陶瓷基复合材料的研究进展及其在航空发动机上的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陶瓷基复合材料的研究进展及其在航空发动机上
的应用
摘要:综述了陶瓷基复合材料(CMCs) 的研究进展。就CMCs的增韧机理、制备工艺和其在航空发动机上的应用进展作了详细介绍。阐述了CMCs研究和应用中存在的问题。最后,指出了CMCs的发展目标和方向。
关键词:陶瓷基复合材料;航空发动机;增韧机理;制备工艺
The Research Development of Ceramic Matrix Composites
and Its Application on Aeroengine
Abstract: The development and research status of ceramic matrix composites were reviewed in this paper. The main topics include the toughening mechanisms, the preparation progress and the application on aeroengine were introduced comprehensively. Also, the problems in the research and application of CMCs were presented. Finally, the future research aims and directions were proposed.
Keywords: Ceramic matrix composites, Aeroengine, Fiber toughening,Preparation progress
1 引言
推重比作为发动机的核心参数,其直接影响发动机的性能,进而直接影响飞机的各项性能指标。高推重比航空发动机是发展新一代战斗机的基础,提高发动机的工作温度和降低结构重量是提高推重比的有效途径[1]。现有推重比10一级的发动机涡轮进口温度达到了1500~1700℃,如M88-2型发动机涡轮进口温度达到1577℃,F119型发动机涡轮进口温度达到1700℃左右,而推重比15~20一级发动机涡轮进口温度将达到1800~2100℃,这远远超过了发动机中高温合金材料的熔点温度。目前,耐热性能最好的镍基高温合金材料工作温度达到1100℃左右,而且必须采用隔热涂层,同时设计先进的冷却结构。在此需求之下,迫切需要发展新一代耐高温、低密度、低膨胀、高性能的结构材料[2]。在各类型新型耐高温材料中,
陶瓷基复合材料(Ceramic Matrix Composites, CMCs)材料具有高的熔点、刚度、硬度和高温强度,并且抗蠕变,疲劳性能好。其不仅克服了金属材料密度高和耐温低,而且克服了结构陶瓷脆性大和可靠性差,碳/碳复合材料抗氧化性差和强度低等缺点,尤其作为航空航天发动机需要承受极高温度的特殊部位的结构用材料具有很大潜力[3,4]。
CMCs是以陶瓷材料为基体,以陶瓷纤维、晶须、晶片或颗粒为补强体,通过适当的复合工艺制备且性能可设计的一类新型材料,又称为多相复合陶瓷(Multiphase Composite Ceramic),包括纤维(或晶须)增韧陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料[5]。本文主要介绍连续纤维增强陶瓷基复合材料。连续纤维增强陶瓷基复合材料保留了陶瓷材料耐高温、抗氧化、耐磨耗、耐腐蚀等优点的同时,充分发挥陶瓷纤维增强增韧作用,克服了陶瓷材料断裂韧性低和抗外部冲击载荷性能差的先天缺陷。相比合金基复合材料,CMCs工作温度高达1650℃,不仅可以通过减少冷却气流,提高涡轮热效率,而且降低结构复杂性和制造难度。此外,CMCs密度约为耐高温镍基合金的1/4~1/3,钨基合金的1/10~1/9,可以大大减轻发动机结构质量,降低油耗的同时提高推重比。
2 CMCs国内外研究进展
70 代初,由于认识到单体碳化硅、氮化硅等陶瓷材料的性能还较难实现高温热机应用的现实,J. Aveston在纤维增强聚合物基复合材料和纤维增强金属基复合材料基础上,首次提出了纤维增强陶瓷基复合材料(FRCMCs)的概念[6]。八十年代以来,高模量高强碳纤维、氧化铝纤维和抗高温氧化性能良好的碳化硅纤维的出现,以及性能优越且低成本的 SiC晶须的商业化生产,使纤维及须增韧陶瓷复合材料等一跃成为令人瞩目的新材料[7]。1973 年,Levitt S. R.首次以LAS 玻璃为基体材料制得了高强度碳纤维增强玻璃基复合材料[8]。80 年代中期,E. Fitzer 等[9]和P. J .Lamicq 等[10]将化学气相沉积(Chemical Vapor Deposition, CVD)工艺引入 FRCMCs 的制备中,制得了高性能的碳化硅纤维增强SiC 复合材料,从而全面推动了FRCMCs的研究工作。在当时,美国已有很多研究单位从事陶瓷基复合材料的研
究和应用工作,其中有UTRC、Oak Ridge 国家实验室、伊利诺斯大学、MIT、福特汽车公司等。此外,美国NASA 制定的先进高温热机材料计、DOE/NASA 的先进涡轮技术应用计划(ATTAP)、美国国家宇航计划(NASP)都把高温结构陶瓷基复合材料作为重点研究对象,其研制目标是将发动机热端部件的使用温度提高到1650 ℃或更高[11],从而提高发动机涡轮进口温度,达到节能、减重、提高推重比和延长寿命的目的,满足军事和民用热机的需要。日本对这种高性能结构材料也极其重视,大阪工业技术研究所,东京工业大学和日产、三菱等汽车公司进行了陶瓷复料及其结构应用研究[12]。1972 年,我国上海硅酸盐研究所率先开展此项研究,经较广泛地搜探各种可能的纤维或晶须与陶瓷基体在化学上的相容性之后,首先选择了碳纤维补强石英作为研究对象,研制成功相应的复合材料[13]。此后,航空材料所、北京航空航天大学、西北工业大学、清华大学、国防科技大学等相继开展了各种陶瓷基复合材料的研究工作。
目前,世界各国尤其是美国、日本、欧共体国家等都对CMCs的制备工艺及增韧机制进行了大量的研究,并取得了一些重要成果。已经制备和通过试验的航空发动机CMCs构件主要有:燃烧室内衬套(combustor liner)、燃烧室筒(Combustor can )、翼或螺旋桨前缘(leading edge)、喷口导流叶片(guide vane)、涡轮叶片(turbine vane)、涡轮壳环(turbine shroudring)等[14,15]。在CMCs的研究中,研究最多的主要是纤维增强陶瓷基复合材料,主要包括碳纤维增强碳化硅(Cf/SiC) 、碳化硅纤维增强碳化硅(SiCf/SiC)以及氧化物/氧化物陶瓷基复合材料[16,17]。
国外学者Schneider 等[18]对莫来石纤维增强莫来石CMCs进行了系统的研究,已能制备和加工异形复杂构件,制备的燃烧室隔热瓦已通过模拟试验。Carellie 等[19]对多孔氧化物CMCs 的研究较为深入,利用陶瓷浆料浸渍-缠绕工艺制备的Nextel 720 纤维增强的多孔莫来石和氧化铝CMCs 的室温拉伸强度约为 149 MPa,1200 ℃处理1000 h 后强度保留率高达 97.3%。Kikuo等[20]通过泥浆浸渍/热压法制备Cf/SiC复合材料。在真空条件下,其室温弯曲强度和断裂韧性分别为420 MPa 和13 MPa·m 1/2;在 1400~1600 ℃时分别为 600 MPa 和 20 MPa·m1/2,由于断裂转移和界面结合减弱导致纤维拔出的增加,高温下材料的力学性能得以提高。