生物化学 1 糖类脂质蛋白质

合集下载

生物化学教程 张洪渊TEL (0813 )

生物化学教程 张洪渊TEL   (0813 )
小结:不同学科的合作与交流是推动生物化学前进的基本因素。多学科合作, 有机化学基础,分离与分析技术的发展,研究方法与仪器设备的结合,是生化 发展的主要动力。
14
3 .生化与其他学科关系
经典生物学
生物化学
化学,物理
遗传学,微生物学
分子生物学
生物工程
基因工程 酶工程 蛋白质工程 细胞工程15 发酵工程
多学科合作研究:物理、化学、遗传、仪器等 专家的合作研究,如蛋白质X-射线晶体衍射
13
测定蛋白质结构,DNA测序等。
我国的现代生物化学研究起步较晚,由留美、德、法、 英等学者开始主要有吴宪教授,王英睐,曹天钦,邹 承鲁等教授。
1965年上海有机化学研究所汪猷、北京大学邢其毅 教授用化学法人工合成了具有生物活性的结晶牛胰岛 素。
17
生物化学的发展前景
• 借助于现代科技成果,高速发展生化理论与技术,促进生物学理论技术及生物工程学 的发展。
18
5 .学习生化的方法
A. 教材作用(借鉴、利用- 学习生化科学的知识体系)
a. 主要参考体系,其他资料利用
b. 合理取舍( 知识系统-- 时间、专业 ):
讲课:重点(核心)与线条结合;
8
十九世纪末随着医学、发酵工业的发展而逐渐形成的一门独立的学科,与化 学、有机化学的发展密切相关,涉及农业、工业、医药、国防等各个方面。
早期的生物化学:十八世纪 拉瓦锡 (Attoine-Laurent Lavoisier, 1743-1794,法国) 研究燃烧和呼吸现 象,推翻”燃素学说” 舍 勒 (Carl Wilhelm Scheele, 瑞典)与Joseph Priestly
6
信息代谢:代谢调控
1.2.3 生命物质的结构、功能与生命现象 的关系(功能或机能生化)

生物化学竞赛专题

生物化学竞赛专题

生物化学竞赛专题夏劲松目录第一讲糖类、脂质 (2)第二讲蛋白质 (13)第三讲核酸 (29)第四讲维生素 (43)生物化学的概念及其研究内容生物体的生命现象(过程)作为物质运动的一种独有的特殊的运动形式,其基本表现形式就是(新陈代谢与自我繁殖)。

那么构成这种特殊运动形式物质基础又是什么呢?恩格斯很早就说过“蛋白质是生命活动的表达者”。

现在已知仅有蛋白质是远远不够的,还要有核酸,糖类、脂类、维生素、激素、萜(音tie)类,卜啉(音lin)等。

正是这些生命物质之间的相互协调的作用才形成了丰富多彩的生命现象,那么,这些生命物质到底有那些呢?他们是如何产生与消亡,又是如何相互转变与相互作用呢?这就是生物化学所要研究的内容。

那么就让我们试着给生物化学下一个定义吧。

生物化学是研究生物体的物质构成与生命过程中的化学变化的一门科学。

或者者说生物化学是研究生命现象中的物质基础与化学变化的一门科学。

更简单地说生物化学就是研究生命现象的化学本质。

有人也称生物化学就是生命的化学。

第一讲糖类、脂质一、糖的概念糖类物质是多羟基(2个或者以上)的醛类或者酮类化合物,与它们的衍生物或者聚合物,据此可分为醛糖与酮糖。

还可根据碳层子数分为丙糖、丁糖、戊糖、己糖。

最简单的糖类就是丙糖(甘油醛与二羟丙酮)。

由于绝大多数的糖类化合物都能够用通式C n(H2O)n表示,因此过去人们一直认为糖类是碳与水的化合物,称之碳水化合物。

现在已经这种称呼并不恰当,只是沿用已久,仍有许多人称之为碳水化合物。

二、糖的种类根据糖的结构单元数目多少分为:(1)单糖:不能被水解成更小分子的糖。

(2)寡糖:2-6个单糖分子脱水缩合而成,以双糖最为普遍,意义也较大。

(3)多糖:均一性多糖:淀粉、糖原、纤维素、半纤维素、几丁质(壳多糖)不均一性多糖:糖胺多糖类(透明质酸、硫酸软骨素、硫酸皮肤素等) 由一种单糖缩合的称均一多糖,由不一致单糖缩合的称不均一多糖。

(4)结合糖(复合糖,糖缀合物):糖脂、糖蛋白(蛋白聚糖)、糖-核苷酸等(5)糖的衍生物:糖醇、糖酸、糖胺、糖苷三、糖类的生物学功能(1) 提供能量:植物的淀粉与动物的糖元都是能量的储存形式。

医学生物化学知识点

医学生物化学知识点

医学生物化学知识点医学生物化学是医学专业的重要基础学科之一,主要研究生物体内的生物大分子结构和功能、代谢途径以及相关的调控机制。

本文将介绍一些医学生物化学中常见的知识点,帮助读者更好地理解这门学科的重要内容。

1. 蛋白质蛋白质是生物体内最重要的大分子,由氨基酸通过肽键连接而成。

蛋白质在生物体内起着各种重要的功能,如结构支持、酶催化、免疫调节等。

蛋白质的结构包括一级结构、二级结构、三级结构和四级结构,通过这些结构可以确定蛋白质的功能和作用机制。

2. 碳水化合物碳水化合物是生物体内重要的能量来源,也是细胞膜的主要组成成分。

碳水化合物包括单糖、双糖和多糖三种类型,通过糖酵解和糖异生途径可以转化为ATP分子,为生命活动提供能量。

3. 脂质脂质是生物体内的重要结构物质,包括甘油三酯、磷脂和固醇等多种类型。

脂质在细胞膜的组成中发挥重要作用,同时还参与能量存储和细胞信号传导等生物过程。

4. 核酸核酸是生物体内负责遗传信息传递的大分子,包括DNA和RNA两种类型。

DNA携带着细胞的遗传信息,通过遗传密码决定生物体的生长发育和功能表现;而RNA则参与蛋白质的合成和调控过程,是蛋白质合成的重要组成部分。

5. 酶酶是生物体内催化化学反应的生物催化剂,具有高度选择性和效率。

酶通过调节化学反应的活化能,加速生物体内代谢过程,参与碳水化合物、脂质、蛋白质等生物分子的合成和分解过程。

总结:医学生物化学知识点涉及到生物体内的各种组织和大分子的结构、功能、代谢途径和调控机制。

通过学习这些知识点,可以更好地理解生命的本质和机理,为医学研究和诊断治疗提供理论基础和实践指导。

希望本文所介绍的医学生物化学知识点对读者有所启发和帮助。

生物化学(第三版)课后习题详细解答

生物化学(第三版)课后习题详细解答

生物化学(第三版)课后习题详细解答第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。

糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。

多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。

糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。

同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。

糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。

单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。

因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。

任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。

单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。

许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。

这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。

成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。

在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。

生物化学第1章糖类

生物化学第1章糖类

右旋糖苷 是酵母和细 菌的贮存多 糖。
6 琼 脂
agar
琼脂俗称洋菜,是从红藻类石花菜属及其他属的某些海 藻中提取出来的一种多糖混合物,从琼脂中分离出两个组分, 一个称为琼脂糖(agarose),另一个称为琼脂胶。 琼脂糖是琼脂的主要成分,它是由D-吡喃半乳糖和3,6脱水-L-吡喃半乳糖两个单位交替组成的线性链。 琼脂胶是琼脂糖的衍生物,单糖残基不同程度地被硫酸 基、甲氧基、丙酮酸等所取代。其实琼脂糖只是含这些取代 基最少的琼脂组分。琼脂是多种具有相同主链但不同程度被 荷负电基团取代的多糖混合物。
寡糖结合到蛋白质上形成糖蛋白。许多膜内在蛋
白和分泌蛋白是糖蛋白。 组成糖链的单糖种类、数量、单糖的构型、单糖 之间的连接方式等不同,可以组成天文数字的不同结 构的分子(或糖蛋白的组分),非常适合成为具有特
定意义的信息分子,发挥各种生物学功能。
糖蛋白中的组成糖链的单糖残基通常有Fuc、Gal、
Man、 GalNAc、and Sia(or NeuNAc)。
amylopectin
支链淀粉分支处的连接
淀粉与碘的显色反应
由于α-1,4连接,淀粉分子中的每个葡萄糖残基 与下一个残基都成一定角度。根据X射线衍射分析, 直链淀粉的二级结构是一个左手螺旋,每圈螺旋含 6 个残基,螺距 0.8nm ,直径 1.4nm 。碘分子正好能嵌 入螺旋中心,每圈可容纳一个碘分子(I 2),通过朝 向圈内的羟基氧(提供未共享电子对)和碘(提供空 轨道)之间的相互作用形成稳定的深蓝色淀粉-碘络 合物。产生特征性的蓝色需要约 36 个即 6 圈葡萄糖残 基。支链淀粉螺旋(约25~30个残基)中的短串碘分 子比直链淀粉螺旋中的长串碘分子吸收更短波长的光, 因此支链淀粉遇碘呈紫色到紫红色。

生物化学名词解释

生物化学名词解释

糖类:1、糖:是多羟基的醛或酮及其缩聚物和某些衍生物以及可以水解产生这些化合物的物质的总称。

2、单糖:是最简单的糖,不能再被水解为更小的单位。

3、寡糖:也称低聚糖,是由2-10个分子单糖缩合而成,水解后产生单糖。

4、多糖:是由多个单糖分子缩合而成。

多糖中由相同的单糖基组成的称同多糖,不相同的单糖基组成的称杂多糖。

5、糖异生:糖异生是指从非糖物质合成葡萄糖的过程。

动物可以将丙酮酸、甘油、乳酸及某些氨基酸等非糖物质转化成糖。

6、糖原:糖原是动物体内葡萄糖的储存形式。

7、糖酵解:酶将葡萄糖降解成丙酮酸并伴随着生成ATP的过程,又称EMP途径,缺氧时在细胞胞浆中进行。

脂质:1、脂质:脂类是脂肪酸(C4以上的)和醇[包括甘油醇、鞘氨醇(成称神经醇)、高级一元醇和固醇]等所组成的酯类及其衍生物。

2、单脂:为脂酸与醇(甘油醇、高级一元醇)所组成的酯类。

3、复脂:脂酸与醇(甘油醇,鞘氨醇)所生成的酯,同时含有其他非脂性物质,如糖、磷、酸及氮碱。

4、磷脂:含磷酸与氮碱的脂类,分甘油醇磷脂和鞘氨醇磷脂两类。

鞘氨醇磷脂不含甘油醇而含鞘氨醇。

5、糖脂:含糖分子的脂类,由鞘氨醇或甘油醇与脂酸和糖所组成,如脑苷脂和神经节苷脂。

6、水解:脂肪在酸碱及脂肪酶作用下酯键断裂,产生甘油与脂酸;7、皂化:碱水解脂肪产生的脂酸盐称皂,因此碱水解脂肪的作用称皂化作用;8、皂化值:皂化1g脂肪所需的KOH的质量(mg)。

与脂酸的分子量成反比(为什么?1g中的mol数不同)。

作用:可用来推算油脂的平均分子量。

9、氢化:不饱和脂肪在催化剂影响下,不饱和双键可加入氢而成饱和脂,这个作用称为氢化。

10、卤化:溴碘同样可加入不饱和脂肪的双键上,产生饱和的卤化脂,这种作用称为卤化。

11、碘价(值):100g脂质样品所能吸收的碘的质量(g)。

作用:可推知脂酸的不饱和程度。

可用来测定油脂中脂肪酸的不饱和度。

12、氧化:不饱和脂肪酸与分子氧作用,产生脂酸过氧化物。

(完整版)生物化学知识点重点整理

(完整版)生物化学知识点重点整理

(完整版)生物化学知识点重点整理1.生物化学的概述生物化学是研究生物体内化学组成、结构、功能和变化的学科,是生物学和化学的交叉学科。

它研究的内容包括生物大分子(蛋白质、核酸、多糖和脂质)、酶、代谢、信号传导等生物体内的化学过程和物质的转化。

生物化学的研究对于理解生命的机理和病理过程具有重要意义。

2.蛋白质结构与功能蛋白质是生物体中最重要的生化分子之一,它们具有结构多样性和功能多样性。

蛋白质的结构包括四级结构:一级结构是氨基酸的线性序列;二级结构是氨基酸间的氢键形成的α螺旋和β折叠;三级结构是螺旋和折叠的空间结构;四级结构是多个多肽链的组合形成的复合体。

蛋白质的功能包括催化酶活性、调节信号传导、结构支架等。

3.核酸结构与功能核酸是生物体中的遗传物质,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

DNA是双螺旋结构,由磷酸二酯键连接的脱氧核苷酸组成。

RNA是单链结构,由磷酸二酯键连接的核苷酸组成。

核酸的功能包括存储遗传信息、传递遗传信息和调控基因表达。

4.代谢与能量转化代谢是生物体内的化学反应过程,包括合成反应和分解反应。

合成反应是通过合成物质来维持生物体的正常生理功能;分解反应是通过分解物质来提供能量。

能量转化是代谢过程中最重要的一环,包括能量的捕获、传递和释放。

生物体通过代谢和能量转化来获取能量、转化能量和维持生命活动。

5.酶的催化机制酶是生物体内催化反应的生物分子,能够加速化学反应的速率,降低反应的活化能。

酶的催化机制包括底物识别、底物结合、酶底物复合物的形成、催化反应和生成产物。

酶的催化过程中涉及到酶活性位点的氨基酸残基和底物之间的相互作用。

6.信号传导与细胞通讯细胞内和细胞间的信号传导是维持生物体内稳态和调节机体功能的重要手段。

信号传导包括外部信号的接受、内部信号的传递和效应的产生。

细胞间的信号传导有兴奋性传导和化学信号传导两种方式。

7.糖的分类与代谢糖是生物体内最重要的能量源,也是合成生物大分子的前体。

生物化学大一知识点糖类

生物化学大一知识点糖类

生物化学大一知识点糖类糖类是一类重要的生物分子,它们在细胞代谢和能量供应中扮演着重要角色。

本文将介绍生物化学大一知识点中与糖类相关的内容,包括糖的分类、结构与功能等方面。

1. 糖类的分类糖类可分为单糖、双糖和多糖三类。

单糖是由3-7个碳原子组成的简单糖,例如葡萄糖和果糖。

双糖是由两个单糖分子通过糖苷键连接而成,例如蔗糖和乳糖。

多糖是由多个单糖分子通过糖苷键连接而成,例如淀粉和纤维素。

2. 糖的结构糖分子的基本结构是一个多数的羟基(-OH)和一个醛基(-CHO)或酮基(-C=O)。

根据醛基或酮基的位置,单糖可分为醛糖和酮糖两类。

醛糖的醛基位于末端碳原子,而酮糖的酮基位于内部碳原子。

3. 糖的功能糖在生物体内起着重要的功能作用。

首先,糖类是生物体的能量来源之一。

单糖在细胞内经过代谢反应,产生大量的三磷酸腺苷(ATP),为细胞提供能量。

其次,糖类参与细胞膜的结构与功能。

糖类与脂质和蛋白质结合形成糖脂和糖蛋白,调节细胞膜的通透性和稳定性。

此外,糖类还参与细胞信号传导、免疫应答等生物过程。

4. 糖的代谢糖的代谢包括糖的降解过程和合成过程。

糖降解主要通过糖酵解、无氧呼吸和有氧呼吸三个途径完成。

糖酵解是在无氧条件下进行的,将葡萄糖分解为乳酸或酒精释放能量。

无氧呼吸和有氧呼吸是在有氧条件下进行的,将葡萄糖氧化为二氧化碳和水释放能量。

糖的合成则是通过逆反应进行的,主要发生在植物叶绿体和细菌中。

5. 糖的检测糖的检测常用的方法包括糖试纸法、高效液相色谱法和质谱法等。

糖试纸法是一种简单、快速的检测方法,可以用于尿液和血液中糖的定性和定量分析。

高效液相色谱法和质谱法则更为精确和灵敏,适用于更复杂的样品。

综上所述,糖类是生物体内重要的生物分子,其分类、结构和功能都具有重要意义。

对于生物化学大一学生来说,理解和掌握糖类的知识点对于深入学习细胞代谢和生物能量供应等内容具有重要意义。

通过本文的介绍,希望能够为学生们提供一定的帮助。

生物化学【名词解释】

生物化学【名词解释】

一、糖类化学1.构象:在分子中由于共价单键的旋转所表现出的原子或基团的不同空间排布叫构象。

2.构型:在立体异构体中的原子或取代基团的空间排列关系叫构型。

(D-;L-)3.变旋作用:一个旋光体溶液放置后,其比旋光度改变的现象称变旋。

变旋的原因是在溶液中,糖的链状结构和环状结构(α、β)之间可以相互转变,最后达到一个动态平衡,变旋作用是可逆的,当两型互变达到平衡时,比旋光度即不再改变。

4.Fehling试剂:CuSO4+KOH+酒石酸钠或柠檬酸钠5.成脎作用:单糖的第1、2碳与苯肼结合后,成晶体糖脎,称成脎作用。

可用来鉴别除葡萄糖、甘露糖和果糖外的某些单糖。

6.糖脎:与醛、酮反应时,许多还原糖生成含有两个苯腙基(=N-NH-C6H5)的衍生物,称为糖的苯脎,即糖脎。

7.糖蛋白:短链寡糖与蛋白质以共价键连接而成的复合糖。

8.蛋白聚糖:蛋白质和糖胺聚糖通过共价键连接而成的大分子复合物9.对映体:一个不对称碳原子的取代基在空间里的两种取向是物体与镜像关系,并且两者不能重叠的两种旋光异构体。

10..糖苷:环状单糖的半缩醛(或半缩酮)羟基与另一化合物发生缩合形成的缩醛(或缩酮)称为糖苷。

11.糖苷键:糖基和配基之间的连键称为糖苷键。

12.磷酸戊糖途径:机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸已糖旁路二、脂质化学1.必需脂肪酸:机体生命活动必不可少,但机体自身又不能合成,必须由食物供给的多不饱和脂肪酸。

2.皂化值:皂化1g脂肪所需的KOH的毫克数。

平均相对分子质量=(3×56×1000)/皂化值3.碘值:100g脂质样品所能吸收的碘克数。

油脂的不饱和度用碘值价表示。

4.脂肪酸的β-氧化:指脂肪酸活化为脂酰CoA,脂肪酰CoA进入线粒体基质后,在脂肪酸β-氧化多酶复合体催化下,依次进行脱氢、水化、再脱氢和硫解四步连续反应,释放出一分子乙酰CoA和一分子比原来少两个碳原子的脂酰CoA。

侯英健核心笔记生物化学

侯英健核心笔记生物化学

侯英健核心笔记生物化学内容如下:
1. 氨基酸和多肽:氨基酸是蛋白质的基本单位。

有8种氨基酸的异构体在生物化学上最重要,且合成蛋白质的酶很稳定。

通过肽键作用,两个氨基酸形成多肽,进一步聚合形成蛋白质。

氨基酸和多肽有重要的化学性质,如等电点。

了解氨基酸和多肽的性质有助于理解蛋白质的结构和功能。

2. 酶与生物催化:酶是一种生物催化剂,比许多无机催化剂效率更高。

酶催化反应具有选择性,这与它的三维结构有关。

生物催化是指一些生物体通过化学反应而产生的代谢或合成反应。

了解酶和生物催化对于理解生命的化学过程至关重要。

3. 核酸:核酸是所有生物体的遗传物质,包括DNA和RNA。

DNA主要存在于细胞核中,而RNA主要存在于细胞质中。

了解核酸的结构、功能以及基因表达对于理解生命的本质至关重要。

4. 糖类和脂质:糖类、脂质和蛋白质是构成生物体的主要有机化合物。

糖类和脂质在能量储存和运输、细胞膜的结构和功能等方面发挥着重要作用。

5. 蛋白质折叠与稳定:蛋白质折叠是指一个未折叠的氨基酸链如何形成一个有功能的蛋白质结构。

蛋白质的折叠和稳定受到许多因素的影响,如氨基酸序列、环境因素等。

在回答侯英健核心笔记生物化学时,可以围绕以上五个主题展开论述,详细解释每个主题的基本概念、化学性质、功能以及它们在生命过程中的作用。

同时,可以讨论蛋白质折叠问题、基因工程、蛋白质组学等前沿领域的研究进展,以帮助读者更好地理解现代生物化学的发展和应用。

总之,要确保回答清晰、准确、全面,以便帮助读者更好地理解和掌握生物化学知识。

生物化学考验知识点总结,王镜岩版上册

生物化学考验知识点总结,王镜岩版上册

·第一章糖是所有含有醛基和酮基的多羟基化合物的总称。

糖的生物学功能:1.结构成分2.主要能源物质3.转变为其他物质。

包括合成蛋白质,核酸和脂类4.信息分子同分异构包括结构异构和立体异构,立体异构包括几何异构和旋光异构。

同分异构指存在两个或多个具有相同数目和种类的原子并因而具有相同相对分子质量的化合物的现象结构异构是由于分子中原子连接的次序不同造成的,包括碳架异构体,位置异构体,功能异构体。

几何异构由于分子中双键或环的存在或其他限制原子间的自由旋转引起的旋光异构由于手性分子造成的旋光性指物质具有使经过的偏振光旋转一定角度的能力。

右旋为+,左旋为-手性碳原子指与四个不同的原子或原子基团共价连接并因而失去对称性的四面体碳构型指立体异构体中的原子或取代基的空间排列关系叫构型。

构型分为D-型和L-型。

构型改变必定伴随共价键的断裂与重组。

人体中的糖绝大多数是D-型糖构象指在分子中由于共价单键的旋转所表现出的原子或基团的不同空间排布。

理论上构象有无数种。

单糖从丙糖到庚糖,都含有手性碳原子。

二羟丙酮除外。

单糖D,L构型由碳链最下端手性碳的构型决定。

己糖因六元环称为吡喃糖,戊糖因五元环成为呋喃糖醇与糖的醛基或酮基发生亲核加成反应生成半缩醛,如果羟基和羰基处于同一分子内,生成环状半缩醛。

环状半缩醛中C1(异头碳原子)连接的羟基与末端羟基取向相同成为α异头物,取向相反称为β异头物。

单糖旋光性是鉴定糖的一个重要指标。

甜度以蔗糖为标准,蔗糖甜度为100。

单糖易溶于水,微溶于乙醇,难溶于乙醚,丙酮。

单糖异构化:在弱碱条件下,D-葡萄糖,D-甘露醇,D-果糖可以通过中间产物烯二醇相互转化单糖氧化反应:醛基氧化成醛糖酸,伯醇基氧化成糖醛酸,醛基伯醇基均氧化形成醛糖二酸单糖还原反应:生成糖醇糖脎反应:与苯肼反应,比例为1:3.糖脎相当稳定,不溶于水,热水中可以析出黄色晶体。

葡萄糖糖脎是黄色细针状,麦芽糖糖脎为长薄片形。

生物化学知识点总结

生物化学知识点总结

生物化学知识点总结一、生物大分子1. 蛋白质蛋白质是生物体内功能最为多样的大分子化合物,其分子量从几千到上百万不等。

蛋白质是由氨基酸通过肽键连接而成的,其结构包括一级结构、二级结构、三级结构和四级结构。

蛋白质的功能包括酶、结构蛋白、免疫蛋白等。

在生物体内,蛋白质不断地受到合成和降解的调控。

2.核酸核酸也是生物体内非常重要的大分子,主要包括DNA和RNA。

DNA是生物遗传信息的分子载体,其双螺旋结构具有很高的稳定性,基因组里的信息以DNA的形式存在,RNA则是DNA的复制和表达过程中的关键参与者。

核酸的功能包括遗传信息的传递、蛋白质的合成控制等。

3.多糖多糖是由多个单糖分子经由糖苷键链接而成的高分子化合物。

生物体内包括多种多糖类物质,如纤维素、淀粉、糖原、聚合葡萄糖和壳多糖等。

在生物体中,多糖具有贮存能量、提供结构支持以及信号识别等生理功能。

4.脂质脂质是一类疏水性的生物大分子,其结构包括脂类、脂肪酸、甘油和磷脂等。

脂质在细胞膜的形成和维护、能量的储存和释放以及信号转导等生理过程中扮演着重要的角色。

二、酶和酶动力学1. 酶的结构和功能酶是生物体内催化生物化学反应的分子,在酶的作用下,生物体内的化学反应可以以更快的速度进行。

酶的结构包括活性位、辅基和蛋白质结构。

酶的功能包括催化特定的反应、特异性和高效性等。

2. 酶动力学酶动力学研究的是酶催化反应的速率和反应机理。

酶动力学参数包括最大反应速率(Vmax)、米氏常数(Km)、酶的抑制和激活等。

酶动力学研究为理解生物化学反应提供了重要的信息。

三、生物体内代谢途径糖代谢包括糖异生途径、糖酵解途径、糖原代谢和半乳糖代谢等,主要在细胞内进行,产生能量和代谢产物。

2. 脂质代谢脂质代谢包括脂质合成、脂质分解、脂蛋白代谢和胆固醇代谢等,涉及到脂肪酸、三酰甘油、磷脂和胆固醇等的合成和降解过程。

3. 氨基酸代谢氨基酸代谢包括氨基酸合成、氨基酸降解、氨基酸转运等,对于蛋白质的降解和合成具有重要的作用,同时参与许多代谢途径。

生物化学知识点

生物化学知识点

生物化学知识点生化知识点概述1. 生物大分子的结构与功能- 蛋白质:氨基酸序列、一级、二级、三级和四级结构、蛋白质折叠、功能域。

- 核酸:DNA和RNA的结构、碱基配对、双螺旋、RNA的多样性(mRNA, tRNA, rRNA等)。

- 糖类:单糖、多糖、糖蛋白、糖脂。

- 脂质:甘油三酯、磷脂、甾体化合物。

2. 酶学- 酶的定义、特性、命名。

- 酶促反应动力学:米氏方程、酶抑制、酶激活。

- 酶的结构与机制:活性位点、催化机制、酶的调控。

3. 代谢途径- 糖酵解:步骤、调节、能量产出。

- 柠檬酸循环(TCA循环):反应、关键酶、调节。

- 电子传递链与氧化磷酸化:电子载体、质子梯度、ATP合成。

- 脂肪酸代谢:β-氧化、脂肪酸合成、脂肪酸氧化。

- 氨基酸代谢:脱氨基作用、转氨作用、氨基酸的降解和合成。

- 核苷酸代谢:碱基合成、核苷酸合成与降解。

4. 信号传导- 受体类型:G蛋白偶联受体、酪氨酸激酶受体、离子通道受体。

- 第二信使:cAMP、IP3、DAG、Ca2+。

- 信号传导途径:MAPK通路、PI3K/Akt通路、Wnt/β-catenin通路。

5. 基因表达与调控- DNA复制:复制机制、DNA聚合酶、复制起始点。

- 转录:RNA聚合酶、启动子、增强子、沉默子。

- 翻译:核糖体结构、tRNA作用、蛋白质合成过程。

- 基因调控:表观遗传学、非编码RNA、转录因子。

6. 分子生物学技术- 克隆技术:限制性内切酶、连接酶、载体、转化。

- PCR技术:原理、引物设计、扩增程序。

- 基因编辑:CRISPR-Cas9、TALENs、ZFNs。

- 蛋白质组学:质谱分析、蛋白质芯片、蛋白质互作。

7. 细胞结构与功能- 细胞膜:脂质双层、膜蛋白、膜流动性。

- 细胞器:线粒体、内质网、高尔基体、溶酶体。

- 细胞骨架:微丝、中间丝、微管。

- 细胞周期:G1、S、G2、M期、细胞凋亡。

8. 生物化学疾病- 代谢疾病:苯丙酮尿症、糖原贮积病。

生物化学(第三版)课后习题解答

生物化学(第三版)课后习题解答

生物化学(第三版)课后习题解答第一章糖类提要糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。

糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。

多数糖类具有(CHO)n的实验式,其化学本质是多2羟醛、多羟酮及其衍生物。

糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。

同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。

糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。

单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。

因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。

任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。

单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。

许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。

这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。

成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。

在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。

生物化学复习资料

生物化学复习资料

第一章绪论生物化学:简单来讲,研究生物体内物质组成(化学本质)和化学变化规律的学科。

生物化学的研究内容:生物分子的结构与功能(静态生化);物质代谢及其调节(动态生化);生命物质的结构与功能的关系及环境对机体代谢的影响(功能生化)。

第二章糖类化学一、糖的定义及分类糖类是一类多羟基醛(或酮),或通过水解能产生这些多羟基醛或多羟基酮的物质。

糖类分类:(大体分为简单糖和复合糖)单糖:基本单位,自身不能被水解成更简单的糖类物质。

最简单的多羟基醛或多羟基酮的化合物。

Eg:半乳糖寡糖:2~10个单糖分子缩合而成,水解后可得到几分子单糖。

Eg:乳糖多糖:由许多单糖分子缩合而成。

如果单糖分子相同就称为同聚多糖或均一多糖;由不同种类单糖缩合而成的多糖为杂多糖或不均一多糖。

复合糖:是指糖和非糖物质共价结合而成的复合物,分布广泛,功能多样,具有代表性的有糖蛋白或蛋白聚糖,糖脂或脂多糖。

二单糖1、单糖的构型:在糖的化学中,采用D/L法标记单糖的构型。

单糖构型的确定以甘油醛为标准。

距羰基最远的手性碳与D-(+)-甘油醛的手性碳构型相同时,为D型;与L-(-)-甘油醛构型相同时,为L型。

2、对映异构体:互为镜像的旋光异构体。

如:D-Glu与L-Glu3、旋光异构现象:不对称分子中原子或原子团在空间的不同排布对平面偏振光的偏正面发生不同影响所引起的异构现象。

4、差向异构体:具有两个以上不对称碳原子的的分子中仅一个不对称碳原子上的羟基排布方式不同。

如:葡萄糖与甘露糖;葡萄糖与半乳糖。

5、环状结构异构体的规定:根据半缩醛羟基与决定直链DL构型的手性碳上羟基处于同侧为α,异侧为β。

(只在羰基碳原子上构型不同的同分异构体)6、还原糖:能还原Fehling试剂或Tollens试剂的糖叫还原糖。

分子结构中含有还原性基团(如游离醛基半缩醛羟基或游离羰基)的糖,还原糖是指具有还原性的糖类,叫还原糖。

1)单糖和寡糖的游离羰基,有还原性。

2)以开链结构存在的单糖中除了二羟丙酮外均具有游离羰基。

必修一生物化学的组成元素

必修一生物化学的组成元素

图示为细胞(鲜 重)中的化合物 及其含量
再想一想:
鲜活细胞含量最 多的元素是什么? 为什么?
O
脱水后的细胞, 含量最多的元素 是什么?
C
无机物: 水: 含量:在活细胞中含量最多
自由水 结合水 形式:有_____和_____两种
①自由水:在细胞内以游离状态存在,可以自由流动 ②结合水:与其他物质结合,不能自由流动 旺盛 ③自由水/结合水 比值大的细胞新陈代谢____; 反之细胞新陈代谢_____。 弱 ④种子晒干失去的水分是______,利于贮藏,可 自由水 再萌发; 自由水和结合水 种子烘干失去的水分是__________,不可 再萌发。
2、组成玉米和人体的化学元素种类和含量 是否相同?
3.组成细胞的大量元素的原子序数均在20以 内,这对构建生命物质有何意义?构成生物 体的元素都能从自然界中找到,说明了什么?
4.分析组成细胞的元素与构成自然界的元素 有何区别。这说明了什么?
答案:1.C、H、O、N
2.不相同,生物体中种类大体相同,含量差 异很大 3.组成细胞的大量元素的原子序数均在20以 内,这些元素在自然界中含量丰富,可以保 证细胞结构物质的稳定,有利于形成复杂的 生物体。 说明生物界与非生物界具有统一性。
实验试剂
实验处理 实验现象
双缩脲B液3~4 双缩脲B液3~4滴 滴 摇匀 摇匀
紫色 颜色无变化
实验三原则: 1、对照性原则 2、单一变量原则 3、等量原则
本节课知识结构图
元素 物质基础 细胞
大量元素 主要元素 基本元素 最基本元素 微量元素
糖 鉴定原理,
有机物 脂质—脂肪 试剂,现 象,过程, 注意事项 蛋白质 核酸 无机物: 水 无机盐
所用材料一要脂肪含量高,例,植物油,花生,葵花种子

大学二年级生物学生物化学基础

大学二年级生物学生物化学基础

大学二年级生物学生物化学基础在大学二年级生物学专业中,学生们将开始学习更加深入的生物化学基础知识。

生物化学作为生物学和化学的交叉学科,研究生物体内的化学反应和生物分子的结构以及其功能。

本文将介绍大学二年级生物学生物化学基础的相关内容。

一、生物化学简介生物化学是研究生物体内化学反应的科学,包括生物分子的结构、生理功能以及代谢途径等。

生物化学研究的核心是生物分子,如蛋白质、核酸、多糖和脂质等。

通过研究这些生物分子的组成、结构和相互作用,我们可以深入了解生物体内的分子机制和生物过程。

二、生物分子的结构与功能1. 蛋白质:蛋白质是生物体内最为重要的生物分子之一,其功能包括酶催化、工程物质运输、信号传导等。

蛋白质的结构与功能密切相关,包括主链的氨基酸序列、二级结构(α-螺旋、β-折叠)、三级结构(立体构型)以及四级结构(多个多肽链的组装)。

通过研究蛋白质的结构和功能,可以揭示生物体内许多重要的生物过程。

2. 核酸:核酸是DNA和RNA的统称,它们是生物体内储存和传递遗传信息的分子。

DNA包含了生物体的遗传信息,而RNA则在蛋白质合成中起重要作用。

核酸的结构包括相同的碱基对和磷酸骨架,但其功能却有所不同。

通过研究核酸的结构和功能,我们可以理解生物体内基因表达和遗传变异的机制。

3. 多糖:多糖是由多个单糖分子组成的生物分子,如淀粉、糖原和纤维素等。

多糖在生物体内具有多种重要的功能,如储存能量、提供支持和保护等。

通过研究多糖的结构和功能,我们可以了解生物体内能量代谢和结构支持的过程。

4. 脂质:脂质是一类疏水性分子,包括脂肪酸、甘油和磷脂等。

脂质在生物体内起到重要的结构和储存能量的作用。

通过研究脂质的结构和功能,我们可以深入了解生物体内膜结构和信号传导的机制。

三、生物化学代谢途径生物体内有许多复杂的化学反应和代谢途径,通过这些反应和途径,生物体维持着其正常的功能和生理状态。

生物化学代谢途径包括糖类代谢、脂类代谢和氨基酸代谢等。

食品生物化学名词解释

食品生物化学名词解释

名词解释1.生物氧化:糖、脂肪和蛋白质等有机物在体内逐步氧化分解成CO2和H2O,并释放出能量的过程称为生物氧化。

2.联合脱氨基作用:转氨基作用和氧化脱氨基作用配合进行的叫做联合脱氨基作用。

分为①氨基酸的脱氨基借转氨基与Glu的氧化脱氨偶联;②氨基酸的脱氨基与嘌呤核苷酸循环偶联。

3.别构效应:蛋白质的构象并不是固定不变的,当有些蛋白质表现其生物功能时,其构象发生改变,从而改变了整个分子的性质,这种现象称为别构效应。

4.冈崎片断:DNA半不连续复制的过程中,一条链是连续合成的,另一条链的合成是不连续的,即先合成若干短片段,再通过酶的作用将这些短片段连在一起构成第二条链。

这些短的片段就称为冈崎片段。

5.增色效应:核酸变性后,260nm的紫外吸收值明显增加。

6、同工酶:是指能催化相同的化学反应,但其分子组成及结构不同,理化性质和免疫学性质彼此存在差异的一类酶。

它们可以存在于同以种属的不同个体,或同一个体的不同组织器官,甚至存在于同一细胞的不同亚细胞结构中。

7、糖原异生作用:由简单的非糖前体转变为糖的过程。

糖异生不是糖酵解的简单逆转。

虽然由丙酮酸开始的糖异生利用了糖酵解中的七步进似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三个反应。

8.氧化磷酸化:生物体通过生物氧化所产生的能量,一部分用以维持体温外,大部分可以通过磷酸化作用转移至高能磷酸化合物ATP中。

这种伴随放能的氧化作用而进行的磷酸化称为氧化磷酸化。

9、诱导契合假说::认为酶分子的结构并非与底物分子正好互补,而是具有一定的柔性,当酶分子与底物分子靠近时,酶受底物分子诱导,其构象发生有利于与底物结合的变化,酶与底物在此基础上互补契合进行反应。

10、超二级结构:在蛋白质分子中特别是球状蛋白质中经常可以看到若干相邻的二级结构元件(主要是α螺旋和β折叠)组合在一起,彼此相互作用,形成种类不多的,有规则的二级结构组合或者二级结构串,在多种蛋白质中充当三级结构的构建,称之为超二级结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档