控制系统分析、综合与校正

合集下载

(完整版)自动控制原理课后习题及答案

(完整版)自动控制原理课后习题及答案

第一章 绪论1-1 试比较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1) 优点:结构简单,成本低,工作稳定。

用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。

(2) 缺点:不能自动调节被控量的偏差。

因此系统元器件参数变化,外来未知扰动存在时,控制精度差。

2 闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。

它是一种按偏差调节的控制系统。

在实际中应用广泛。

⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。

1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。

闭环控制系统常采用负反馈。

由1-1中的描述的闭环系统的优点所证明。

例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。

1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)?(1)22()()()234()56()d y t dy t du t y t u t dt dt dt ++=+(2)()2()y t u t =+(3)()()2()4()dy t du t ty t u t dt dt +=+ (4)()2()()sin dy t y t u t tdt ω+=(5)22()()()2()3()d y t dy t y t y t u t dt dt ++= (6)2()()2()dy t y t u t dt +=(7)()()2()35()du t y t u t u t dt dt =++⎰解答: (1)线性定常 (2)非线性定常 (3)线性时变 (4)线性时变 (5)非线性定常 (6)非线性定常 (7)线性定常1-4 如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。

第六章 自动控制系统的综合与校正 答案

第六章 自动控制系统的综合与校正 答案

第六章习题答案1.答:需要校正的控制系统可分为被控对象、控制器和检测环节三个部分。

各装置除其中放大器的增益可调外,其余的结构和参数是固定的。

在系统中引进一些附加装置来改变整个系统的特性,以满足给定的性能指标,这种为改善系统的静、动态性能而引入系统的装置,称为校正装置。

而校正装置的选择及其参数整定的过程,就称为自动控制系统的校正问题。

根据校正装置在系统中的安装位置,及其和系统不可变部分的连接方式的不同,通常可分成三种基本的校正方式:串联校正、反馈校正、复合校正。

2.答:串联校正是设计中最常使用的,通常需要安置在前向通道的前端,主要适用于参数变化敏感性较强的场合。

设计较简单,容易对信号进行各种必要的变换,但需注意负载效应的影响。

3.答:反馈校正的设计相对较为复杂。

显著的优点是可以抑制系统的参数波动及非线性因素对系统性能的影响。

另外,元件也往往较少。

4.答:通过增加一对相互靠得很近并且靠近坐标原点的开环零、极点,使系统的开环放大倍数提高,以改善系统稳态性能。

5.答:通过加入一个相位引前的校正装置,使之在穿越频率处相位引前,以增加系统的相位裕量,这样既能使开环增益足够大,又能提高系统的稳定性,以改善系统的动态特性。

6.解:(1)根据误差等稳态指标的要求,确定系统的开环增益K(2)画出伯德图,计算未校正系统GO (j ω )的相位裕量(3)由要求的相角裕度γ,计算所需的超前相角(4)计算校正网络系数(5)确定校正后系统的剪切频率202)2(4lim )(lim 00==+⋅==→→K s s K s s sG K s o s v )15.0(20)2(40)(++=ωωωωωj j j j j G o =︒=+︒=⇒=17)(1807.6c o c ωϕγω︒=︒+︒-︒=+-=385175000εγγϕ2.438sin 138sin 1sin 1sin 1=︒-︒+-+==m m ϕϕα2.62.4lg 10lg 10-=-=-=∆αm L 9===T m c αωω(6)确定超前网络的转角频率ω1、ω2(7)画出校正后的伯德图,验算相角稳定裕度(画图略)(8)验算其它性能指标(9)写出校正装置的传递函数(10)提出实现形式,并确定网络参数7. 解:(1)根据给定的稳定误差或误差系数,确定系统的开环增益(2)确定未校正系统的相角稳定裕量(3)选择新的ωc4.182.4941.42.49121=⨯=======αωαωαωωm m T T 1054.01227.014.18141.42.41]11[1)(++=⎪⎪⎪⎪⎭⎫ ⎝⎛++=++=s s s s Ts s G c αα1054.01227.0)15.0(20)()()(++⋅+==s s s s s G s G s G c s 11=C 227101227.0611=⨯==-C T R 7112.4227112=-=-=αR R 5)15.0)(1(lim )(lim 00==++==→→K s s s sK s sG K s o s v )15.0)(1(5)(++=s s s s G o ︒-=⇒=⇒=201.20)(γωωc L(4)计算校正网络系数(5)选择校正网络的交接频率(6)画出校正后伯德图,验算相角裕度是否满足要求(7) 验算其它性能指标(8)写出校正装置的传递函数(9)提出实现形式,并确定网络参数8. 解:(1)根据给定的稳态误差或误差系数,确定系统的开环增益(2)确定未校正系统的相位裕量和增益裕量︒=︒+︒=︒-+=521240)205(2γγ12225.05525.090180-=⇒︒=--︒-︒=s arctg arctg c c ωωγ1086.9lg 201lg 20lg 20lg 20)(22≈=⇒-+==∆βωβωc C K L 1.055.05122====c ωτω01.0101.0121====βωβτω1s 1001s 10s G c ++=)(12=C 10010110622=⨯==-C T R 900)1(21=-=αR R 375)13757.0237(lim )(lim 2200=+⨯+==→→s s s sK s sG K s s s v 375=K )13757.0237(375)(22+⨯+=s s s s G s 25=c ω︒35=γ(3)超前校正环节(4)滞后校正环节在ω处滞后校正引起的滞后足够小 校正后开环传递函数(5)确定校正装置参数025.022=αT 2512)3548(=+-=m ϕcm ωω=5.225sin 125sin 1sin 1sin 12==︒-︒+-+=m m ϕϕα063.0255.222===m T ωα⎪⎭⎫ ⎝⎛++=⎪⎪⎪⎪⎭⎫ ⎝⎛++=1025.01063.05.21111)(22222s s s T s T s G c ααdB K L L a c s c s 5.29845.25lg 20lg 20)()(lg 2021=+-=+-=∆=αωω7.291=a ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⋅+⨯+==1s 8551s 201s 02501s 06301s 37570237s s 375s G s G s G 22c s ....).()()()((6)校验略 422=R 422=R 5653=R 204=R 11=C 102=C。

自动控制6第六章控制系统的综合与校正

自动控制6第六章控制系统的综合与校正

复合校正
同时采用串联校正和反馈校正的方法,对系 统进行综合校正,以获得更好的性能。
数字校正
利用数字技术对控制系统进行校正,具有灵 活性和高精度等优点。
02 控制系统性能指标及评价
控制系统性能指标概述
稳定性
准确性
系统受到扰动后,能否恢复到原来的 平衡状态或达到新的平衡状态的能力。
系统稳态误差的大小,反映了系统的 控制精度。
针对生产线上的各种工 艺要求,设计相应的控 制策略,如顺序控制、 过程控制等。
系统校正方法
根据生产效率和产品质 量要求,采用适当的校 正方法,如PID参数整定、 自适应控制等。
仿真与实验验证
通过仿真和实验手段, 验证综合与校正后的工 业自动化生产线控制系 统的稳定性和效率。
控制系统综合与校正的注
06 意事项与常见问题解决方 案
仿真与实验验证
通过仿真和实验手段,验证综合与校正后 的导弹制导控制系统的精确性和可靠性。
系统校正方法
针对导弹制导控制系统的性能要求,采用 适当的校正方法,如串联校正、反馈校正 等。
实例三
01
02
03
04
控制系统结构
分析工业自动化生产线 控制系统的组成结构, 包括传感器、执行机构、 PLC等部分。
控制策略设计
考虑多变量解耦控制
对于多变量控制系统,可以考虑采 用解耦控制策略,降低各变量之间 的相互影响,提高系统控制精度。
加强系统鲁棒性设计
考虑系统不确定性因素,加强 系统鲁棒性设计,提高系统对 各种干扰和变化的适应能力。
THANKS FOR WATCHING
感谢您的观看
控制系统综合与校正的注意事项
明确系统性能指标

国家开放大学 机电控制工程基础 第6章 控制系统的校正与综合自测解析

国家开放大学 机电控制工程基础 第6章 控制系统的校正与综合自测解析

信息文本单项选择题(共20道题,每题4分,共90分)题目1标记题目题干在采用频率法设计校正装置时,串联超前校正网络是利用它()。

选择一项:A. 相位超前特性B. 低频衰减特性C. 相位滞后特性D. 高频衰减特性反馈恭喜您,答对了。

正确答案是:相位超前特性题目2标记题目题干闭环系统因为有了负反馈,能有效地抑制()中参数变换对系统性能的影响。

选择一项:A. 正向及反馈通道B. 反馈通道C. 前馈通道D. 正向通道反馈恭喜您,答对了。

正确答案是:正向及反馈通道题目3标记题目题干从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。

选择一项:A. 系统的抗干扰能力差,需要改变高频段特性。

B. 系统虽然稳定,但稳态和动态响应都不能满足要求,整个特性都需要改变。

C. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

D. 系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频段和高频段。

反馈恭喜您,答对了。

正确答案是:系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

题目4正确获得4.00分中的4.00分标记题目题干从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。

选择一项:A. 系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频段和高频段。

B. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

C. 系统虽然稳定,但稳态和动态响应都不能满足要求,整个特性都需要改变。

D. 系统的抗干扰能力差,需要改变高频段特性。

反馈恭喜您,答对了。

正确答案是:系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频段和高频段。

题目5正确获得4.00分中的4.00分标记题目题干从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。

选择一项:A. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低频段。

第6章 控制系统的校正及综合

第6章   控制系统的校正及综合
W
(s ) =
100 s + 1 s 10
A(ω c ) ≈
100
ωc
ωc
10
=1
ω c = 31.6
31.6 γ (ω c ) = 180° + − 90° − arctan = 17.5° 10
6.2 串联校正
Bode图如下图所示 图如下图所示
6.2 串联校正
γd
γd
频率特性为
jω T + 1 Wc ( jω ) = ⋅ γ d jω T + 1 1
γd
6.2 串联校正
校正电路的Bode图如下:
ω 2 = γ d ω1
ωmax = ω1 ⋅ ω2,ϕ max γ d −1 = arcsin γ d +1
6.2 串联校正
引前校正的设计步骤:
(1)根据稳态误差的要求确定系统开环放大系数,绘制 Bode图,计算出未校正系统的相位裕量和增益裕量。 (2)根据给定相位裕量,估计需要附加的相角位移。 (3)根据要求的附加相角位移确定γd。 (4)确定1/Td 和γd/Td ,使校正后中频段(穿过零分贝线) 斜率为-20dB/十倍频,并且使校正装置的最大移相角 出现在穿越频率的位置上。 (5)计算校正后频率特性的相位裕量是否满足给定要求, 如不满足须重新计算。 (6)计算校正装置参数。
6.2 串联校正
校正电路的Bode图:
6.2 串联校正
例6-3 一系统的开环传递函数为
K W (s ) = s (s + 1 )(s + 2 )
试确定滞后-引前校正装置, 试确定滞后-引前校正装置,使系统满足 下列指标: 下列指标:速度误差系数 K v = 10,相位裕 量 γ (ωc ) = 50°,增益裕量 GM ≥10dB 。

自动控制原理第六章

自动控制原理第六章

G(s)

K0 K p (Ti s 1) Ti s2 (Ts 1)
表明:PI控制器提高系统的型号,可消除控制系统对斜 坡输入信号的稳态误差,改善准确性。
校正前系统闭环特征方程:Ts2+s+K0=0 系统总是稳定的
校正后系统闭环特征方程:TiTs3 Ti s2 K p K0Ti s K p K0 0
调节时间 谐振峰值
ts

3.5
n
Mr
2
1 ,
1 2
0.707
谐振频率 r n 1 2 2 , 0.707
带宽频率 b n 1 2 2 2 4 2 4 4 截止频率 c n 1 4 4 2 2
相角裕度
arctan
低频段:
开环增益充分大, 满足闭环系统的 稳态性能的要求。
中频段:
中频段幅频特性斜 率为 -20dB/dec, 而且有足够的频带 宽度,保证适当的 相角裕度。
高频段:
高频段增益尽 快减小,尽可 能地削弱噪声 的影响。
常用的校正装置设计方法 -均仅适用最小相位系统
1.分析法(试探法)
特点:直观,物理上易于实 现,但要求设计者有一定的 设计经验,设计过程带有试 探性,目前工程上多采用的 方法。
列劳思表:
s3 TiT
K p K0Ti
s2 Ti
K pK0
s1 K p K0 (Ti T )
s0 K p K0
若想使系统稳定,需要Ti>T。如果 Ti 太小,可能造成系 统的不稳定。
5.比例-积分-微分(PID)控制规律
R( s )
E(s)
C(s)
K
p (1

控制工程基础第五章——校正

控制工程基础第五章——校正

三 系统常用校正方法(2)
前馈校正 (复合控制)
对输入的
对扰动的
系统校正的基本思路
系统的设计问题通常归结为适当地设计串 联或反馈校正装置。究竟是选择串联校正还是 反馈校正,这取决于系统中信号的性质、系统 中各点功率的大小、可供采用的元件、设计者 的经验以及经济条件等等。
一般来说,串联校正可能比反馈校正简单, 但是串联校正常需要附加放大器和(或)提供隔离。 串联校正装置通常安装在前向通道中能量最低的地方。 反馈校正需要的元件数目比串联校正少,因为反馈校 正时,信号是从能量较高的点传向能量较低的点,不 需要附加放大器。
显然不满足要求。
令 20lgG(j0)0 或 G0(j0) 1 可求得ω0,再求得γ。

☆ 超前校正设计的伯德图
☆ 超前校正设计⑵
☆ 超前校正设计⑶
⒊确定超前校正装置的最大超前相位角
m4 52 75 23
⒋确定校正装置的传递函数
①确定参数α ②确定ωm
1 1 s sii n n m m1 1 s sii2 2n n 3 32.28
PID 传递 函数
G c(s)U E ((s s))K PK I1 sK D s
Gc(s)KP(1T1IsTDs)
KP——比例系数;TI——积分时间常数; TD——微分时间常数
二 PID控制器各环节的作用
比例环节 积分环节 微分环节
即时成比例地反映控制系统的偏差 信号,偏差一旦产生,控制器立即产 生控制作用,以减少偏差。
为了充分利用超前装置的最大超前相位角,一般取校正后系统的
开环截止频率为 0 m 。故有 Lc(m)L(0 ' )0d B
于是可求得校正装置在ωm处的幅值为
2 lG 0 g c (jm ) 1 l0 g 1 l2 0 g .2 3 8 .5 d8 B最后得校正装置

第七章 控制系统的性能分析与校正

第七章 控制系统的性能分析与校正

反馈的功能:
1、比例负反馈可以减弱为其包围环节的惯性,从 而将扩展该环节的带宽。
2、负反馈可以减弱参数变化对控制性能的影响。 3、负反馈可以消除系统不可变部分中不希望有的
特性。
X i(s)
n1
n2
控制器 校正
对象1
对象2
校正
校正
X 0(s)
反馈串联的联结形式
一、利用反馈校正改变局部结构和参数
❖ 1、比例反馈包围积分环节
1. 设火炮指挥系统如图所示,其开环传递函数
系统最大输出速度为2转/min ,输出位置的容许误差小于2/秒。 (1) 确定满足上述指标的最小k值,计算该k值下的相位裕度和幅值裕度。 (2) 前向通路中串联超前校正网络Gc (s)=(1+0.4s)/(1+0.08s),试计算相位裕度。
G(s)
k
s(0.2s1)0 (.5s1)
反馈校正、顺馈校正和干扰补偿。
X i(s) + E

校正 串联
放在相加点之后
此处往往是一个 小功率点
+ 控制器

N
X 0(s)
对象
校正 反馈
可以放在 任意位置
7-3 串联校正
一、串联校正(解决稳定性 和快速性的问题,中频段)
Gc(s)
X 0(s) X i(s)
R2 R1 R2

R1C S 1
和被包围环节G1(s)全然无关,达到了以1/ Hc(s)取代G1(s)的效果 反馈校正的这种作用,在系统设计和高度中,常被用来改选不希望有的某些 环节,以及消除非线性、变参量的影响和抑止干扰。
例:设其开环传递函数
G(s)
k
s(0.2s1)0 (.5s1)

CH7_控制系统的性能分析和校正(1)

CH7_控制系统的性能分析和校正(1)

L(ω)
[− 40] [− 20]
ωc
高频区伯德图 呈很陡的斜率下降,有利于 降低高频躁声。 但高频段有多个小惯性环节, 将对高阶模型系统的相位裕度产生不利影响, 使原来的相角裕度
0 ω 2
高频区 ω3 ω4ω5ω6 小 参 数 区
ω
γ 2 =180 +ϕ(ωc ) = arctgωcT2 − arctgωcT3 变成 γ 2 = arctgωcT2 − arctgωcT3 − arctgωcT4 − arctgωcT5 − arctgωcT6
顺馈校正
Gr (s)
补偿器放在 系统回路之外
Xi (s)
-
E(s)
G(s)
Xo (s)
不影响特征方程,只补偿由于 输入造成的稳态误差。
干扰补偿
当干扰直接可测量时
Xi (s)
-
E(s)
Y (s)
Gn (s )
N(s)
G1(s)
G2 (s)
Xo (s)
不影响特征方程,只补偿由于 干扰造成的稳态误差。
L(ω)
[− 40] [− 20]
ωc
0 ω 2
1 TΣ
高频区 ω3 ω4ω5ω6 小 参 数 区
ω
当 足 ωcT3 < 1, ωcT4 << 1, 满 :
ωcT5 << 1, ωcT6 << 1
则 认 可 为
K(T2s + 1) 此时:G(s) ≈ 2 s (TΣs +1)
1 TΣ = (T3 + T4 + T5 + T6 ), 且 ≥ 2ωc TΣ
L(ω)
[− 40] [− 20]

自动控制原理(第三版)第6章 控制系统的校正

自动控制原理(第三版)第6章 控制系统的校正
如果通过调整控制器增益后仍然不能全面满 足设计要求的性能指标,就需要在系统中增加一 些参数及特性可按需要改变的校正装置,使系统 全面满足设计要求。
在研究系统校正装置时,为了方便,将系统 中除了校正装置以外的部分,包括被控对象及控 制器的基本组成部分一起称为“固有部分”。
因此控制系统的校正,就是按给定的固有部 分和性能指标,设计校正装置。
KPLeabharlann e(t) 1 TI
t
e(t)dt
0
TD
de(t) dt
u(t为) 控制器的输出; e(为t) 系统给定量与输出量的偏差
K为P 比例系数; T为I 积分时间常数; TD 为微分时间常数
相应的传递函数为
Gc
(s)
K
P
1
1 TI s
TD
s
KP
KI s
KDs
KP 为比例系数;K I为积分系数;KD 为微分系数。
(1) 原理简单,使用方便。
(2) 适应性强,可广泛应用于各种工业生产部 门,按PID控制规律进行工作的控制器早已商品化, 即使目前最新式的过程控制计算机,其基本控制 功能也仍然是PID控制。
(3) 鲁棒性强,即其控制品质对被控对象特性 的变化不太敏感。
自动控制原理
基本PID控制规律可以描述为
u(t)
自动控制原理
2. 频域性能指标
频域性能指标,包括开环频域指标和闭环频 域指标。 (1) 开环频域指标 一般要画出开环对数频率特性,并给出开环频域 指标如下:开环剪切频率c 、相位裕量 和幅值 裕量K g 。 (2) 闭环频域指标 一般给出闭环幅频特性曲线,并给出闭环频域指 标如下:谐振频率 r 、谐振峰值 M r 和频带宽度b 。

控制系统的校正(PID).

控制系统的校正(PID).

E(s)
在前向通道上,相当于系统增加了一个位于原点的极点,和一 个s左半平面的零点,该零点可以抵消极点所产生的相位滞后, 以缓和积分环节带来的对稳定性不利的影响。
18
❖ 积分控制器的阶跃响应特性:
u(t)
比例积分作用
K ce
Ti
e(t)
比例作用
t
t
在单位阶跃偏差输入条
件下,每过一个积分时
间常数时间 T,积分项 i
静态误差系数K
p
,
K v
,K a
常常将时域指标转化为相应的频域指标进行校正装置的
设计
闭环频域指标
谐振峰值Mr ,谐振频率r
带宽频率b
开环频域指标
剪切频率c
幅值裕度Kg ,相角裕度
5
系统分析与校正的差别:
❖ 系统分析的任务是根据已知的系统,求出系统的性能指标 和分析这些性能指标与系统参数之间的关系,分析的结果 具有唯一性。
16
5.2.2 积分(I)控制
❖ 积分作用:
u(t ) 1
t
e( )d
Ti 0
传递函数为 U (s) 1 E(s) Tis
定义: T为i “积分时间常数”。
优缺点
前向通道上提高控制系统的型别,改善系统的稳态精度。
积分作用在控制中会造成过调现象,乃至引起被控参数 的振荡。因为u(t)的大小及方向,只决定于偏差e(t)的大 小及方向,而不考虑其变化速度的大小及方向。
❖ 将选定的控制对象和控制器组成控制系统,如果构成的系统不能 满足或不能全部满足设计要求的性能指标,还必须增加合适的元 件,按一定的方式连接到原系统中,使重新组合起来的系统全面 满足设计要求。
控制器
控制对象

控制系统的综合与校正

控制系统的综合与校正

图6.16 校正前后系统的开环对数渐近幅频特性
一定的宽度,同时又要考虑原系统的特性, 即高频段应与原系统特性尽量有一致的斜 率。由于原系统特性是按K=Kv=1000 (l/ s)绘制的,因此期望特性的低频段应与原系 统特性重合。这样考虑后,可使校正网络 简单且易于实现。根据以上分析作期望特 性:
是幅值改变
倍, 并且随ω的改
变而改变。
• 6.1.3 PI控制(比例+积分)
• 具有比例加积分控制规律的控制器, 称为比例积分控制器(或称PI控制 器),如图6.5所示。
• 其中:
(6.5)
图6.5 PI控制器
• 控制器输出的时间函数:
(6.6)
• 讨论方便,令比例系数KP=1则式(6.5)变 为:
(6.31)
(6.32) • ④应用图解法确定能产生相角为
超前网络的零点极点位置, 即串联超前校正
• ⑤验算性能指标。
• 6.3.2 • 如前所述,当原系统已具有比较满意
的动态性能,而稳态性能不能满足要 求时,可采用串联滞后校正。 • 应用根轨迹法设计串联滞后校正网络, 可归纳为如下步骤:
• ①作出原系统的根轨迹图, 根据调节时间的 要求,
• 其中:
(6.1)
图6.3 P控制器
• 6.1.2 PD控制(比例+微分)
• 具有比例加微分控制规律的控制器称 为比例加微分控制器(或称PD控制器), 如图6.4所示。
• 其中:
(6.2)
图6.4 PD控制器
(6.3)
(6.4)
• 式(6.4)表明, PD控制器的输入信号为正弦
函数时, 其输出仍为同频率的正弦函数, 只
ωc=4.47(rad/s), 相角裕度为-16.6°, 说明

自动控制原理知识点

自动控制原理知识点

第一章自动控制的一般概念1.1 自动控制的基本原理与方式1、自动控制、系统、自动控制系统◎自动控制:是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律(给定值)运行。

◎系统:是指按照某些规律结合在一起的物体(元部件)的组合,它们相互作用、相互依存,并能完成一定的任务。

◎自动控制系统:能够实现自动控制的系统就可称为自动控制系统,一般由控制装置和被控对象组成。

除被控对象外的其余部分统称为控制装置,它必须具备以下三种职能部件。

•测量元件:用以测量被控量或干扰量。

•比较元件:将被控量与给定值进行比较。

•执行元件:根据比较后的偏差,产生执行作用,去操纵被控对象。

参与控制的信号来自三条通道,即给定值、干扰量、被控量。

2、自动控制原理及其要解决的基本问题◎自动控制原理:是研究自动控制共同规律的技术科学。

而不是对某一过程或对象的具体控制实现(正如微积分是一种数学工具一样)。

◎解决的基本问题:•建模:建立系统数学模型(实际问题抽象,数学描述)•分析:分析控制系统的性能(稳定性、动/稳态性能)•综合:控制系统的综合与校正——控制器设计(方案选择、设计)3、自动控制原理研究的主要内容4、室温控制系统5、控制系统的基本组成◎被控对象:在自动化领域,被控制的装置、物理系统或过程称为被控对象(室内空气)。

◎控制装置:对控制对象产生控制作用的装置,也称为控制器、控制元件、调节器等(放大器)。

◎执行元件:直接改变被控变量的元件称为执行元件(空调器)。

◎测量元件:能够将一种物理量检测出来并转化成另一种容易处理和使用的物理量的装置称为传感器或测量元件(热敏电阻)。

◎比较元件:将测量元件和给定元件给出的被控量实际值与参据量进行比较并得到偏差的元件。

◎放大元件:放大偏差信号的元件。

◎校正元件(补偿元件):结构参数便于调整的元件,用于改善系统性能。

控制系统的设计与校正

控制系统的设计与校正

(c)r18 0
γ—为要求达到的相角裕度。 —是为补偿滞后网络的副作用而提供的相角裕度的修正量,一般取
5°~12°。
原系统中对应 处的频率即为(校c正r)后系统的剪切频率ω。
(4)求滞后网络的β值。 未校正系统在ω的对数幅频值为L0(ω)应满足
L 0(c)r2l0 g)(0 由此式求出β值。
了平系稳统性的将截有止所频下率降,获还得会足降够低的系快统速抗性高。频干扰的能力。
Ts 1
Xo s
Gs Ts 1
L
20 40
20lg Kg
20
11
11
c1 c2
T2 T
20lg
T1 T
60
90 180
80
二、滞后校正 1、滞后网络
Xi s
R1 R2 C
Gc
s
Xos Xi s
Phase Margin (deg): 18
At frequency (rad/sec): 8.91
Delay Margin (sec): 0.0508
Closed Loop Stable? Yes
-135
At frequency (rad/sec): 6.17
Closed Loop Stable? Yes
用希望对数频率特性进行校正装置的设计
G *(S)G 0(S)G c(S)
只要求得希望对数幅频特性与原系统固有开环对数幅频 特性之差即为校正装置的对数幅频特性曲线,从而可 以确定(s),进而确定校正参数和电路
G* (S )为希望的开环传递函数 Gc (S)为校正装置的传递函数 G0 (S)为系统固有的传递函数
各种校正装置的比较:
超前校正通过相位超前特性获得所需要的结果;滞后校正则是通过高频衰减特性获得所需要的结 果;而在某些问题中,只有同时采用滞后校正和超前校正才能获得所需要的结果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 当验算结果γ″不满足指标要求时,需另选 ωm值,并重复以上计算步骤,直到满足指 标为止。重选ωm值,一般是使ωm= 的值增大。
控制系统分析、综合和校正
• 应当指出,有些情况采用串联超前校正是 无效的。串联超前校正受以下两个因素的
• ①闭环带宽要求。 • ②如果原系统在剪切频率附近相角迅速减
小,一般不宜采用串联超前校正。
控制系统分析、综 合和校正
控制系统分析、综合和校正
• 综合的具体任务是选择校正方式,确定系 统结构和校正装置的类型以及计算参数等, 这些工作的出发点和归宿点都是满足对系 统技术性能的要求,这些要求在单变量系 统中往往都是以性能指标的形式给出。
• (1)性能指标
控制系统分析、综合和校正
• 工程上,对单变量系统常用性能指标来衡 量控制系统的优劣。
控制系统分析、综合和校正
图6.2 反馈校正
控制系统分析ቤተ መጻሕፍቲ ባይዱ综合和校正
• 6.1 PID控制作用
• 6.1.1 P控制(比例控制)
• 具有比例规律的控制器称为比例控制器(或 称P控制器),如图6.3所示。
• 其中:
(6.1)
控制系统分析、综合和校正
图6.3 P控制器
控制系统分析、综合和校正
• 6.1.2 PD控制(比例+微分)
• 1)稳态指标 • 稳态指标是衡量系统稳态精度的指标。
• 2) • 时域动态指标通常为上升时间tr、峰值时间
tP、调节时间ts、超调量σP%等。
控制系统分析、综合和校正
• 3) • 频域动态指标分开环频域指标和闭环频域
指标2种。 • (2)系统的校正 • 为使系统满足性能指标而引入的附加装置,
称为校正装置,其传递函数用Gc(s) • 表示。
控制系统分析、综合和校正
图6.1 串联校正
控制系统分析、综合和校正
• 校正装置Gc (s)与系统固有部分的联接方式, 称为系统的校正方案。在控制系统中,校 正方案基本上分为3种。校正装置与原系统 在前向通道串联联接,称为串联校正,如 图6.1所示。由原系统的某一元件引
控制系统分析、综合和校正
• 出反馈信号构成局部负反馈回路,校正装 置设置在这一局部反馈通道上,如图6.2所 示,则称为反馈校正。如第1章和第3章所 述对干扰和输入进行补偿的复合控制,称 为前馈校正。
倍,并且随ω
的改变而改变。
控制系统分析、综合和校正
• 6.1.3 PI控制(比例+积分)
• 具有比例加积分控制规律的控制器,称为 比例积分控制器(或称PI控制器),如图 6.5所示。
• 其中:
(6.5)
控制系统分析、综合和校正
图6.5 PI控制器
控制系统分析、综合和校正
• 控制器输出的时间函数: (6.6)
控制系统分析、综合和校正
(6.20) (6.21)
图6.11 无源滞后网络对数频率特性
控制系统分析、综合和校正
• (2)
• 采用滞后网络进行校正,主要是利用其高 频幅值衰减特性。
• 应用频率法设计滞后校正装置,其步骤如 下:
• ①根据性能指标对误差系数的要求,确定 系统的开环增益K
• ②作出原系统的伯德图,求出原系统的相 角和增益裕量;
控制系统分析、综合和校正
控制系统分析、综合和校正
(6.8)
• 6.2 基于频率法的串联校正设计
• 6.2.1
• (1) • 图6.7是一个无源超前校正装置的电路图。
控制系统分析、综合和校正
图6.7 无源超前网络
控制系统分析、综合和校正
• 这样无源超前校正装置的传递函数为 (6.12)
• 根据式(6.12)作出无源超前校正装置的对数 特性,如图6.8所示。
控制系统分析、综合和校正
• 6.2.2 串联滞后校正
• (1) • 控制系统具有满意的动态特性,但其稳态
性能不能满足要求时,可采用串联滞后校 正。图6.10是无源滞后校正网络的电路图。
控制系统分析、综合和校正
(6.17)
(6.18)
(6.19)
• 根据式(6.17)作出的滞后网络对数频率特性 如图6.11所示。
控制系统分析、综合和校正
(6.16)
• 用频率特性法设计超前网络的步骤如下: ①根据性能指标对稳态误差系数的要求, 确定开环放大系数K
• ②利用求得的K,绘制原系统的伯德图,主
• ③在伯德图上测取原系统的相位裕量和增 益裕量,或在对数幅频特性图上测取剪切
控制系统分析、综合和校正
频率ωc,通过计算求出原系统的相位 裕量γ。再确定使相位裕量达到希望值 γ″所需要增加的相位超前相角
• 讨论方便,令比例系数KP=1则式(6.5)变为:
(6.7) • 由式(6.7)看出,PI控制器不仅引进了一个
积分环节,同时还引进了一个开环零点。
控制系统分析、综合和校正
图6.6 PID控制器
控制系统分析、综合和校正
• 6.1.4 PID控制(比例+积分+微分)
• 比例加积分加微分规律(或称PID控制规律) 是一种由比例、积分、微分基本控制规律 组合的复合控制规律。
• ④利用下式计算超前校正装置的参数β。
控制系统分析、综合和校正
控制系统分析、综合和校正
• ⑥求出超前校正装置的另一个参数T2。
控制系统分析、综合和校正
• ⑦画出校正后系统的伯德图,检验已校正 系统的相角裕度γ″性能指标是否满足设计要 求。验算时,已知 计算出校正后系统在 处相角裕度γ″( )。
控制系统分析、综合和校正
图6.8 无源超前网络的对数幅、相特性
控制系统分析、综合和校正
• 最大超前角:
• 应用三角公式改写为:
控制系统分析、综合和校正
(6.15)
则超前校正装置的微分效应越强。为了保持 较高的信噪比,实际选用的β值一般不大于 20。通过计算,可以求出ωm处的对数值
• (2)串联超前校正方法
• 具有比例加微分控制规律的控制器称为比 例加微分控制器(或称PD控制器),如图6.4 所示。
• 其中:
(6.2)
控制系统分析、综合和校正
图6.4 PD控制器
控制系统分析、综合和校正
(6.3)
(6.4)
• 式(6.4)表明,PD控制器的输入信号为正弦
函数时,其输出仍为同频率的正弦函数,
只是幅值改变
控制系统分析、综合和校正
• ③如原系统的相角和增益裕量不满足要求, 找一新的剪切频率 ,在 处开环传递 函数的相角应等于-180°加上要求的相角裕 量后再加上5°~12°,以补偿滞后校正网络的 相角滞后。
相关文档
最新文档