第二部分:固态金属塑性成形
材料加工原理
= aVDLσ / kTd ε
2
(7.2)
式 中, a 为晶粒 形 状常 数 (a=5-15) ; V 为 原 子 体 积 ; DL 为晶 格 内 扩 散 系数; k 为 波 耳兹曼 常数;T为温度;d为晶粒尺寸。
这种机理的特征是: 1) 流 动 应 力 和 应 变 速 率 呈 线 性 变 化 , 即m等于1。 2) 应变速率与晶粒尺寸的平方成反比。 3) 变形过程的激活能是自扩散的。 4) 变形中晶粒拉长。 此 理 论 可以 解释 一 些 材料的 蠕 变变 形,但不能充分解释超塑性变形,如在蠕 变变形中,m值可为1,并且晶粒沿外力方 向 拉 长 ; 而在 超塑性 变 形中, m 值 一般不 大于0.8,变形后晶粒仍保持等轴状。
2.超塑性成形的种类
超塑性实际上是材料在特定条件下的一 种特殊状态。超塑性通常按变形特性和状态 分为三类,即微细晶粒超塑性(又称恒温超塑 性或第—类超塑性)、相变超塑性(又称变态超 塑性、转变超塑性或第二类超塑性)以及其他 超塑性(又称第三类超塑性)。
ቤተ መጻሕፍቲ ባይዱ
标准分享网 免费下载
7.1.3 超塑性变形机理
1. 溶解—沉淀理论 1945 年 , 为 解释 超塑性 现象 , 苏联 学 者 包 赤伐尔提 出所 谓 “ 溶解 — 沉淀 ” 理 论。 根据 这 种 理 论 ,超塑性 主 要 发生 在 两 相 合金中。 当 合金 中 一相在 另 一相 中的 极限溶解 度 随 温度变化 时, 由 于在变 形 过 程中可 能产生 局部 温度 波 动 , 使 一 些 相 界 上 发生 溶解 过 程, 而在 另 一 些 相 界 上 发生 沉淀 过 程。 这 种特 定 的 物 质迁移 扩 散 过 程 引起 晶粒相 互移 动 , 在 合 适 的高 温下 , 变 形速 度 小则 产生 超塑性。 这一 理 论 对 于 大 量 晶间 滑移 、 晶粒转动 及 单 相 合金的超塑性 现象 还无法解释。
金属的塑性变形
滑移
滑移:在切应力作用下,晶体的一部分相对于另一部分沿着一
定的晶面(滑移面)和晶向(滑移方向)产生相对位移, 且不破坏晶体内部原子排列规律性的塑变方式。
τ
τ
a)未变形
bτ )弹性变形
τc)弹塑性变形
单晶体滑移变形示意图
d)塑性变形
孪生
孪生:晶体内的一部分原子(红色)相对另一部分原子沿某个
晶面转动,使未转动部分与转动部分的原子排列成镜面对称关系。
一、金属的可锻性(塑性加工性能)
定义:在锻造过程中,金属通过塑性加工而不开裂, 并获得合格零件的能力。 衡量指标:金属的塑性和变形抗力 塑性越高、变形抗力越低,可锻性越好。
二、影响金属可锻性的因素:
三个主要因素:金属的本质、加工条件、应力状态 1、金属的本质(内在因素): ①化学成分
➢ 碳钢:钢的含碳量越低,可锻性越好; ➢ 合金钢:合金元素含量越高,可锻性越差; ➢ 纯金属的可锻性优于合金。 ②金属组织
冷变形过程缺点:
①冷变形过程的加工硬化使金属的塑性变差,给进一步塑性变 形带来困难。 ②对加工坯料要求其表面干净、无氧化皮、平整。 ③加工硬化使金属变形处电阻升高,耐蚀性降低。
五、纤维组织及其利用
纤维组织(热加工流线):
塑性加工中,金属的晶粒形状和晶界分布的杂质沿变形方 向被拉长,呈纤维状。纤维组织不能热处理消除,只能通过锻 压改变其形状和方向。
纯金属或单相固溶体(奥氏体)的可锻性优于多相组织; 均匀细晶的可锻性优于粗晶组织和铸态柱状晶; 钢中存在网状二次渗碳体时可锻性下降。
影响金属可锻性的因素:
2、加工条件:
①变形温度 温度越高,金属塑性提高,
变形抗力降低,可锻性提高。
加热温度过高,产生缺陷: 过热:晶粒长大,使综合机械性能下降; 过烧:晶粒边界氧化或熔化 ,一击即碎; 脱碳:碳与环境气体反应,使表层含碳量减少; 严重氧化:表层与 氧反应,生成氧化物。
金属塑性成形PPT课件
(Mg、Zn、Cd、α-Ti)
3.2塑性成 形机理
滑移
3 金属塑性 成形
滑移带 500倍
26
3.2塑性成 形机理 滑移
3 金属塑性 成形
27
3.2塑性成 形机理 滑
移
3 金属塑性 成形
28
3.2塑性成 形机理 滑移
3 金属塑性 成形
辊锻,楔横轧, 辗环,辊弯
7
3.1塑性成 形概述
塑性成形类型
3 金属塑性 成形
8
3.1塑性成 形概述
3 金属塑性 成形
体积成形
体积成形主要是指那些利用锻压设备和工、模具 ,对金属坯料(块料)进行体积重新分配的塑性 变形,得到所需形状、尺寸及性能的制件。
主要包括锻造(Forging)和挤压(Extrusion )两大类。
日 常 用 品
3
汽 车 覆 盖 件
飞
冲压成形产品示例—— 高科技产品
机 蒙 皮
4
5
6
3.1塑性成 形概述
3 金属塑性 成形
锻压3塑(性Met成al 形for分gin类g and stamping)
1.体积成形 (Bulk Metal Forming):
1.1 锻造 (Forging)
1.1.1自由锻造 1.1.2模锻
用伸长率δ、断面收缩率ψ表示:
δ= (L1-L0)/ L0 ×100% ψ=( S0-S1)/S0×100%
22
3.2塑性成
3 金属塑性
形机理
成形
2.金属塑性变形的实质
金 体—属——原—子显微组织——晶 典型晶格结构:
金属塑性成形技术基础讲座第二讲 金属塑性成形过程的理论基础
5 ・ 9
维普资讯
・
技 术讲痤 ・
过程 中具 有最 佳变形 条 件 以及热 变形 后获 得所要 求 提 高 。在锻 压生产 中 ,人 们通过 改变 应 力状态 来改
的 内部 组 织 ,需正确 制定 金 属材料 的热变 形加 热温 善金 属 的塑性 ,以保 证 生 产的顺 利进 行 。例如 ,在
甚至过 烧 现象 ;终 锻 温 度 ( 止 锻 造 温 度 )约 为 金 属 和耐热 合金 ,由于塑 性较差 ,常采 用挤 压工 艺 停
80 左 右 ,过低会 因 出现 加工硬 化而 使 塑性 下降 , 来进 行 开坯 或成形 。 0℃ 变形抗 力 剧增 ,变形 难 于进 行 。若 强行 锻 造 ,可能
维普资讯
金 属 塑 性 成 形 技 术 基 础 讲 座
第二讲 金 属 塑性 成 形 过 程 的理 论 基 础
贵州工业大学机械系 ( 贵阳 500 ) 中荣华 503
0℃ 要对金属进行固态塑性成形 ,则必须对金属在 化 的关 系 。 由 度 工 业 上实 现这 类过 程 的 可能性 及局 限性 作 出正确 的 的升 高 。低 碳钢 的塑 性 指标 和 上 升 ,变 形抗 力下降。原因之一是金属原子在热能作用下,处于 评 价 ,以便 于掌握 和运用 这类 过程 。 摄 活跃 的状 态 ,很容 易进 行滑移 变形 ;其 二是低 碳
会导 致锻 件破 裂报 废 。 综 上所述 ,金 属 的可 锻 性 既 取决 于 金 属本 质 ,
又 取决 于变 形条 件 。因此 ,在 金属材 料 的成 形加工 变形 速度是 指 单位 时间 过 程 中 ,力求 创造 最有 利 的变 形加工 条件 ,提高金
()变形 速度 的影 响 2
金属塑性成形
第四章金属塑性成形在工业生产中,金属塑性成形方法是指:金属材料通过压力加工,使其产生塑性变形,从而获得所需要工件的尺寸、形状以及性能的一种工艺方法。
常用的金属塑性成形方法如下:自由锻造:手工自由锻、机器自由锻锻造成形模型锻造:锤上模锻、压力机上模锻金属塑性成形冲压成形、挤压成形、拉拔成形、轧锻成形金属材料经过塑性成形后,其内部组织更加致密、均匀,承受载荷能力及耐冲击能力有所提高。
因此凡承受重载荷及冲击载荷的重要零件,如机床主轴、传动轴、齿轮、曲轴、连杆、起重机吊钩等多以锻件为毛坯。
用于塑性成形的金属必须具有良好的塑性,以便加工时易于产生永久性变形而不断裂。
钢、铜、铝等金属材料具有良好的塑性,可进行锻压加工;铸铁的塑性很差,在外力作用下易裂碎,不用于锻压。
在金属塑性成形方法中,锻造、冲压两种成形方法合称锻压,主要用于生产各种机器零件的毛坯或成品。
挤压、拉拔、轧锻三种成形方法是以生产金属材料为主,如型材、管材、线材、板料等,也用于制造某些零件,如轧锻齿轮、挤压活塞销等。
第一节锻造锻造是金属热加工成形的一种主要加工方法,通常采用中碳钢和低合金钢作锻件材料,锻造加工一般在金属加热后进行,使金属坯料具有良好的可变形性,以保证锻造加工顺利进行。
基本生产工艺过程如下:下料→坯料加热→锻造成形→冷却→热处理→清理→检验。
一、锻坯的加热和锻件的冷却1.加热的目的锻坯加热是为了提高其塑性和降低变形抗力,以便锻造时省力,同时在产生较大的塑性变形时不致破裂。
一般地说,金属随着加热温度的升高,塑性增加,变形抗力降低,可锻性得以提高。
但是加热温度过高又容易产生一些缺陷,因此,锻坯的加热温度应控制在一定的温度范围之内。
2.锻造温度范围各种金属材料在锻造时允许的最高加热温度,称为该材料的始锻温度。
加热温度过高会产生组织晶粒粗大和晶间低熔点物质熔化,导致过热和过烧现象。
碳钢的始锻温度一般应低于其熔点100~200︒C,合金钢的始锻温度较碳钢低。
材料成型技术基础课后答案
第一章金属液态成形1.①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。
②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。
流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。
③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。
④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。
2.浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。
3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。
缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。
4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。
浇不足是沙型没有全部充满。
冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。
出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。
而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。
逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。
定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。
5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。
(金属塑性成形原理课件)第2讲塑性变形物理本质
存在着一系列缺陷: 点缺陷、线缺陷、 面缺陷
2020/10/4
10
Lesson Two
一些金属材料的实验屈服强度和理论屈服强度
材料
理论强度(G/30)/GPa 实验强度/MPa 理论强度/实验强度
银 铝 铜 镍 铁 钼 铌 镉 镁(柱面滑移) 钛(柱面滑移) 铍(基面滑移) 铍(柱面滑移)
2020/10/4
13
Lesson Two
肖脱基空位——只形成空位而不形成等量的间隙原子 弗兰克尔缺陷——同时形成等量的空位和间隙原子
2020/10/4
14
Lesson Two
在实际晶体中,点缺陷的形式可能更复杂。例 如,即使在金属晶体中,也可能存在两个、三个甚 至多个相邻的空位,分别称为双空位、三空位或空 位团。但由多个空位组成的空位团从能量上讲是不 稳定的,很容易沿某一方问“塌陷”成空位片(即 在某一原子面内有一个无原子的小区域)。同样,间 隙原子也未必都是单个原子,而是有可能m个原子均 匀分布在n个原子位置的范围内(m>n),形成所谓 “挤塞子”(crowdion)。
(1)表面:指所研究的金属材料系统与周围气相或液相介质的接触面。 (2)晶界、亚晶界:指多晶体材料内部,结构及成分相同,而位向不 同的两部分晶体之间的界面。 (3)相界:指晶体材料内部不仅位向不同,而且结构不同,甚至成分 也不同的两部分晶体之间的界面。在纯金属的同素异晶转变过程中出现 的相界面,其两侧仅结构不同;而合金相的相界两侧,除结构不同外, 往往成分也不相同。 此外,还有孪晶界、反相畴界,层错界、胞壁等等。
(1)对称倾侧晶界
对称倾侧晶界相当于两部分晶体,沿着平行于界面
的某一轴线,各自转过方向相反的θ/2而形成的。两晶 粒位向差为θ,如下图1所示。此晶界相当于两个晶粒的 对称面,它只有一个自由度θ。
第二三篇铸造成形和金属塑性成形(共53张PPT)
0.5mm. 〔2〕铸造合金不受限制, 〔3〕铸件生产批量不受限制
〔4〕工序繁杂,生产周期长、本钱较高;
二、金属型铸造〔铸型用金属制成〕 种类—垂直分型式、水平分型式、复合分型式 金属型铸造的工艺过程
胀砂—在金属液的压力作用下铸件局部胀大
变形—铸造应力大于屈服强度。
预防:反变形量 ,加大加工余量
裂纹—铸造应力大于强度极限。
热裂:高温下产生热裂。裂纹短、缝隙宽、形状曲折、氧化 色。
冷裂:在较低温度下形成的裂纹。裂纹细小、呈直线状、 裂缝内呈蓝色。大而薄的铸件容易产生冷裂 防止裂纹:减小铸造应力、如铸件壁厚要均匀;增加型砂的退 让性;降低合金的脆性控制硫、磷量 。
外表喷刷涂料 →预热金属型→浇注 →开型 金属型铸造的优缺点及应用
1、有较高的尺寸精度〔IT12~IT16〕
2、铸件冷却速度快,晶粒较细,
3、可实现一型多铸,劳动生产率高。
4、金属型制造本钱高 ,不适宜熔点高、形状复杂和薄壁铸件;铸铁 件外表易产生白口
应用:大批量生产的铜合金、铝合金铸件,活塞、连杆、汽缸盖 等。
织致密;④铸件合格率高,节省金属;⑤设备投资少,劳动条件好。 用途:发动机缸体、缸盖、活塞、叶轮等。
五、离心铸造— 液体金属在离心力作用下充填铸型并凝固成形的一种铸 造方法 。
铸型转速在250~1500r/min 特点: ①铸中空铸件不用型芯; ②提高金属充型能力 ; ③补缩条件 好 ; ④无浇注系统和冒口,节约金属 。 用途:铸铁管、汽缸套、铜套、双金属轴承、无缝管坯、造纸机滚 筒等 铸件 。
第二章 金属塑性变形的物理基础
26
锻造温度区间的制定
27
2、锻合内部缺陷 3、打碎并改善碳化物和非金属夹杂物在钢 中的分布 4、形成纤维组织 5、改善偏析
28
塑性变形过程中晶粒的变化
29
第三节 金属的超塑性变形
一、超塑性的概念和种类 概念:金属和合金具有的超常的均匀变形 能力。
大伸长率、无颈缩、低流动应力、易成形、无加工硬化
另一个取向,故晶界处原子排列处于过渡状态。
4、晶界不同于晶内性质:
3
一、变形机理
晶内变形 1、滑移 2、孪生 晶间变形 晶粒之间的相互转动和滑动 注意: 晶间变形的情况受温度的影响
4
1、滑移面和滑移方向的确定
确定滑移面:原子排 列密度最大的晶面 确定滑移方向:原子 排列密度最大的方向
5
金属的主要滑移方向、滑移面、滑移系
种类:
细晶超塑性:在一定的恒温下,在应变速率和晶粒度都满 足要求的条件下所呈现出的超塑性。 相变超塑性:具有相变或同素异构转变的金属,在其转变 温度附近以一定的频率反复加热、冷却。在外力的作用下 所呈现出的超塑性。
30
二、细晶超塑性变形的力学特征
无加工硬化
31
三、影响细晶超塑性的主要因素
应变速率
20
21
二、性能的变化 (力学性能) 加工硬化 成因:位错交互作用,难以运动 应用:强化(奥氏体钢) 避免:多次塑性加工中加入退火工序
22
第二节 金属热态下的塑性变形
热塑性变形:再结晶温度以上进行的塑性 变形 一、塑性变形时的软化过程 1、动态回复、动态再结晶 2、静态回复、静态再结晶、亚动钢中的碳和杂质元素的影响 碳 磷 硫 氮 氢 氧
37
2、合金元素对钢的塑性的影响 合金元素的加入,会使钢的塑性降低、变 形抗力提高 原因见课本p43
塑性成型原理 塑性影响因素-外部因素
影响金属塑性的外部因素通过改变应力状态提高源自属塑性包覆钢板后的塑性成型
塑性成型示意图
影响金属塑性的外部因素
静水压力对提高金属塑性的良好影响
均质流体作用于一个物体上的压力; 这是一种全方位的力,并均匀地施向物体表面的各个部位
1. 拉伸应力会促进晶间变形、加速晶界的破坏,三向压 应力使晶间变形困难
2. 三向压应力有利于愈合塑性变形中晶内、晶间的各种 损伤
无氧铜 Qsn6.5-0.4
超硬铝合金
晶粒粗大化 金属间化合物
析出物 第二相
影响金属塑性的外部因素
2.应变速率
塑性成形设 备工作速度
水压机 1-10cm/s 机械压力机 30-100cm/s 通用锻锤 500-900cm/s
✓a-b: 加工硬化>软化 热效应
应变速率对塑性影响的示意图
✓c-d: 加工硬化<软化 热效应
➢ 影响塑性的内部因素
➢影响金属塑性的外部因素
➢ 提高金属塑性的主要途径
影响金属塑性的外部因素 1.变形温度
碳钢的塑性随温度变化图
影响金属塑性的外部因素
金属塑性 增高区
1区(100-200℃ )---原子热振动能力 2区(700-800℃ )---回复和再结晶 3区(950-1250 ℃)---均匀一致奥氏体
3. 消除杂质、液态相或组织缺陷的不良影响 4. 减轻不均匀变形而引起的附加拉应力
有没有不足之处?
影响金属塑性的外部因素 4.应变状态(变形状态)
轧制和挤压那个更能发挥金属的塑性能力?
主应变图对金属中缺陷形态的影响
影响金属塑性的外部因素 5.不连续变形的影响(变形程度) 6.尺寸因素的影响 7.其他(介质、气氛等)
材料成形技术基础答案_第2版_施江澜_赵占西主编-推荐下载
第一章金属液态成形1.什么是液态合金的充型能力?它与合金的流动性有何关系?不同化学成分的合金为何流动性不同?为什么铸钢的充型能力比铸铁差?1 液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。
2 流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。
流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。
3 成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。
4 相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。
2. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高?浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。
3. 缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。
缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。
4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。
浇不足是沙型没有全部充满。
冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。
出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。
而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。
逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。
定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。
5. 定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。
金属塑性成形原理---第二章_金属塑性变形的物理基础
位错的攀移
❖ 螺型位错无攀移
❖ 正攀移——正刃型位错位错线上移
负刃型位错位错线下移
编辑课件
位错的交割
❖ 两根刃型位错线都在各自的滑移面上移动,
则在相遇后交截分别形成各界,形成割阶后
仍分别在各自的平面内运动。
❖ 刃型位错和螺型位错交割时,在各自的位错
线上形成刃型割阶,位错线也能继续滑移。
❖ 螺型位错和螺型位错交割时,相交后形成的
❖ 假设:理想晶体两排原子相距为a,同排原子间距
为b。原子在平衡位置时,能量处于最低的位置。
在外力τ作用下,原子偏离平衡位置时,能量上升,
原子能量随位置的变化为一余弦函数。
❖ 通过计算晶体的临界剪切应力,并与实际的临界
剪切应力进行比较,人们发现,理论计算的剪切
强度比实验所得到的剪切强度要高一千倍以上。
编辑课件
典型的晶胞结构
编辑课件
典型的晶胞结构
编辑课件
三种晶胞的晶格结构
编辑课件
一、塑性变形机理
实际金属的晶体结构
❖ 单晶体:各方向上的原子密度不同——各向
异性
❖ 多晶体:晶粒方向性互相抵消——各向同性
❖ 塑性成形所用的金属材料绝大多数为多晶
体,其变形过程比单晶体复杂的多。
编辑课件
多晶体塑性变形的分类
加工中,会使变形力显著增
加,对成形工件和模具都有
III.抛物线硬化阶段:
一定的损害作用;但利用金
与位错的交滑移过程有关,
θ3
随应变增加而降低,应力应变
属加工硬化的性质,对材料
曲线变为抛物线。
进行预处理,会使其力学性
能提高
编辑课件
2.2 金属热态下的塑性变形
金属塑性成形原理及工艺
2
4.锻造
锻造的示意图如图 4 所示。 锻造可以分为自由锻造和模锻。自由锻造一般是在锤锻或者水压机上,利用简单的工具 将金属锭或者块料锤成所需要形状和尺寸的加工方法。 自由锻造不需要专用模具, 因而锻件 的尺寸精度低、生产效率不高。模锻是在模锻锤或者热模锻压力机上利用模具来成形的。金 属的成形受到模具的控制,因而其锻件的外形和尺寸精度高,生产效率高,适用于大批量生 产,模锻又可以分为开式模锻和闭式模锻。
4
变形问题和轴对程问题; (5)屈服准则:屈雷斯加屈服准则、密席斯屈服准则、屈服准则的几何表达、平面问 题和轴对程问题中屈服准则的简化; (6)本构方程:弹性应力应变关系、塑性变形时应力应变关系的特点、塑性变形的增 量理论、塑性变形的全量理论;
六、课程要求
金属塑性加工原理的任务是研究塑性成形中共同的规律性问题, 就是在阐述应力、 应变 理论以及屈服准则等塑性理论的基础上, 研究塑性加工中有关力学问题的各种解法, 分析变 形体内的应力和应变分布,确定变形力和变形功,为选择设备和模具设计提供依据。所以, 要求大家: (1) 掌握金属塑性变形的金属学基础, 具体的说就是金属的结构和金属塑性变形机理。 (2)了解影响金属塑性和塑性成形的主要因素。 (3)掌握塑性变形的力学基础:包括应力分析、应变分析、屈服准则和应力应变关系。 (4)掌握塑性成形力学问题的各种解法以及其在具体工艺中的应用。
图4
5.冲压
冲压又可以分为拉深、弯曲、剪切等等。其示意图见图 5。 拉深等成形工序是在曲柄压力机上或者油压机上用凸模把板料拉进凹模中成形, 用以生 产各种薄壁空心零件。 弯曲是坯料在弯矩的作用下成形,如板料在模具中的弯曲成形、板带材的折弯成形、钢 材的矫直等等。 剪切是指坯料在剪切力作用下进行剪切变形,如板料在模具中的冲孔、落料、切边、板 材和钢材的剪切等等。
工程材料大题集合
第一章金属晶体结构2、金属晶体中常见的晶格类型有哪几种?属于这几种常见的晶格类型有哪些?体心立方,铁铬钨钼钒。
面心立方,铜金银铝铁。
密排六方晶格,镁锌钛。
4、为什么金属结晶一定要有过冷度?过冷度与冷却速度有什么关系?对结晶后晶粒大小有何影响?结晶温度Tn与理论结晶温度T0之间的温度差成为“过冷度”,要是液体进行结晶,就必须是结晶温度低于理论结晶温度,是液体与晶体之间长生能量差,即“自由能差”形成液体向晶体转变的驱动力,才能完成结晶过程,所以金属结晶一定要有过冷度。
冷却速度快,过冷度大,过冷度大,晶粒细小。
第二章金属塑性变形1、为什么金属晶粒越细,强度越高,塑性韧性也越好?答:金属的晶粒越细,其晶界的总面积越大,塑性变形的抗力也越大,强化作用也越大;晶粒越细,单位体积的晶粒越多,变形时同样的变形量可以有更多的晶粒来承担,是塑性变形越均匀些,减小应力集中,推迟了最终引起断裂的裂纹的发生合发展,从而提高了金属的塑性和韧性。
所以晶粒越细,强度、硬度越高;塑性韧性越好。
2、什么叫加工硬化?他给生产带来哪些好处和困难?加工硬化:经过冷态下塑性变形之后的金属的力学性能要发生很大的变化,其强度和硬度随变形量的增加而增加,同时塑性却随之降低,这种现象叫加工硬化或冷作硬化。
优点:冷挤压、冷冲压、冷轧制等加工工艺会使产品具有尺寸精度高及表面质量好。
缺点:金属的加工硬化使其强度和硬度上升,塑性下降,必然给金属材料的加工带来困难。
3、热加工对金属的组织和性能有什么影响?金属在热加工时为什变形阻力较小?热加工后金属的组织与性能产生很大的变化主要表现在以下几个方面:1)经过热加工后,可以把铸态金属中粗大的枝晶、柱状晶以及夹杂物破碎为细小的晶粒,从而是晶粒细化。
2)通过热加工,可是铸态金属中的气孔、疏松焊接,提高至密度。
3)热加工还可以改变铸态金属中的成分偏析和夹杂物的分布,是原来沿着树枝晶分布的偏析元素和夹杂物发生改变,而是他们沿变形方向拉长分布,形成在宏观监测时通常所称的“流线”。
二篇金属的塑性成形工艺
<图6-10)最小阻力定律示意图
在镦粗中,此定律也称——最小周边法则
二、塑性变形前后体积不变的假设
弹性变形——考虑体积变化
塑性变形——假设体积不变<由于金属材料连续,且致密,体积变化很微小,可忽略)
此假设+最小阻力定律——成形时金属流动模型
落料——被分离的部分为成品,而周边是废料
冲孔——被分离的部分为废料,而周边是成品
如:平面垫圈:制取外形——落料
制取内孔——冲孔
1.冲裁变形过程
冲裁件质量、冲裁模结构与冲裁时板料变形过程关系密切,
其过程分三个阶段
<1)弹性变形阶段<图8-1)
冲头接触板料后,继续向下运动的初始阶段,使板料产生弹性压缩、拉伸与弯曲等变形,板料中应力迅速增大。此时,凸模下的材料略有弯曲,凹模上的材料则向上翘,间隙↑→弯曲、上翘↑SixE2yXPq5
§6-1塑性变形理论及假设
一、最小阻力定律
金属塑性成形问题实质,金属塑性流动,影响金属流动的因素十分复杂<定量很困难)。应用最小阻力定律——定性分析<质点流动方向)p1EanqFDPw
最小阻力定律——受外力作用,金属发生塑性变形时,如果金属颗粒在几个方向上都可移动,那么金属颗粒就沿着阻力最小的方向移动。DXDiTa9E3d
[注]按变形的模膛数:单膛锻模<如齿轮坯)
多膛锻模<图7-7)
§7-3锤上模锻成形工艺设计
模锻生产的工艺规程包括:制订锻件图、计算坯料尺寸、确定模锻工步<选模膛)、选择设备及安排修整工序等。
最主要是锻件图的制定和模锻工步的确定
一、模锻锻件图的制定
第六章金属塑性成形工艺理论基础
3)冲压件尺寸精度高,质量稳定,互换性好, 一般不需机械加工即可作零件使用。 4)冲压生产操作简单,生产率高,便于实现机 械化和自动化。
5)可以冲压形状复杂的零件,废料少。
6)冲压模具结构复杂,精度要求高,制造费用 高,只适用于大批量生产。
坯料在锻造过程中,除与上下抵铁或其它辅 助工具接触的部分表面外,都是自由表面,变形 不受限制,锻件的形状和尺寸靠锻工的技术来保 证,所用设备与工具通用性强。
自由锻主要用于单件、小批生产,也是生产 大型锻件的唯一方法。
1) 自由锻设备
空气锤 它由电动机直接驱动,打击速度快,锤击能量小,适
用于小型锻件;65~750Kg
挤压成形是使坯料在外力作用下,使模具内的金属坯 料产生定向塑性变形,并通过模具上的孔型,而获得 具有一定形状和尺寸的零件的加工方法。
图6-3 挤压
挤压的优点:
1)可提高成形零件的尺寸精度,并减小表面粗糙 度。 2)具有较高的生产率,并可提高材料的利用率。 3)提高零件的力学性能。 4)挤压可生产形状复杂的管材、型材及零件。
3)精整工序:修整锻件的最后尺寸和形状,消除表面的不 平和歪扭,使锻件达到图纸要求的工序。如修整鼓形、平 整端面、校直弯曲。
3)自由锻的特点
优点:
1)自由锻使用工具简单,不需要造价昂贵的模具;
2)可锻造各种重量的锻件,对大型锻件,它是唯一方法
3)由于自由锻的每次锻击坯料只产生局部变形,变形金属 的流动阻力也小,故同重量的锻件,自由锻比模锻所需的 设备吨位小。
实例:
当采用棒料直接经切削加工制造螺钉时,螺钉头部与 杆部的纤维被切断,不能连贯起来,受力时产生的切应力 顺着纤维方向,故螺钉的承载能力较弱(如图示 )。
第二章金属的塑性变形与再结晶
二、多晶体金属的塑性变形
双晶粒试样的拉伸实验表明,晶界处较粗,这说明
晶界的变形抗力大,变形较小。
25
Cu-4.5Al合金晶 界的位错塞积
26
㈠晶界及晶粒位向的影响
1、晶界的影响 晶界处原子排列紊乱,
杂质原子较多,增大了其 晶格的畸变,因而在该处 滑移时位错运动受到的阻 力较大,难以发生变形, 具有较高的塑性变形抗力。
21
滑移的原因: 内因:滑移面上的位错运动,而不是刚性滑移 外因:切应力的作用
22
晶体塑性变形的基本方式:
滑移和孪生
塑性变形最主要的方式: 滑移
滑移的实质是:
位错运动
晶体滑移并不是在切应力作用下,一部分 相对于另一部分沿一定晶面和晶向发生相对的 整体移动。
23
二、多晶体金属的塑性变形
多晶体由许多晶粒组成,各个晶粒位向不同,且存 在许多晶界,变形复杂。
36
变形织构根据加工变形方式的不同主要有两种类型: 拉拔引起的织构称为丝织构; 轧制引起的织构称为板织构。
织构有时使材料的加工成形性能恶化。
37
变形织构的各相异性是明显的。其不均匀的塑 性变形会使薄板冲压产生“制耳”现象。
制耳示意图
38
3 晶粒破碎形成亚晶粒
随着变形的增大→位错密度明显增大→位错 不均匀分布→晶粒破碎成细碎的亚晶粒。
50
课堂讨论
5.加工硬化使金属: a. 强度降低、塑性升高 b. 强度增大、塑性升高 c. 强度增大、塑性降低
6. 金属铸造时,为细化晶粒,可采用: a. 快速浇注 b. 以砂型代替金属型 c. 采取机械振动
7. 反复弯折铁丝,铁丝会越来越硬,最后会断裂, 这是由于产生了: a.加工硬化现象 b.再结晶现象 c.去应力退火
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《材料加工工程》试题库
第二部分:固态金属塑性成形
一、模锻工艺及锻模设计
1、填空与名词解释
(1)金属坯料锻前加热的目的:提高金属的塑性,降低变形抗力,使之易于在锻模模膛内流动成形,并具有一定的力学性能。
(2)常用的下料方法:剪床下料、冲床剪切下料、锯床下料。
(3)开式模锻:沿锻件分模面周围形成横向飞边的模锻。
(4)闭式模锻:不形成横向飞边,仅形成纵向毛刺(小飞边)的模锻。
(5)锻模中心:锻模燕尾中心线和键槽中心线的交点。
(6)模膛中心:模锻时上模模膛承受反作用力的合力作用点。
(7)精密模锻:在锻件表面仅留少量的机加工余量或不留余量的模锻。
(8)正挤压:挤压时金属的流动方向与凸模的运动方向一致。
(9)反挤压:挤压时金属的流动方向与凸模的运动方向相反。
2、问答题
(1)试分析锤上模锻和热模锻压力机上模锻飞边槽的作用?
答:锤上模锻时,飞边槽的作用是,产生足够大的横向阻力,促使金属充满锻模模膛;对毛坯金属起调节和补偿作用;对于锤模锻还能起到缓冲作用。
而热模锻压力机上模锻由于采用于较为完备的制坯工步,金属在终锻模膛内主要是以镦粗的方式变形,飞边槽的阻力作用不像锤上显得那么重要,而较多地起着排泄和容纳毛坯上多余金属的作用,即热模锻压力机上模锻,其飞边槽的主要作用是对毛坯金属起调节和补偿作用;其次才是起横向阻力作用;并因热模锻压力滑块行程固定且打击速度慢,模锻时上下模不接触,故不存在起缓冲作用的问题。
(2)试分析归纳选用预锻模膛的作用和带枝芽类锻件的预锻模膛的设计方法?
答:预锻模膛的正面作用,一是经预锻后的坯件,保证终锻时获得成形饱满、无缺陷的优质镀件;二是减少流入飞边槽的金属横耗;三是减少终锻模膛的磨损,提高使用寿命。
其负面作用,增大了锻模尺寸,降低了生产率,对于锤和
螺旋压力机上模锻导致了偏心打击,降低了尺寸精度,锤杆(螺杆)受力恶化。
带枝芽类锻件预锻模膛总的设计思路是要造成有利于坯料金属流向枝芽模膛。
其设计方法是:简化枝芽部分的形状;增大与枝芽连接处的圆角半径;必要时可在分模面上开设阻力尼沟,加大预锻时金属流向飞边槽的横向阻力。
(3)试述闭式模锻锻模设置分流降压腔的原则及作用,并利用教材上相对平均工作压力Pm/2k —相对面积缩减率R 曲线图解释减小模膛工作压力的依据及方法?
答:设置原则:分流腔的位置应选择在模膛最后充满的部位;多余金属分流时在模膛内所产生的压力比刚充满时所产生的压力没有增加或增加很小。
作用:减少模膛工作压力,有利于提高模具寿命;对工艺的稳定性起补偿作用,降低对下料精度的苛刻要求。
由Pm/2k —R 曲线图可以看出:工作压力Pm 随面积缩减率R 的增加而增加,在闭式模锻行程未了,其R=1时,Pm 增至无穷大,不仅变形金属不能完全充满模膛(如齿轮的齿尖处),而且还会损害模具,如果在与锻件非重要部位对应的模膛设置一溢(分)流口,使R <1,当模膛完全充满时,就可避免工作压力急剧增高。
3、综合题
(1):试述计算毛坯的依据和作用,根据下面的计算毛坯直径图,写出各项繁重系数的表达式并说明各自的含义,根据给出的数据计算出各繁重系数的具体数据,并由教材上“长轴类锻件制坯工步选用图表”查找出所需的制坯工步?
答:依据是,假定长轴类锻件在模锻时为平面应变状态,因而计算毛坯的长度与锻件长度相等,而轴向各横截面面积计A 与锻件各相应处横截面面积锻A 和飞边横截面面积之和相等,即飞锻计+=A 2A ηA 。
作用是,选择制坯工步和制坯模膛设计的依据;确定坯料体积和尺寸的依据。
繁重系数的表达式分别为: ①金属流入头部的繁重系数
均d d max =
α,其含义是α值越大,表示头部所需要
的金属越多;
②金属沿轴向流动的繁重系数
均计d L =
β,其含义是β值越大,则金属沿轴向
流动的距离越长; ③杆部斜率杆拐-L d min d K =
,其含义是K 值越大,表明杆部锥度越大,小头或杆部的金属越过剩;
④锻件的质量G ,G 越大,表明制坯更难。
若已知:50max =d ;25min =d ;34=均d ;32d =拐;100L =
杆;160L =计(单位为mm ),钢材密度38.7cm g
=ρ。
代入计算得:
47.13450==α;71.434160==β;07.01002532=-=k ; 锻件质量kg G 133.110008.71000160
3442=⨯⨯⨯=π。
由图查得宜选用拔长+闭式滚挤制坯工步。
(2):简要说明冷挤压工艺的主要优点与缺点,指出由图2a 所示圆饼毛坯(20号钢)成形为图2b 所示圆筒形零件应采用那种挤压工艺?试推导写出毛坯高度H 0、毛坯成形为零件的断面收缩率A ε和所需要的挤压力F 的计算公式?
答:冷挤压工艺的主要优点是:挤压件尺寸精度高,表面粗糙度低;材料利用率高;由于在三向压应力状态下成形,有利于提高金属材料的塑性,加上冷作硬化效应,可提高挤压件的力学性能。
其缺点是:变形抗力大,所需要的设备吨位大;挤压变形工序前需对毛坯进行退火和表面处理,因而不能连续生产。
由图2a 示圆饼毛坯成形为图2b 所示杯筒件应采用反挤压工艺。
由体积相等原理并假设0D D =得:
()()],[4.420220020h D h H d D H D +-⨯-=π
π
毛坯高度:()
h D h H d D D h D h H d D H +-⨯-=+-⨯-=2022020202200)(.)()( 断面收缩率:%100%100202
00⨯=⨯-=D d A A A A ε 挤压力:2
4...d P C F π
=
若0D =50,d=40,H=50,h=5(单位为mm ),并有p =1500Mpa ,代入上面的公式,得
()
()mm H 2.2155055040502220=+-⨯-=
%64%100504022
=⨯=A ε
KN F 4.245040415003.12=⨯⨯=π
二、冲压工艺及冲模设计
1、填空、判断与名词解释(下列命题中,你认为正确的在题后括内号内打“√”,错误的打“×”。
)
(1)判断题:
1)冲压加工只能用于加工金属板材。
(×)
2)冲压产品的尺度精度主要是由模具保证的。
(√)
3)材料强度极限b σ与屈服极限s σ之比值称为屈强比/b s σσ。
(×)
4)材料变形时,随着变形程度增加,材料的塑性指标上升,强度指标下降的特性叫硬化效应。
(×)
5)冲压工序可以分为成形工序与分离工序两大类。
(√)
6)冲裁件正常的断面主要是由圆角带、光亮带、断裂带、毛刺组成。
(√)
7)板料双角弯曲又可以称为V 形弯曲。
(×)
8)板料相对弯曲半径越小,变形程度越小。
(×)
9)拉深毛坯筒壁部分可以称为已变形区或传力区。
(√)
10)拉深件毛坯尺寸可按拉深前后毛坯与工件表面积相等的原则计算。
(√)。