2017大一第一学期期末高数A试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学I
1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是
无穷小. (A) ()()x x βα+
(B) ()()x x 2
2βα+
(C)
[])()(1ln x x βα⋅+
(D) )()
(2x x βα
2. 极限
a
x a x a x -→⎪⎭⎫ ⎝⎛1sin sin lim 的值是( C ). (A ) 1
(B ) e
(C ) a
e
cot (D ) a
e
tan
3.
⎪⎩⎪
⎨⎧=≠-+=001
sin )(2x a x x
e x x
f ax 在0x =处连续,则a =( D ). (A ) 1
(B ) 0
(C ) e (D ) 1-
4. 设)(x f 在点x a =处可导,那么=
--+→h h a f h a f h )2()(lim 0( A ). (A ) )(3a f ' (B ) )(2a f '
(C) )(a f ' (D ) )
(31
a f '
二、填空题(本大题有4小题,每小题4分,共16分)
5. 极限)
0(ln )ln(lim 0>-+→a x a a x x 的值是 a 1.
6. 由x x y e y
x 2cos ln =+确定函数y (x ),则导函数='y x
xe ye x y
x xy
xy ln 2sin 2+++
- . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直
线l 的方程为 13
1211--=--=-z y x . 8. 求函数2
)4ln(2x x y -=的单调递增区间为 (-∞,0)和(1,+∞ ) .
三、解答题(本大题有4小题,每小题8分,共32分)
9. 计算极限10(1)lim
x
x x e
x →+-.
解:1
1
ln(1)120
00(1)1
ln(1)lim
lim lim
2x x x
x x x x e e
x x e
e e x x
x +-→→→+--+-===-
10. 设)(x f 在[a ,b ]上连续,且
]
,[)()()(b a x dt
t f t x x F x
a
∈-=⎰,试求出)(x F ''。
解:
⎰⎰-=x
a
x
a
dt
t tf dt t f x x F )()()(
⎰⎰=-+='x
a
x
a
dt
t f x xf x xf dt t f x F )()()()()( )()(x f x F =''
11. 求
3
cos .sin x
x
dx x ⎰
解
:2
3c o s i
s i
x
x
d x -=-⎰⎰2
2
11s i
22
x x --=-
⎰
四、解答题(本大题有4小题,每小题8分,共32分)
12. 求
⎰
-2
3
2
21
x x dx .
令
1x t =
⎰
--=21
2
322)1
(11
11dt t t t
原式
=-⎰d t
t 121
2
3
2
=arcsin t
12
3
2=
π
6
13. 求函数
212x x y +=
的极值与拐点. 解:函数的定义域(-∞,+∞)
22)1()1)(1(2x x x y ++-=' 322)1()3(4x x x y +--=
''
令0='y 得 x 1
= 1, x 2
= -1
0)1(<''y x 1 = 1是极大值点,0)1(>-''y x 2
= -1是极小值点
极大值1)1(=y ,极小值1)1(-=-y
0=''y 33
故拐点(-3,-23),(0,0)(3,23
)
14. 求由曲线43
x y =与2
3x x y -=所围成的平面图形的面积. 解 :,,
x x x x x x 3
232431240=--+=
x x x x x x ()(),,,.+-==-==620602123
S x x x dx x x x dx
=-++---⎰⎰()()3260
2
3024334 =-++---()()x x x x x x 423602340
21632332316
=+=4521347
1
3 15. 设抛物线2
4x y -=上有两点(1,3)A -,(3,5)B -,在弧 A B 上,求一点(,)P x y 使ABP ∆的面积最大.
AB y x AB P AB x y x x x ABP 连线方程: 点到的距离 的面积
+-==+-=-++-≤≤2104521
5
235
132()
∆
S x x x x x ()()=
⋅⋅-++=-++12452352232
2
当 '=-+='=S x x x S x ()()4410 当时取得极大值也是最大值''=-<=S x x S x ()()401 此时 所求点为,y =313()
另解:由于的底一定故只要高最大而过点的抛物线
的切线与平行时高可达到最大值问题转为求,使 解得所求点为∆ABC AB C AB C x x f x x x C ,,,()
,(),,(,)
002
0004253312113-'=-=--+=-=
六、证明题(本大题4分)
16. 设0x >,试证x x e x +<-1)1(2.
证明:设
0),1()1()(2>+--=x x x e x f x
1)21()(2--='x e x f x ,x xe x f 24)(-='',0)(,
0≤''>x f x ,因此)(x f '在(0,
+∞)内递减。在(0,+∞)内,)(,0)0()(x f f x f ='<'在(0,+∞)内递减,在(0,+∞)
内,),0()(f x f <即0)1()1(2<+--x x e x 亦即当 x >0时,
x x e x +<-1)1(2 试证x x e x +<-1)1(2.