电磁场与电磁波谢处方_课后答案
电磁场与电磁波(第三版)课后标准答案谢处方
JS v ω r ez era
e a sin
e
Q 4 a
sin
将球面划分为无数个宽度为 dl a d 的细圆环,则球面上任一个宽度为 dl a d 细
.-
圆环的电流为
d
I
JS
dl
Q 4
sin
d
细圆环的半径为 b a sin ,圆环平面到球心的距离 d a cos ,利用电流圆环的轴线上
.-
第二章习题解答
2.1
一个平行板真空二极管内的电荷体密度为
4 9
0U0d 4
3 x 2
3
,式中阴极板位
于 x 0 ,阳极板位于 x d ,极间电压为 U0 。如果 U0 40 V 、 d 1cm 、横截面
S 10cm2 ,求:(1) x 0 和 x d 区域内的总电荷量 Q ;(2) x d 2 和 x d 区域内
解 电偶极子 p1 在矢径为 r 的点上产生的电场为
E1
1 4 0
[3(
p1 r)r r5
p1 r3
]
所以 p1 与 p 2 之间的相互作用能为
We
p2
E1
1 [3( p1 4 0
r)( p2 r5
r)
p1 r
p2
3
]
因为1 r, p1 ,2 r, p2 ,则
p1 r p1r cos1
处的电场强度 E 中,有一半是有平面上半径为 3z0 的圆内的电荷产生的。
解 半径为 r 、电荷线密度为 l d r 的带电细圆环在 z 轴上 z z0 处的电场强度为
d
E
ez
r z0 d r 20 (r 2 z02 )3
2
故整个导电带电面在 z 轴上 z z0 处的电场强度为
电磁场与电磁波谢处方课后答案
电磁场与电磁波(第四版)谢处方 课后答案第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯AB C ;(8)()⨯⨯AB C 和()⨯⨯A B C 。
解 (1)23A x y z+-===+e e e A a e ee A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e ee (4)y z -+=e e -11(4)由 cos AB θ=14-==⨯A B A B ,得 1cos AB θ-=(135.5=(5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502x y z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
电磁场与电磁波[第四版]课后答案谢处方第二章习题
描述电场中某点电荷所具有的势 能,其值等于单位正电荷从该点 移动到参考点时所做的功。
电介质与电位移矢量
电介质
指能够被电场极化的物质,其内部存 在大量的束缚电荷。
电位移矢量
描述电场中某点的电场强度和电介质 极化效应的矢量,其值等于电场强度 和极化强度矢量的矢量和。
高斯定理与泊松方程
高斯定理
在静电场中,穿过任意闭合曲面的电 场强度通量等于该闭合曲面内所包围 的电荷量。
填空题答案及解析
答案
麦克斯韦方程组
解析
麦克斯韦方程组是描述电磁场的基本方程,其中包括了 变化的磁场产生电场和变化的电场产生磁场两个重要的 结论。因此,填空题2的答案是麦克斯韦方程组。
计算题答案及解析
答案:见解析
解析:根据电磁场理论,电场和磁场是相互依存的,变化的电场产生磁场,变化的磁场产生电场。在 计算题1中,需要利用法拉第电磁感应定律和麦克斯韦方程组进行计算和分析。具体计算过程和结果 见解析部分。
泊松方程
描述静电场中某点的电位与电荷分布 的关系,其解为该点的电位分布。
03
恒定磁场
磁场强度与磁感应强度
磁场强度
描述磁场强弱的物理量,与电流、导线的环绕方向相关。
磁感应强度
描述磁场对放入其中的导体的作用力的物理量,与磁场强度和导体在磁场中的放置方式 相关。
Hale Waihona Puke 安培环路定律与磁通连续性原理
安培环路定律
偏振是指电磁波的振动方向与传播方向之间的关系,可以分为横波和纵波两种类 型。在时变电磁场中,电磁波通常是横波,其电场矢量和磁场矢量都与传播方向 垂直。
05
习题答案及解析
选择题答案及解析
选择题1答案及解析
电磁场与电磁波(第四版)课后答案_谢处方_第二章习题 2
2.10 一个半圆环上均匀分布线电荷 ,求垂直于圆 平面的轴线z=a处的电场强度,设半圆环的半径也为a。
解:
dq ldl ', dl ' a d ',
dE
R eza era a(ez ex cos ' ey sin '),
E r
l 4 0
c
R R3
dl
'
a
l
40
(ez ex cos ' ey sin ')a2 d '
的磁感应强度,并证明空腔内的磁场是均匀的。
解:将题中问题看做两个对称电流的叠加:
一个是密度为 J 均匀分布在半径为 b
的圆柱内,另一个是密度为 J 均匀
b
分布在半径为 a 的圆柱内。 a
由安培环路定律在 b 和 a 中分布的
d
磁场分别为
0 2
J
b
b b
Bb
0b2 J b 2 b2
b b
0
q(ex x ey y (x a)2
ez z exa)
y2
z2
3/ 2
2q(ex x ey y ez z exa)
(x
a)2
y2
z2
3/ 2
0
由此可得个分量为零的方程组:
q(x
a)
(x
a)2
y2
z2
3/ 2
2q(x
a)
(x
a)2
y2
z2
3/ 2
0
qy
(
x
2
a)2
y2
z2
3/ 2
2qy
解:(1)
d
q (r ) d 0 (r ) s dx
电磁场与电磁波(第四版)课后答案__谢处方
电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分 量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)4x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
电磁场与电磁波(第四版)课后答案 谢处方
电磁场与电磁波(第四版)课后答案谢处方电磁场与电磁波(第四版)课后答案--谢处方-1-共138页第三章习题答疑3.1真空中半径为a的一个球面,球的两极点处分别设置点电荷q和?q,试计算球赤道平面上电通密度的通量?(如题3.1图所示)。
求解由点电荷q和?q共同产生的电通密度为qr?r?d?[3?3]?赤道平面q4?r?r?err?ez(z?a)qerr?ez(z?a)a{2?}23222324?[r?(z?a)][r?(z?a)]则球赤道平面上电通密度的通量d?ds??d?ezz?0ds?ss?qaqa1?(?1)q??0.293q2212(r?a)023.21911年卢瑟福在实验中使用的是半径为ra 的球体原子模型,其球体内均匀分布有总电荷量为?ze的电子云,在球心有一正电荷ze (z是原子序数,e是质子电荷量),通过实验得到球体内的电通量密度表达式为ze?1r?d0?er,先行证明之。
4??r2ra3?ze解位于球心的正电荷ze球体内产生的电通量密度为d1?er4?r2ze3ze原子内电子云的电荷体密度为4?ra334?ra3电子云在原子内产生的电通量密度则为ba?4?r33zer?0d?e??e2rrc234?r4?raze?1r?故原子内总的电通量密度为d?d1?d2?er题3.3图(a)4??r2ra3?3.3电荷均匀分布于两圆柱面间的区域中,体密度为?cm3,两圆柱面半题3.1图q(?a)a[?]2?rdr?22322232?4?0(r?a)(r?a)a径分别为a和b,轴线距离为c(c?b?a),如题3.3图(a)右图。
谋空间各部分的电场。
求解由于两圆柱面间的电荷不是轴对称原产,无法轻易用高斯定律解。
但可以把半径为a的小圆柱面内看做同时具备体密度分别为??0的两种电荷分布,这样在半径为b的整个圆柱体内具备体密度为?0的光滑电荷分布,而在半径为a的整个圆柱体内则具备体密度为??0的光滑电荷分布,如题3.3图(b)右图。
谢处方电磁场与电磁波第三版答案
谢处方电磁场与电磁波(第三版)答案第一章习题解答1.1 三个矢量A 、B 和C 如下: 23xyz=+-A e e e4yz=-+B e e 52x z=-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)ABθ;(5)A 在B 上的分量;(6)⨯A C ; (7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===+-e e e A a e e e A (2)-=A B (23)(4)xyzyz+---+=e e e ee 64xyz+-=e e e (3)=A B (23)xyz+-e e e (4)yz-+=e e -11(4)由cos AB θ=14==⨯A B A B,得 1cos AB θ-=(135.5=(5)A 在B 上的分量 B A =A cos AB θ=17=-A B B(6)⨯=A C 123502x yz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e 所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x yz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
电磁场与电磁波(第三版)课后答案__谢处方
故
J
v
e
Q 4 a3
r sin 3
e
3Q 4 a3
r sin
一个半径为 a 的导体球带总电荷量为 Q ,同样以匀角速度 绕一个直径旋转,求球
表面的面电流密度。
解 以球心为坐标原点,转轴(一直径)为 z 轴。设球面上任一点 P 的位置矢量为 r ,
且 r 与 z 轴的夹角为 ,则 P 点的线速度为
y2]
0 I 4 a
arctan
x y
x
a a
0 4
I a
arctan
a
y
x
arctan
a y
x
0 I 4 a
arctan
x
y
a
arctan
x
y
a
,
0 I 4 a
( 2
1)
0I 4 a
By
a a
0I (x x) d x 4 a[(x x)2 y2 ]
(sin1 sin2
cos
2 cos1
cos2 )
式中1 r, p1 ,2 r, p2 , 是两个平面 (r, p1) 和 (r, p2 ) 间的夹角。并
问两个偶极子在怎样的相对取向下这个力值最大
解 电偶极子 p1 在矢径为 r 的点上产生的电场为
E1
1 4 0
[3(
p1 r)r r5
p1 r3
①
y[(x a)2 y2 z2 ]3 2 2 y[(x a)2 y2 z2 ]3 2
②
z[(x a)2 y2 z2 ]3 2 2z[(x a)2 y2 z2 ]3 2
③
当 y 0 或 z 0 时,将式②或式③代入式①,得 a 0 。所以,当 y 0 或 z 0 时
电磁场与电磁波课后答案谢处方
电磁场与电磁波课后答案谢处⽅第⼆章习题解答2.1 ⼀个平⾏板真空⼆极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截⾯210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解(1) 43230004d ()d 9dQ U d x S x τρτε--==-=??110044.7210C 3U S dε--=-? (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=?11004(10.9710C 3U S d ε--=-? 2.2 ⼀个体密度为732.3210C m ρ-=?的质⼦束,通过1000V 的电压加速后形成等速的质⼦束,质⼦束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解质⼦的质量271.710kg m -=?、电量191.610C q -=?。
由21mv qU = 得 61.3710v ==? m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 ⼀个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀⾓速度ω绕⼀个直径旋转,求球内的电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为z 轴。
设球内任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin r φωθ=?=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 ⼀个半径为a 的导体球带总电荷量为Q ,同样以匀⾓速度ω绕⼀个直径旋转,求球表⾯的⾯电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为z 轴。
电磁场与电磁波答案(第四版)谢处方
2 r
A d S = (e r
S 4 2
+ ez 2 z ) (er d Sr + e d S + ez d S z ) =
5 2
2 5 5d d z + 2 4r d r d = 1200 0 0 0 0
故有 1.13
A d = 1200 = A d S
(2)三角形的面积
S=
则
RPP = rP − rP = ex 5 − e y 3 − ez
且 RPP 与 x 、 y 、 z 轴的夹角分别为
1.4
ex RPP 5 ) = cos −1 ( ) = 32.31 RPP 35 e R −3 y = cos −1 ( y P P ) = cos −1 ( ) = 120.47 RPP 35 e R 1 z = cos −1 ( z PP ) = cos −1 (− ) = 99.73 RPP 35 给定两矢量 A = ex 2 + e y 3 − ez 4 和 B = ex 4 − e y 5 + ez 6 ,求它们之间的夹角和 A 在
在由 r = 5 、 z = 0 和 z = 4 围成的圆柱形区域,对矢量 A = er r 2 + ez 2 z 验证散度定
A=
4 2
1 (rr 2 ) + (2 z) = 3r + 2 r r z
5 0
S
A d = d z d (3r + 2)r d r = 1200
e + e 2 − ez 3 A 1 2 3 = x y = ex + ey − ez A 14 14 14 12 + 22 + (−3)2
电磁场与电磁波(第三版)课后问题详解__谢处方
第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。
由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
电磁场与电磁波课后答案谢处方
第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。
由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
电磁场与电磁波(第三版)课后问题详解__谢处方
第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。
由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
电磁场与电磁波答案(第四版)谢处方
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A BC 和()⨯A BC ;(8)()⨯⨯AB C 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a ee e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 cos AB θ=14==⨯A B A B ,得 1cos AB θ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=17=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。
电磁场与电磁波(第四版)课后答案谢处方
球内电荷不仅在球壳内表面上感应电荷 ,而且在球壳外表面上还要感应电荷 ,所以球壳外表面上的总电荷为2 ,故球壳外表面上的电荷面密度为
3.6两个无限长的同轴圆柱半径分别为 和 ,圆柱表面分别带有密度为 和 的面电荷。(1)计算各处的电位移 ;(2)欲使 区域内 ,则 和 应具有什么关系?
解电荷 在 处产生的电场为
电荷 在 处产生的电场为
故 处的电场为
2.6一个半圆环上均匀分布线电荷 ,求垂直于圆平面的轴线上 处的电场强度 ,设半圆环的半径也为 ,如题2.6图所示。
解半圆环上的电荷元 在轴线上 处的电场强度为
在半圆环上对上式积分,得到轴线上 处的电场强度为
2.7三根长度均为 ,均匀带电荷密度分别为 、 和 地线电荷构成等边三角形。设 ,计算三角形中心处的电场强度。
细圆环的半径为 ,圆环平面到球心的距离 ,利用电流圆环的轴线上的磁场公式,则该细圆环电流在球心处产生的磁场为
故整个球面电流在球心处产生的磁场为
2.11两个半径为 、同轴的相同线圈,各有 匝,相互隔开距离为 ,如题2.11图所示。电流 以相同的方向流过这两个线圈。
(1)求这两个线圈中心点处的磁感应强度 ;
解(1)
(2)连接点 到点 直线方程为
即
故
由此可见积分与路径无关,故是保守场。
1.20求标量函数 的梯度及 在一个指定方向的方向导数,此方向由单位矢量 定出;求 点的方向导数值。
解
故沿方向 的方向导数为
点 处沿 的方向导数值为
1.21试采用与推导直角坐标中 相似的方法推导圆柱坐标下的公式
。
解在圆柱坐标中,取小体积元如题1.21图所示。矢量场 沿 方向穿出该六面体的表面的通量为
电磁场和电磁波[第四版]课后答案及解析__谢处方,共138页
电磁场与电磁波(第四版)课后答案第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C。
解 (1)23A x y z+-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o s AB θ=11238=A B A B ,得1c o sAB θ-=(135.5= (5)A 在B 上的分量 B A=A c o s AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
电磁场与电磁波课后答案__谢处方
电磁场与电磁波课后答案__谢处⽅第⼆章习题解答⼀个平⾏板真空⼆极管内的电荷体密度为,式中阴极板位于,阳极板位于,极间电压为。
如果、、横截⾯,求:(1)和区域内的总电荷量;(2)和区域内的总电荷量。
解(1)(2)⼀个体密度为的质⼦束,通过的电压加速后形成等速的质⼦束,质⼦束内的电荷均匀分布,束直径为,束外没有电荷分布,试求电流密度和电流。
解质⼦的质量、电量。
由得故⼀个半径为的球体内均匀分布总电荷量为的电荷,球体以匀⾓速度绕⼀个直径旋转,求球内的电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为轴。
设球内任⼀点的位置⽮量为,且与轴的夹⾓为,则点的线速度为球内的电荷体密度为故⼀个半径为的导体球带总电荷量为,同样以匀⾓速度绕⼀个直径旋转,求球表⾯的⾯电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为轴。
设球⾯上任⼀点的位置⽮量为,且与轴的夹⾓为,则点的线速度为球⾯的上电荷⾯密度为故两点电荷位于轴上处,位于轴上处,求处的电场强度。
解电荷在处产⽣的电场为电荷在处产⽣的电场为故处的电场为⼀个半圆环上均匀分布线电荷,求垂直于圆平⾯的轴线上处的电场强度,设半圆环的半径也为,如题图所⽰。
解半圆环上的电荷元在轴线上处的电场强度为三根长度均为,均匀带电荷密度分别为、和地线电荷构成等边三⾓形。
设,计算三⾓形中⼼处的电场强度。
解建⽴题图所⽰的坐标系。
三⾓形中⼼到各边的距离为题图则故等边三⾓形中⼼处的电场强度为-点电荷位于处,另-点电荷位于处,空间有没有电场强度的点?解电荷在处产⽣的电场为电荷在处产⽣的电场为处的电场则为。
令,则有由上式两端对应分量相等,可得到①②③当或时,将式②或式③代⼊式①,得。
所以,当或时⽆解;当且时,由式①,有解得但不合题意,故仅在处电场强度。
2.9 ⼀个很薄的⽆限⼤导电带电⾯,电荷⾯密度为。
证明:垂直于平⾯的轴上处的电场强度中,有⼀半是有平⾯上半径为的圆内的电荷产⽣的。
解半径为、电荷线密度为的带电细圆环在轴上处的电场强度为故整个导电带电⾯在轴上处的电场强度为⽽半径为的圆内的电荷产⽣在轴上处的电场强度为⼀个半径为的导体球带电荷量为,当球体以均匀⾓速度绕⼀个直径旋转,如题图所⽰。
《电磁场与电磁波》第4版(谢处方 编)课后习题答案 高等教育出版社六章习题解答
第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题6.1图所示。
滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 穿过导体回路abcda 的磁通为5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰ B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。
设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为0000()()P r r r a e r a B σεεωεεω==⋅=-⋅=-P n B e则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。
设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。
电磁场与电磁波第三版课后答案 谢处方
第一章习题解答1.1 给定三个矢量A 、B 和C 如下:23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C g 和()⨯A B C g ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===-e e e A a e e e A(2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11(4)由cos AB θ===A B A B g ,得1cos AB θ-=(135.5=o(5)A 在B 上的分量 B A =A cos AB θ==A B B g(6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e(7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e()⨯=A B C g (1014)x y z ---e e e g (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波(第四版)谢处方 课后答案第一章习题解答给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯AB C ;(8)()⨯⨯AB C 和()⨯⨯A B C 。
解 (1)23A x y z+-===+e e e A a ee e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e(4)y z -+=e e -11(4)由 cos AB θ=14-==⨯A B A B ,得 1cos AB θ-=(135.5=(5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502x y z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
解 (1)三个顶点1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e则 12214x z =-=-R r r e e , 233228x y z =-=++R r r e e e ,311367x y z =-=---R r r e e e由此可见1223(4)(28)0x z x y z =-++=R R e e e e e 故123PP P ∆为一直角三角形。
(2)三角形的面积122312231117.1322S =⨯=⨯==R R R R求(3,1,4)P '-点到(2,2,3)P -点的距离矢量R 及R 的方向。
解 34P x y z '=-++r e e e ,223P x y z =-+r e e e , 则 53P P P P x y z ''=-=--R r r e e e 且P P 'R 与x 、y 、z 轴的夹角分别为11cos ()cos 32.31x P P xP P φ--''===eR R 11cos ()cos 120.47y P P y P P φ'--'===e R R11cos ()cos (99.73z P P z P P φ--''===e RR给定两矢量234x y z =+-A e e e 和456x y z =-+B e e e ,求它们之间的夹角和A 在B 上的分量。
解 A 与B 之间的夹角为 11cos ()cos 131θ--===AB A B A B A 在B 上的分量为 313.53277B A -===-B AB 给定两矢量234x y z =+-A e e e 和64x y z =--+B e e e ,求⨯A B 在x y z =-+C e e e 上的分量。
解 ⨯=A B 234641xyz-=--e e e 132210x y z -++e e e所以⨯A B 在C 上的分量为 ()⨯=C A B ()2514.433⨯=-=-A B C C 证明:如果A B =A C 和⨯=A B ⨯A C ,则=B C 解 由⨯=A B ⨯A C ,则有()()⨯⨯=⨯⨯A A B A A C ,即()()()()-=-A B A A A B A C A A A C由于A B =A C ,于是得到 ()()=A A B A A C 故 =B C如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。
设A 为一已知矢量,p =A X 而=⨯P A X ,p 和P 已知,试求X 。
解 由=⨯P A X ,有()()()()p ⨯=⨯⨯=-=-A P A A X A X A A A X AA A X故得 p -⨯=A A P X AA在圆柱坐标中,一点的位置由2(4,,3)3π定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。
解 (1)在直角坐标系中 4cos(23)2x π==-、4sin(23)y π==3z = 故该点的直角坐标为(2,-。
(2)在球坐标系中5r ==、1tan (43)53.1θ-==、2120φπ== 故该点的球坐标为(5,53.1,120) 用球坐标表示的场225r r =E e ,(1)求在直角坐标中点(3,4,5)--处的E 和x E ;(2)求在直角坐标中点(3,4,5)--处E 与矢量22x y z =-+B e e e 构成的夹角。
解 (1)在直角坐标中点(3,4,5)--处,2222(3)4(5)50r =-++-=,故22512r r ==E e1cos220x x rx E θ====-e E E(2)在直角坐标中点(3,4,5)--处,345x y z =-+-r e e e ,所以233452525r r -+-===e e e r E故E 与B 构成的夹角为 11cos ()cos (153.63θ--===EB E B E B球坐标中两个点111(,,)r θφ和222(,,)r θφ定出两个位置矢量1R 和2R 。
证明1R 和2R 间夹角的余弦为121212cos cos cos sin sin cos()γθθθθφφ=+-解 由 111111111sin cos sin sin cos x y z r r r θφθφθ=++R e e e222222222sin cos sin sin cos x y z r r r θφθφθ=++R e e e得到 1212cos γ==R R R R 1122112212sin cos sin cos sin sin sin sin cos cos θφθφθφθφθθ++=121211212sin sin (cos cos sin sin )cos cos θθφφφφθθ++=121212sin sin cos()cos cos θθφφθθ-+一球面S 的半径为5,球心在原点上,计算: (3sin )d r Sθ⎰e S 的值。
解 (3sin )d (3sin )d r r r SSS θθ==⎰⎰e S e e 2220d 3sin 5sin d 75ππφθθθπ⨯=⎰⎰在由5r =、0z =和4z =围成的圆柱形区域,对矢量22r z r z =+A e e 验证散度定理。
解 在圆柱坐标系中 21()(2)32rr z r r r z ∂∂∇=+=+∂∂A所以 425d d d (32)d 1200z r r r πττφπ∇=+=⎰⎰⎰⎰A又 2d (2)(d d d )r z r r z z SSr z S S S φφ=+++=⎰⎰A S e e e e e42522000055d d 24d d 1200z r r ππφφπ⨯+⨯=⎰⎰⎰⎰故有 d 1200ττπ∇=⎰A d S=⎰A S求(1)矢量22222324x y z x x y x y z =++A e e e 的散度;(2)求∇A 对中心在原点的一个单位立方体的积分;(3)求A 对此立方体表面的积分,验证散度定理。
解 (1)2222232222()()(24)2272x x y x y z x x y x y z x y z∂∂∂∇=++=++∂∂∂A (2)∇A 对中心在原点的一个单位立方体的积分为1212122222121121d (2272)d d d 24x x y x y z x y z ττ---∇=++=⎰⎰⎰⎰A (3)A 对此立方体表面的积分12121212221212121211d ()d d ()d d 22Sy z y z ----=--+⎰⎰⎰⎰⎰A S1211212222212121212112()d d 2()d d 22x x z x x z ------+⎰⎰⎰⎰1121212232231212121211124()d d 24()d d 2224x y x y x y x y ------=⎰⎰⎰⎰ 故有 1d 24ττ∇=⎰A d S =⎰A S计算矢量r 对一个球心在原点、半径为a 的球表面的积分,并求∇r 对球体积的积分。
解 223d d d sin d 4r SSS aa a ππφθθπ===⎰⎰⎰⎰r S r e 又在球坐标系中,221()3r r r r∂∇==∂r ,所以223000d 3sin d d d 4ar r a ππττθθφπ∇==⎰⎰⎰⎰r 求矢量22x y z x x y z =++A e e e 沿xy 平面上的一个边长为2的正方形回路的线积分,此正方形的两边分别与x 轴和y 轴相重合。
再求∇⨯A 对此回路所包围的曲面积分,验证斯托克斯定理。
解 22222d d d 2d 0d 8Cx x x x y y =-+-=⎰⎰⎰⎰⎰A l又 2222x y zx z yz x x y z xx y z∂∂∂∇⨯==+∂∂∂e e e A e e 所以 2200d (22)d d 8x z z Syz x x y ∇⨯=+=⎰⎰⎰A S e e e故有 d 8C=⎰A l d S=∇⨯⎰A S求矢量2x y x xy =+A e e 沿圆周222x y a +=的线积分,再计算∇⨯A 对此圆面积的积分。
解 2d d d CCx x xy y =+=⎰⎰A l 242422(cos sin cos sin )d 4a a a ππφφφφφ-+=⎰d ()d yx z z S S A A S x y ∂∂∇⨯=-=∂∂⎰⎰A S e e 2422200d sin d d 4a S a y S r r r ππφφ==⎰⎰⎰ 证明:(1)3∇=R ;(2)∇⨯=R 0;(3)()∇=A R A 。