6KV氧化锌避雷器试验报告
氧化锌避雷器实验报告
氧化锌避雷器实验报告引言氧化锌避雷器是一种常见的用于保护电力设备免受雷击的装置。
本实验旨在通过搭建一个简单的氧化锌避雷器实验装置,了解其工作原理以及在不同条件下的性能表现。
实验材料和方法材料•氧化锌避雷器•氧化锌避雷器实验装置•电源•雷电模拟器方法1.搭建实验装置,将氧化锌避雷器正确连接到电源和雷电模拟器之间。
2.设置雷电模拟器的参数,如雷电电流、雷电频率等。
3.打开电源,观察氧化锌避雷器的工作状态。
4.记录实验数据,包括氧化锌避雷器的击穿电压、击穿时间等。
5.根据实验数据进行分析和讨论。
实验结果和讨论实验结果在实验过程中,我们观察到氧化锌避雷器在不同条件下的工作状态。
通过记录实验数据,我们得出了以下结果:1.氧化锌避雷器的击穿电压随着雷电电流的增加而降低。
2.氧化锌避雷器的击穿时间随着雷电频率的增加而减少。
结果分析根据实验结果,我们可以得出以下结论:1.氧化锌避雷器的击穿电压与雷电电流有关。
当雷电电流增大时,氧化锌避雷器需要承受更大的电压才能保持正常工作,因此其击穿电压会降低。
2.氧化锌避雷器的击穿时间与雷电频率有关。
当雷电频率增加时,氧化锌避雷器需要更快地响应雷电冲击,因此其击穿时间会减少。
实验误差和改进方向在实验过程中,由于实验装置和仪器的限制,可能存在一定的误差。
为了减小误差并改进实验,我们可以考虑以下措施:1.使用更精确的仪器和测量方法,以提高实验数据的准确性。
2.增加实验重复次数,以提高实验结果的可靠性。
3.考虑其他因素对氧化锌避雷器性能的影响,如温度、湿度等,以扩展实验的研究范围。
结论通过本次实验,我们对氧化锌避雷器的工作原理和性能有了更深入的了解。
实验结果表明,氧化锌避雷器的击穿电压和击穿时间受到雷电电流和雷电频率的影响。
为了进一步研究和改进氧化锌避雷器的性能,我们可以考虑采取上述提出的改进方向,并探索其他因素对其性能的影响。
参考文献•[1] 某某某,某某某. 氧化锌避雷器性能研究[J]. 电力科学与工程, 20XX, XX(X): XX-XX.•[2] 某某某,某某某. 氧化锌避雷器工作原理探讨[J]. 电力技术与装备, 20XX, XX(X): XX-XX.。
避雷器试验报告
18040001
使用Βιβλιοθήκη 表计型号SD-9401
ZC11D-5
D26--V
JTKZ
编号
0001
3-0264
414.48
139
试验项目
标准
O相
绝缘电阻(MΩ)
试验前/后
/
10000+/10000+
DC U1mA (kV)
≥24
27.2
75% DC U1mA下的
泄漏电流(μA)
≤50
1
持续运行电压下交流泄漏总电流(μA)
3.036
3.039
4
2.929
2.931
2.932
5
2.828
2.836
2.830
低压
a0
b0
c0
0.007655
0.007645
0.007664
空载试验
空载损耗(W)
922.9
空载电流(A)
0.44
负载试验
负载损耗(W)
891.5
阻抗%
4.16
零序阻抗试验(Ω)
8.82
电压(V)
144.4
电流(A)
三、交流耐压试验:
合闸相对地42kV/1min通过
分闸断口间42kV/1min通过
结论与
备注
合格
试验日期:2018.08.24气候:晴环境温度:32℃相对湿度:50%
审核:试验人员:
接地变试验报告
变电站名称
110kV
试验性质
交接
安装仓位
10kV #1接地变
铭牌
型号
DSBC-700/10.5-100/0.4
氧化锌避雷器测试
无间隙金属氧化物避雷器试验避雷针的接地电阻不应大于10欧姆。
避雷针对建筑物的防雷电保护角是小于或等于45度。
一、试验工程1、绝缘电阻;2、直流1mA电压U1mA,及下的泄漏电流;3、运行电压下的交流泄漏电流;4、工频参考电流下的工频参考电压;5、底座绝缘电阻;6、放电计数器动作检查。
二、试验方法及步骤1〕使用2500V及以上兆欧表。
1、使用2500V及以上兆欧表,摇测避雷器的两极绝缘电阻,1min,记录绝缘电阻值。
2、用接地线对避雷器的两极充分放电注意;无间隙金属氧化物避雷器:35kV以上,绝缘电阻不低于2500MΩ;35kV 及以下,绝缘电阻不低于1000MΩ。
2〕直流1mA电压U1mA,及下的泄漏电流测量1、将避雷器瓷套外表擦拭干净。
2、采用高压直流发生器进展试验接线〔选用的试验设备额定电压应高于被试避雷器的直流1mA电压〕,泄漏电流应在高压侧读表,测量电流的导线应使用屏蔽线。
3、升压。
在直流泄漏电流超过200μA时,此时电压升高一点,电流将会急剧增大,所以应放慢升压速度,在电流到达1mA时,读取电压值U1mA后,降压至零。
4、计算0.75倍U1mA值。
5、升压至,测量泄漏电流大小。
6、降压至零,断开试验电流。
7、待电压表指示根本为零时,用放电杆对避雷器放电,挂接地线,拆试验接线。
8、记录环境温度。
判断方法;避雷器直流1mA电压的数值不应该低于GB11032中的规定数值,且U1mA实测值与初始值或制造厂规定值比拟变化不应超过土5%,0.75 U1mA 下的泄漏电流不得大于50μA,且与初始值相比拟不应有明显变化。
如试验数据虽未超过标准要求,但是与初始数据出现比拟明显变化时应加强分析,并且在确认数据无误的情况下加强监视,如增加带电测试的次数等。
考前须知1、由于无间隙金属氧化物避雷器外表的泄漏原因,在试验时应尽可能地将避雷器瓷套外表擦拭干净。
如果仍然试验直流1mA电压不合格,应在避雷器瓷套外表装一个屏蔽环,让外表泄漏电流不通过测量仪器,而直接流入地中。
氧化锌避雷器试验报告单
氧化锌避雷器试验报告单实验目的:1.验证氧化锌避雷器的电气性能指标;2.了解氧化锌避雷器在高压条件下的放电能力;3.评估氧化锌避雷器的可靠性和安全性。
实验装置:1.氧化锌避雷器;2.高压电源;3.电压表;4.电流表。
实验步骤:1.将氧化锌避雷器接入高压电源电路中;2.记录氧化锌避雷器的额定电压和额定电流;3.将高压电源输出电压逐步递增,记录氧化锌避雷器的漏电流和放电频次;4.观察氧化锌避雷器的外观是否有裂纹或其他损坏;5.根据实验数据计算氧化锌避雷器的击穿电压、放电能力等指标。
实验结果:1.氧化锌避雷器的额定电压为XV,额定电流为XA;2.在高压电源输出电压逐步递增的过程中,氧化锌避雷器的漏电流呈递增趋势,并在达到一定电压时发生放电现象;3.氧化锌避雷器的放电能力符合设计要求,能够快速将过流或过压引入地线;4.氧化锌避雷器在试验过程中未发现损坏或裂纹。
实验结论:1.氧化锌避雷器具有良好的漏电流特性,能够有效保护电气设备免受过压侵害;2.氧化锌避雷器的放电能力较强,能够迅速将过流或过压引入地线,避免设备损坏;3.氧化锌避雷器在高压条件下稳定工作,并未出现损坏或裂纹;4.根据实验数据计算得到的氧化锌避雷器的击穿电压、放电能力等指标符合设计要求。
实验注意事项:1.在试验过程中要严格控制输出电压的递增速度,避免过快导致氧化锌避雷器无法正常工作;2.观察氧化锌避雷器外观时需仔细检查,发现损坏或裂纹应立即停止试验;3.实验结束后要将高压电源断开,将氧化锌避雷器接地,确保安全。
总结:通过此次实验,我们验证了氧化锌避雷器的电气性能指标,了解了氧化锌避雷器在高压条件下的放电能力,并评估了其可靠性和安全性。
实验结果表明,氧化锌避雷器具有良好的保护性能,能够有效地保护电气设备,其放电能力较强,能够迅速将过流或过压引入地线。
此外,氧化锌避雷器在高压条件下工作稳定,未出现损坏或裂纹的情况。
综上所述,氧化锌避雷器是一种可靠且安全的设备,具有很高的应用价值。
6kV避雷器试验报告
一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:试验人员:审核:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:。
氧化锌避雷器试验报告
氧化锌避雷器试验报告一、实验目的:1.验证氧化锌避雷器的避雷性能。
2.测试氧化锌避雷器的耐压能力。
二、实验仪器和材料:1.氧化锌避雷器。
2.高压发生器。
3.电流表、电压表。
4.接地电阻测试仪。
5.绝缘板。
三、实验原理:四、实验步骤:1.将氧化锌避雷器接入实验回路中。
2.将高压发生器与氧化锌避雷器相连。
3.调整高压发生器的输出电压,使其达到预定值。
4.观察氧化锌避雷器的电压和电流变化情况,并记录数据。
5.根据实验要求进行绝缘板的测试和接地电阻的测量。
五、实验数据记录与分析:实验记录了不同电压下氧化锌避雷器的电流和电压值,并计算了接地电阻。
六、实验结果与讨论:根据实验数据,可以看出在不同电压下,氧化锌避雷器的电流和电压符合设计要求,并且接地电阻也在合理范围内。
因此可视为氧化锌避雷器经过验收合格。
七、结论:经过实验测试,氧化锌避雷器在不同电压下表现出良好的避雷性能和耐压能力,因此可以有效地保护电力系统设备免受雷击的破坏。
八、实验中存在的不足之处:1.实验过程中可能存在人为误差,需要进一步探究影响因素。
2.由于实验时间和条件的限制,无法进行长时间、大量数据的测试。
九、改进措施:1.增加实验次数和数据采集点,提高实验数据的可靠性。
2.探究氧化锌避雷器在不同条件下的避雷性能,并与其他类型的避雷器进行对比。
十、实验拓展:1.探究氧化锌避雷器的寿命和使用条件。
2.研究氧化锌避雷器的产生原理和材料特性。
[2]XXX,XXX.氧化锌避雷器的原理与应用[M].北京:电力出版社。
高电压防雷设备测试—避雷器试验
生35kV接地故障。
(2)检修人员在检查、解剖故障电缆时发现。该电缆接线端至接地线间(内部)有一
道烧伤痕迹。根据电缆烧痕及现状分析,电缆在做电缆头时因热缩电缆头收缩不
均,而遗留纵向间隙,经长期雨淋进入雨水或浸入潮气,使绝缘电阻下降,电缆
电流的导线应使用屏蔽线(3)升压, 始值或制造厂规定值
在直流泄漏电流超过200μA时,此
比较,变化不大于
±5%(3)75%U
时电压升高一点,电流将会急剧增
1mA下
大,此时应放慢升压速度,在电流
的泄漏电流不大于
50μA
达到1mA时,读取电压值Ua后,降
压至零(4)计算0.75倍U值(5)升
压至0.75 UIav 电压,测量泄漏电流
(5)厂家偷工减料等
避雷器耐压试验规程及案例
01
氧化锌避雷器的原理及耐压试验的定义
氧化锌避雷器的原理
氧化锌ZnO避雷器主要由氧化锌压敏电阻构成。
在正常的工作电压下,压敏电阻值很大,相当于绝缘状态;在过电压作用下,压敏电阻
呈低值被击穿,相当于短路状态。
然而压敏电阻被击状态,是可以恢复的;当高于压敏电压的电压撤销后,它又恢复了高
75%1 电流均超过规程规定的要求值50。解体检查,
避雷器三相上街的瓷套内部无明显异常。同年6月底,在例行
试验时也发现了该站3号主变220KV避雷器存在类似情况。通
过对MOA阀片现场进行烘干后,重新试验,数据合格。因此
判断该避雷器数据异常的原因是避雷器内部整体受潮。
案例二在2016年8月,进行例行试验时发现该
不多时另-路35kV线路出现过流掉闸。事故发生后分别对两条35kV线路及相应变
220kV避雷器试验报告
试验要求
A
B
C
直流1mA下的参考电压(KV)
≥296kV
301.1
299.8
299.6
75%参考电压下的的泄漏电流(μA)
≤50μA
20.3
19.5
20.1
以下空白
四、试验结论:合格
符合《电气装置安装工程电气设备交接试验标准》(GB50150-2006)
五、试验仪器:
MIT520兆欧表;直流高压发生器AST,NO:60-479
≥296kV
298.6
299.9
298.6
75%参考电压下的的泄漏电流(μA)
≤50μA
பைடு நூலகம்20.2
19.7
20.6
以下空白
四、试验结论:合格
符合《电气装置安装工程电气设备交接试验标准》(GB50150-2006)
五、试验仪器:
MIT520兆欧表;直流高压发生器AST,NO:60-479
试验负责人
贾飞
试验者
绝缘电阻(GΩ)
A
91
3.3
13.7
B
94
3.6
12.6
C
96
3.1
13.2
三、测量金属氧化物避雷器参考电压和75%倍参考电压下的的泄漏电流;:
试验项目
试验要求
A
B
C
直流1mA下的参考电压(KV)
≥296kV
299.2
299.4
298.6
75%参考电压下的的泄漏电流(μA)
≤50μA
19.4
20.2
二、测量金属氧化物避雷器及基座的绝缘电阻;环境湿度40%环境温度16℃
相别
氧化锌避雷器的综述报告参考模板
氧化锌避雷器的综述报一. 国内外研究动态1.1概述自从1967年日本发现氧化锌压敏特性以来,具有优异非线性伏安特性的金属氧化物电阻片及金属氧化物避雷器迅速发展,在全球低压、高压及超高压领域的应用日益广泛。
近年来又不断呈现新的特点。
1.2国外发展动态1.2.1日本:最早研究与开发,发展较快乂具特色。
日本在避富器开发方面具有以下几点:1)高梯度电阻片的开发首先研究开发出高梯度电阻片为上世纪九十年代中期。
其梯度为400"mm是通常电阻片的两倍,近年来研究已达600"mm这种高梯度电阻片,开始主要用于金届封闭避富器和油浸避$器中,随后用于所有的避富器产品。
第一台使用高梯度电阻片的154kV>JS封闭避富器运行已超过六年,到目前采用高梯度电阻片的避雷器业已超过5000ffi,运行情况正常。
2)线路避$器的开发据介绍,在日本输电线路的电气故障超过半数是由于雷电引起的。
为了降低雷电灾害,采取了多种对策,如降低接地电阻、架设保护线、保护角减小等等。
利用金届氧化物避$器保护线路。
于1980年开始,用在66k研日77kV系统目前已发展至500kV^路。
线路避雷器绝大部分有间隙,电压等级集中在66kVffi 77kV系统。
近几年的发展表明,66-154kV线路安装仍然较多,产品是小型化后的轻便型,便于安装,也减低了成本。
铁塔单方向全装的情况为多,这种紧凑结构的轻便线路避$器值得我们研究、借鉴。
通过计数器来统计发生故障的情况观察了190拗杆塔、安装线路避$器后,证明有97%的保护效果;另外,观察到53 起安装了线路避$器仍然发生闪络的情况,表明是避富器的申联间隙与绝缘子安装的保护间隙绝缘配合不当。
其中,还有一起避富器损坏事故。
紧凑型避$ 器得到迅速发展。
通过13处杆塔20相避雷器的观察66kV^路1999年到2001年3年的对比,未安装避雷器两条线路发生闪络12起,而安装避富器两条线路只发生闪络5起,其中一条线路未发生闪络。
避雷器试验报告
避雷器试验报告一、引言避雷器是一种用来保护电力设备、电力线路和建筑物等免受雷击和过电压侵害的重要装置。
为了确保避雷器的工作性能和可靠性,需要对其进行试验,以验证其符合设计要求和标准。
本次试验旨在对一种特定型号的避雷器进行性能评估和验证,并撰写试验报告,以供相关部门参考。
二、试验目的1.验证避雷器的过电压保护能力2.测试避雷器的放电电流和放电能力3.评估避雷器的使用寿命和可靠性三、试验方法本次试验采用以下方法进行:1.室内试验:在实验室中使用专用设备对避雷器进行试验,以验证其基本性能参数。
2.室外试验:将避雷器安装在实际工作环境中,通过模拟雷电击中和过电压情况,测试避雷器的实际工作效果。
四、试验过程与结果1.室内试验(1)耐压试验:将避雷器连接到高压源上,施加额定工作电压并保持一定时间后进行观察,确认其绝缘性能符合设计要求。
试验结果显示,避雷器通过了耐压试验。
(2)击穿电压试验:逐渐增加避雷器施加的电压,观察击穿电压点。
经测试发现,避雷器在额定电压下能够正常工作,并未发生击穿现象。
(3)放电电流试验:通过给避雷器施加脉冲电流或模拟雷电过电压,观察避雷器的放电电流,并检查其是否满足设计要求。
试验结果显示,避雷器的放电电流符合设计标准。
2.室外试验(1)避雷器安装验证试验:将避雷器安装到电力设备或建筑物上,通过模拟雷击和过电压情况,观察避雷器的工作状态和效果。
试验结果显示,避雷器能够快速放电,并将过电压引入地下,确保设备和建筑物的安全。
(2)工作寿命试验:将避雷器长时间暴露在室外环境中,模拟多次雷击和过电压情况,观察避雷器的工作状态和能力是否受到影响。
试验结果显示,避雷器的工作寿命符合设计预期,并能持续可靠工作。
五、结论根据上述试验过程和结果,得出以下结论:1.该型号避雷器通过了室内试验中的耐压试验、击穿电压试验和放电电流试验。
2.在室外试验中,避雷器工作正常,能够迅速放电并将过电压引入地下,保护设备和建筑物免受雷击和过电压侵害。
避雷器实验报告
避雷器实验报告避雷器实验报告引言:避雷器是一种用于保护建筑物和电气设备免受雷击侵害的重要设备。
在本次实验中,我们将对不同类型的避雷器进行测试,以评估其性能和可靠性。
实验目的:1. 了解不同类型的避雷器的工作原理和结构。
2. 测试避雷器的放电能力和耐压能力,评估其抵御雷击的能力。
3. 分析实验结果,比较不同避雷器的性能差异。
实验材料和方法:1. 实验设备:不同类型的避雷器、高压电源、雷击模拟器、电流表、电压表等。
2. 实验步骤:a. 将不同类型的避雷器连接到电路中,确保连接正确。
b. 调节高压电源输出电压,模拟雷击电压。
c. 使用雷击模拟器产生雷击电流,记录避雷器的放电能力和耐压能力。
d. 重复实验多次,取平均值,提高实验结果的准确性。
实验结果和分析:通过实验,我们获得了不同类型避雷器的放电能力和耐压能力数据。
根据实验结果,我们可以得出以下结论:1. 金属氧化物避雷器(MOA):MOA是目前最常用的避雷器类型之一。
实验结果显示,MOA具有较高的放电能力和耐压能力,能有效抵御雷击。
这主要归功于MOA内部的氧化锌层,它能迅速引导和分散雷击电流。
2. 间隙避雷器:间隙避雷器是一种传统的避雷器类型,其工作原理是通过间隙放电来保护设备。
实验结果显示,间隙避雷器的放电能力较低,但耐压能力相对较高。
这意味着在遭受雷击时,间隙避雷器可能无法完全放电,但能够保护设备不受过高电压的侵害。
3. 压敏电阻避雷器:压敏电阻避雷器是一种根据电阻值变化来实现放电的避雷器。
实验结果显示,压敏电阻避雷器具有较高的放电能力,但耐压能力较低。
这意味着在遭受雷击时,压敏电阻避雷器能够迅速放电,但可能无法承受较高电压。
结论:根据实验结果,我们可以得出以下结论:1. 不同类型的避雷器具有不同的放电能力和耐压能力。
2. MOA是最常用的避雷器类型之一,具有较高的放电能力和耐压能力。
3. 间隙避雷器具有较高的耐压能力,但放电能力相对较低。
4. 压敏电阻避雷器具有较高的放电能力,但耐压能力较低。
氧化锌避雷器带电测试仪结果分析参考及波形说明
氧化锌避雷器带电测试仪结果分析参考及波形说明氧化锌避雷器带电测试仪结果分析参考及波形说明1. 屏幕左边有电压、电流的波形显示。
这种方式有利于观察接线是否可靠、相位是否正确。
一旦接线不可靠,液晶将显示杂乱的点。
由于现场电流或电压接入点常常有锈蚀的现象,在此状态下观察接线是否良好非常直观、有效。
另外,电流波形一般要超前电压波形90度以内,不然,电压接线(相位)可能接错。
带点测试接电压信号时,一定要接相电压(要引入电压信号的中性点)。
2. 进入测试过程后,波形显示区显示三条曲线(电压、全电流、阻性电流)。
三者只有相位关系,此波形只作为定性分析的依据。
幅值大小无比例关系,只为了显示观察方便。
3. 测试结果分析参考:(1)氧化锌避雷器测试结果的分析以历史数据纵向变化趋势为依据,不刻意追求测试值得绝对大小。
(2)氧化锌避雷器的阻性电流值在正常情况下约占全电流的10~20%。
如果测试值在此范围内,一般可判别此氧化锌避雷器运行良好。
(3)氧化锌避雷器的阻性电流值占全电流的25~40%时,可增加检测频度。
密切关注其变化趋势、并做数据分析判断。
(4)氧化锌避雷器的阻性电流值占全电流的40%以上时,可以考虑退出运行,进一步分析故障原因。
(5)如果阻性电流占全电流的百分比明显增长,其中,基波的增长幅度较大,谐波的增长不明显。
此种情况一般可确定为氧化锌避雷器污秽严重或内部受潮。
(6)如果阻性电流占全电流的百分比明显增长,其中,谐波的增长幅度较大,基波的增长不明显。
此种情况一般可确定为氧化锌避雷器老化。
以上判据仅供参考,国家标准没有明确规定各种判断标准。
某些省电力试验研究院做了一些较具体的规定,广大用户可参考当地电力试验归口部门的相关技术说明和规定。
中压系统(6KV、10KV、20KV)氧化锌避雷器试验作业指导书
Q/HED—2014中压系统氧化锌避雷器试验作业指导书1范围本作业指导书适用于我厂中压系统避雷器(包括#1、#2发电及出口避雷器,大力湾隔离变01P1避雷器,大力湾泵房变压器高压侧避雷器,临河集隔离变01G1、01H1避雷器,宁四铁路二电厂线路避雷器等)试验作业,包括验收试验、预防性试验、大修后试验项目的引用标准、仪器设备要求、作业程序、试验结果判断方法和试验注意事项等。
该试验的目的是判定氧化锌避雷器的状况,能否投入使用或继续使用。
制定本指导书的目的是规范试验操作、保证试验结果的准确性,为设备运行、监督、检修提供依据。
2规范性引用文件电业安全工作规程DL/T596-1996《电力设备预防性试验规程》Q/CDT107 001 2005《电力设备交接和预防性试验规程》高压电器设备试验方法中国电力出版社3安全措施3.1严格执行《电业安全工作规程》3.2工作负责人必须会同运行人员到现场认真执行安全措施。
3.3试验现场应装设围栏及警示带对外悬挂“止步,高压危险”并派人看护。
3.4为保证人身和设备安全,在进行绝缘电阻测量和直流泄露试验后应对试品充分放电。
3.5所带的常用工具、量具应认真清点,严禁遗留在设备内。
3.6进行直流泄露电流等高压试验时,要求必须在试验设备周围设围栏并有专人监护,负责升压的人要随时注意周围的情况,一旦发现异常应立刻断开电源停止试验,查明原因并排除后方可继续试验。
3.7参加检修的人员必须熟悉本作业指导书,并能熟记熟背本书的检修项目,工艺质量标准等。
4设备信息5现场准备及工具仪器准备15.2工作准备□工器具已准备完毕,材料、试验仪器已落实。
□作业文件已组织学习,工作组成员熟悉本作业指导书内容。
W15.3办理相关工作票□检查验证工作票。
W26试验项目中压系统避雷器试验包括以下试验项目:a)绝缘电阻试验。
b)直流1mA电压(U1mA)及0.75U1mA下的泄漏电流测量。
7试验工序及质量标准7.1中压系统避雷器绝缘电阻7.1.1试验目的□测量避雷器的绝缘电阻,目的在于初步检查避雷器内部是否受潮;有并联电阻者可检查其通、断、接触和老化等情况。
避雷器试验报告
避雷器试验报告避雷器试验报告1. 概述本报告旨在对避雷器试验结果进行详细说明和分析,以确保避雷器在实际使用中能够有效地发挥作用,并保障设备和人员的安全。
2. 试验目的•验证避雷器的过流放电能力•测试避雷器的耐压性能•测量避雷器的泄漏电流以及响应时间3. 试验装置及参数•试验装置:模拟雷电冲击发生器、高电压发生器、放电电流测量装置•试验参数:放电电流、工频耐压电压、泄漏电流、响应时间等4. 试验过程过流放电能力试验•调整模拟雷电冲击发生器的放电电流参数•经过多次试验,记录避雷器的过流放电能力参数•结果显示,避雷器能够正常放电,保护外部设备免受雷击的影响耐压性能试验•使用高电压发生器施加工频耐压电压•观察避雷器是否发生击穿现象•试验结果表明,避雷器能够稳定地承受工频耐压电压,不发生电击穿现象泄漏电流和响应时间试验•通过放电电流测量装置测量避雷器的泄漏电流•对避雷器进行多次放电测试,记录其响应时间•实验数据显示,避雷器的泄漏电流极低,且响应时间迅速,保证了设备的安全性能5. 试验结果通过以上试验,我们得出以下结论: - 避雷器具备良好的过流放电能力,能保护外部设备免受雷击的影响 - 避雷器的耐压性能稳定可靠,能承受工频耐压电压 - 避雷器的泄漏电流极低,响应时间快速,有效保护设备的安全性能。
6. 结论根据试验结果,避雷器在各项指标上均达到设计要求,具备良好的保护性能。
因此,该避雷器适合在实际工程中使用,并可有效保障设备和人员的安全。
以上是对避雷器试验结果的详细报告,请相关部门对报告内容进行认真审查,并采取相应的措施以确保避雷器的运行效果和安全性能。
7. 建议事项基于对避雷器试验结果的分析,我们提出以下建议事项:•定期进行避雷器的维护和检测,确保其在长期使用过程中仍然具备良好的保护能力;•避雷器安装位置应合理选择,避免受到建筑物阴影、大树等遮挡物的影响;•相关人员应接受避雷器的使用培训,了解其工作原理和维护方法;•遇到特殊气象条件(如雷暴天气)时,加强对设备的检查和保护措施,确保避雷器的有效工作;•避雷器的运行数据需要定期记录和分析,以便对其性能进行监测和改进。
氧化锌避雷器带电测试实验
氧化锌避雷器带电测试实验课程名称:电气设备故障诊断技术实验组员;X笑庆〔信电09-8〕丁慧慧〔信电09-8〕王喜乐〔信电09-8〕朱星奎〔信电09-8〕目录一、实验目的 (3)二、实验内容 (3)三、实验原理 (3)四、实验方法 (4)五、主要实验仪器设备 (4)六、数据采集与分析步骤 (5)1、数据采集 (5)2、符号意义 (5)3、波形采集 (6)4、波形复原 (7)5、分析 (9)6、小波分形 (10)七、实验总结 (14)一、实验目的1、初步了解氧化锌避雷器的内部构造;2、通过实验了解判定氧化锌避雷器性能优劣的方法;3、通过实验掌握氧化锌避雷器的故障特征和相应的故障诊断方法。
二、实验内容分别对三只氧化锌避雷器进展上电加压实验,利用电流基波与电压基波的相位差φ来判断氧化锌避雷器故障状态。
三、实验原理避雷器是一种过电压保护装置,当电网电压升高到避雷器规定的动作电压时,避雷器动作,释放过电压电荷,将电网电压升高的幅值限制在一定的水平之下,从而保护设备绝缘不受损坏。
避雷器按结构分为保护间隙和管式避雷器、阀式避雷器、磁吹式避雷器和金属氧化物避雷器。
金属氧化物避雷器〔MON〕又称氧化锌避雷器,是一种与传统避雷器概念有很大不同的新型避雷器,区别在于:传统的避雷器其内部空气间隙起着十分重要的作用,在正常运行时,靠间隙将阀片与电源隔开,出现过电压,间隙才被击穿,阀片放点泄流。
而氧化锌避雷器是用氧化锌阀片叠装而成,可以完全取消间隙,这解决了因间隙放电时的限与放电稳定性所引起的各种问题。
由于氧化锌阀片具有非线性特性好的特点,从而是避雷器的特性和结构发生了重大改变。
氧化锌避雷器是以氧化锌为主,并掺入Sb、Bi、Mn、Cr等金属氧化物烧制而成。
氧化锌的电阻率为1-10Ω/cm,晶界层的电阻率是1013-1014Ω/cm,当施加较低电压时,晶界层近似绝缘状态,电压几乎都加在晶界层,流过避雷器的电流只有微安级;电压升高时,晶界层由高阻变低阻,流过的电流急剧增大。
氧化锌避雷器试验方法_氧化锌避雷器的简介及试验
《氧化锌避雷器试验方法_氧化锌避雷器的简介及试验》摘要:要:本文从氧化锌避雷器工作原理、特点及试验方法详细阐述了氧化锌避雷器,a、氧化锌避雷器的通流能力大,1、试验项目的意义:a、可初步了解其内部是否受潮,及时发现缺陷摘要:本文从氧化锌避雷器工作原理、特点及试验方法详细阐述了氧化锌避雷器。
氧化锌避雷器因具有较齐全的防护功能,稳定性高、体积小、使用寿命长,所以目前被广泛应用。
关键词:氧化锌避雷器;优点;特性;试验一、氧化锌避雷器工作原理1、氧化锌避雷器(阀型避雷器的第三代产品)工作原理氧化锌避雷器是世界公认的当代最先进防雷电器。
它是七十年代发展起来的一种新型避雷器,它主要由氧化锌压敏电阻构成。
每一块压敏电阻从制成时就有它的一定开关电压(叫压敏电压或阀值电压),在正常的工作电压下(即小于压敏电压)压敏电阻值很大,相当于绝缘状态,但在冲击电压作用下(大于压敏电压),压敏电阻呈低值被击穿,相当于短路状态。
然而压敏电阻被击状态,是可以恢复的;当高于压敏电压的电压撤销后,它又恢复了高阻状态。
因此,在电力线上如安装氧化锌避雷器后,当雷击时,雷电波的高电压使压敏电阻击穿,雷电流通过压敏电阻流入大地,使电源线上的电压控制在安全范围内,从而保护了电器设备的安全。
2、避雷器的作用避雷器的作用是限制过电压以保护电气设备。
避雷器就是在线路或设备上人为地制造绝缘薄弱点即间隙装置,间隙的击穿电压比线路或设备的雷电冲击绝缘水平低,在正常运行电压下间隙处于隔离绝缘状态,在过电压下间隙被击穿接地,放电降压起到保护线路或设备绝缘的作用。
二、氧化锌避雷器的优点、七大特性及基本参数1、氧化锌避雷器的优点:a、具有完全的防雷功能,即对雷电陡波和雷电幅值同样有限压保护作用;b、防雷保护作用不会造成电力网接地故障或相间短路故障; c、防雷保护作用不应有短路电流或工频续流等工频能源浪费;d 动作特性应具有长期运行稳定性,免受暂态过电压危害; e、具有连续雷电冲击保护能力;f、有较小的外形尺寸,小型化轻量化更便于室内手车柜使用; g、具有20 年以上使用寿命;h、能附带脱离器监察运行工况,当其失效时自动退出运行。
6kV避雷器试验报告
一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:试验人员:审核:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:一、试验依据:(1)GB50150—1991《电气装置安装工程电气设备交接试验标准》(2)《制造厂家出厂技术资料》五、试验结论:。