工艺
表面清洗
去除工件表面的污垢、油脂和杂 质,确保表面干净,以提高涂层
科学11-班——物理气相沉积(PVD)

♣ 按溅射方式的不同,又可分为直流溅射、射频溅射、偏压
溅射和反应溅射等。
1、直流溅射
设备简单,操作方便,适合于溅射金属薄膜 但直流溅射中靶材只接收正离子,如果靶材是绝缘材料,阴 极表面聚集的大量正离子无法被电子中和使其电位不断上 升,阴阳两极电势减小,使溅射不能持续进行.
惰性气体
2、射频溅射
射频溅射原理:交变电场使得靶材正半周接收电子,负半周接收 正离子,相互中和,从而使阴阳两极电位的大小保持稳定,使溅射 能够持续进行.
3-基片
4-钟罩 5-阴极屏蔽
9-Ar进口
10-加热电源 11-至真空系统
6-阴极 (靶材)
12-高压电源
阴极溅射主要过程:
再次轰击靶材 正离子
阳离 子 气体 辉光 放电 电子 加热基材
靶材(阴 极)
二次电子
原子,分子
基材(阳 极)
膜生成的三大阶段:
• 1.靶面原子的溅射 • 2.溅射原子向基片迁移 ★ 粒子的平均自由程,决定了靶面与基板的距离! • 3.成膜粒子向基板入射并沉积成膜
镀料粒子与反应气体激活 反应,活性提高,在较低 温度下形成化合物
清除柱状晶、提高致密度, 对膜层内应力的影响, 使原子处于非平衡位置而增 加应力或增强扩散和再结晶 等松弛应力。
改变膜的组织结构,
强化基体表面等;
基体表面产生压应力
(二)常用离子镀膜方法
1、空心阴极离子镀(HCD) 2、多弧离子镀 3、磁控溅射离子镀技术 4、活性反应离子镀
物理气相沉积技术
(PVD)
气相沉积:利用气相之间的反应在基体上形成一
层功能膜的技术。
发展:
1970年前,称为干镀 1980,广泛用于电子、装饰,刀具(硬涂层) 近20年,随电子器件及尖端科学发展,发展迅速
PVD(物理气相沉积)

PVD(物理气相沉积)简介1. PVD简介PVD是英文Physical Vapor Deposition(物理气相沉积)的缩写,是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。
2. PVD技术的发展PVD技术出现于二十世纪七十年代末,制备的薄膜具有高硬度、低摩擦系数、很好的耐磨性和化学稳定性等优点。
最初在高速钢刀具领域的成功应用引起了世界各国制造业的高度重视,人们在开发高性能、高可靠性涂层设备的同时,也在硬质合金、陶瓷类刀具中进行了更加深入的涂层应用研究。
与CVD工艺相比,PVD工艺处理温度低,在600℃以下时对刀具材料的抗弯强度无影响;薄膜内部应力状态为压应力,更适于对硬质合金精密复杂刀具的涂层;PVD工艺对环境无不利影响,符合现代绿色制造的发展方向。
目前PVD涂层技术已普遍应用于硬质合金立铣刀、钻头、阶梯钻、油孔钻、铰刀、丝锥、可转位铣刀片、异形刀具、焊接刀具等的涂层处理。
PVD技术不仅提高了薄膜与刀具基体材料的结合强度,涂层成分也由第一代的TiN发展为TiC、TiCN、ZrN、CrN、MoS2、TiAlN、TiAlCN、TiN-AlN、CNx、DLC和ta-C等多元复合涂层。
3. 星弧涂层的PVD技术增强型磁控阴极弧:阴极弧技术是在真空条件下,通过低电压和高电流将靶材离化成离子状态,从而完成薄膜材料的沉积。
增强型磁控阴极弧利用电磁场的共同作用,将靶材表面的电弧加以有效地控制,使材料的离化率更高,薄膜性能更加优异。
过滤阴极弧:过滤阴极电弧(FCA)配有高效的电磁过滤系统,可将离子源产生的等离子体中的宏观粒子、离子团过滤干净,经过磁过滤后沉积粒子的离化率为100%,并且可以过滤掉大颗粒,因此制备的薄膜非常致密和平整光滑,具有抗腐蚀性能好,与机体的结合力很强。
磁控溅射:在真空环境下,通过电压和磁场的共同作用,以被离化的惰性气体离子对靶材进行轰击,致使靶材以离子、原子或分子的形式被弹出并沉积在基件上形成薄膜。
物理气相沉积

物理气相沉积技术
柱状靶磁控溅射镀膜机
全自动镀膜设备
第四章 物理气相沉积技术
主要内容
...
一
一
二 三 四 五
... 物理气相沉积的特点 … 真空蒸发镀膜 ... 溅射镀膜
...
二 三
四
...
...
... 离子镀膜
... 物理气相沉积的应用
...
五
第四章 物理气相沉积技术 ★ 物理气相沉积(Physical Vapor Deposition, PVD), 在真空条件下,利用热蒸发或辉光放电、弧光放电等物理 过程,实现材料的迁移,并在零件基体表面上沉积形成涂层的 技术。包括真空蒸发镀膜、溅射镀膜和离子镀膜。
第四章 物理气相沉积技术
第四章 物理气相沉积技术 1.真空蒸发镀膜
(2)电子束蒸发源
将蒸镀材料放入水冷铜坩埚中,直接用电子束加热法,称 为电子束加热法。
优点: (1)热量可直接加在蒸发材料上; (2)盛放蒸发材料的容器可以是冷 的; (3)可以蒸发诸如钽和钨等类高温 金属。 缺点: (1)装置复杂; (2)残余气体分子和蒸发材料蒸气 的一部分会被电子电离; (3)多数化合物由于电子轰击而部 分分解。
第四章 物理气相沉积技术
★ 特点
① 涂层形成是不受物理变化定律控制的凝固过程,
是一种非平衡过程。 ② 工艺过程对基体材料的影响很小,因此可以在 各种基体材料上涂覆涂层。 ③ 沉积层厚度范围较宽,从nm~mm级都可实现
④ 无环境污染;
★ 缺点:设备复杂,一次投资较大。
第四章 物理气相沉积技术
★ 气相沉积的基本过程 三个步骤:提供气相镀料、镀料向所镀制的 工件输送、镀料沉积在基片上构成膜层。
物理气相沉积

其他特点
低压环境;
其他气体分子对于气相分子的 散射作用较小,气相分子的运动路 径近似为一条直线; 气相分子在衬底上的沉积几率 接近100%。
物理气相沉积
物理气相沉积技术中ຫໍສະໝຸດ 为基本的两 种方法是蒸发法和溅射法:
蒸发法优点:
较高的沉积速度;
相对较高的真空度;
较高的薄膜纯度等。
溅射法特点
1. 合金薄膜化学成分容易控制; 2. 沉积层对衬底的附着力较好。 3. 各种现代技术促进了各种高速 溅射方法以及高纯靶材、高纯气体 制备技术的发展;这些都使得溅射 法制备的薄膜质量得到了很大的改 善:
溅射法
带电荷的离子在电场中加速后具有 一定动能,将离子引向被溅射的物质做 成的靶电极,在离子能量合适的情况下, 入射离子在与靶表面原子碰撞,将后者 溅射出来。
被溅射出来的原子有一定的动能, 并沿着一定的方向射向衬底,从而实现 薄膜的沉积。
溅射法
溅射在一定程度的真空系统中进行。
靶材是需要溅射的材料,作为阴极, 阳极接地,沉积时,真空室充入适当压 力的惰性气体,例如,以A r作为放电气 体时,其压力范围一般为0.1~10Pa。
物理气相沉积
物理气相沉积(physical vapor deposition,PVD)是利用某种物理过 程,如物质的热蒸发或在受到粒子 轰击时物质表面原子的溅射等现象, 实现物质原子从源物质到薄膜的可 控转移的过程。
物理气相沉积法特点
(1)需要使用固态的或者熔融态的物质 作为沉积过程的源物质;
(2)源物质经过物理过程而进入气相; (3)需要相对较低的气体压力环境; (4)在气相中及在衬底表面并不发生化 学反应。
新技术不断涌现
蒸发法和溅射法两种物理气相 沉积方法已经大量应用于各个技术 领域,在此基础上还开发出了许多 介于这两种方法之间新的薄膜沉积 技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五 纳米加工平台现有设备介绍
热蒸发操作注意事项
不要用坚硬物品敲击触摸屏。 如果系统有异常声音或气味应马上停止工作,关闭总 电源,查出问题后再工作。 如果系统长期不用,要使真空腔处于真空状态关闭机 器。 充气阀充气完毕后要及时关闭。 单独用一个真空室工作时,一定要保持另一个真空室 处于低真空状态,不可是大气压状态。 束源炉在升温的过程中通过面板上的调节旋钮调节电 流不能超过3A,蒸发过程中温度不稳定可增加电流。 束源炉的温度或蒸发舟的温度必须降低到100度以下才 可关闭真空系统,开启真空室。
三 PVD薄膜沉积中常见问题
基片与蒸发源间的距离 镀膜时的压力 基片加偏压
四 PVD薄膜的表征
PVD薄膜的表征
电学性能:四探针 粘附性:划痕法 内应力:X射线衍射法 膜厚:台阶仪 表面粗糙度:AFM
21
五 纳米加工平台现有设备介绍
磁控溅射-LAB18
22
五 纳米加工平台现有设备介绍
LAB18系统组成 控 制 系 统 电源 加热 抽 真 空 系 统
Thick(A)
39
五 纳米加工平台现有设备介绍
ei-5z操作注意事项
开机前注意检查水电气正常; 做工艺之前检查坩埚源的状态,如源不够及 时通知相应工作人员; 禁止在低真空条件下打开电子枪电源; 蒸发前注意晶振片的频率和所要蒸发材料的 量 蒸镀过程中,注意观察所蒸发的材料是否正 确,电子束斑位置; 禁止非授权操作人员执行开机和关机步骤。
3
一 PVD薄膜沉积的基本原理
PVD技术的分类
物理气相沉积(PVD) 真空蒸镀 电子束(EB)蒸发 热蒸发 溅射镀膜 直流溅射 射频溅射 脉冲直流溅射 离子镀
4
一 PVD薄膜沉积的基本原理
真空蒸镀
真空蒸镀是将镀料在真空中加热、蒸发,使蒸 发的原子或原子团在温度较低的基板上凝结, 形成薄膜。 热蒸发、EB蒸发。
五 纳米加工平台现有设备介绍
LAB18现有靶材 Au、Pt、Ti、Ni、V、AlN、PZT、Al、 Cr、SiO2、Ag、ITO 、Fe、Pd、Ge、 Cu、W、TiN
五 纳米加工平台现有设备介绍
LAB18 工艺参数
工艺条件
本底真空 序 号 1 靶材 2E-6 预溅 时间 120 温度 22 衬底转速 20 压 气 力 流量 体 (mT orr) Ar 4 19.2 工作真 空 2.8E-3 溅射 功率 电压 电流 时间 (W) (V) (A) 300 200 426 0.46
真空腔体
冷却系统
五 纳米加工平台现有设备介绍
LAB18 Vacuum界面
24
五 纳米加工平台现有设备介绍
LAB18 Deposition界面
25
五 纳米加工平台现有设备介绍
LAB18 腔体内部
26
五 纳米加工平台现有设备介绍
LAB 18的性能指标
真空度:2E-7Torr 工艺气体:Ar、O2、N2 衬底升温:450℃ 反溅功率:100W 直流源:500W 射频源:300W 脉冲直流:300W 厚度均匀性:< ±5% 可加工样品尺寸:6寸和4寸每次一片,2寸每 次4片,小样品夹具
PVD(物理气相沉积)薄 膜工艺及设备介绍
赵德胜
1
主要内容
一 二 三 四 五 PVD薄膜沉积的基本原理 PVD薄膜沉积各种方式的比较 PVD薄膜沉积中常见问题 PVD薄膜的表征 纳米加工平台现有设备介绍
2
一 PVD薄膜沉积的基本原理
在半导体行业PVD主要用于金属化
物理气相沉积(Physical Vapor Deposition, PVD)技术:表示在真空条件下,采用物理方 法,将材料源-固体或液体表面气化成气体原 子、分子或部分电离成离子,并通过低压气体 (或等离子体)过程,在基体表面沉积具有特 殊功能薄膜的技术。
12
一 PVD薄膜沉积的基本原理
离子镀:在真空条件 下,利用气体放电使 气体或蒸发物质离化 ,在气体离子或被蒸 发物质离子轰击作用 的同时,把蒸发物或 其反应物蒸镀在基片 上。 离子镀把辉光放电、 等离子体技术与真空 蒸发镀膜技术结合在 一起
一 PVD薄膜沉积的基本原理
物理气相沉积技术基本原理的三个过程
电极 约5MHZ
晶体
膜厚
蒸气
34
五 纳米加工平台现有设备介绍
ei-5z腔体内部
35
五 纳米加工平台现有设备介绍
ei-5z主界面
36
五 纳米加工平台现有设备介绍
ei-5z的性能指标
真空度:5E-6Pa 基片最高温度:300℃ 电子枪功率:8KW 厚度均匀性:< ±5% 可加工样品尺寸:6寸每次8片,4寸每次8片, 2寸每次180片,以及小样品夹具 现有蒸发源:Au、Ti、Ni、Cr、Au88Ge12、Al 、In、Sn、Ag、Pd
38
五 纳米加工平台现有设备介绍
Power(%)
40 30 20 10 0 5 0 50 100 150 200
Time(S)
Power
250
Rate
Rate(A/S)
0 0 50 100 150 200 250 400 200 0 0 50 100 150 200 250
Time(S) Time(S) Thick
一 PVD薄膜沉积的基本原理
什么是辉光放电?
辉光放电是指在稀薄气体中,两个电极之间加 上电压时产生的一种气体放电现象。
10
一 PVD薄膜沉积的基本原理
直流溅射:适用于金 属材料 射频溅射:是适用于 各种金属和非金属材 料的一种溅射沉积方 法
一 PVD薄膜沉积的基本原理
脉冲溅射:一种用于消除直流反应溅射 中异常放电技术。 反应溅射:在溅射过程中,在工艺气体 中混入活性气体,在溅射过程中发生反应 生成氧化物、氮化物等的溅射方式。
31
五 纳米加工平台现有设备介绍
电子束蒸发- ei-5z
操作界面 真空腔体
32
五 纳米加工平台现有设备介绍
ei-5z系统组成 控 制 系 统
膜 厚 控 制 坩 埚 电 子 枪
真空腔体
抽 真 空 系 统
冷却系统
五 纳米加工平台现有设备介绍
膜厚控制
监视蒸镀速率的方法 是利用共振的石英晶 体。结晶的石英晶体 具有压电性的,在共 振频率时,石英晶体 产生震荡电压,晶体 放大并回授以驱动晶 体,就可监督蒸镀速 率。
五 纳米加工平台现有设备介绍
ei-5z工艺参数
材料名称 High Vol(KV) 本底真空(Pa) 蒸发温度(℃) 蒸发功率(%) 蒸发速率(A/S) 蒸发厚度(A) Ti 7.5 8E-5 23 28 2 50 坩埚号 X/Y—Position X/Y—Sweep 衬底转(r/m) 预蒸发时间 Gain/Time-C/Limit Tooling 5 3 3 8 2min 5 85 10 3 3.5 0
40
五 纳米加工平台现有设备介绍
热蒸发设备外观
液晶显示器 腔体
加热控制显示
41
五 纳米加工平台现有设备介绍
热蒸发真空示意图
42
五 纳米加工平台现有设备介绍
• 热蒸发操作界面
五 纳米加工平台现有设备介绍
热蒸发的性能指标
真空度:5E-6Pa 基片最高温度:200℃ 可蒸发材料:Al、Au、In、Ag、Ni等金 属
15
三 PVD薄膜沉积中常见问题
如何提高PVD薄膜 的粘附性
基片的预处理 水洗 有机溶剂清洗 超声波清洗 蚀刻
三 PVD薄膜沉积中常见问题
镀膜前对基片进行离子轰击
三 PVD薄膜沉积中常见问题
镀膜时的加热 衬底和膜之间加 入接触金属(Cr、 Ni、Ti、W等)
三 PVD薄膜沉积中常见问题
如何在大台阶表面沉积厚度均匀的 薄膜
镀料的气化 镀料原子、分子或离子的迁移 镀料原子、分子或离子在基体上凝结
14
二 PVD薄膜沉积各种方式的比较
真空蒸镀、溅射镀膜和离子镀的比较
方法
真空 蒸镀 溅射 镀膜 离子 镀
优点
工艺简便,纯度高,通 过掩膜易于形成所需要 的图形 附着性能好,易于保持 化合物、合金的组分比
缺点
蒸镀化合物时由于热分解现象 难以控制组分比,低蒸气压物 质难以成膜 需要溅射靶,靶材需要精制, 而且利用率低,不便于采用掩 膜沉积 附着性能好,化合物、 装置及操作均较复杂,不便于 合金、非金属均可成膜 采用掩膜沉积
五 纳米加工平台现有设备介绍
三种设备的比较
性质 沉积 粘附 均匀 致密 速率 性 性 性 方法 LAB 18 ei-5z 热蒸发 可控 可控 优 良 优 优 良 优 良 差 可控 可控 差 高 高 低
46
膜厚 控制
成本
不可 一般 控
上机培训价格(暂定)
• 溅射(LAB 18):450元/人 • 电子束蒸发(ei-5z):450元/人 • 热蒸发:350元/人
熔融的 蒸镀源 电子束
水 水冷 坩埚
一 PVD薄膜沉积的基本原理
溅射镀膜
溅射-用带有几十电子伏以上动能的粒子或粒 子束照射固体表面,靠近固体表面的原子会获 得入射粒子所带能量的一部分进而向真空中放 出,这种现象称为溅射。
一 PVD薄膜沉积的基本原理
溅射镀膜
磁控溅射-电子在电场的作用下加速飞向基片 的过程中与氩原子发生碰撞,电离出大量的氩 离子和电子,电子飞向基片,氩离子在电场的 作用下加速轰击靶材,溅射出大量的靶材原子 ,呈中性的靶原子(或分子)沉积在基片上成 膜。
一 PVD薄膜沉积的基本原理
热蒸发原理及特点
热蒸发是在真空状况下,将所要蒸镀的材料 利用电阻加热达到熔化温度,使原子蒸发, 到达并附着在基板表面上的一种镀膜技术。 特点:装置便宜、操作简单广泛用于Au、Ag、 Cu、Ni、In、Cr等导体材料。