人工智能课后习题答案清华大学出版社

合集下载

人工智能课后习题答案(清华大学出版社)

人工智能课后习题答案(清华大学出版社)
2
3
1
8
4
7
6
5
仙1(5)
K(5)
J(7)
2
3
1
8
4
7
6
5
1
2
3
8
4
7
6
5
1
2
3
8
4
7
6
5
F
L(5)
1
2
3
7
8
4
6
5
1
2
3
8
4
7
6
5
2
3
1
8
4
7
6
5
1
2
3
8
4
7
6
5
J(5)
A
I(5)
G(5)此
2
3
1
8
4
7
6
5
1

3
7
8
4
6
5
〔2)(0(釘肯i
九•上A•一
、丄:丿
上d
0丿11丿
第3章
3.18
(1)证明:待归结的命题公式为
(此文档为Word格式,下载后可以任意编辑修改!)
试卷装订封面
学年第学期
课程名称:
课程代码
学生系别
专业
班级
任课教师
阅卷教师
考试方式
开卷□闭卷V
考试日期
考试时间
阅卷日期
装订教师
装订日期
缺卷学生姓名及原因:

附:课程考试试卷分析表、期末考核成绩登记表
1.1解图如下:
规则顺序定义如下:
(1) 1->2

《人工智能》课后答案

《人工智能》课后答案

《人工智能》课后答案第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。

2、对量水问题给出产生式系统描述,并画出状态空间图。

有两个无刻度标志的水壶,分别可装5升和2升的水。

设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌。

已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来。

3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。

相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。

和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。

问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。

求N=2时,求解该问题的产生式系统描述,给出其状态空间图。

讨论N为任意时,状态空间的规模。

4、对猴子摘香蕉问题,给出产生式系统描述。

一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。

设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉。

5、对三枚钱币问题给出产生式系统描述及状态空间图。

设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正"或"反、反、反"状态。

6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。

人工智能课后习题答案

人工智能课后习题答案
优化方法
可采用批量梯度下降、随机梯度下降、小批量梯度下降等优化算法,以及动量 法、AdaGrad、RMSProp、Adam等自适应学习率优化方法。
课后习题解答与讨论
• 习题一解答:详细阐述感知器模型的原理及算法实现过程,包括模型结构、激 活函数选择、损失函数定义、权重和偏置项更新方法等。
• 习题二解答:分析多层前馈神经网络的结构特点,讨论隐藏层数量、神经元个 数等超参数对网络性能的影响,并给出一种合适的超参数选择方法。
发展历程
人工智能的发展大致经历了符号主义、连接主义和深度学习三个阶段。符号主义认为人工智能源于对人类思 维的研究,尤其是对语言和逻辑的研究;连接主义主张通过训练大量神经元之间的连接关系来模拟人脑的思 维;深度学习则通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
机器学习原理及分类
深度学习框架与应用领域
深度学习框架
深度学习框架是一种用于构建、训练和部署深度学习模型的开发工具。目前流行的深度学习框架包括 TensorFlow、PyTorch、Keras等。
应用领域
深度学习已广泛应用于图像识别、语音识别、自然语言处理、推荐系统等多个领域,并取得了显著的 成果。
课后习题解答与讨论
习题四解答
讨论人工智能的伦理问题,如数据隐私、算法偏见等,并 提出可能的解决方案。
02 感知器与神经网络
感知器模型及算法实现
感知器模型
感知器是一种简单的二分类线性模型 ,由输入层、权重和偏置项、激活函 数(通常为阶跃函数)以及输出层组 成。
感知器算法实现
通过训练数据集,采用梯度下降法更 新权重和偏置项,使得感知器对训练 样本的分类误差最小化。
时序差分方法

(完整版)人工智能课后习题

(完整版)人工智能课后习题

(完整版)人工智能课后习题第一章绪论1、什么是人工智能?试从学科和能力两方面加以说明。

答:学科:是计算机科学中涉及研究、设计和应用智能机器的一个分支,他的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。

能力:是智能机器所执行的通常与人类智能有关的智能行为,这些智能行为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、行为和问题求解等活动。

2、为什么能够用机器模仿人的智能?答:物理符号系统的假设:任何一个系统,如果它能够表现出智能,那么它就必定能执行输入符号、输出符号、存储符号、复制符号、建立符号结构、条件性迁移6种功能。

反之,任何系统如果具有这6种功能,那么它就能够表现出智能(人类所具有的智能)。

物理符号系统的假设伴随有3个推论。

推论一: 既然人具有智能,那么他(她)就一定是个物理符号系统。

推论二: 既然计算机是一个物理符号系统,它就一定能够表现出智能。

推论三: 既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就能够用计算机来模拟人的活动。

3、人工智能研究包括哪些内容?这些内容的重要性如何?答:1)认识建模。

认识科学是人工智能的重要理论基础,涉及非常广泛的研究课题。

2)知识表示。

知识表示、知识推理和知识应用是传统人工智髓的三大核心研究内容其中,知识表示是基础,知识推理实现问題求解,而知识应用是目的。

知识表示是把人类知识概念化、形式化或模型化。

3)知识推理。

知识推理,包括不确定性推理和非经典推理等,似乎已是人工智能的一个永恒研究课题,仍有很多尚未发現和解决的问题值得研究。

4)知识应用。

人工智能能否获得广泛应用是衡量其生命力和检验其生存力的重要标志。

5)机器感知。

机器感知是机器获吹外部信息的基本途径。

6)机器思维。

机器思维是对传感信息和机器内部的工作信息进行有目的的处理。

7)机器学习。

机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课題。

人工智能课后习题第2章 参考答案

人工智能课后习题第2章 参考答案

第2章知识表示方法参考答案2.8设有如下语句,请用相应的谓词公式分别把他们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。

解:定义谓词P(x):x是人L(x,y):x喜欢y其中,y的个体域是{梅花,菊花}。

将知识用谓词表示为:(∃x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花))(2) 有人每天下午都去打篮球。

解:定义谓词P(x):x是人B(x):x打篮球A(y):y是下午将知识用谓词表示为:(∃x )(∀y) (A(y)→B(x)∧P(x))(3)新型计算机速度又快,存储容量又大。

解:定义谓词NC(x):x是新型计算机F(x):x速度快B(x):x容量大将知识用谓词表示为:(∀x) (NC(x)→F(x)∧B(x))(4) 不是每个计算机系的学生都喜欢在计算机上编程序。

解:定义谓词S(x):x是计算机系学生L(x, pragramming):x喜欢编程序U(x,computer):x使用计算机将知识用谓词表示为:¬(∀x) (S(x)→L(x, pragramming)∧U(x,computer))(5)凡是喜欢编程序的人都喜欢计算机。

解:定义谓词P(x):x是人L(x, y):x喜欢y将知识用谓词表示为:(∀x) (P(x)∧L(x,pragramming)→L(x, computer))2.9用谓词表示法求解机器人摞积木问题。

设机器人有一只机械手,要处理的世界有一张桌子,桌上可堆放若干相同的方积木块。

机械手有4个操作积木的典型动作:从桌上拣起一块积木;将手中的积木放到桌之上;在积木上再摞上一块积木;从积木上面拣起一块积木。

积木世界的布局如下图所示。

图机器人摞积木问题解:(1) 先定义描述状态的谓词CLEAR(x):积木x上面是空的。

ON(x, y):积木x在积木y的上面。

ONTABLE(x):积木x在桌子上。

HOLDING(x):机械手抓住x。

(完整word版)人工智能课后习题答案(清华大学出版社)

(完整word版)人工智能课后习题答案(清华大学出版社)

第1章 1.1 解图如下:(1) 1->2(2) 1->3(3) 2->3(6) 3->2(5) 3->1(4) 2->1 8数码问题 启发函数为不在位的将牌数启发函数为不在位的将牌数距离和S(4)S(5)第2章 2.1 解图:第3章 3.18(1)证明:待归结的命题公式为()P Q P ∧→,合取范式为:P Q P ∧∧,求取子句集为{,,}S P Q P =,对子句集中的子句进行归结可得:① P ② Q③P ④ ①③归结 由上可得原公式成立。

(2)证明:待归结的命题公式为())(()())P Q R P Q P R →→∧→→→(,合取范式为:()()P Q R P Q P R ∨∨∧∨∧∧,求取子句集为{,,,}S P Q R P Q P R =∨∨∨,对子句集中的子句进行归结可得:① P Q R ∨∨ ② P Q ∨③ P ④R ⑤ Q②③归结⑥ P R ∨ ①④归结⑦ R ③⑥归结 ⑧ ④⑦归结 由上可得原公式成立。

(3)证明:待归结的命题公式为()(())Q P Q P Q →∧→→,合取范式为:()()Q P Q P Q ∨∧∨∧,求取子句集为{,,}S Q P Q P Q =∨∨,对子句集中的子句进行归结可得:① Q P ∨ ② Q③ Q P ∨④ P ①②归结 ⑤ P ②③归结 ⑥ ④⑤归结 由上可得原公式成立。

3.19 答案(1) {/,/,/}mgu a x b y b z = (2) {(())/,()/}mgu g f v x f v u = (3) 不可合一(4) {/,/,/}=mgu b x b y b z3.23 证明R1:所有不贫穷且聪明的人都快乐:(()()())∀∧→x Poor x Smart x Happy x R2:那些看书的人是聪明的:(()())∀→x read x Smart xR3:李明能看书且不贫穷:()()∧read Li Poor LiR4:快乐的人过着激动人心的生活:(()())∀→x Happy x Exciting x 结论李明过着激动人心的生活的否定:()Exciting Li将上述谓词公式转化为子句集并进行归结如下:由R1可得子句:①()()()Poor x Smart x Happy x∨∨由R2可得子句:②()()read y Smart y∨由R3可得子句:③()read Li④()Poor Li由R4可得子句:⑤()()∨Happy z Exciting z有结论的否定可得子句:⑥()Exciting Li根据以上6条子句,归结如下:⑦()Happy Li⑤⑥Li/z⑧()()∨⑦①Li/xPoor Li Smart Li⑨()Smart Li⑧④⑩()read Li⑨②Li/y⑩③⑪第4章4.9 答案4.11 答案第5章 5.9 答案 解:把该网络看成两个部分,首先求取(1|12)P T S S ∧。

人工智能课后习题第2章 参考答案

人工智能课后习题第2章 参考答案

第2章知识表示方法参考答案2.8设有如下语句,请用相应的谓词公式分别把他们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。

解:定义谓词P(x):x是人L(x,y):x喜欢y其中,y的个体域是{梅花,菊花}。

将知识用谓词表示为:(∃x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花))(2) 有人每天下午都去打篮球。

解:定义谓词P(x):x是人B(x):x打篮球A(y):y是下午将知识用谓词表示为:(∃x )(∀y) (A(y)→B(x)∧P(x))(3)新型计算机速度又快,存储容量又大。

解:定义谓词NC(x):x是新型计算机F(x):x速度快B(x):x容量大将知识用谓词表示为:(∀x) (NC(x)→F(x)∧B(x))(4) 不是每个计算机系的学生都喜欢在计算机上编程序。

解:定义谓词S(x):x是计算机系学生L(x, pragramming):x喜欢编程序U(x,computer):x使用计算机将知识用谓词表示为:¬(∀x) (S(x)→L(x, pragramming)∧U(x,computer))(5)凡是喜欢编程序的人都喜欢计算机。

解:定义谓词P(x):x是人L(x, y):x喜欢y将知识用谓词表示为:(∀x) (P(x)∧L(x,pragramming)→L(x, computer))2.9用谓词表示法求解机器人摞积木问题。

设机器人有一只机械手,要处理的世界有一张桌子,桌上可堆放若干相同的方积木块。

机械手有4个操作积木的典型动作:从桌上拣起一块积木;将手中的积木放到桌之上;在积木上再摞上一块积木;从积木上面拣起一块积木。

积木世界的布局如下图所示。

图机器人摞积木问题解:(1) 先定义描述状态的谓词CLEAR(x):积木x上面是空的。

ON(x, y):积木x在积木y的上面。

ONTABLE(x):积木x在桌子上。

HOLDING(x):机械手抓住x。

人工智能课后习题答案

人工智能课后习题答案

1.1 解图如下:(1) 1->2(2) 1->3(3) 2->3(6) 3->2(5) 3->1(4) 2->11.2h(n)=∑每个W 左边B 的个数;h(n)满足A*条件;h(n)满足单调限制(大家分析)。

1.3h1(n)= c ij ,一般情况不满足A*条件,但此题满足;ACDEBA=34; h2(n)=|c ij -AVG{(c ij )|,不满足A*条件;ACBDEA=42; 1.4此题最优步数已定,具有A*特征的启发函数对搜索无引导作用。

1.5此题启发式函数见P41。

1.10规定每次一个圆盘按固定方向(如逆时针)转动45°;可用盲目搜索算法构造搜索树;也可构造启发式函数如:h(n)=8个径向数字和与12的方差。

1.11状态空间数:9!=362880;有用的启发信息:1)平方数为3位数的数字:10~31;2)平方的结果数字各位不能重复:13,14,16,17,18,19,23,24,25,27,28,29,31; 只需校验313C =286种状态。

2.1 解图:2.5后手只要拿走余下棋子-1的个数即可。

第3章 3.18以下符号中□表示⌝(1)证明:待归结的命题公式为)(P Q P →⌝∧,求取子句集为},,{P Q P ⌝,对子句集中的子句进行归结可得可得原公式成立。

(2)证明:待归结的命题公式为())(()())P Q R P Q P R →→∧→→→ (,合取范式为:()()P Q R P Q P R ∨∨∧∨∧∧ ,求取子句集为{,,,}S P Q R P Q P R =∨∨∨ ,对子句集中的子句进行归结可得:① P Q R ∨∨ ② P Q ∨③ P ④ R ⑤ Q②③归结⑥ P R ∨ ①④归结 ⑦ R ③⑥归结 ⑧ ④⑦归结 由上可得原公式成立。

(3)证明:待归结的命题公式为()(())Q P Q P Q →∧→→ ,合取范式为:()()Q P Q P Q ∨∧∨∧ ,求取子句集为{,,}S Q P Q P Q =∨∨ ,对子句集中的子句进行归结可得:① Q P ∨ ② Q③ Q P ∨④ P ①②归结 ⑤ P ②③归结 ⑥ ④⑤归结由上可得原公式成立。

(完整word版)人工智能课后答案

(完整word版)人工智能课后答案

第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。

2、对量水问题给出产生式系统描述,并画出状态空间图.有两个无刻度标志的水壶,分别可装5升和2升的水.设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌.已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来.3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。

相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。

和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。

问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。

求N=2时,求解该问题的产生式系统描述,给出其状态空间图。

讨论N为任意时,状态空间的规模。

4、对猴子摘香蕉问题,给出产生式系统描述。

一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。

设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉.5、对三枚钱币问题给出产生式系统描述及状态空间图。

设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正”或”反、反、反”状态。

6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。

7、设可交换产生式系统的一条规则R可应用于综合数据库D来生成出D',试证明若R存在逆,则可应用于D’的规则集等同于可应用于D的规则集。

人工智能原理及其应用第三版课后答案

人工智能原理及其应用第三版课后答案

人工智能原理及其应用第三版课后答案人工智能原理及其应用第三版是一本很好的教材,但是很多同学在做课后习题时会遇到困难。

以下是一些课后答案,希望可以帮助大家更好地学习和掌握人工智能原理及其应用。

Chapter 11. What is artificial intelligence?Artificial intelligence is the study of how to create intelligent machines that are capable of performing tasks that typically require human intelligence, such as understanding natural language, recognizing objects, and making decisions based on data.2. What is intelligence?Intelligence is the ability to acquire, understand, and apply knowledge, reason, and adapt to new situations.3. What are the major subfields of artificial intelligence?The major subfields of artificial intelligence are machine learning, natural language processing, robotics, computer vision, and expert systems.4. What is machine learning?Machine learning is a subfield of artificial intelligence that involves teaching computers to learn from data, without being explicitly programmed.5. What is natural language processing?Natural language processing is a subfield of artificial intelligence that deals with the interaction between computers and humans using natural language.Chapter 21. What is a perceptron?A perceptron is a type of artificial neural network that is used in machine learning to classify input data into one of two possible categories.2. What is supervised learning?Supervised learning is a type of machine learning where the computer is trained on input data and output data, and tries to learn a function that maps input data to corresponding output data.3. What is unsupervised learning?Unsupervised learning is a type of machine learning where the computer is given input data without any corresponding output data, and tries to find patterns and relationships in the data.4. What is reinforcement learning?Reinforcement learning is a type of machine learning where the computer learns to make decisions based on feedback from the environment, with the goal of maximizing a reward signal.Chapter 31. What is a decision tree?A decision tree is a type of data structure that is used in machine learning to model decisions and their possible consequences.2. What is overfitting?Overfitting is a common problem in machine learning where the model is too complex and fits the training data too closely, resulting in poor performance on new data.3. What is cross-validation?Cross-validation is a technique used in machine learning to evaluate the performance of a model on data that was not used during training.4. What is regularization?Regularization is a technique used in machine learning to prevent overfitting by adding a penalty term to the model that penalizes complex models.Chapter 41. What is deep learning?Deep learning is a type of machine learning that uses artificial neural networks with several layers to learn features from input data.2. What is a convolutional neural network?A convolutional neural network is a type of deep neural network that is used to classify images and other types of spatial data.3. What is a recurrent neural network?A recurrent neural network is a type of deep neural network that is used to process data with a temporal or sequential structure, such as speech or music.4. What is transfer learning?Transfer learning is a technique used in machine learning where the knowledge learned by a model on one task is transferred to a related task.In conclusion, the book "Artificial Intelligence Principles and Applications Third Edition" is an excellent resource for learning about artificial intelligence. By understanding the fundamental concepts of artificial intelligence, such as machine learning, natural language processing, and deep learning, one can begin to understand how AI is being used in various fields, including medicine, finance, and transportation. Hopefully, this set of answers to the exercise questions can assist learners in their studies and increase their comprehension of the subject.。

人工智能——课后练习的答案.doc

人工智能——课后练习的答案.doc

人工智能——课后练习的答案答:人工智能是一门允许机器做需要智能的事情的科学,如果它们是由人类做的话。

人工智能是相对于人类的自然智能而言的,即利用人工方法和技术开发智能机器或智能系统来模仿、扩展和拓展人类智能,实现智能行为和“机器思维”,解决需要人类专家处理的问题。

1.2回答: “情报”一词来自拉丁语“传说”,意思是收集和收集。

智力通常用来表达选择、理解和感受。

所谓自然智能是指人类和某些动物所拥有的智能和行为能力。

智力因具体情况而异,根据不同情况有不同的含义。

“智力”是指学习某项技能的能力,而不是技能本身。

1.3回答:专家系统是一种智能计算机程序,它使用知识和推理步骤来解决只有专家才能解决的复杂问题。

也就是说,任何达到同一领域人类专家水平的计算机编程程度都可以称为专家系统。

1.4回答: 自然语言处理-语言翻译系统,金山词霸系列机器人-足球机器人模式识别-微软动画制作游戏-围棋和跳棋第二章知识表达技术2.1解决方案:(1)状态空间是一个符号系统,它使用状态变量和操作符号来表示关于系统或问题的知识。

状态空间是一个四元组(S,O,S0,G): s-状态集;算子的o集;S0-初始状态,S0;G—目的地状态,GS,(G可以是多个特定状态,也可以满足某些属性的路径信息描述)从S0节点到G节点的路径称为解决方案路径。

状态空间解是将初始状态转换成目标状态的有限算子序列:O1O2 O3正常S0S1S2.其中O1、(2)谓词逻辑是命题逻辑的扩展和发展,它将原子命题分解为两部分:对象和谓词。

与命题逻辑中的命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式和复合谓词公式等概念。

一阶谓词逻辑是谓词逻辑中最直观的一种。

(3)语义网是以网络形式表达人类知识的一种方式。

也就是说,有向图用于表示概念之间的关系,其中节点表示概念,节点之间的连接弧(也称为关联弧)表示概念之间的关系。

常见的语义网络形式包括命题语义网络和数据语义网络;人工智能是一门允许机器做需要人工智能的事情的科学。

人工智能课后习题答案(清华大学)

人工智能课后习题答案(清华大学)

4
765
K(7) 123 784
65
6
3
3
4
2
2
1
2
1
3
1
2
2
1
1
1
1
1
1
2
1
1
1
1
1
1
1
第 3章
3.18 (1)证明:待归结的命题公式为 P (Q P ) ,合取范式为: P Q 为 S { P ,Q, P} ,对子句集中的子句进行归结可得:
①P ②Q
③P ④
①③归结
由上可得原公式成立。
P ,求取子句集
有结论的否定可得子句: ⑥ Exciting ( Li )
根据以上 6 条子句,归结如下: ⑦ Happy ( Li ) ⑧ Poor (Li ) Smart ( Li )
⑤⑥ Li /z ⑦① Li /x
⑨ Smart (Li ) ⑩ read ( Li )
⑧④ ⑨② Li /y
?
⑩③
由上可得原命题成立。
R2:那些看书的人是聪明的: x( read (x) Smart ( x))
R3:李明能看书且不贫穷: read ( Li ) Poor ( Li )
Happy (x ))
R4:快乐的人过着激动人心的生活: 结论李明过着激动人心的生活的否定:
x(Happy ( x) Exciting ( x)) Exciting ( Li )
S(5)
283
164
7
5
A(7) 283 164 75
B(5)
283
1
4
765
C(7) 283 164
75

《人工智能》--课后习题问题详解

《人工智能》--课后习题问题详解

《人工智能》课后习题答案第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。

人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。

1.2答:“智能”一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。

所谓自然智能就是人类和一些动物所具有的智力和行为能力。

智力是针对具体情况的,根据不同的情况有不同的含义。

“智力”是指学会某种技能的能力,而不是指技能本身。

1.3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。

即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。

1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。

状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。

与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。

一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。

(3)语义网络是一种采用网络形式表示人类知识的方法。

人工智能 (马少平 朱小燕 著) 清华大学出版社 课后答案 - 完整版(习题部分+答案部分)

人工智能 (马少平 朱小燕 著) 清华大学出版社 课后答案 - 完整版(习题部分+答案部分)

人工智能(马少平朱小燕著) 清华大学出版社课后答案习题部分第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。

2、对量水问题给出产生式系统描述,并画出状态空间图。

有两个无刻度标志的水壶,分别可装5升和2升的水。

设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌。

已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来。

3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。

相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。

和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。

问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。

求N=2时,求解该问题的产生式系统描述,给出其状态空间图。

讨论N为任意时,状态空间的规模。

4、对猴子摘香蕉问题,给出产生式系统描述。

一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。

设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉。

5、对三枚钱币问题给出产生式系统描述及状态空间图。

设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正"或"反、反、反"状态。

6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。

人工智能课程习题与部分解答新版资料

人工智能课程习题与部分解答新版资料

《人工智能》课程习题和部分解答第1章绪论1.1 什么是人工智能? 它研究目标是什么?1.2 什么是图灵测试?简述图灵测试基础过程及其关键特征.1.3 在人工智能发展过程中,有哪些思想和思潮起了关键作用?1.5 在人工智能发展过程中,有哪些思想和思潮起了关键作用?1.7 人工智能关键研究和应用领域是什么?其中,哪些是新研究热点?第2章知识表示方法2.1 什么是知识?分类情况怎样?2.2 什么是知识表示?不一样知识表示方法各有什么优缺点?2.4 人工智能对知识表示有什么要求?2.5 用谓词公式表示下列规则性知识:自然数全部是大于零整数。

任何人全部会死。

[解]定义谓词以下:N(x): “x是自然数”, I(x): “x是整数”, L(x): “x大于0”, D(x): “x会死”, M(x): “x是人”,则上述知识可用谓词分别表示为:xLIx→∀x∨N))](x)()[((xM∀Dx→()])()[(x2.6 用谓词公式表示下列事实性知识:小明是计算机系学生,但她不喜爱编程。

李晓新比她父亲长得高。

2.8 产生式系统由哪多个部分组成? 它们各自作用是什么?2.9 能够从哪些角度对产生式系统进行分类? 叙述各类产生式系统特点。

2.10简述产生式系统优缺点。

2.11 简述框架表示基础组成,并给出框架通常结构2.12框架表示法有什么特点?2.13试结构一个描述你卧室框架系统。

2.14 试描述一个具体大学老师框架系统。

[解] 一个具体大学老师框架系统为:框架名:<老师-1>类属:<大学老师>姓名:张宇性别:男年纪:32职业:<老师>职称:副教授部门:计算机系研究方向:计算机软件和理论工作:参与时间:7月工龄:目前年份-工资:<工资单>2.16把下列命题用一个语义网络表示出来(1)树和草全部是植物;(2)树和草全部是有根有叶;(3)水草是草,且生长在水中;(4)果树是树,且会结果;(5)苹果树是果树一个,它结苹果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能课后习题答案清
华大学出版社
The final edition was revised on December 14th, 2020.
第1章
解图如下:
8数码问题
启发函数为不在位的将牌数启发函数为不在位的将牌数距离和
第2章
解图:
第3章
(1)证明:待归结的命题公式为()
∧→,合取范式为:P Q P
P Q P
∧∧,求取子句集为{,,}
=,对子句集中的子句进行归结可得:
S P Q P
①①③归结
由上可得原公式成立。

(2)证明:待归结的命题公式为())(()())
(,合取范式
→→∧→→→
P Q R P Q P R
为:()()
=∨∨∨,对P Q R P Q P R
S P Q R P Q P R ∨∨∧∨∧∧,求取子句集为{,,,}
子句集中的子句进行归结可得:
①Q②③归结
②P R
∨①④归结
③R③⑥归结
④④⑦归结
由上可得原公式成立。

(3)证明:待归结的命题公式为()(())
→∧→→,合取范式为:
Q P Q P Q
S Q P Q P Q
=∨∨,对子句集中的子句进∨∧∨∧,求取子句集为{,,}
Q P Q P Q
()()
行归结可得:
①P①②归结
②P②③归结
③④⑤归结
由上可得原公式成立。

答案
(1) {/,/,/}
=
mgu a x b y b z
(2) {(())/,()/}
=
mgu g f v x f v u
(3) 不可合一
(4) {/,/,/}
=
mgu b x b y b z
证明
R1:所有不贫穷且聪明的人都快乐:(()()())
∀∧→
x Poor x Smart x Happy x R2:那些看书的人是聪明的:(()())
∀→
x read x Smart x
R3:李明能看书且不贫穷:()()

read Li Poor Li
R4:快乐的人过着激动人心的生活:(()())
∀→
x Happy x Exciting x
结论李明过着激动人心的生活的否定:()
Exciting Li
将上述谓词公式转化为子句集并进行归结如下:
由R1可得子句:
由R2可得子句:
由R3可得子句:
由R4可得子句:
有结论的否定可得子句:
根据以上6条子句,归结如下:
①()
Happy Li⑤⑥Li/z
②()()
∨⑦①Li/x
Poor Li Smart Li
③()
Smart Li⑧④
④()
read Li⑨②Li/y
⑤⑩③
由上可得原命题成立。

第4章
答案
答案
第5章
答案
解:把该网络看成两个部分,首先求取(1|12)
∧。

P T S S
1.首先求取(1|1)
=>=,所以
P T S,因为(1|1)0.7(1)0.2
P S F P F
假设(1|1)1
P S F=,(1|1)
(1)20.1
0.1818
(1)(1)1(21)0.11
P T F
LS P T
LS P T
=
⨯⨯
== -⨯+-⨯+
2.然后求取(1|2)
P T S,因为(2|2)0.6(2)0.4
P S F P F
=>=,所以
假设(2|2)1
P S F=,(1|2)
(1)1000.1
0.9174
(1)(1)1(1001)0.11
P T F
LS P T
LS P T
=
⨯⨯
== -⨯+-⨯+
3.求取(1|1)
O T S和(1|2)
O T S
4.求取(1|12)
P T S S

5.求取(|12)
P H S S
∧,因为(1|12)0.4874(1)0.1
P T S S P T
∧=>=,所以
假设(1|12)1
P T S S
∧=,
()650.01
(|1)0.3963
(1)()1(651)0.011
LS P H
P H T
LS P H
⨯⨯
===
-⨯+-⨯+
6.求取(|3)
P H S,因为(|2)0.0001()0.01
P H T P H
=<=,所以假设(2|3)0
P T S=,则
7.求(|12)
O H S S
∧和(|3)
O H S
8.求(|123)
P H S S S
∧∧
答案
解:。

相关文档
最新文档