动力学的两类基本问题
(完整版)动力学的两类基本问题
动力学的两类基本问题一、基础知识1、动力学有两类问题:⑴是已知物体的受力情况分析运动情况;⑵是已知运动情况分析受力情况,程序如下图所示。
2、根据受力情况确定运动情况,先对物体受力分析,求出合力,再利用__________________求出________,然后利用______________确定物体的运动情况(如位移、速度、时间等).3.根据运动情况确定受力情况,先分析物体的运动情况,根据____________求出加速度,再利用______________确定物体所受的力(求合力或其他力).其中,受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是桥梁。
解题步骤(1)确定研究对象;(2)分析受力情况和运动情况,画示意图(受力和运动过程);(3)用牛顿第二定律或运动学公式求加速度;(4)用运动学公式或牛顿第二定律求所求量。
例1. 一个静止在水平面上的物体,质量是2kg ,在8N 的水平拉力作用下沿水平面向右运动,物体与水平地面间的动摩擦因数为0.25。
求物体4s 末的速度和4s 内的位移。
例2. 滑雪者以v 0=20m/s 的初速度沿直线冲上一倾角为30°的山坡,从刚上坡即开始计时,至3.8s 末,滑雪者速度变为0。
如果雪橇与人的总质量为m=80kg ,求雪橇与山坡之间的摩擦力为多少?g=10m/s 2 .运动学公式 a (桥梁) 运动情况:如v 、t 、x 等 受力情况:如F 、m 、μ m F a v = v o +atx= v o t + at 2 21v 2- v o 2 =2ax二、练习1、如图所示,木块的质量m=2 kg,与地面间的动摩擦因数μ=0.2,木块在拉力F=10 N作用下,在水平地面上从静止开始向右运动,运动5.2 m后撤去外力F.已知力F与水平方向的夹角θ=37°(sin 37°=0.6,cos 37°=0.8,g取10 m/s2).求:(1)撤去外力前,木块受到的摩擦力大小;(2)刚撤去外力时,木块运动的速度;(3)撤去外力后,木块还能滑行的距离为多少?(1)2.8N(2)5.2m/s (3)6.76m2、如图所示,一个放置在水平台面上的木块,其质量为2 kg,受到一个斜向下的、与水平方向成37°角的推力F=10 N 的作用,使木块从静止开始运动,4 s 后撤去推力,若木块与水平面间的动摩擦因数为 0.1.(取g=10 m/s2)求:(1)撤去推力时木块的速度为多大?(2)撤去推力到停止运动过程中木块的加速度为多大?(3)木块在水平面上运动的总位移为多少?3、如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取10 m/s2)4、如图所示,有一足够长的斜面,倾角α=37°,一小物块从斜面顶端A处由静止下滑,到B 处后,受一与小物块重力大小相等的水平向右的恒力作用,小物块最终停在C点(C点未画出).若AB长为2.25 m,小物块与斜面间动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,g =10 m/s2.求:(1)小物块到达B点的速度多大?(2)B、C距离多大?5、如图所示,在倾角θ=30°的固定斜面的底端有一静止的滑块,滑块可视为质点,滑块的质量m=1kg,滑块与斜面间的动摩擦因数μ=36,斜面足够长.某时刻起,在滑块上作用一平行于斜面向上的恒力F=10N,恒力作用时间t1=3s后撤去.求:从力F开始作用时起至滑块返冋斜面底端所经历的总时间t及滑块返回底端时速度v的大小(g=10m/s2)6、(2013山东)如图所示,一质量m=0.4 kg的小物块,以v0=2 m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2 s的时间物块由A点运动到B点,A、B之间的距离L=10 m.已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g取10 m/s2.(1)求物块加速度的大小及到达B点时速度的大小;(2)拉力F与斜面夹角多大时,拉力F最小?拉力F的最小值是多少?7、如图所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径为R和r的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽,从静止出发,由A滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()A.2∶1 B.1∶1 C.∶1 D.1∶8、如下图所示,光滑水平面上放置质量分别为m、2m的A、B两个物体,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,则拉力F的最大值为( )A.μmg B.2μmg C.3μmg D.4μmg9、物体A放在物体B上,物体B放在光滑的水平面上,已知m A=6kg,m B=2kg,A、B间动摩擦因数μ=0.2,如图所示.现用一水平向右的拉力F作用于物体A上,则下列说法中正确的是(g=10m/s2)()A.当拉力F<12N时,A相对B静止不动B.当拉力F>12N时,A一定相对B滑动C.无论拉力F多大,A相对B始终静止D.当拉力F=24N时,A对B的摩擦力等于6N10、物体A的质量m1=1kg,静止在光滑水平面上的木板B的质量为m2=0.5kg、长L=1m,某时刻A以v0=4m/s的初速度滑上木板B的上表面,为使A不致于从B上滑落,在A滑上B的同时,给B施加一个水平向右的拉力F,若A与B之间的动摩擦因数μ=0.2,试求拉力F大小应满足的条件。
动力学的两大基本问题
达C点
D.由于两杆的倾角
未知,故无法判断
如图所示,传送带与地面倾角θ=37°,从A→B 长度为16m,传送带以l0m/s的速率逆时针转 动。在传送带上端A无初速度地放一个质量为 0.5kg的物体,它与传送带之间的动摩擦因数为 0.5.求物体从A运动到B需时间是多 少?(sin37°=0.6,cos37°=0.8)
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
【解析】 题中将套有小球的细直杆放在我们比较陌生的风洞实验里,题目
(1)设小球所受的风力为F,小球质量为m 小球在杆上匀速运动时,F=mg, 得 =F/mg=0.5mg/mg=0.5
(2)设杆对小球的支 持力为N,摩擦力为 f,小球受力情况如 图所示,将F、mg沿 杆方向和垂直杆方 向正交分解,根据 牛顿第二定律得
其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
动力学两类基本问题
动力学两类基本问题1.由受力情况判断物体的运动状态,处理这类问题的基本思路是:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再应用运动学公式求出速度或位移.2.由物体的运动情况判断受力情况,处理这类问题的基本思路是:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力,至于牛顿第二定律中合力的求法可用力的合成和分解法(平行四边形定则)或正交分解法.3.求解上述两类问题的思路,可用如图所示的框图来表示:解决两类动力学基本问题应把握的关键(1)做好两个分析——物体的受力分析和物体的运动过程分析;根据物体做各种性质运动的条件即可判定物体的运动情况、加速度变化情况及速度变化情况.(2)抓住一个“桥梁”——物体运动的加速度是联系运动和力的桥梁.【典例1】(2013·江南十校联考,22)如图3-3-2所示,倾角为30°的光滑斜面与粗糙平面的平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m.(滑块经过B点时没有能量损失,g=10 m/s2),求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.图3-3-2教你审题关键词获取信息①光滑斜面与粗糙的水平面滑块在斜面上不受摩擦力,水平面受摩擦力②从斜面上的A点由静止释放滑块的初速度v0=0③最终停在水平面上的C点滑块的末速度为零④滑块经过B点时没有能量损失斜面上的末速度和水平面上的初速度大小相等第二步:分析理清思路→抓突破口做好两分析→受力分析、运动分析①滑块在斜面上:滑块做初速度为零的匀加速直线运动.②滑块在水平面上:滑块做匀减速运动.第三步:选择合适的方法及公式→利用正交分解法、牛顿运动定律及运动学公式列式求解.解析(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大为v m,设滑块在斜面上运动的加速度大小为a1,则有mg sin 30°=ma1,v2m=2a1hsin 30°,解得:v m=4 m/s(2)滑块在水平面上运动的加速度大小为a2,μmg=ma2v2m=2a2L,解得:μ=0.4(3)滑块在斜面上运动的时间为t1,v m=a1t1得t1=0.8 s由于t>t1,滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s设t=1.0 s时速度大小为v=v m-a2(t-t1)解得:v=3.2 m/s答案(1)4 m/s(2)0.4(3)3.2 m/s1.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个桥梁——物体运动的加速度是联系运动和力的桥梁.2.解决动力学基本问题时对力的处理方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”.(2)正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.3.解答动力学两类问题的基本程序(1)明确题目中给出的物理现象和物理过程的特点.(2)根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.(3)应用牛顿运动定律和运动学公式求解.突破训练3如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取10 m/s2)图5答案 5.53 s解析此题可以分为三个运动阶段:力F存在的阶段物体沿斜面向上加速,受力分析如图所示,由牛顿第二定律和运动学公式得:F-F f-mg sin θ=ma1F f=μF N=μmg cos θv1=a1t1解得:a1=2 m/s2v1=4 m/s第二阶段为从撤去力F到物体沿斜面向上的速度减为零,受力分析如图所示由牛顿第二定律和运动学公式mg sin θ+μmg cos θ=ma20-v1=-a2t2解得:a2=7.6 m/s2t2=0.53 s第三阶段物体反向匀加速运动(因为mg sin θ>μmg cos θ)mg sin θ-μmg cos θ=ma3v2=a3t3解得:a3=4.4 m/s2t3=5 st=t2+t3=5.53 s题组一动力学两类基本问题1.如图3-2-5所示,水平桌面由粗糙程度不同的AB、BC两部分组成,且AB=BC,小物块P(可视为质点)以某一初速度从A点滑上桌面,最后恰好停在C点,已知物块经过AB与BC两部分的时间之比为1∶4,则物块P与桌面上AB、BC部分之间的动摩擦因数μ1、μ2之比为(P物块在AB、BC上所做的运动均可看作匀变速直线运动)()图3-2-5A.1∶1B.1∶4C.4∶1 D.8∶1解析:选D由牛顿第二定律可知,小物块P在AB段减速的加速度a1=μ1g,在BC段减速的加速度a2=μ2g,设小物块在AB段运动时间为t,则可得:v B=μ2g·4t,v0=μ1gt+μ2g·4t,由x AB=v0+v B2·t,x BC=v B2·4t,x AB=x BC可求得:μ1=8μ2,故D正确。
超重失重、等时圆和动力学两类基本问题(解析版)
超重失重、等时圆和动力学两类基本问题导练目标导练内容目标1超重失重目标2动力学两类基本问题目标3等时圆模型【知识导学与典例导练】一、超重失重1.判断超重和失重现象的三个角度(1)从受力的角度判断:当物体受到的向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时处于失重状态;等于零时处于完全失重状态。
(2)从加速度的角度判断:当物体具有向上的加速度时处于超重状态;具有向下的加速度时处于失重状态;向下的加速度恰好等于重力加速度时处于完全失重状态。
(3)从速度变化角度判断:物体向上加速或向下减速时,超重;物体向下加速或向上减速时,失重。
2.对超重和失重问题的三点提醒(1)发生超重或失重现象与物体的速度方向无关,只取决于加速度的方向。
(2)并非物体在竖直方向上运动时,才会出现超重或失重现象。
只要加速度具有竖直向上的分量,物体就处于超重状态;同理,只要加速度具有竖直向下的分量,物体就处于失重状态。
(3)发生超重或者失重时,物体的实际重力并没有发生变化,变化的只是物体的视重。
1如图所示,一个圆形水杯底部有一小孔,用手堵住小孔,往杯子里倒半杯水。
现使杯子做以下几种运动,不考虑杯子转动及空气阻力,下列说法正确的是()A.将杯子竖直向下抛出,小孔中有水漏出B.将杯子斜向上抛出,小孔中有水漏出C.用手握住杯子向下匀速运动,不堵住小孔也没有水漏出D.杯子做自由落体运动,小孔中没有水漏出【答案】D【详解】ABD.杯子跟水做斜抛运动、自由落体运动、下抛运动时都只受重力,处于完全失重状态,杯子与水相对静止,因此不会有水漏出,AB错误,D正确;C.杯子向下做匀速运动,处于平衡状态,水受重力,会漏出,C错误。
故选D。
2“笛音雷”是春节期间常放的一种鞭炮,其着火后一段时间内的速度-时间图像如图所示(取竖直向上为正方向),其中t0时刻为“笛音雷”起飞时刻、DE段是斜率大小为重力加速度g的直线。
不计空气阻力,则关于“笛音雷”的运动,下列说法正确的是()A.“笛音雷”在t 2时刻上升至最高点B.t 3~t 4时间内“笛音雷”做自由落体运动C.t 0~t 1时间内“笛音雷”的平均速度为v 12D.t 3~t 4时间内“笛音雷”处于失重状态【答案】D【详解】A 由图可知,t 0~t 4时间内“笛音雷”的速度一直为正值,表明其速度方向始终向上,可知,“笛音雷”在t 2时刻并没有上升至最高点,上升至最高点应该在t 4时刻之后,故A 错误;B .t 3~t 4时间内“笛音雷”速度方向向上,图像斜率为一恒定的负值,表明t 3~t 4时间内“笛音雷”实际上是在向上做竖直上抛运动,其加速度就是重力加速度g ,故B 错误;C .将A 、B 用直线连起来,该直线代表匀加速直线运动,其平均速度为v12,而AB 线段与横轴所围的面积大于AB 曲线与横轴所围的面积,该面积表示位移,根据v =ΔxΔt可知,直线代表的匀加速直线运动的平均速度大于AB 曲线代表的变加速直线运动的平均速度,即t 0~t 1时间内“笛音雷”的平均速度小于v12,故C 错误;D .根据上述,t 3~t 4时间内“笛音雷”做竖直上抛运动,加速度方向竖直向下,“笛音雷”处于失重状态,故D 正确。
高三物理 动力学的两类基本问题精华教案
动力学的两类基本问题 ◎知识梳理 应用牛顿运动定律求解的问题主要有两类:一类是已知受力情况求运动情况;另一类是已知运动情况求受力情况.在这两类问题中,加速度是联系力和运动的桥梁,受力分析是解决问题的关键.◎例题评析【例11】 质量为m =2 kg 的木块原来静止在粗糙水平地面上,现在第1、3、5……奇数秒内给物体施加方向向右、大小为F 1=6 N 的水平推力,在第2、4、6……偶数秒内给物体施加方向仍向右、大小为F 2μ=0.1,取g =10 m/s 2,问:(1)木块在奇数秒和偶数秒内各做什么运动?(2)经过多长时间,木块位移的大小等于40.25 m?【分析与解答】:以木块为研究对象,它在竖直方向受力平衡,水平方向仅受推力F 1(或F 2)和摩擦力F f 的作用.由牛顿第二定律可判断出木块在奇数秒内和偶数秒内的运动,结合运动学公式,即可求出运动时间.(1)木块在奇数秒内的加速度为a 1=m F F f -1=m mg F -μ1=21021.06⨯⨯- m/s 2=2 m/s 2 木块在偶数秒内的加速度为a 2=m F F f -2=m mg F -μ2=21021.02⨯⨯- m/s 2=0 所以,木块在奇数秒内做a =a 1=2 m/s 2的匀加速直线运动,在偶数秒内做匀速直线运动.(2)在第1 s 内木块向右的位移为s 1=21at 2=21×2×12 m=1 m 至第1 s 末木块的速度v 1=at =2×1 m/s=2 m/s在第2 s 内,木块以第1 s 末的速度向右做匀速运动,在第2 s 内木块的位移为 s 2=v 1t =2×1 m=2 m至第2 s 末木块的速度v 2=v 1=2 m/s在第3 s 内,木块向右做初速度等于2 m/s 的匀加速运动,在第3 s 内的位移为s 3=v 2t +21at 2=2×1 m+21×2×12 m=3 m 至第3 s 末木块的速度v 3=v 2+at =2 m/s+2×1 m/s=4 m/s在第4 s 内,木块以第3 s 末的速度向右做匀速运动,在第4 s 内木块的位移为s 4=v 2t =4×1 m=4 m至第4 s 末木块的速度v 4=v 2=4 m/s……由此可见,从第1 s 起,连续各秒内木块的位移是从1开始的一个自然数列.因此,在n s 内的总位移为s n =1+2+3+…+n =21)(+n n 当s n =40.25 m 时,n 的值为8<nn =8,则8 s 内木块的位移共为s 8=2188)(+ m=36 m 至第8 s 末,木块的速度为v 8=8 m/s.设第8 s 后,木块还需向右运动的时间为t x ,对应的位移为s x =40.25 m -36 m=4.25 m ,由s x =v 8t x +21at x 2,即4.25=8t x +21×2t x 2 解得t x =0.5 s所以,木块位移大小等于40.25 m 时,需运动的时间T =8 s+0.5 s=8.5 s.[点评]:(1)本题属于已知受力情况求运动情况的问题,解题思路为先根据受力情况由牛顿第二定律求加速度,再根据运动规律求运动情况.(2)根据物体的受力特点,分析物体在各段时间内的运动情况,并找出位移的一般规律,是求解本题的关键.【例12】 如图所示,在倾角θ=37°的足够长的固定的斜面上,有一质量m =1 kg 的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细线的拉力F =9.6 N的作用,从静止开始运动,经2 s 绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s.(sin37°=0.6,g 取10 m/s 2)【分析与解答】:本题为典型的已知物体受力求物体运动情况的动力学问题,物体运动过程较为复杂,应分阶段进行过程分析,并找出各过程的相关量,从而将各过程有机地串接在一起.第一阶段:在最初2 s 内,物体在F =9.6 N 拉力作用下,从静止开始沿斜面做匀加速运动,据受力分析图3-2-4可知:沿斜面方向:F -mg sin θ-F f =ma 1沿垂直斜面方向:F N =mg cos θ且F f =μF N由①②③得:a 1=mmg mg F θμθcos sin --=2 m/s 2 2 s 末绳断时瞬时速度v 1=a 1t 1=4 m/s.第二阶段:从撤去F 到物体继续沿斜面向上运动到达速度为零的过程,设加速度为a 2, 则a 2=mmg mg )(θμθcos sin +-=-7.6 m/s 2 设从断绳到物体到达最高点所需时间为t 2据运动学公式v 2=v 1+a 2t 2所以t 2=210a v -=0.53 s 第三阶段:物体从最高点沿斜面下滑,在第三阶段物体加速度为a 3,所需时间为t 3.由牛顿第二定律可知:a 3=g sin θ-μg cos θ=4.4 m/s 2,速度达到v 3=22 m/s ,所需时间t 3=330a v -=5 s 综上所述:从绳断到速度为22 m/s 所经历的总时间t =t 2+t 3=0.53 s+5 s=5.53 s.【例13】 如图 所示,光滑水平面上静止放着长L =1.6 m 、质量为Mm =1 kg 的小物体放在木板的最右端,m 与M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F .(1)施力F 后,要想把木板从物体m 的下方抽出来,求力F 的大小应满足的条件;(2)如果所施力F =10 N ,为了把木板从m 的下方抽出来,此力的作用时间不得少于多少?(g 取10 m/s 2)【分析与解答】:(1)力F 拉木板运动过程:对木块:μmg =maa =μga =1 m/s 2对木板:F -μmg =Ma 1a 1=Mmg F μ- 只要a 1>a 就能抽出木板,即F >μ(M +m )g 所以F >4 N.(2)当F =10 N ,设拉力作用的最少时间为t 1,加速度为a 1,撤去拉力后木板运动时间为t 2,加速度为a 2,那么:a 1=M mg F μ-=3 m/s 2a 2=M mg μ=31 m/s2 木板从木块下穿出时:木块的速度:v =a (t 1+t 2)木块的位移:s =21a (t 1+t 2)2 木板的速度:v 木板=a 1t 1-a 2t 2木板的位移:s 木板=21a 1t 12+a 1t 1t 2-21a 2t 22 木板刚好从木块下穿出应满足:v 木板=vs 木板-s =L可解得:t 1=0.8 s【例14】 如图所示,传输带与水平面间的倾角为θ=37°,皮带以10 m/s 的速率运行,在传输带上端AA 到B 的长度为16 m ,则物体从A 运动到B 的时间为多少?【分析与解答】:首先判定μ与tan θ的大小关系,μ=0.5,tan θ=0.75,所以物体一定沿传输带对地下滑,不可能对地上滑或对地相对静止.其次皮带运行速度方向未知,而皮带运行速度方向影响物体所受摩擦力方向,所以应分别讨论.当皮带的上表面以10 m/s 的速度向下运行时,刚放上的物体相对皮带有向上的相对速度,物体所受滑动摩擦力方向沿斜坡向下(如图所示),该阶段物体对地加速度a 1=mmg mg θμθcos sin +=10 m/s 2 方向沿斜坡向下物体赶上皮带对地速度需时间t 1=1a v =1 s 在t 1 s 内物体沿斜坡对地位移 s 1=21a 1t 12=5 m 当物体速度超过皮带运行速度时物体所受滑动摩擦力沿斜面向上,物体对地加速度 a 2=mmg mg θμθcos sin -=2 m/s 2 物体以2 m/s 2加速度运行剩下的11 m 位移需时间t 2则s 2=vt 2+21a 2t 22 即11=10t 2+21×2t 22 t 2=1 s (t 2′=-11 s 舍去)所需总时间t =t 1+t 2=2 sa 3则a 3=mmg mg θμθcos sin -=2 m/s 2 物体从传输带顶滑到底所需时间为t '则s =21a 3t '2t '=32a s =2162⨯ s=4 s. [点评]:本题中物体在本身运动的传送带上的运动,因传输带运动方向的双向性而带来解答结果的多重性.物体所受滑动摩擦力的方向与物体相对于传输带的相对速度方向相反,而对物体进行动力学运算时,物体位移、速度、加速度则均需取地面为参考系.◎能力训练41.如图所示,一根轻弹簧的一端系着一个物体,手拉弹簧的另一端,使弹簧和物体一起在光滑水平面上向右做匀加速运动,当手突然停止运动后的短时间内,物体可能2.放在光滑水平面上的物体受三个平行于水平面的共点力作用而处于静止状态,已知F2垂直于F3.若三个力中去掉F1,物体产生的加速度为2.5 m/s2;若去掉F2,物体产生的加速度为1.5 m/s2;若去掉F3,则物体的加速度大小为A.1.5 m/s2B.2.0 m/s2C.2.5 m/s2D.4.0 m/s23.小磁铁A重10 N,吸在一块水平放置的固定铁板BA拉下来,至少要用15 N的力,若A、B间的动摩擦因数为0.3,现用5 N的水平力推A时,A的加速度大小是_______m/s2.(g取10 m/s2)v1F1,汽车整个运动过程所受阻力恒为F2(大小不变),则F1∶F2为∶∶1∶∶45.机车牵引力一定,在平直轨道上以a1=1 m/s2的加速度行驶,因若干节车厢脱钩,加速度变为a2=2 m/s2,设所受阻力为车重的0.1倍,则脱落车厢的质量与原机车总质量之比等于_______.6.据报道,1989年在美国加利福尼亚州发生的6.9级地震,中断了该地尼米兹高速公路的一段,致使公路上高速行驶的约200辆汽车发生了重大的交通事故,车里的人大部分当即死亡,只有部分系安全带的人幸免.假设汽车高速行驶的速度达到108 km/h,乘客的质量为60 kg,当汽车遇到紧急情况时,在2 s内停下来,试通过计算说明系安全带的必要性.2 kg,在水平恒力F推动下开始运动,4 s末它的速度达到4 m/s,此时将F撤去,又经6 s物体停下来,如果物体与地面的动摩擦因数不变,求F的大小.。
牛顿运动定律的应用—动力学两类基本问题
牛顿运动定律的应用—动力学两类基本问题1.动力学两类基本问题是指已知物体的受力情况求其运动情况和已知物体的运动情况求其受力情况,解决这两类基本问题的思路方法示意图如下:其中受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是连接力和运动的桥梁.2.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.3.两类动力学问题的解题步骤类型1已知物体受力情况,分析物体运动情况【题型1】如图所示滑沙游戏中,做如下简化:游客从顶端A点由静止滑下8s后,操纵刹车手柄使滑沙车匀速下滑至底端B点,在水平滑道上继续滑行直至停止.已知游客和滑沙车的总质量m=70kg,倾斜滑道AB长l AB=128m,倾角θ=37°,滑沙车底部与沙面间的动摩擦因数μ=0.5.滑沙车经过B点前后的速度大小不变,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8,不计空气阻力.(1)求游客匀速下滑时的速度大小;(2)求游客匀速下滑的时间;(3)若游客在水平滑道BC段的最大滑行距离为16m,则他在此处滑行时,需对滑沙车施加多大的水平制动力?【题型2】如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量为m=2 kg的无人机,其动力系统所能提供的最大升力F=36 N,运动过程中所受空气阻力大小恒定,无人机在地面上从静止开始,以最大升力竖直向上起飞,在t=5 s时离地面的高度为75 m(g取10 m/s2).(1)求运动过程中所受空气阻力大小;(2)假设由于动力系统故障,悬停的无人机突然失去升力而坠落.无人机坠落地面时的速度为40 m/s,求无人机悬停时距地面高度;(3)假设在第(2)问中的无人机坠落过程中,在遥控设备的干预下,动力系统重新启动提供向上最大升力.为保证安全着地,求无人机从开始下落到恢复升力的最长时间.类型2已知物体运动情况,分析物体受力情况【题型3】如图甲所示,一质量m=0.4 kg的小物块,以v0=2 m/s的初速度,在与斜面平行的拉力F作用下,沿斜面向上做匀加速运动,经t=2 s的时间物块由A点运动到B点,A、B之间的距离L=10 m.已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g取10 m/s2.求:(1)物块到达B点时速度和加速度的大小;(2)拉力F的大小;(3)若拉力F与斜面夹角为α,如图乙所示,试写出拉力F的表达式(用题目所给物理量的字母表示).【题型4】如图甲所示,质量m=1kg的物块在平行斜面向上的拉力F作用下从静止开始沿斜面向上运动,t=0.5s时撤去拉力,利用速度传感器得到其速度随时间的变化关系图象(v -t图象)如图乙所示,g取10m/s2,求:(1)2s内物块的位移大小x和通过的路程L;(2)沿斜面向上运动的两个阶段加速度大小a1、a2和拉力大小F.针对训练1.如图所示,某次滑雪训练,运动员站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力F =100 N 而由静止向前滑行,其作用时间为t 1=10 s ,撤除水平推力F 后经过t 2=15 s ,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,第二次利用滑雪杖对雪面的作用距离与第一次相同.已知该运动员连同装备的总质量为m =75 kg ,在整个运动过程中受到的滑动摩擦力大小恒为f =25 N ,求:(1)第一次利用滑雪杖对雪面作用获得的速度大小及这段时间内的位移大小;(2)该运动员(可视为质点)第二次撤除水平推力后滑行的最大距离.2.如图所示,质量M =10 kg 的木楔ABC 静置于粗糙水平地面上,木楔与地面间的动摩擦因数μ=0.2.在木楔的倾角θ为37°的斜面上,有一质量m =1.0 kg 的物块由静止开始从A 点沿斜面下滑,当它在斜面上滑行距离s =1 m 时,其速度v =2 m/s ,在这过程中木楔没有动.(sin 37°=0.6,cos 37°=0.8,重力加速度g =10 m/s 2)求:(1)物块与木楔间的动摩擦因数μ1;(2)地面对木楔的摩擦力的大小和方向;(3)在物块沿斜面下滑时,如果对物块施加一平行于斜面向下的推力F =5 N ,则地面对木楔的摩擦力如何变化?(不要求写出分析、计算的过程)3.在水平地面上有一质量为10 kg 的物体,在水平拉力F 的作用下由静止开始运动,10 s 后拉力大小减为F 4,方向不变,再经过20 s 停止运动.该物体的速度与时间的关系如图所示(g =10 m/s 2).求:(1)整个过程中物体的位移大小;(2)物体与地面的动摩擦因数.4.如图甲所示,光滑平台右侧与一长为L =2.5 m 的水平木板相接,木板固定在地面上,现有一小滑块以初速度v 0=5 m/s 滑上木板,恰好滑到木板右端静止。
2013届高考一轮物理复习课件(人教版):第三章第3节 动力学的两类基本问题
第三章
第4节
高考调研
高三物理(新课标版)
一、由受力情况求解运动学物理量 规律方法 1.明确研究对象,根据问题的需要和解题的方便, 选出被研究的物体. 2.全面分析研究对象的受力情况,并画出物体受力 示意图,确定出物体做什么运动(定性).
第三章
第4节
高考调研
高三物理(新课标版)
3.根据力的合成法则或正交分解法求出合外力(大 小、方向),列出牛顿第二定律方程式,求出物体的加速 度.(常以加速度方向为正方向) 4.结合题中给出的物体运动的初始条件,选择合适 的运动学公式求出所需的运动学量.
第4节
高考调研
高三物理(新课标版)
(1)物块经多少时间与木板保持相对静止. (2)在这一时间内, 物块相对于木板滑行的距离多大. (3)物块与木板相对静止后, 物块受到的摩擦力多大.
第三章
第4节
高考调研
高三物理(新课标版)
诱思启导 (1)木板的运动分几个阶段?这几个阶段中,木板的 受力情况各是怎样的?加速度相同吗? (2)物块刚放到木板上后,物块做什么运动?它相对 于木板向什么方向运动,二者对地的位移有什么关系?
第三章
第4节
高考调研
【解析】
高三物理(新课标版)
第三章
第4节
高考调研
高三物理(新课标版)
(1)第一次飞行中,设加速度为 a1. 1 2 匀加速运动 H= a1t1. 2 由牛顿第二定律 F-mg-f=ma1 解得 f=4 N. (2)第二次飞行中,设失去升力时的速度为 v1,上升 的高度为 s1.
第三章
第4节
高考调研
高三物理(新课标版)
诱思启导 (1)物块运动过程中,小车处于什么状态? (2)物块位移、小车位移与车长 L 有什么关系?
(完整版)动力学两类基本问题
动力学两类基本问题1.由受力情况判断物体的运动状态,处理这类问题的基本思路是:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再应用运动学公式求出速度或位移.2.由物体的运动情况判断受力情况,处理这类问题的基本思路是:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力,至于牛顿第二定律中合力的求法可用力的合成和分解法(平行四边形定则)或正交分解法.3.求解上述两类问题的思路,可用如图所示的框图来表示:解决两类动力学基本问题应把握的关键(1)做好两个分析——物体的受力分析和物体的运动过程分析;根据物体做各种性质运动的条件即可判定物体的运动情况、加速度变化情况及速度变化情况.(2)抓住一个“桥梁”——物体运动的加速度是联系运动和力的桥梁.【典例1】(2013·江南十校联考,22)如图3-3-2所示,倾角为30°的光滑斜面与粗糙平面的平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m.(滑块经过B点时没有能量损失,g=10 m/s2),求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.图3-3-2教你审题关键词获取信息①光滑斜面与粗糙的水平面滑块在斜面上不受摩擦力,水平面受摩擦力②从斜面上的A点由静止释放滑块的初速度v0=0③最终停在水平面上的C点滑块的末速度为零④滑块经过B点时没有能量损失斜面上的末速度和水平面上的初速度大小相等第二步:分析理清思路→抓突破口做好两分析→受力分析、运动分析①滑块在斜面上:滑块做初速度为零的匀加速直线运动.②滑块在水平面上:滑块做匀减速运动.第三步:选择合适的方法及公式→利用正交分解法、牛顿运动定律及运动学公式列式求解.解析(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大为v m,设滑块在斜面上运动的加速度大小为a1,则有mg sin 30°=ma1,v2m=2a1hsin 30°,解得:v m=4 m/s(2)滑块在水平面上运动的加速度大小为a2,μmg=ma2v2m=2a2L,解得:μ=0.4(3)滑块在斜面上运动的时间为t1,v m=a1t1得t1=0.8 s由于t>t1,滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s设t=1.0 s时速度大小为v=v m-a2(t-t1)解得:v=3.2 m/s答案(1)4 m/s(2)0.4(3)3.2 m/s1.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个桥梁——物体运动的加速度是联系运动和力的桥梁.2.解决动力学基本问题时对力的处理方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”.(2)正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.3.解答动力学两类问题的基本程序(1)明确题目中给出的物理现象和物理过程的特点.(2)根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.(3)应用牛顿运动定律和运动学公式求解.突破训练3如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取10 m/s2)图5答案 5.53 s解析此题可以分为三个运动阶段:力F存在的阶段物体沿斜面向上加速,受力分析如图所示,由牛顿第二定律和运动学公式得:F-F f-mg sin θ=ma1F f=μF N=μmg cos θv1=a1t1解得:a1=2 m/s2v1=4 m/s第二阶段为从撤去力F到物体沿斜面向上的速度减为零,受力分析如图所示由牛顿第二定律和运动学公式mg sin θ+μmg cos θ=ma20-v1=-a2t2解得:a2=7.6 m/s2t2=0.53 s第三阶段物体反向匀加速运动(因为mg sin θ>μmg cos θ)mg sin θ-μmg cos θ=ma3v2=a3t3解得:a3=4.4 m/s2t3=5 st=t2+t3=5.53 s题组一动力学两类基本问题1.如图3-2-5所示,水平桌面由粗糙程度不同的AB、BC两部分组成,且AB=BC,小物块P(可视为质点)以某一初速度从A点滑上桌面,最后恰好停在C点,已知物块经过AB与BC两部分的时间之比为1∶4,则物块P与桌面上AB、BC部分之间的动摩擦因数μ1、μ2之比为(P物块在AB、BC上所做的运动均可看作匀变速直线运动)()图3-2-5A.1∶1B.1∶4C.4∶1 D.8∶1解析:选D由牛顿第二定律可知,小物块P在AB段减速的加速度a1=μ1g,在BC段减速的加速度a2=μ2g,设小物块在AB段运动时间为t,则可得:v B=μ2g·4t,v0=μ1gt+μ2g·4t,由x AB=v0+v B2·t,x BC=v B2·4t,x AB=x BC可求得:μ1=8μ2,故D正确。
专题19动力学的两类基本问题及等时圆模型-2024届高三物理一轮复习重难点逐个突破(原卷版)
专题19 动力学的两类基本问题及等时圆模型考点一动力学的两类基本问题1.动力学的两类基本问题应把握的关键(1)两大分析——物体的受力分析和运动分析;(2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁(3)由运动学公式和牛顿第二定律列方程求解2.解决动力学基本问题时对力的处理方法(1)在物体受两个力时一般采用“合成法”(2)若物体的受力个数较多(3个或3个以上),则采用“正交分解法”。
3.动力学的两类基本问题的分析方法(1)选定研究对象。
(2)对研究对象进行受力分析并画出受力示意图,根据平行四边形定则,应用合成法或正交分解法,表示出物体所受的合外力,列出牛顿第二定律方程。
(3)对研究对象进行运动分析并画出运动示意图,标出已知量和待求量,选择合适的运动学公式,列出运动学方程。
(4)联立牛顿第二定律方程和运动学方程求解。
1.如图所示,质量m=15 kg的木箱静止在水平地面上,木箱与地面间的动摩擦因数μ=0.2。
现用F=60 N的水平恒力向右拉动木箱(g取10 m/s2)。
求:(1)3 s时木箱的速度大小。
(2)木箱在2 s内的位移大小。
2.(2022·四川·遂宁安居育才卓同国际学校高三阶段练习)如图所示,一个放置在水平台面上的木块,其质量为2kg,受到一个斜向下的、与水平方向成37°角的推力F=10N的作用,使木块从静止开始运动,4s后撤去推力,若木块与水平面间的动摩擦因数为0.1,g取10m/s2,已知sin37°=0.6,cos37°=0.8。
求:(1)撤去推力F时木块的速度为多大?(2)木块在水平面上运动的总位移为多少?3.如图所示,楼梯口一倾斜的天花板与水平地面成θ=37°角。
一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F=10 N,刷子的质量为m=0.5 kg,刷子可视为质点,刷子与天花板间的动摩擦因数μ=0.5,天花板长为L =4 m,sin 37°=0.6,cos 37°=0.8,g=10 m/s2。
高三一轮复习秘籍-第三章专题强化三 动力学两类基本问题和临界极值问题
第三章牛顿运动定律专题强化三动力学两类基本问题和临界极值问题专题解读1.本专题是动力学方法处理动力学两类基本问题、多过程问题和临界极值问题,高考在选择题和计算题中命题频率都很高.2.学好本专题可以培养同学们的分析推理能力,应用数学知识和方法解决物理问题的能力.3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识.过好双基关————回扣基础知识训练基础题目一、动力学的两类基本问题1.由物体的受力情况求解运动情况的基本思路:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再由运动学的有关公式求出速度或位移.2.由物体的运动情况求解受力情况的基本思路:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力.3.应用牛顿第二定律解决动力学问题,受力分析和运动分析是关键,加速度是解决此类问题的纽带,分析流程如下:受力情况二、动力学中的临界与极值问题1.临界或极值条件的标志(1)题目中“刚好”“恰好”“正好”等关键词句,明显表明题述的过程存在着临界点.(2)题目中“取值范围”“多长时间”“多大距离”等词句,表明题述过程存在着“起止点”,而这些“起止点”一般对应着临界状态.(3)题目中“最大”“最小”“至多”“至少”等词句,表明题述的过程存在着极值,这个极值点往往是临界点.2.常见临界问题的条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0.(2)相对滑动的临界条件:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子断裂的临界条件是绳中张力等于它所能承受的最大张力;绳子松弛的临界条件是F T=0.(4)最终速度(收尾速度)的临界条件:物体所受合外力为零.研透命题点————细研考纲和真题分析突破命题点1.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.2.常用方法(1)合成法(2)正交分解法◆类型1已知物体受力情况,分析物体运动情况【例1】(2021·河北卷)如图,一滑雪道由AB 和BC 两段滑道组成,其中AB 段倾角为θ,BC 段水平,AB 段和BC 段由一小段光滑圆弧连接,一个质量为2kg 的背包在滑道顶端A 处由静止滑下,若1s 后质量为48kg 的滑雪者从顶端以1.5m/s 的初速度、3m/s 2的加速度匀加速追赶,恰好在坡底光滑圆弧的水平处追上背包并立即将其拎起,背包与滑道的动摩擦因数为μ=112,重力加速度取g =10m/s 2,sin θ=725,cos θ=2425,忽略空气阻力及拎包过程中滑雪者与背包的重心变化,求:(1)滑道AB段的长度;(2)滑雪者拎起背包时这一瞬间的速度.答案(1)9m(2)7.44m/s解析(1)A→B过程对背包(m1):受力分析,由牛顿第二定律得m1g sinθ-μm1g cosθ=m1a1解得a1=2m/s2①由运动分析得:l=1a1t2②,v1=a1t③2对滑雪者(m2):由运动分析得l=v0(t-t0)+1a2(t-t0)2④2v2=v0+a2(t-t0),其中t0=1s⑤联立①②③④⑤得t=3s,v1=6m/s,v2=7.5m/s,l=9m(2)滑雪者拎起背包过程水平方向动量守恒,有m1v1+m2v2=(m1+m2)v解得v=7.44m/s滑雪者拎起背包时的速度为7.44m/s【变式1】(多选)如图甲所示,质量为m的小球(可视为质点)放在光滑水平面上,在竖直线MN的左侧受到水平恒力F1作用,在MN的右侧除受F1外还受到与F1在同一直线上的水平恒力F2作用,现小球从A点由静止开始运动,小球运动的v-t图像如图乙所示,下列说法中正确的是()A.小球在MN右侧运动的时间为t1-t2B.F2的大小为m v1t1+2mv1 t3-t1C.小球在MN右侧运动的加速度大小为2v1 t3-t1D.小球在0~t4时间内运动的最大位移为v1t2答案BC解析小球在MN右侧运动的时间为t3~t1,故A错误;小球在MN右侧的加速度大小a2=2v1t3-t1,在MN的左侧,由牛顿第二定律可知F1=ma1=mv1t1,在MN的右侧,由牛顿第二定律可知F2-F1=ma2得F2=2mv1t3-t1+mv1t1,故B、C正确;t2时刻后小球反向运动,所以小球在0~t4时间内运动的最大位移是v1t22,故D错误.◆类型2已知物体运动情况,分析物体受力情况【例2】如图甲所示,一质量m=0.4kg的小物块,以v0=2m/s的初速度,在与斜面平行的拉力F作用下,沿斜面向上做匀加速运动,经t=2s的时间物块由A点运动到B点,A、B之间的距离L=10m.已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g取10m/s2.求:(1)物块到达B点时速度和加速度的大小;(2)拉力F的大小;(3)若拉力F与斜面夹角为α,如图乙所示,试写出拉力F的表达式(用题目所给物理量的字母表示).答案(1)8m/s3m/s2(2)5.2N(3)F=mg sinθ+μcosθ+ma cosα+μsinα解析(1)物块做匀加速直线运动,根据运动学公式,有L=v0t+12at2,v=v0+at,联立解得a=3m/s2,v=8m/s(2)对物块受力分析可得,平行斜面方向F cosα-mg sinθ-F f=ma,垂直斜面方向F N=mg cosθ其中F f=μF N解得F=mg(sinθ+μcosθ)+ma=5.2N(3)拉力F与斜面夹角为α时,物块受力如图所示根据牛顿第二定律有F cosα-mg sinθ-F f=ma F N+F sinα-mg cosθ=0其中F f=μF NF=mg sinθ+μcosθ+macosα+μsinα.【变式2】如图所示,粗糙的地面上放着一个质量M=1.5kg的斜面体,斜面部分光滑,底面与地面的动摩擦因数μ=0.2,倾角θ=37°,在固定在斜面的挡板上用轻质弹簧连接一质量m=0.5kg的小球,弹簧劲度系数k=200 N/m,现给斜面施加一水平向右的恒力F,使整体向右以a=1m/s2的加速度匀加速运动(已知sin37°=0.6,cos37°=0.8,g取10m/s2).求:(1)F的大小;(2)弹簧的形变量及斜面对小球的支持力大小.答案(1)6N(2)0.017m 3.7N解析(1)对整体应用牛顿第二定律:F-μ(M+m)g=(M+m)a,解得F=6N.(2)设弹簧的形变量为x,斜面对小球的支持力为F N对小球受力分析:在水平方向:kx cosθ-F N sinθ=ma在竖直方向:kx sinθ+F N cosθ=mg解得x=0.017m,F N=3.7N.多过程问题分析步骤1.将“多过程”分解为许多“子过程”,各“子过程”间由“衔接点”连接.2.对各“衔接点”进行受力分析和运动分析,必要时画出受力图和过程示意图.3.根据“子过程”“衔接点”的模型特点选择合理的物理规律列方程.4.分析“衔接点”速度、加速度等的关联,确定各段间的时间关联,并列出相关的辅助方程.5.联立方程组,分析求解,对结果进行必要的验证或讨论.【例3】如图所示,两滑块A、B用细线跨过定滑轮相连,B距地面一定高度,A可在细线牵引下沿足够长的粗糙斜面向上滑动.已知m A=2kg,m B =4kg,斜面倾角θ=37°.某时刻由静止释放A,测得A沿斜面向上运动的v -t图像如图所示.已知g=10m/s2,sin37°=0.6,cos37°=0.8.求:(1)A与斜面间的动摩擦因数;(2)A沿斜面向上滑动的最大位移;(3)滑动过程中细线对A拉力所做的功.答案(1)0.25(2)0.75m(3)12J解析(1)在0~0.5s内,根据图像,A、B系统的加速度为a1=vt =20.5m/s2=4m/s2对A、B系统受力分析,由牛顿第二定律有m B g-m A g sinθ-μm A g cosθ=(m A+m B)a1得:μ=0.25(2)B落地后,A减速上滑.由牛顿第二定律有m A g sinθ+μm A g cosθ=m A a2将已知量代入,可得a2=8m/s2故A减速向上滑动的位移为x2=v22a2=0.25m0~0.5s内A加速向上滑动的位移x1=v22a1=0.5m所以,A上滑的最大位移为x=x1+x2=0.75m(3)A加速上滑过程中,由动能定理:W-m A gx1sinθ-μm A gx1cosθ=12m A v2-0得W=12J.【变式3】如图所示,一足够长斜面上铺有动物毛皮,毛皮表面具有一定的特殊性,物体上滑时顺着毛的生长方向,毛皮此时的阻力可以忽略;下滑时逆着毛的生长方向,会受到来自毛皮的滑动摩擦力,现有一物体自斜面底端以初速度v0=6m/s冲上斜面,斜面的倾角θ=37°,经过2.5s物体刚好回到出发点,(g=10m/s2,sin37°=0.6,cos37°=0.8).求:(1)物体上滑的最大位移;(2)若物体下滑时,物体与毛皮间的动摩擦因数μ为定值,试计算μ的数值.(结果保留两位有效数字)答案(1)3m(2)0.42解析(1)物体向上滑时不受摩擦力作用,设最大位移为x.由牛顿第二定律可得:mg sin37°=ma1代入数据得:a1=6m/s2由运动学公式有:v20=2a1x联立解得物体上滑的最大位移为:x=3m(2)物体沿斜面上滑的时间为:t1=v0a1=66s=1s物体沿斜面下滑的时间为:t2=t-t1=1.5s下滑过程中,由运动学公式有:x=12a2t22由牛顿第二定律可得:mg sin37°-μmg cos37°=ma2联立解得:μ≈0.421.基本思路(1)认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.2.思维方法极限法把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的假设法临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题数学法将物理过程转化为数学表达式,根据数学表达式解出临界条件【例4】如图所示,一弹簧一端固定在倾角为θ=37°的光滑固定斜面的底端,另一端拴住质量为m1=6kg的物体P,Q为一质量为m2=10kg的物体,弹簧的质量不计,劲度系数k=600N/m,系统处于静止状态.现给物体Q施加一个方向沿斜面向上的力F ,使它从静止开始沿斜面向上做匀加速运动,已知在前0.2s 时间内,F 为变力,0.2s 以后F 为恒力,sin 37°=0.6,cos 37°=0.8,g 取10m/s 2.求:(1)系统处于静止状态时,弹簧的压缩量x 0;(2)物体Q 从静止开始沿斜面向上做匀加速运动的加速度大小a ;(3)力F 的最大值与最小值.答案(1)0.16m (2)103m/s 2(3)2803N 1603N 解析(1)设开始时弹簧的压缩量为x 0对整体受力分析,平行斜面方向有(m 1+m 2)g sin θ=kx 0解得x 0=0.16m(2)前0.2s 时间内F 为变力,之后为恒力,则0.2s 时刻两物体分离,此时P 、Q 之间的弹力为零且加速度大小相等,设此时弹簧的压缩量为x 1对物体P ,由牛顿第二定律得kx 1-m 1g sin θ=m 1a前0.2s 时间内两物体的位移x 0-x 1=12at 2联立解得a =103m/s 2(3)对两物体受力分析知,开始运动时拉力最小,分离时拉力最大NF min=(m1+m2)a=1603对Q应用牛顿第二定律得F max-m2g sinθ=m2aN.解得F max=m2(g sinθ+a)=2803【变式4】两物体A、B并排放在水平地面上,且两物体接触面为竖直面,现用一水平推力F作用在物体A上,使A、B由静止开始一起向右做匀加速运动,如图a所示,在A、B的速度达到6m/s时,撤去推力F.已知A、B 质量分别为m A=1kg、m B=3kg,A与地面间的动摩擦因数μ=0.3,B与地面间没有摩擦,B物体运动的v-t图像如图b所示.g取10m/s2,求:(1)推力F的大小;(2)A刚停止运动时,物体A、B之间的距离.答案(1)15N(2)6m解析(1)在水平推力F作用下,设物体A、B一起做匀加速运动的加速度为a,由B的v-t图象得:a=3m/s2对于A、B组成的整体,由牛顿第二定律得:F-μm A g=(m A+m B)a代入数据解得:F=15N.(2)撤去推力F后,A、B两物体分离.A在摩擦力作用下做匀减速直线运动,B做匀速运动,设A匀减速运动的时间为t,对于A有:μm A g=m A a A解得:a A=μg=3m/s2根据匀变速直线运动规律有:0=v0-a A t解得:t=2s撤去力F后,A的位移为x A=v0t-1a A t2=6m2B的位移为x B=v0t=12m所以,A刚停止运动时,物体A、B之间的距离为Δx=x B-x A=6m.。
3.2牛二应用一:动力学的两类问题
3.2牛二应用一:动力学的两类基本问题一、学习目标会用牛顿第二定律分析和解决两类基本问题:已知受力情况求解运动情况,已知运动情况求解受力情况。
二、知识梳理1.已知力求运动:知道物体受到的作用力,应用牛顿第二定律求加速度,如果再知道物体的初始运动状态,应用运动学公式就可以求出物体的运动情况——任意时刻的位置和速度,以及运动轨迹。
2.已知运动求力:知道物体的运动情况,应用运动学公式求出物体的加速度,再应用牛顿第二定律,推断或者求出物体的受力情况。
3.两类基本问题的解题步骤:(1)确定研究对象,明确物理过程;(2)分析研究对象的受力情况和运动情况,必要时画好受力图和运动过程示意图;(3)根据牛顿第二定律和运动学公式列方程;合力的求解常用合成法或正交分解法;要特别注意公式中各矢量的方向及正负号的选择,最好在受力图上标出研究对象的加速度的方向;(4)求解、检验,必要时需要讨论。
三、典型例题1.有三个光滑斜轨道1、2、3,它们的倾角依次是60°,45°,30°,这些轨道交于O点.现有位于同一竖直线上的三个小物体甲、乙、丙分别沿这三个轨道同时从静止自由下滑,如图所示,物体滑到O点的先后顺序是()A.甲最先,乙稍后,丙最后B.乙最先,然后甲和丙同时到达C.甲、乙、丙同时到达D.乙最先,甲稍后,丙最后2.如图甲所示,为测定物体冲上粗糙斜面能达到的最大位移x与斜面倾角θ的关系,将某一物体每次以不变的初速率v0沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x与斜面倾角θ的关系如图乙所示,g取10 m/s2,根据图象可求出()A.物体的初速率v0=3 m/sB.物体与斜面间的动摩擦因数μ=0.75C.取不同的倾角θ,物体在斜面上能达到的位移x的最小值x min=1.44 mD.当θ=45°时,物体达到最大位移后将停在斜面上3.我国歼-15舰载战斗机首次在“辽宁舰”上成功降落,有关资料表明,该战斗机的质量m=2.0v=80 m/s减小到零所用时间t=2.5 ×104 kg,降落时在水平甲板上受阻拦索的拦阻,速度从s.若将上述运动视为匀减速直线运动,求:该战斗机在此过程中(1)加速度的大小a;(2)滑行的距离x;(3)所受合力的大小F.4.如图所示,一质量为m =2kg 的物体静止在水平地面上,物体与水平地面间的动摩擦因数μ=0.2,现对物体施加一水平向右的恒定拉力F =12N ,取g =10m/s 2。
动力学两类基本问题
动力学的两类基本问题一、 已知物体的受力情况,求解物体的运动情况 【例1】质量m =1.5kg 的物体,在水平恒力F =15N 的作用下,从静止开始运动0.5s 后撤去该力,物体继续滑行一段时间后停下来。
已知物体与水平面的动摩擦因数为μ=0.2,g 取10m/s 2,求:(1)恒力作用于物体时的加速度大小;(2)撤去恒力后物体继续滑行的时间;(3)物体从开始运动到停下来的总位移大小。
【变式拓展1】质量m =4kg 的物块,在一个平行于斜面向上的拉力F =40N 作用下,从静止开始沿斜面向上运动,如图所示,已知斜面足够长,倾角θ=37°,物块与斜面间的动摩擦因数µ=0.2,力F 作用了5s ,求物块在5s 内的位移及它在5s 末的速度。
(g =10m/s 2,sin37°=0.6,cos37°=0.8)【变式拓展2】如图所示,质量m =2kg 的物体与水平地面间的动摩擦因数为μ=0.5,在与水平成θ=37°,大小F =10N 的恒力作用下,从静止开始向右运动,经过t 1=4.0s 时撤去恒力F ,求物体在地面上滑行的总位移s .(g =10m/s 2,sin37°=0.6,cos37°=0.8)【变式拓展3】如图所示,放在水平面上质量为G=10N 的物体受到一个斜向下方的10N 的推力F 作用,这个力与水平方向成θ=37°角,在此恒力的作用下,物体匀速滑动.(g=10m/s 2,要求保留两位有效数字,sin37°=0.6 cos37°=0.8)求:(1)物体与水平面间的滑动摩擦因数?(2)若将此力改为水平向右,从静止开始求10s 末物体速度和10s 内物体的位移?【变式拓展4】如图所示,质量m=2kg 的物体静止于水平地面的A 处,A 、B 间距L=20m.用大小为30N,沿水平方向的外力拉此物体,经t 0=2s 拉至B 处.(取g=10m/s 2)(1)求物体与地面间的动摩擦因数μ;(2)该外力作用一段时间后撤去,使物体从A 处由静止开始运动并能到达B 处,求该力作用的最短时间t .【变式拓展6】质量为10kg的物体在F=200N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°.力F作用2秒钟后撤去,物体在斜面上继续上滑了1.25秒钟后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移s.(已知sin37°=0.6,cos37°=0.8.g=10m/s2)二、已知运动情况求物体的受力情况【例1】质量m=1.5kg的物块(可视为质点)在水平恒力F作用下,从水平面上A点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=2.0s停在B点.已知A、B两点间的距离s=5.0m,物块与水平面间的动摩擦因数μ=0.20,取重力加速度g=10m/s2,求恒力F【变式拓展1】如图所示,质量为0.5kg的物体在与水平面成300角的拉力F作用下,沿水平桌面向右做直线运动,经过0.5m的距离速度由0.6m/s变为0.4m/s,已知物体与桌面间的动摩擦因数μ=0.1,求作用力F的大小。
上课牛顿第二运动定律
3.选取正方向,列方程,画好受力图后,要规定正方 向或建立直角坐标系,把各力分解,然后列出牛顿第 二定律的表达式。
例、风洞实验中可产生水平方向的、大小可以调节的风力,先将一套有小球的细杆放入风洞实验室,小球孔径略大于细杆直径,如图所示
动力学的两类基本问题:
受力情况
通过分析受力求a, 再利用运动学公式
一类是已知受力情况求解运动情况;另一类是已 知运动情况求解受力情况.
运动情况
通过运动学公式 求a再计算力
应用牛顿第二定律的基本步骤
4.解方程、检验.求出结果后,要养成检验的好习惯,看看结果是否符合题意或实际情况.
1.明确研究对象根据题意选取某一物体作为研究对 象,往往是解题的第一要点。
基本题型
例5. 如图,质量为m=1kg的物体静止在与水平方向 成=370角的固定斜面上。当物体受到水平恒力F作用 后,经时间t=2秒,物体沿斜面向上移动了S=8米。如 果物体与斜面间的滑动摩擦系数=0.3, 求水平恒力的大小?
F
例2.A、B两物体的质量分别为mA=2kg,
力均为fm=12N,将它们叠放在光滑水平面上,
例1.如图所示,当剪断AB、OB舜时,
求两图中小球的加速度。
01
02
2、瞬时问题
[例2] 如图所示,A、B两物体的质量分别为M和m,中间用轻弹簧相连,物体与水平面间的摩擦因数为μ,在水平拉力作用下,A、B一起以加速度a向右作匀加速直线运动。试求突然撤去拉力的瞬间,两物体的加速度各为多大。
答案:aA=a ,aB=Ma+μ(M+m)g/m
高二物理必修一必学必背知识点总结(3篇)
高二物理必修一必学必背知识点总结牛顿运动定律的应用1、动力学的两类基本问题:(1)已知物体的受力情况,确定物体的运动情况.基本解题思路是:①根据受力情况,利用牛顿第二定律求出物体的加速度.②根据题意,选择恰当的运动学公式求解相关的速度、位移等.(2)已知物体的运动情况,推断或求出物体所受的未知力.基本解题思路是:①根据运动情况,利用运动学公式求出物体的加速度.②根据牛顿第二定律确定物体所受的合外力,从而求出未知力.(3)注意点:①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图.不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键.②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化.2、关于超重和失重:在平衡状态时,物体对水平支持物的压力大小等于物体的重力.当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力.当物体的加速度方向向上时,物体对支持物的压力大于物体的重力,这种现象叫超重现象.当物体的加速度方向向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象.对其理解应注意以下三点:(1)当物体处于超重和失重状态时,物体的重力并没有变化.(2)物体是否处于超重状态或失重状态,不在于物体向上运动还是向下运动,即不取决于速度方向,而是取决于加速度方向.(3)当物体处于完全失重状态(a=g)时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等.易错现象:(1)当外力发生变化时,若引起两物体间的弹力变化,则两物体间的滑动摩擦力一定发生变化,往往有些同学解题时仍误认为滑动摩擦力不变。
(2)些同学在解比较复杂的问题时不认真审清题意,不注意题目条件的变化,不能正确分析物理过程,导致解题错误。
高三物理 动力学两类基本问题
(1)空气阻力与小球重力大小的比值mfg; (2)小球从抛出到落到地面所经过的时间 t.
思路点拨:根据运动情况确定加速度利用牛顿第二定律结合运动中的受力情况求解. 规范解答:(1)从抛出到最高点,2a1h=v20(1 分) 代入数据求得 a1=12 m/s2(1 分) 根据牛顿第二定律:mg+f=ma1(1 分) mfg=0.2.(1 分) (2)上升过程所用时间 t1=va10=1 s(1 分) 下落过程加速度 a2=mgm-f=mg-m0.2mg=8 m/s2(1 分) 下落过程所用时间 t2,则有 h+H=12a2t22(1 分) 得 t2=2 s(1 分) 总时间 t=t1+t2=3 s.(2 分)
8s 3g.
答案:(1)0.5 (2)
8s 3g
考点二:连接体问题的应用
【例2】 (综合题)如图所示,倾角为θ的光滑斜面固 定在水平地面上,质量为m的物块A叠放在物体B 上,物体B的上表面水平.当A随B一起沿斜面下 滑时,A、B保持相对静止.求B对A的支持力N和 摩擦力f.
解析:当A随B一起沿斜面下滑时,物块A受到竖直向下的重力mg、B对A竖直向上的支 持力N和水平向左的摩擦力f的作用而一起做加速运动,如图(甲). 设B的质量为M,以A、B为整体,根据牛顿第二定律,有 (m+M)·gsin θ=(m+M)a,得a=gsin θ. 将加速度沿水平方向和竖直方向进行分解,如图(乙)所示,则ax=acos θ=gsin θcos θ, ay=asin θ=gsin2 θ
(1)小球的加速度;
(2)最初2 s内小球的位移.
解析:(1)小球在斜杆上受力分析如图所示. 垂直杆方向:Fcos θ=mgcos θ+N① 沿杆方向:Fsin θ-mgsin θ-f=ma② 其中:f=μN③ ①②③联立,并代入数据,得 a=0.4 m/s2. (2)最初 2 s 内的位移 s=12at2=0.8 m.
2022年高考一轮复习 第3章 牛顿运动定律 第3课时 动力学的两类基本问题
时间。下列关系正确的是
()
A.t1=t2
B.t2>t3
C.t1<t2
D.t1=t3
[解析] 设想还有一根光滑固定细杆 ca,则 ca、Oa、da 三 细杆交于圆的最低点 a,三杆顶点均在圆周上,根据等时圆模型 可知,由 c、O、d 无初速度释放的小滑环到达 a 点的时间相等, 即 tca=t1=t3;而由 c→a 和由 O→b 滑动的小滑环相比较,滑行 位移大小相同,初速度均为零,但加速度 aca>aOb,由 x=12at2 可 知,t2>tca,故选项 A 错误,B、C、D 均正确。
[典例] 新能源环保汽车在设计阶段要对各项性能进行测 试。某次新能源汽车性能测试中,如图甲显示的是牵引力传感器 传回的实时数据,但由于机械故障,速度传感器只传回了第 25 s 以后的数据,如图乙所示。已知汽车质量为 1 500 kg,若测试平 台是水平的,且汽车由静止开始做直线运动,所受阻力恒定。求:
考点二 动力学的图像问题 1.常见的动力学图像及问题类型
2.解题策略 (1)问题实质是力与运动的关系,解题的关键在于弄清图像 斜率、截距、交点、拐点、面积的物理意义。 (2)应用物理规律列出与图像对应的函数方程式,进而明确 “图像与公式”“图像与物体”间的关系,以便对有关物理问 题作出准确判断。
[解析] (1)由题图所示 v-t 图像可知, 加速度:a=ΔΔvt =84 m/s2=2 m/s2; 加速时间:t1=4 s, 加速位移:x1=v2t1=82×4 m=16 m, 匀速位移:x2=x-x1=100 m-16 m=84 m, 匀速时间:t2=xv2=884 s=10.5 s, 跑完 100 m 时间 t=t1+t2=14.5 s。
(1)运动员加速过程中的加速度大小 a 及跑完 100 m 所用的时间 t; (2)在加速阶段绳子对轮胎的拉力大小 T 及运动员与地面间的摩 擦力大小 f 人。
动力学的两类基本问题
动力学的两类基本问题
例1
水平面上有相距15 m 的A 、B 两点,一质
量为2 kg 的物体在大小为16 N 、方向斜向上的力F 作用下,从A 点由静止开始做直线运动.某
时刻撤去F ,物体到达B 点时速度为0.若物体与水平面间的动摩擦因数μ=34
,重力加速度g 取10 m/s 2.求物体从A 运动到B 的最短时间.
①由静止开始做直线运动;②某时刻撤去F ,
物体到达B 点时速度为0.
答案 4 s
解析 撤去F 前对物体受力分析如图所示,根据牛顿第二定律有
F cos α-F f =ma 1①
F f =μF N ②
F N =mg -F sin α③
x 1=12
a 1t 12④ 撤去F 后物体只受重力、弹力和摩擦力,利用牛顿第二定律有
μmg =ma 2⑤
x 2=12
a 2t 22⑥ x 1+x 2=s ⑦
a 1t 1=a 2t 2⑧
根据v -t 图象中速度与时间轴所围面积代表位移,由于减速过程物体的加速度不变,在总位移不变的情况下只有增大加速过程的加速度才能让时间变短.由①②③联立可得F cos α
-μ(mg -F sin α)=ma 1利用数学知识可得最大加速度a 1=F 1+μ2
m
-μg =2.5 m/s 2,联立④⑤⑥⑦⑧可求得t 1=3 s ,t 2=1 s ,则总时间t =t 1+t 2=4 s.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动力学的两类基本问题文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]
4.6用牛顿运动定律解决问题(一)【学习目标】
知识与技能
1.知道应用牛顿运动定律解决的两类主要问题。
2.掌握应用牛顿运动定律解决问题的基本思路和方法。
过程与方法
1.通过实例感受研究力和运动关系的重要性。
2.帮助学生学会运用实例总结归纳一般问题的解题规律的能力。
情感态度与价值观
1.初步认识牛顿运动定律对社会发展的影响。
2.初步建立应用科学知识的意识。
【学习重点】应用牛顿运动定律解决问题的基本思路和方法。
【学习难点】物体的受力分析及运动状态分析,解题方法的灵活选择和运用。
正交分解法的应用。
【学习过程】
一、自主学习
1、理解牛顿第一定律的含义
揭示了力与运动的关系,力不是维持物体运动的原因,而
是。
对于牛顿第一定律,你还有哪一些理解?
2、理解牛顿第二定律是力与运动联系的桥梁
牛顿第二定律确定了_______________的关系,使我们能够把物体的___________情况和_________情况联系起来。
类型一:从受力确定运动情况
如果已知物体的受力情况,可以由牛顿第二定律求出物体的___________,再通过__________就可以确定物体的运动情况。
类型二:从运动情况确定受力
如果已知物体的运动情况,根据运动学公式求出物体的加速度,于是就可以由牛顿第二定律确定物体所受的___________。
3、能运用牛顿第三定律分析物体之间的相互作用
物体之间的作用力和反作用力总是
当一个物体的受力不容易分析的时候,我们能不能分析对它施加力的物体?
分析的时候应该注意什么问题?
跟踪练习
1.一个静止在水平面上的木箱,质量为2 kg,在水平拉力F=6 N的作用下从静止开始运动,已知木箱与水平面间滑动摩擦力是4N,求物体2 s末的速度及2 s内的位移。
(g取10 m/s2)
2.如图所示,是电梯上升的v~t图象,若电梯的质量为100kg,则钢绳对电梯的拉力在0~2s之间、2~6s之间、6~9s之间分别为多大?(g取10m/s2)
二、课内探究
引言:牛顿第二定律确定了_______________的关系,使我们能够把物体的
___________情况和_________情况联系起来。
类型一:从受力确定运动情况
如果已知物体的受力情况,可以由牛顿第二定律求出物体的________,再通过_______规律确定物体的运动情况。
例题1:一个静止在水平地面上的物体,质量是 2 kg,在6.4 N的水平拉力作
用下沿水平地面向右运动。
物体与地面间的摩擦力是4.2 N 。
求物体在4 s 末的速度和4 s 内的位移。
(1)从题目中找出关于物理情景的描述。
(2)研究对象是谁?它共受几个力的作用,画出受力图。
合力沿什么方向?大小是多少?
(3)物体的运动是匀变速运动吗?依据是什么?
_______________________________________________
(4)完整写出解答过程。
拓展一:将例题1中的“摩擦力是4.2 N ”改为“动摩擦因
数是0.25 ”, 其他条件均不变,求物体在4 s 末的速度和4 s
内的位移。
(g=10m/s 2)
(1)物体受到的摩擦力应该怎样求?大小是多少?方向向
哪?
(2)画出受力图,写出解答过程。
拓展二:将例题1中的“水平拉力”改为“斜向上与水平方向成37°角”,大小仍为 6.4 N ,其他条件均不变,求物体在 4 s 末的速度和 4 s 内的位移。
已知cos37°=0.8,g =10m/s 2。
(1
)从题目中找出关于物理情景的描述。
(2)研究对象是谁?它共受几个力的作用,画出受力图。
合
力沿什么方向?
(3)拉力与运动方向成一定夹角时,如何求合力?
(4)完整写出解答过程。
类型二:从运动情况确定受力情况
如果已知物体的运动情况,根据________公式求出物体的加速度,于是就可以由牛顿第二定律确定物体所受的___________。
例题 2 一个滑雪的人,质量是75 kg,以v0=2 m/s的初速度沿山坡匀加速滑下,山坡的倾角θ=30°,在t=5 s的时间内滑下的路程x=60 m,求滑雪人受到的阻力(包括摩擦和空气阻力)。
(1)从题目中找出关于物理情景的描述。
(2)研究对象是谁?找出关于运动状态的描述。
(3)求出人的加速度,并画出受力图。
合力沿什么方向?
大小是多少?
(4)怎样求人受的阻力?完整写出解答过程。
学以致用(随堂反馈)
一架救灾直升机从距离地面16 m的高处让一箱物资由静止开始落下,经2 s物资落地,已知物资的质量为10 kg,它下落过程中所受空气阻力可认为大小不变。
求空气阻力的大小。
(取g=10 m/s2)
(1
)找出关于物理情景的描述。
属于哪一类型的问题?
解题的思路应该是什么?
(2)研究对象是谁?受几个力的作用,画出受力图。
合力方向向哪?
(3)写出解答过程。
三、课堂小结,布置作业
求解两类动力学问题的基本思路和方法是什么?
1.首先选取研究对象,分析物理情景,确定问题类型
类型一从受力求运动类型二从运动求受力
受力分析,画出_______图运动分析,由_______公式求加速
度a
由牛顿第二定律F=_____求加
由牛顿第二定律F=ma求合力F 速度a
由________公式求运动情况受力分析,画出_______图,求出
待求的力
2.牛顿第二定律是“桥梁”,受力分析和运动分析是基础,正交分解是方法。
3.作业:
完成“课后练习”。
四、课后练习
1.关于牛顿第二定律的下列说法中,正确的是()
A.物体加速度的大小由物体的质量和物体所受合力大小决定,与物体的速度无关
B.物体加速度的方向只由它所受合力的方向决定,与速度方向无关
C.物体所受合力的方向和加速度的方向及速度方向总是相同的
D.一旦物体所受合力为零,则物体的加速度立即为零,其运动也就逐渐停止了2.如图所示,重为10N的物体以v在粗糙的水平面上向左运动,物体与桌面间的动摩擦因数为0.1。
现在给物体施加水平向右的拉力F,其大小
为20N,则物体受到的摩擦力和加速度大小是(g取10m/s2):
()
A.1N,20m/s2; B.0,21m/s2;
C.1N,21m/s2; D.1N,19m/s2
3.某绿化用撒水车的牵引力不变,所受的阻力与重力的关系是F f=kmg(k为常数)没有撒水时,做匀速直线运动,撒水时它的运动将是()
A.做变加速运动
B.做初速度不为零的匀加速直线运动
C.做匀减速运动
D.仍做匀速直线运动
4.从静止开始做匀加速直线运动的汽车,经过t=10s,发生位移x=30m.已知汽车的质量m=4×103kg,牵引力F=5.2×103N.求:
(1)汽车运动的加速度大小;
(2)运动过程中汽车所受的阻力大小
5.一位滑雪者如果以某初速度v0冲上一倾角为θ=370长为x=20m的山坡,受到的阻力为f=320N恰好能到达坡顶,如果已知雪橇和滑雪者的质量为m=80k g,求滑雪人的初速度是多大?(g取10m/s2)
6.如图所示,质量为m=2kg的物体与竖直墙间的动摩擦因数为0.2,若受到与竖直线夹角为θ=30°的斜向上的推力F作用而沿竖直墙壁滑动,其加速度的大小为5m/s2,g取10m/s2,求
(1)若物体向上匀加速运动,推力的大小为多少?
(2)若物体向下匀加速运动,推力的大小为多少?。