高考数学一轮复习 2.11 函数图象及其变换课件 理

合集下载

函数的图象(课件)2024届高三数学一轮全方位基础复习(新教材新高考)

函数的图象(课件)2024届高三数学一轮全方位基础复习(新教材新高考)

2
6
=
2
3

1
2
<
=
=
5
≠ 0,故C错误;
6
11
≠ 0,故D错误,故选:A.
6
考向典题讲解
【对点训练2】(2023·全国·校联考模拟预测)已知函数 ( )在 −2,2 上的图像如图所示,则 ( )的
解析式可能是( )
A. ( ) = 2 − e 2−
B. ( ) = 2 − | | − 2
【解题方法总结】
利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从
而筛选出正确答案
考向典题讲解
题型二:由图象选表达式
【例2】(2023·四川遂宁·统考二模)数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,
而是由多种波叠加而成的复合音.如图为某段乐音的图像,则该段乐音对应的函数解析式可以为( )
2.6 函数的图象
2024届高考数学一轮复习课件
考点知识梳理
1.利用描点法作函数图象的方法步骤
考点知识梳理
2.利用图象变换法作函数的图象
(1)平移变换
f(x)+k
f(x-h)
f(x+h)
f(x)-k
考点知识梳理
(2)伸缩变换
1
a>1,横坐标缩短为原来的a倍,纵坐标不变
①y=f(x)―――――――――――――――――――1――――――――――→y=
A.
B.
C.

D.
【答案】C
【解析】由 = = (sin − sin2 ),
得 − = − sin − − sin −2

高三第一轮复习函数的图像ppt课件

高三第一轮复习函数的图像ppt课件

(3)翻折变换:
保留x轴上方图象 ①y=f(x)
y=__|_f_(_x_)_|.
将x轴下方图象翻折上去
②y=f(x) 保留y轴右边图象
y=_f_(_|_x_|_)_.
并作其关于y轴对称的图象
(4)伸缩变换:
1
①y=f(x)
a>1,横坐标缩短为原来的 a
0<a<1,横坐标伸长为原来的
1倍倍,,纵纵坐坐标标不不变变y=_f_(_a_x_).
(1)y elnx y
1
-1
o
1
-1
(1)
2
x
(2)ylog2(x1)
y
1
o
-1
1
x
-1
(2)
(3)yax(0a1)
y
1 (0,1)
-1 o
1
x
-1
(3)
识图与辨图
(1)从函数的定义域,判断图像的左右位置; (2)从函数的值域,判断图像的上下位置; (3)从函数的单调性,判断图像的变化趋势; (4)从函数的奇偶性,判断图像的对称性; (5)从函数的周期性,判断图像的循环反复.
y
o
x
(k>0)
y
1
o
x
(a>1)
图象
y
o
x
(k<0)
y
1
o
x
(0<a<1)
函数
对数函数 y=㏒ax (a>0且a≠1)
幂函数 y=xα
(α=-1, 1 ,
2
1,2,3)
图象
y
y
1
o
x
o1
x
(a>1)

高三理科数学第一轮复习函数函数的图象及其变换(最新编写)

高三理科数学第一轮复习函数函数的图象及其变换(最新编写)

解题过程
求导: y '
1
2cos x ,由 y'
0 得 cosx
1 ,则这个方程有无穷多解,即函数
2
4
x
y
2sin x 有无穷多个极值点,又函数是奇函数,图象关于坐标原点对称,故选
C。
2
易错点拨 判断函数图象多利用排除法, 根据不同范围内函数的性质排除一些选项, 即可得
到正确的结果。
典例 1 函数 y= log2|x|的图象大致是 ( ).
A . y= f(|x|) C.y= f( - |x|)
B . y= |f(x)| D .y=- f(|x|)
6、函数 f (x)=2 x +x3 2 在区间 (0,1) 内的零点个数是(

A.0
B.1
C. 2
7、函数 y
ax
1 (a
0, a
1) 的图象可能是(

a
D.3
2
8、已知函数 y= |x 1| 的图象与函数 x1
+b 与以点 C(2,3)为圆心、2 为半径的圆相切时
(圆不在直线
y=3 上方的部分
),有
|2-
3+
b| =
2
2, b= 1- 2 2.结合图形可知,满足题意的只有 答案 C
C 选项.
综合突破
突破 1 高考中函数图象的考查题型
典例 1 函数 y= x2- 2sin x 的图象大致是 (
).
解题思路 从函数 y x 2sin x 的极值点和对称性入手 2
分不变,得到 y= |f(x)|的图象; ②作出 y= f(x)在 y 轴上及 y 轴右边的图象部分, 并作 y 轴右边的图象关于 y 轴对称的图

高中数学《函数图象的变换》课件

高中数学《函数图象的变换》课件
将y = f(x)在 x 轴上方的图 象保留,下方的图象以 x 轴为对 称轴翻折到上方可得到 y =|f(x)| 的图象.(保上方,下方翻上方)
翻折变换
y = f(x) 的图象
y =|f( x )| 的图象
将y = f(x)在 x 轴上方的图 象保留,下方的图象以 x 轴 为对称轴翻折到上方可得到 y =|f(x)|的图象.
平移变换
左上 右下 平平 移移
对称变换
关关关 于于于 x y原 轴轴点
翻折变换
上左 下右 翻翻 折折
归纳总结
平 y = f(x) 左移 h (h>0) y = f(x + h)
移 的图象 个 单 位
的图象
变 换
y = f(x) 右移 h (h>0) y = f(x - h)
的图象 个 单 位
的图象
问题与思考——复习
1、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = |log2x| (2) y = x2 - 2x,y = |x2 - 2x|
yy= log2 x
o
o
1
x
1
x
将 y = log2x 在 x 轴上方的图象保留, 下方的图象以 x 轴为对称轴翻折到上方可
翻 的图象 折 变 换
y =f( |x| ) 的图象

谢 谢
翻折变换
问题与思考:
2、在同一坐标系中作下列函数 的图象,并说明每组两函数图象间的 关系.
(1) y = 2x,y = 2|x| (2) y = x2 - 2x,y = |x|2 - 2|x|
y
y
y = 2x 11
o x
y = 2|x| 1

届高三数学一轮复习-函数的图像及其应用(共58张PPT)

届高三数学一轮复习-函数的图像及其应用(共58张PPT)

考点贯通
抓高考命题的“形”与“神”
作函数的图象
[例 1] 作出下列函数的图象: (1)y=12|x|; [解] 作出 y=12x 的图象,保留 y=12x 图 象中 x≥0 的部分,加上 y=12x 的图象中 x>0 部 分关于 y 轴的对称部分,即得 y=12|x|的图象, 如图中实线部分.
(2)y=|log2(x+1)|; (3)y=2xx--11; [解] (2)将函数 y=log2x 的图象向左平移 1 个 单位,再将 x 轴下方的部分沿 x 轴翻折上去,即可 得到函数 y=|log2(x+1)|的图象,如图. (3)因为 y=2xx--11=2+x-1 1,故函数图象可 由 y=1x的图象向右平移 1 个单位,再向上平移 2 个单位而得,如图.
(2)伸缩变换:
f(ωx) . y=f(x)―0―<AA>―<1―,1,―横横―坐坐―标―标不―不变―变,―,纵―纵―坐坐―标标―伸缩―长―短为―为原―原来―来的―的―AA倍―倍→ y= Af(x) .
(3)对称变换: y=f(x)―关―于―x―轴―对―称→y=-f(x) ; y=f(x)―关―于―y―轴―对―称→y= f(-x); y=f(x)―关―于―原――点―对―称→y= -f(-x) . (4)翻折变换: y=f(x)―去将―掉―y轴y―轴右―左边―边的―图―图, ―象―保翻―留折―y到轴―左―右边―边―去图→y= f(|x|) ; y=f(x)―将―x―轴―下―方保―的 留―图x―轴象―上翻―方―折图―到―上―方―去→y= |f(x)| .
⊥AB交AB于E,当l从左至右移动(与线段
AB有公共点)时,把四边形ABCD分成两部分,设AE=x,
左侧部分的面积为y,则y关于x的图象大致是

2013届高考理科数学总复习(第1轮)全国版课件:2.11函数的应用

2013届高考理科数学总复习(第1轮)全国版课件:2.11函数的应用

某食品厂购买面粉,已知该厂每天需 用面粉6吨,每吨面粉的价格为1800元,面 粉的保管等其他费用为平均每吨每天3元, 购面粉每次需支付运费900元.若提供面粉的 公司规定:当一次购买面粉不少于100吨时, 其价格可享受9折优惠(即原价的 90%),问 该食品厂是否考虑接受此优惠条件?请说 明理由.
25
P= t+20(0<t<25,t∈N*) -t+100(25≤t≤30,t∈N*). (2)描出实数对(t,Q)的对应点如图所示.
31
·高中总复习(第1轮)·理科数学 ·全国版
立足教育 开创未来
从图象发现:点(5,35),(15,25),(20, 20),(30,10)似乎在同一条直线上,为此假 设它们共线于直线l:Q=kt+b. 由点(5,35),(30,10)确定出l的解析式 为:Q=-t+40. 通过检验可知,点(15,25),(20,20)也 在直线l上. 所以日销售量Q与时间t的一个函数关系 式为:Q=-t+40(0<t≤30,t∈N*).
可增加2x%(0<x<100),而分流出的从事第三
产业的人员,平均每人每年可创造产值1.2a万
元.在保证第二产业的产值不减少的情况下,分
流出多少人,才能使该市第二、三产业的总产 值增加最多? 18
·高中总复习(第1轮)·理科数学 ·全国版
立足教育 开创未来
设分流出x万人,为保证第二产 业的产值不减少,必须满足: (100-x)· (1+2x%)≥100a. a·
6
·高中总复习(第1轮)·理科数学 ·全国版
立足教育 开创未来
1.电信资费调整后,市话费标准为:通话 时间不超过3 min收费0.2元,超过3 min以后, 每增加1 min收费0.1 元,不足1 min按1 min付费,则通话费 s(元)与通话时间t (min)的函数图象 可表示成图中的( )

高考复习函数图象及其变换课件

高考复习函数图象及其变换课件
函数图象及其变换是数学中的核心知识点,对于培养学生的逻辑思维、数学素养和 创新能力具有重要作用。
需要进一步研究和探讨的问题
对于一些复杂的函数图象及其变换,需要深入 研究其性质和特点,探讨其在实际问题中的应 用。
在函数图象及其变换的教学中,如何更好地结 合几何直观和代数推导,让学生更好地理解和 掌握相关知识点,是一个值得探讨的问题。
详细描述
通过函数图象的平移、对称、伸缩等变换,可以直观地观察到函数性质的变化 ,如函数的周期性可以通过观察图象的重复规律来理解,函数的奇偶性可以通 过观察图象的对称性来理解。
04
高考中函数图象及其变换的考查方式与解题 策略
CHAPTER
考查方式
函数图象的识别与绘制
考生需要能够根据函数表达式识别其图象的基本形状,并能够根 据给定的条件绘制出函数的图象。
谢谢
THANKS
将函数图象沿x轴方向向左或向 右移动,对应于函数解析式中的 x替换为x±h。
将函数图象沿y轴方向向上或向 下移动,对应于函数解析式中的 y替换为y±k。
伸缩变换
伸缩变换
将函数图象在x轴或y轴方向上进 行缩放。
横向伸缩
将函数图象在x轴方向上压缩或拉 伸,对应于函数解析式中的x替换 为λx(λ>1为拉伸,0<λ<1为压缩 )。
掌握基本方法
Байду номын сангаас对于如何绘制函数图象、如何进行图象变换等基本方法,考生需要 熟练掌握,并能灵活运用。
多做练习
通过大量的练习,提高考生对函数图象及其变换的理解和掌握程度, 培养考生的解题思维和技巧。
高考真题解析
真题一
给出函数$f(x) = sin x$的图象,要求考生通过平移得到函数$g(x) = sin(x + frac{pi}{6})$的图象。

2024年高考数学一轮复习课件(新高考版) 第2章 §2.1 函数的概念及其表示

2024年高考数学一轮复习课件(新高考版)  第2章 §2.1 函数的概念及其表示
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3.已知 f(x3)=lg x,则 f(10)的值为
A.1
B.3 10
√C.13
1
令x3=10,则x=103.
1 D. 3 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2024年高考数学一轮复习课件(新高考版)
第二章 函 数
§2.1 函数的概念及其表示
考试要求
1.了解函数的含义. 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)
表示函数. 3.了解简单的分段函数,并会简单的应用.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
教材改编题
y=x-2 1与 v=t-2 1的定义域都是(-∞,1)∪(1,+∞),对应关系也相 同,所以是同一个函数,故选项 D 正确.
教材改编题
3.已知函数 f(x)=lenx,x,x≤x>00,,
则函数
f
f
13等于
A.3
B.-3
√C.13
D.-13
由题意可知,f 13=ln 13=-ln 3,
思维升华
(1)无论抽象函数的形式如何,已知定义域还是求定义域,均是指其 中的x的取值集合; (2)若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由不 等式a≤g(x)≤b求出; (3)若复合函数f(g(x))的定义域为[a,b],则函数f(x)的定义域为g(x)在 [a,b]上的值域.
课时精练

一 部 分
落实主干知识
知识梳理
1.函数的概念 一般地,设A,B是 非空的实数集 ,如果对于集合A中的 任意 一个数x, 按照某种确定的对应关系f,在集合B中都有 唯一确定 的数y和它对应,那 么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A. 2.函数的三要素 (1)函数的三要素: 定义域 、 对应关系 、 值域 . (2)如果两个函数的 定义域 相同,并且 对应关系 完全一致,则这两个函 数为同一个函数.

函数图像的变换课件

函数图像的变换课件

向右平移
总结词
图像沿x轴正方向移动
数学表达式
y=f(x-a)
详细描述
对于函数y=f(x),若图像向右平移a个单位,则新的函数 解析式为y=f(x-a)。
举例
函数y=cos(x)的图像向右平移π/2个单位后,得到新的函 数y=cos(x-π/2),其图像与原图像相比沿x轴正方向移动 了π/2个单位。
双向伸缩
总结词
同时改变x轴和y轴的长度。
详细描述
当函数图像在x轴和y轴方向上都发生伸缩时,x轴和y轴的长度都会发生变化。这 种变换可以通过将函数中的x和y都替换为其倍数来实现,例如将f(2x)/3替换为 f(x)会使x轴压缩为原来的一半,同时y轴拉伸为原来的三倍。
04
函数图像的旋转变换
逆时针旋转
关于y轴对称
总结词
函数图像关于y轴对称时,图像在y轴两侧对称分布,x值 不变,y值相反。
详细描述
当一个函数图像关于y轴对称时,图像在y轴两侧呈现出 对称分布的特点。这意味着对于任意一个点$(x, y)$在图 像上,关于y轴对称的点$(x, -y)$也在图像上。这种对称 变换不会改变x值,只是将y值取反。例如,函数$f(x) = x^3$的图像关于y轴对称,因为$f(-y) = (-y)^3 = -y^3 = -f(y)$。
任意角度旋转
总结词
任意角度旋转是指将函数图像按照任意角度进行旋转。
详细描述
任意角度旋转函数图像是指将图像上的每个点都按照任意指定的角度进行旋转。这种旋转可以通过参数方程或极 坐标系来实现,其中参数方程为$x = x cos theta - y sin theta$,$y = x sin theta + y cos theta$,极坐标系 下的表示为$x = r cos theta$,$y = r sin theta$。

2025届高中数学一轮复习课件《函数的图象》PPT

2025届高中数学一轮复习课件《函数的图象》PPT

高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 利用描点法作函数的图象
高考一轮总复习•数学
第6页
二 利用图象变换法作函数的图象
1.平移变换
y=f(x)―a―a<>0―0,,―左右―移―移|―aa个|个―单―单位―位→y=f(x-a);
y=f(x)―b―b<>0―0,,―下上―移―移|―bb个|个―单―单位―位→y=
高考一轮总复习•数学
第22页
题型
有关函数图象识别的多维研讨
维度 1 知式识图问题
典例 2(2024·天津模拟)函数 f(x)=xl2n+|x|2的图象大致为(
)
此类题目,主要通过解析式反映出的特殊信息,去伪存真,而非真的作图象.如:本
例为①偶函数;②特殊信息,f(2)>0. 仅从此两点即可判断各选项.
函数的零点、最值等信息也很重要.
第29页
高考一轮总复习•数学
第30页
对点练 3(2024·天津静海一中调研)已知函数 f(x)的部分图象如图所示,则 f(x)的解析式 可能为( )
A.f(x)=14++12lcno|xs |x B.f(x)=x2ceo|xs| x C.f(x)=c2o+s xs·ilnn|xx| D.f(x)=x22++clno|sx|x
高考一轮总复习•数学
第9页
5.函数 y=f(x)与 y=f(2a-x)的图象关于直线 x=a 对称. 6.函数 y=f(x)与 y=2b-f(-x)的图象关于点(0,b)对称. 7.函数 y=f(x)与 y=2b-f(2a-x)的图象关于点(a,b)对称. 可以理解为用“2a-x”和“2b-y”替换 y=f(x)中的 x,y,得 2b-y=f(2a-x),从而 得 y=2b-f(2a-x).

高考数学一轮复习函数的图象课件

高考数学一轮复习函数的图象课件
(5)要得到y=|f(x)|的图象,可将y=f(x)的图象在x轴下方
的部分以x轴为对称轴翻折到x轴上方,其余部分不变.
(6)要得到y=f(|x|)的图象,可将y=f(x),x≥0的部分作出, 再利用偶函数的图象关于 y轴 的对称性,作出x<0的
图象.
3.伸缩变换 (1)y=Af(x)(A>0)的图象,可将y=f(x)图象上所有点的纵坐标
对于给定函数的图象,要能从图象的左右、上下分布 范围、变化趋势、对称性等方面来获取图中所提供的信息, 解决这类问题的常用方法有:(1)定性分析法,也就是通过 对问题进行定性的分析,从而得出图象的上升(或下降)的 趋势,利用这一特征来分析解决问题;(2)定量计算法,也 就是通过定量的计算来分析解决问题;(3)函数模型法,也 就是由所提供的图象特征,联想相关函数模型,利用这一 函数模型来分析解决问题.
(2009·北京高考)为了得到函数y=lg
的图象,只需
把函数y=lgx的图象上所有的点
()
A.向左平移3个单位长度,再向上平移1个单位长度
B.向右平移3个单位长度,再向上平移1个单位长度
C.向左平移3个单位长度,再向下平移1个单位长度
D.向右平移3个单位长度,再向下平移1个单位长度
[解析] ∵y=lg =lg(x+3)-1,∴将y=lgx的图象 上的点向左平移3个单位长度得到y=lg(x+3)的图象, 再将y=lg(x+3)的图象上的点向下平移1个单位长度得 到y=lg(x+3)-1的图象.
子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
开花
放,




我们,还在路上……
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【知识要点】 1.基本初等函数(一次函数、二次函数、幂函数、 指数函数、对数函数)的图象 2.作图方法:描点法,变换法. (1)描点法作图的基本步骤: ①求出函数的___定__义__域__和__值__域_____. ②找出__关__键__点____(图象与坐标轴的交点,最值点、 极值点)和_关__键___线__(对称轴、渐近线),并将关键点列表. ③研究函数的基本性质(奇__偶__性__、__单__调__性_、__周__期__性_). 若具有奇偶性就只作右半平面的图象,然后作关于原点 或 y 轴的对称图形即可;若具有单调性,单调区间上只 需取少量代表点;若具有周期性,则只作一个周期内的 图象即可.
④在直角坐标系中__描__点__、___连__线____成图.
(2)变换作图法
常见的变换法则:__平__移__变__换_____、__伸__缩__变__换___
和___对__称__变__换____,具体方法如下:
平移变换又包括左右平移变换(针对自变量)和上
下平移变换(针对函数值整体).
①左右平移变换(左加右减),具体方法是:
2.函数 y=ax 与 y=1ax的图象关于直线 x=0 对 称.
【解析】y=1ax=a-x,故两个函数的图象关于 y 轴,即直线 x=0 对称.
3.函数 y=f(x)的图象如图所示,则该函数的定义 域是 (-3,-1]∪(0,2] .
4.把函数 y=log2(x-1)的图象上各点的横坐标缩 短到原来的12倍,再向右平移12个单位长度所得图象的 函数式为( D )
4.用图:利用函数的图象可以讨论函数的性质, 求最值,确定方程的解的个数,解不等式等.数形结合,
直观方便.
一、作图 例1作出下列函数的图象:
(1)y=2x-+x1;
(2)y=12|x+1|; (3)y=|log2x-1|.
【解析】(1)易知函数的定义域为{x∈R|x≠-1}. y=2x- +x1=-1+x+3 1,因此由 y=3x的图象向左平 移 1 个单位长度,再向下平移 1 个单位长度即可得到 函数 y=2x- +x1的图象,如图①所示.
(2)先作出 y=12x,x∈[0,+∞)的图象,然后作 其关于 y 轴的对称图象,再将整个图象向左平移 1 个 单位长度,即得到 y=12|x+1|的图象,如图②所示.
(3)先作出 y=log2x 的图象,再将图象向下平移 1 个单位长度,保留 x 轴上方的部分,将 x 轴下方的图
象翻折到 x 轴上方来,即得到 y=|log2x-1|的图象, 如图③所示.

y=f(x)
横坐标保持不变 ———————————→ 纵坐标伸长为原来的a倍
y=
af(x),a>0
.
(3)对称变换包括中心对称和轴对称 ①y=f(x)与 y=-f(x)关于___x_轴____对称; ②y=f(x)与 y=f(-x)关于___y_轴____对称; ③y=f(x)与 y=-f(-x)关于__原__点____对称; ④y=f(x)与 y=f(2a-x)关于___x_=__a__对称; ⑤y=f(x)与 y=|f(x)|,保留 x 轴上方的图象,将 x 轴下方的图象沿 x 轴翻折上去,x 轴下方图象删去; ⑥y=f(x)与 y=f(|x|),保留 y 轴右方的图象,将 y 轴右方的图象沿 y 轴翻折到左边,y 轴左方原图象删去. 3.识图:通过对函数图象观察得到函数定义域、 值域、奇偶性、单调性、特殊点等.
y=f(x)
将函数图象向左平移 ―――――――――――→
b(b>0)个单位长度
y=
f(x+b),
将函数图象向右平移
y=f(x)
――――――――――→ b(b>0)个单位长度
y=
f(x-b)
.
②上下平移变换(上正下负),具体方法是:
将函数图象向上平移
y=f(x)
――――――――――→ h(h>0)个单位长度
当 x∈[0,2]时,2-x∈[0,2], 所以 f(2-x)=12,-0x≤,x1<≤1x,≤2, 故 y=-f(2-x)=-x-1,2,0≤1≤x<x≤1,2.
第11讲 函数图象及其变换
【学习目标】
1.熟练掌握基本初等函数的图象;掌握函数作图 的基本方法(描点法和变换法).
2.利用函数图象研究函数性质或求两函数的图象 的交点个数.
【基础检测】 1.为了得到函数 y=2x-3-1 的图象,只需把函数 y=2x 的图象上所有的点向_右___平移__3__个单位长度, 再向__在区间[0,2]上的函数 y=f(x)的图 象如图所示,则 y=-f(2-x)的图象为( B )
3x , x 1,
(2)函数
f(x)=
log
1 3
x,
x
1则
y=f(x+1)的图象大
致是( B )
(3)函数 y=2cxo-s 26-xx的图象大致为( D )
【解析】(1)解法一:由 y=f(x)的图象知 f(x)= x,0≤x≤1, 1,1<x≤2.
【点评】为了正确作出函数的图象,除了掌握“列 表、描点、连线”的方法外,还要做到以下两点:
(1)熟练掌握几种基本函数的图象,如二次函数、 反比例函数、指数函数、对数函数、幂函数、正弦函
数、余弦函数以及形如 y=x+1x的函数; (2)掌握常用的图象变换方法,如平移变换、伸缩
变换、对称变换、翻折变换、周期变换等.
A.y=log2(2x+1) B.y=log2(2x+2) C.y=log2(2x-1) D.y=log2(2x-2)
【解析】把函数 y=log2(x-1)图象上各点的横坐 标缩短到原来的12倍,得到 y=log2(2x-1)的图象,再
向右平移12个单位长度,所得函数的解析式为 y=
log22x-12-1=log2(2x-2).故选 D.
y=
f(x)+h

将函数图象向下平移
y=f(x)
――――――――――→ h(h>0)个单位长度
y=
f(x)-h
.
③伸缩变换包括左右伸缩变换(针对自变量)和上
下伸缩变换(针对函数值整体),(横缩纵伸)具体方法如
下:
纵坐标保持不变 y=f(x) ——横—坐—标——缩—为—原—来—的—1a—倍—→ y=
f(ax),a>0
相关文档
最新文档