第六章氧化还原
无机化学第六章-氧化还原与电化学
Zn - 2e → Zn2+ Cu2+ + 2e → Cu
3)电池反应: 两半电池反应之和。 Zn + Cu2+ → Zn2+ + Cu
4) 原电池的符号表示:
(-)Zn︱Zn2+(aq)‖Cu2+(aq)︱Cu(+)
• 负极在左,正极在右。用符号(-)(+)表示。 • “︱”表示两相之间的界面。 • “‖”表示盐桥。 • 溶液的浓度、气体的压力也应标明。
C 4HNO 3 4NO 2 CO 2 2H2O
二、离子-电子法
MnO4 SO32 Mn 2 SO42
2 MnO4 8H 5e Mn2 4H2O(还原) 5 SO32 H2O 2e SO42 2H (氧化)
2MnO4 5SO32 6H 2Mn2 5SO42 3H 2O
Zn+CuSO4
ZnSO4+Cu
Zn
CuSO4
Cu-Zn原电池装置
原电池:将氧化还原反应的化学能转变 成为电能的装置。
2. 原电池的组成与表示方法
1)半电池(电极): 组成原电池的每个部分叫半电池。
Zn-ZnSO4 锌电极 失电子-负极
Cu-CuSO4 铜电极 得电子+正极
2)半电池反应:半电池中发生的反应。
2KMnO 4 5K 2SO3 3H 2SO 4 2MnSO 4 6K 2SO 4 3H 2O
配平下列反应:
K2Cr2O7+KI+H2SO4 K2SO4+Cr2(SO4)3+I2+H2O
Cl2+NaOH NaCl+NaClO3+H2O
6.2 原电池与电极电势 原电池的组成与表示方法
第六章氧化-还原反应电化学
第六章 氧化─还原反应和电化学Chapter 6 Oxidation-Reduction Reactions & Electrochemistry本章研究另一类化学反应──氧化─ 还原反应(有电子转移的反应)§1 氧化─ 还原反应(Oxidation —Reduction Reactions )一、氧化数(Oxidation Number )1.氧化数是一个经验值,是一个人为的概念。
2.引入此概念,有以下几方面的应用:(1) 判断是否发生氧化──还原反应:氧化数升高、氧化反应、还原剂 reducing agent (reductant),氧化数降低、还原反应、氧化剂 oxidizing agent (oxidant). (2) 计算氧化──还原当量 (3) 配平氧化──还原反应方程式(4) 分类化合物,如Fe ( Ⅲ )、Fe (Ⅱ);Cu (Ⅰ)、Cu (Ⅱ)。
引入氧化数,可以在不用详细研究化合物的结构和反应机理的情况下,实现上述四点。
3.怎样确定氧化数(1) 在离子化合物中,元素的氧化数等于离子的正、负电荷数。
(2) 在共价化合物中,元素的氧化数为两个原子之间共用电子对的偏移数。
a .在非极性键共价分子(单质)中,元素的氧化数为零,如P 4、S 8、Cl 2中P 、S 、Cl 的氧化数都为零;b .在极性键共价分子中,元素的氧化数等于原子间共用电子对的偏移数,例如:11H :F +-,1111(-2)H :O :H +--+,1100111H :O :O :H +--+-,11+11(0)H :O :F +--。
(3) 具体规定:a .单质的氧化数为零,例如P 4、S 8中P 、S 的氧化数都为零,因为P -P 和S -S键中共用电子对没有偏移;b .除了在NaH 、CaH 2、NaBH 4、LiAlH 4中氢的氧化数为-1以外,氢的氧化数为+1;c .所有氟化物中,氟的氧化数为-1;d .氧的氧化数一般为-2,但有许多例外,例如2O (1/2)--、22O (1)--、3O (1/3)--、21/2O ()++、2OF 2)(+等;目前元素的最高氧化数达到+8,在OsO 4、RuO 4中,Os 和Ru 的氧化数均为+8,其它元素的最高氧化数至多达到其主、副族数。
第六章 氧化还原反应及电极电势
例如: φθ (I2/I-) ﹤ φθ(Fe3+/Fe2+ ) 氧化性: 氧化性: Fe3+ ﹥I2, 还原性: I-﹥ Fe2+
二、 判断氧化还原反应进行的方向
在讨论原电池时已经明确,电池中的正 极反应是氧化剂发生的还原反应,负极反应
是还原剂发生的氧化反应。
自发进行的氧化还原反应的电池电动势一 定是E>0的,一个氧化还原反应被设计成一
个原电池后,若E<0,则说明反应逆向进行。
例 判断298K时下列氧化还原反应的方向。
2Fe2+(c=0.1mol/L)+I2(s) 2Fe3+ (c=1mol/L)+2I-(c=0.1mol/L)
解 将上式写成两个半反应,并查附表得其标准电极电 位。
θ Fe 3 /Fe 2
0.771 V
3.导线
用以连接两极,才能使浸入电解质溶液
的两极形成闭合回路,组成正在工作的原电池。
【例 】 高锰酸钾与浓盐酸作用制取氯气反
应如下:
2MnO +16HCl =2MnCl2 +5Cl2 +2KCl+8H2O
4
将此反应设计成原电池,写出正负极反应、
电池反应、电极组成式与分类。
解:该反应的离子方程式为:
将气体通入相应离子溶液中,并用
惰性电极(如:石墨或者金属铂)做电极
板所构成的电极。
如:氯电极
电极组成式:Pt︱Cl2 (p) ︱ Cl- (c) 电极反应
Cl2 2e 2Cl
-
-
如Cu—Zn原电池的符号为: Cu Zn
(—)Zn │ Zn SO4(C1) CuSO4(C2)│Cu(+) ―│‖表示两相的界面,― ‖表示盐桥,习惯上负极在左,正极在右。
第六章 氧化还原滴定
第六章 氧化还原滴定习题答案:6.1 计算在H 2SO 4介质中,H +浓度分别为1 mol ·L -1和0.1 mol ·L -1的溶液中VO 2+/VO 2+电对的条件电极电位。
(忽略离子强度的影响,已知ϕθ=1.00 V )答案: O H VOeH VO 2222+-+=++[H +]= 1mol ·L -1 ϕθ’=1.0 + 0.059lg12= 1.00 V [H +]= 0.1mol ·L -1 ϕθ’=1.0 + 0.059lg0.012= 0.88 V6.2 根据ϕθHg 22+/Hg 和Hg 2Cl 2的溶度积计算ϕθHg 2Cl 2/Hg 。
如果溶液中Cl -浓度为0.010 mol ·L -1,Hg 2Cl 2/Hg 电对的电位为多少? 答案:Hg 2Cl 2 + 2e - = 2Hg + 2Cl - (ϕθHg 22+/Hg =0.796 V K sp = 1.3⨯10-18)[][]2/22/lg2059.0lg 2059.02222-++=+=++Cl K Hg spHgHgHgHg θθϕϕϕ[Cl -]=1 mol ·L -1: ϕθHg 2Cl 2/Hg = 0.796 + (0.059lg1.3⨯10-18)/2 = 0.268 V[Cl -]=0.01mol ·L -1: ϕθHg 2Cl 2/Hg=0.796 + (0.059lg1.3⨯10-18)/2 -(0.059lg0.012)/2= 0.386 V6.3 找出以下半反应的条件电极电位。
(已知ϕθ = 0.390 V , pH = 7, 抗坏血酸pK a1 = 4.10, pK a2 = 11.79)脱氢抗坏血酸 抗坏血酸答案:半反应设为:A 2-+ 2H + + 2e - = H 2A[][]AHA AAHH H 22lg2059.0lg2059.0'δδϕααϕϕθθθ+++=+=[][][]211222Ka KaH Ka H H AH++=+++δ()()90.279.1110.4710.4272710101010101010-------=⋅+⋅+=[][]79.410.1189.15211221101010---++==++=a a a a a A K KHK H K K δ[]++++=222lg059.0'VOH VO ααϕϕθθ()V079.0101010lg2059.039.090.22779.4'-=⋅+=---θϕ6.4 在1 mol.L -1HCl 溶液中用Fe 3+溶液滴定Sn 2+时,计算:(1)此氧化还原反应的平衡常数及化学计量点时反应进行的程度;(2)滴定的电位突跃范围。
刘兴强水分析化学_第六章氧化还原
6.2
氧化还原反应进行的完全程度
n2Ox1 n1Red 2 n2 Red1 n1Ox2
`
p187
例: 4Fe2+ + 8HCO3- + O2 + 2 H2O
Fe
3
4Fe(OH)3 + 8CO 2
/ Fe2
0.77V
[ Fe ]
3
O
2 / OH
0.40V
KspFe(OH)3 = 3 10-39
K spFe(OH )3 [OH ]3
K spFe (OH )3
当[H3AsO4]/[H3AsO3]=1时
pH=1.0 时,
'
As ( Ⅴ ) / As ( Ⅲ )
0.059 As(Ⅴ ) / As( Ⅲ ) lg[ H ]2 2
'
As ( Ⅴ ) / As ( Ⅲ )
0.059 0.559 lg( 10 1 ) 2 0.509 2
2Cu
′ Cu
2
2+
+ 4I = 2CuI +I 2
2
S2O3 2-
/ Cu
0.159V I / I 0.536V K spCuI 1.11012
Cu
′
2
/ CuI
Cu 2 / CuI 0.059
1 K spCuI
0.865V I / I 0.536V
实测或 理论计算
对于可逆的氧化还原 半反应:
Ox + ne
ne-
-
Red
还原型
RT a(Ox) ln nF a(Red)
第六章氧化还原滴定法
§6.2 氧化还原反应进行的程度
§6.2.1 条件平衡常数 n2Ox1 + n1Red2 n2Red1 + n1Ox2
氧化还原反应进行的程度,可用什么来衡量? 氧化还原反应进行的程度,可用什么来衡量?
Ox1 + n1eOx2 + n2eRed1 Red2
Ε1 = Ε
O' 1
c Ox1 0 . 059 + lg c Red1 n1 c 0 . 059 lg Ox2 n2 c Red2
4+ 3+ θ′
(1mol·L-1 H2SO4) ϕ (Fe /Fe )=0.68 V
3+ 2+
θ′
滴定反应: 滴定反应: Ce4+ + Fe2+ = Ce3+ + Fe3+ 对于滴定的每一点,达平衡时有: 对于滴定的每一点,达平衡时有:
ϕ(Fe3+/Fe2+)=ϕ(C 4+/C 3+) e e
分析 滴定前, 未知, 滴定前,Fe3+未知,不好计算
第六章 氧化还原滴定法
§6.1 氧化还原反应平衡 §6.2 氧化还原反应进行的程度 §6.3 氧化还原反应的速率与影响因素 §6.4 氧化还原滴定曲线及终点的确定 §6.5 氧化还原滴定法中的预处理 §6.6 高锰酸钾法 §6.7 重铬酸钾法 §6.8 碘量法 §6.9 其它氧化还原滴定法 §6.10 氧化还原滴定结果的计算
HClO4 0.75
HCl 0.70
ϕθ'(Fe3+ /Fe2+)
与Fe3+的络合作用增强
氧化态形成的络合物更稳定, 氧化态形成的络合物更稳定,结果是电位降低 计算pH pH为 NaF浓度为 浓度为0.2 mol/l时 P136 例2 计算pH为3.0, NaF浓度为0.2 mol/l时, Fe3+/ Fe 的条件电位。在此条件下,用碘量法测 Fe2+的条件电位 在此条件下, 的条件电位。 Fe 铜时,会不会干扰测定? pH改为 改为1.0 铜时,会不会干扰测定?若pH改为1.0 时,结果又 如何? 如何?
第六章 氧化还原滴定法
条件电位
条件电位是校正了各种外界因素影响后得到的电对电 位,反映了离子强度及各种副反应影响的总结果。
当缺乏相同条件下的值时,可采用条件相近的值。在 无 φө′ 值时,可根据有关常数估算值,以便判断反应 进行的可能性及反应进行方向和程度。
五、电极电位的应用
1、判断氧化还原反应的方向
电对1 :Ox1 + ne = Red1 电对2:Red2 - ne = Ox2 φ1ө> φ2ө ,当体系处于标准状态时,电对1 中的氧化 态是较强的氧化剂,电对2中的还原态是较强的还原 剂,它们之间能够发生氧化还原反应,氧化还原反 应的方向为: Ox1 + Red2 = Red1 + Ox2
2Cu2+ + 4I-⇌2CuI↓ + I2 有关反应电对为:Cu2+ + e ⇌ Cu+ φCu2+/Cu+ө = 0.16V I2 + 2e ⇌ 2IφI2/I-ө = 0.54V 从电对的标准电极电位来判断,应当是I2氧化Cu+。 但事实上,Cu2+氧化I-的反应进行的很完全。这是由 于CuI沉淀的生成,使溶液中[Cu+]极小,Cu2+/Cu+电 对的条件电位显著升高, Cu2+ 的氧化能力显著增强 的结果。
3、催化剂对反应速率的影响 催化剂可以从根本上改变反应机制和反应速率,使用 催化剂是改变反应速率的有效方法。能加快反应速率 的催化剂称为正催化剂,能减慢反应速率的催化剂称 为负催化剂。
第三节 氧化还原滴定原理
一、氧化还原滴定曲线
1、滴定开始前 FeSO4 溶液中可能有极小量的 Fe2+ 被空气和介质氧化 生成 Fe3+ ,组成 Fe3+/Fe2+ 电对,但 Fe3+ 的浓度未知, 故滴定开始前的电位无法计算。
第六章 氧化还原反应和电极电势
第六章氧化还原反应和电极电势
氧化数:有整数、分数、正负数、零。
任何氧化还原反应保括两个半反应,即氧化半反应、还原半反应。
氧化态:氧化数较高的物质;还原态:氧化数较低的物质。
两者合称氧化还原点对,书写(I2/I-)。
氧化还原点对,就是一个半电池,一个电极。
氧化还原反应方程式配平:
1氧化数法:①氧化数值不变②原子守恒
2离子-电子法(半反应法)原则①原子守恒②电荷平衡
步骤1写成离子方程式
2再写成两个半反应
3配平半反应(原子配平、电荷配平。
不够酸性介质加H、
H2O;碱性介质加OH、H2O;中性介质左加H2O右加H+或OH-)
4合并半反应(氧得=还失。
找最小公倍数)
5离子方程式变化学方程式
6核查总反应
氢氧配平规律:
原电池:负氧正还。
盐桥:提供离子通道维持电荷平衡。
电极的种类:1金属离子电极:点对、电极符号Zn|Zn2+(c)、电极反应(氧化态的电子变还原态)|表示相界面;c注明离子浓度。
2金属难溶盐:电对AgCl/Ag;电极符号Ag|AgCl|Cl-(c)
Hg2Cl2/Hg Pt|Hg(l)|Hg2Cl2|(c)⚠️惰性电极Pt、液态(l)3氧化-还原电极:电对:Fe3+/Fe2+Pt|Fe3+(c1),Fe2+(c2)
⚠️同一相用“,”号隔开;惰性电极Pt
4气体-离子电极:电对:H+/H2 Pt|H2(p)|H+(c)
原电池符号:负极在前,正极在后。
(-)Zn|Zn2+(c1)||Cu2+(c2)|Cu(+)||表示盐桥。
第六章 氧化还原反应及电化学基础_6
如:标准锌电极与标准氢电极组成原电池,锌为负极, 标准锌电极与标准氢电极组成原电池,锌为负极, 氢为正极, 氢为正极,测得 εθ = 0.7618 (V) , 则 Eθ(Zn2+/Zn) = 0.0000 – 0.7618 = -0.7618(V)
标准电极电势表
标准电极电势表
Eθ(Li+/Li)值最小的原因:(严宣申,王长富《普通无机化学》(第二版)p10) (Li+/Li)值最小的原因 值最小的原因: 严宣申,王长富《普通无机化学》 第二版) 热 sGmθ(Μ) hGmθ(Μ+) 化 学 M(s) + H+(aq) M+(aq) + 1 H2(g) 2 循 1 G θ(Η ) hGmθ(Η+) 2 2 d m 环 iGmθ(Η) H(g) H+(g)
“形式电荷” +1 -2 形式电荷” 形式电荷 称为“氧化数” 称为“氧化数”
经验规则: 各元素氧化数的代数和为零。 经验规则: 各元素氧化数的代数和为零。 1)单质中,元素的氧化数等于零。(N2 、H2 、O2 等) 单质中,元素的氧化数等于零。(N 。( 2)二元离子化合物中,与元素的电荷数相一致。 NaCl 二元离子化合物中,与元素的电荷数相一致。 CaF2 +1,- +2,+1,-1 +2,-1 共价化合物中,成键电子对偏向电负性大的元素。 3) 共价化合物中,成键电子对偏向电负性大的元素。 超氧化钾) O: -2 (H2O 等); -1 (H2O2); -0.5 (KO2 超氧化钾) 一般情况; H: +1, 一般情况; -1, CaH2 、NaH
思考题: 确定氧化数 思考题:
Na2S4O6 (1)Na2S2O3 ) +2 +2.5 (2)K2Cr2O7 ) CrO5 +6 +10 KO3 (3)KO2 ) -0.5 -1/3 注意:1) 同种元素可有不同的氧化数; 注意: 同种元素可有不同的氧化数; 氧化数可为正、负和分数等; 2) 氧化数可为正、负和分数等;
氧化还原与电极电势
负极(电子流出):Zn(s) -2e 正极(电子流入): Cu2+(aq)+2e
Zn2+ 氧化反应 Cu(s) 还原反应
电池反应: Zn(s) Cu2 (aq)
Zn2 (aq) Cu(s)
每一电极由一对氧化还原电对构成 (两个电极可构成电池)
Cu2+/Cu: Cu2++2e Cu
Zn2+/Zn: Zn2++2e Zn
氧化型 /还原型
Cu2++2e
Cu
Zn2++2e
Zn
氧化型 +ne 氧化型1 +ne 还原型2 ne
还原型 还原型1 氧化型2
分类
Zn + 2HCl
ZnCl2 + H2
普通氧化还原反应 2Pb(NO3) 2PbO+4NO2 ↑+O2↑
氧化反应(O被氧化) ,还原反应(N被还原) 氧化与还原过程发生在同一种物质中的反应称为自身氧化还原 反应。
(-)Pt,H2(Pө) |H+(1mol·L-1)║Cu2+(1mol·L-1)|Cu(+)
测得该电池的电动势Eө=0.34V,所以
EөCu2+/Cu=0.34V
电对为 Cl2/Cl-, MnO-4 Mn2+ 原电池符号为:
(-)Pt,Cl2 (p)|Cl- (c1) H+ (c2 ),Mn2+ (c3),MnO-4 (c4 )|Pt(+)
电极的类型
1.金属-金属离子电极 Mn|Mn+
Mn++ne
M
第六章 氧化还原滴定法
★可逆电对
反应中氧化态和还原态物质能很快建立平衡的电对,其 电极电势严格遵从能斯特方程。
对于任何电极:aOX + ne- = a’Red
c(OX) / c c(OX) / c RT 2.303RT ln lg ' a' a nF nF c(RED) / c c(RED) / c
3+
/Fe2+
电池反应的自发方向为: Fe3+ + Cu = Fe2+ + Cu2+
★对称电对
氧化态与还原态的系数相同。
Fe3+ + e = Fe2+
MnO4- + 8H+ + 5e- = Mn2+ + 4H2O
★不对称电对 氧化态与还原态的系数不相同。 I2 + 2e = 2I- Cr2O72- + 14H+ + 6e- = 2Cr3+ + 7H2O
*注意诱导反应与催化作用的区别?
6.2 氧化还原滴定的基本原理
6.2.1 氧化还原滴定曲线
氧化还原滴定过程中存在着两个电对:滴定剂电对和被滴
定物电对。滴定反应: Ce4+ + Fe2+ = Ce3+ + Fe3+ 随着滴定剂的加入,两个电对的电极电位不断发生变化, 并处于动态平衡中。 绘制方法:横坐标为滴定剂加入体积(mL)或百分数%。 纵坐标为溶液的电位值。 溶液的电位值由两种方法得到: 第一,电对是可逆的,由能斯特方程式求得; 第二,电对是不可逆的由电位计测定。
⑤ φθ’值可查表,在无电对的φθ’时可用相近条件的φθ’值或是
第六章 水中有机物的氧化还原作用
精品课件
29
• BOD5虽然不能代表总的生化需氧 量,但对生活废水和大多数工业废水,
BOD5可占总BOD的70-80%,而且 采用五天培养期,可减少有机物降解释
放NH3的硝化作用的干扰,因此仍广 泛用BOD5表示水中有机物污染程 度。
精品课件
30
(2)化学需氧量( COD)
• COD是指在一定条件下,用强 氧化剂氧化水中有机物时所消耗的 氧化剂相当于氧的量。
第六章
水中有机物 的氧化还原作用
黄甫
精品课件
1
第一节 氧化还原作用基本理论
• 一、天然水中的氧化还原反应
• 天然水中只有少数元素——C、N、 S、O、Mn、Fe、Cr及I等是氧化 还原过程的主要参加者。
精品课件
2
• 天然水中的大多数氧化还原过程
都需要生物做媒介。生物参与的天
然水的氧化还原反应主要包括:有
精品课件
25
2.水中有机物的来源
• 水中的有机物86%来源于生产 和生活活动,只有14%的有机物 来源于自然环境。
精品课件
26
3.有机物含量的表示方法
• 水体中有机污染物组成非常复杂,难以 一一测定。传统上常用一些“间接性指标” 反映水体中有机物的含量和污染状况,这些 指标主要有几类:
• (1)生化需氧量 (BOD)
精品课件
41
作业
•P248页
• 第2、3题
精品课件
42
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
7
• 在缺氧条件下,有机物氧 化分解不完全,会产生对水 生生物无益甚至有害的物质 .
第六章 氧化还原平衡与氧化还原滴定
P146例题
6.3
30
6.3.2 电极电势的产生
(1)电极电势的产生 将金属插入含该金属离子溶液中:
M(s) Mn++n e 开始时,两种可能: v溶 > v沉(活泼金属) v溶 < v沉(不活泼金属) 平衡时: v溶=v沉
31
a
b
双电层示意图 a. 金属表面保持一定量的电子,附近溶液 中含相应数量的正离子。 b. 金属表面保持一定量的正离子,附近溶 液中含相应数量的负离子。
2
5. 掌握电极电势的应用:表示水溶液中物质氧化、 还原有力的强弱;判断氧化还原反应的方向;判 断氧化还原反应进行的程度;测定非氧化还原反 应的平衡常数 6. 掌握元素电势图及其应用 7. 了解氧化还原滴定法的基本特点,了解条件电 极电势的概念,了解条件平衡常数的概念,掌握 氧化还原滴定对条件电极电势差值的要求 8. 了解氧化还原滴定曲线的计算方法,了解氧化 还原滴定法所用的指示剂 9. 掌握高锰酸钾溶液的配制与标定,了解高锰酸 钾法、碘量法和重铬酸钾法的应用 10. 掌握氧化还原平衡和氧化还原滴定法的计算
4
本章主要章节
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 氧化还原反应的基本概念 氧化还原反应方程式的配平 电极电势 电极电势的应用 元素电势图及其应用 氧化还原反应的速率及其影响因素 氧化还原滴定 常用的氧化还原滴定法
5
化学反应一般可分为两类: 非氧化还原反应:反应过程没有电子的 转移,如酸碱反应、沉淀反应、配位反应。 氧化还原反应:反应过程反应物之间发 生了电子的转移,反应前后有元素的氧化数 发生了变化。
2MnO4-+SO32-+2OH核对:
第六章氧化还原滴定法
2)反应温度与滴定速度 温度应在15℃以下。 温度高:
HNO2分解与逸失。可采用“快速滴定法”
3)苯环上取代基团的影响
在苯胺环上:有吸电子基团取代 如: -NO2、-SO3H、-COOH等 使反应加速;
有斥电子基团(-OH、 -OR)使反应 减慢。
三、亚硝酸钠法的指示剂
•高锰酸钾法
标准溶液:高锰酸钾。 指示剂:自身指示剂。 测定条件:控制在1~2mol/L H2SO4溶液测定
还原性物质。
•亚硝酸钠法
(1)重氮化滴定法:在酸性介质中,用亚硝酸 钠标准溶液滴定芳伯胺化合物,发生重氮化反 应; (2)亚硝化滴定法:用亚硝酸钠标准溶液滴定
芳仲胺化合物,发生亚硝基化反应。
氧化还原反应的程度也是用平衡常数 的大小来衡量。氧化还原反应的平衡常数 与有关电对的电极电位有关。
(二)氧化还原反应进行的速度
氧化还原反应平衡常数的大小,可以 表示反应进行的程度,但不能说明反应的 速度。有许多氧化还原反应,虽然从理论 上看可以进行完全,但实际上由于反应速 度太慢而几乎觉察不出反应的进行。例如, 水溶液中的溶解氧:
2、书写Nernst方程式时注意几点:
(1)固体、溶剂的活度为1mol/L (2)气体以大气压为单位 (3)半反应中有其它组分参加,其它组分的
活度应包括在Nernst方程式中
3、条件电极电位 为了讨论方便,我们以下式为例来
进行讨论:
Ox + n e Red
• 二、氧化还原反应进行的程度和速度 (一)氧化还原反应进行的程度
101.0 110.0 150.0 200.0
100.0 95.0 90.0 80.0 60.0 50.0 40.0 10.0 1.0 0.1
第六章氧化还原滴定法
当 [ H ] 1 8 m 0 / L o H '3 A 4 lH sO 2 A 0 . 1 s V O 0 I 3 / I
H3ASO4 + 3I-+ 2H+
HASO2 + I3-+ 2H2O(酸性条件)
间接碘量法
HASO2 + I3-+ 2H2O
H3ASO4 +3I- + 2H+ (碱性条件)
直接碘量法
注:根据电对的电位高低判断氧化还原反应的方向
第六章 氧化还原滴定法
❖§6.2 氧化还原反应进行的程度 ❖ 一. 进行的程度用反应平衡常数来衡量
由标准电极电位→K 由条件电位→K’(条件平衡常数)
பைடு நூலகம்
Ox1 + n1e
Red1
Red2
Ox2 + n2e
11 0.n 0 1 5 lg a 9 a R O d 11 ex1 ' 0.n 0 1 5 lg C 9 C R O d 11 ex
Cu+
Cu2
Cu
0.16V4
2I-
I2
I
0.53V5
Fe 2+
Fe3
Fe2
0.771V
Fe3氧化能力强,C干 u2扰 测定
如加入能 Fe3与 形成配合F物 的
'
F3e
F2e
0.05l9 gF2e(F)
F3e (F)
F 3 e F 2 e 0 .0l5 1 g 9 1 [ F ]2 [ 1 F ] 2 3 [ F ] 3
H 3 A4 s O [H ]3 [H ]2K a 1 [ [H H ] ]2 3 K a 1 K a 2 K a 1 K a 2 K a 3
第六章 氧化还原反应
电极类型:
(1)金属及其离子电极
如:Ag︱Ag+(c)
Ag e
Ag
(2)气体电极
如:Pt︱H 2(p) ︱H+(c) (3)氧化还原电极
2H 2e
H2
如:C(石墨)︱Fe2+(c1) ,Fe3+(c2) Fe3 e
Fe2
(4)金属及其难溶盐-阴离子电极
如:Ag︱AgCl︱Cl-(c)
AgCl e
(5)2 KMnO4+K2SO3+2KOH
2K2MnO4+K2SO4+H2O
2、氧化值法 遵循原则: 氧化剂中元素氧化值降低的总数与还原剂 中氧化值升高的总数必须相等。 配平步骤: 以KMnO4和K2SO3在稀H2SO4中反应为例 (1) 写化学式,标氧化值,计算氧化值变化
氧化值降5价
+7
+4
Cr元素的氧化值:+5
O OO
Cr OO
6、半反应 氧化还原反应根据电子转移的方向可拆成两个半反应。
如: Zn Cu2 Zn 2 Cu
氧化半反应: Zn Zn 2 2e
还原半反应: Cu2 2e Cu
半反应通式:氧化剂+n e
还原剂
或 Ox ne
Red
注意: 氧化还原反应中,电子有得有失,因此半反应不能单独存在,
组成如下图的原电池,从电流方向可得Zn电极为负极
(-)Zn∣Zn2+(1mol/L)‖H+(1mol/L)∣H2(100kPa)∣Pt(+)
Eθ
θ 正极
θ 负极
θ H/H2
θ Zn 2/Zn
0.0000
θ Zn
2
/Zn
0.7618V
∴
θ Zn 2/Zn
0.7618V
第六章氧化还原滴定法
§6-1 氧化还原反应平衡
一、 条件电极电位
在较稀的弱电解质或极稀的强电解质溶液中,离子的总浓
度很低,离子间力很小,离子的活度系数≈1,可以认为活度等
于浓度。 在一般的强电解质溶液中,离子的总浓度较高,离子间力较 大,活度系数就<1,因此活度就小于浓度,在这种情况下, 严格地讲,各种平衡常数的计算就不能用离子浓度,而应用活 度。
例:判断二价铜离子能否与碘离子反应
2Cu 2 4I 2CuI I 2
Cu
2
/Cu
0.16 V ;
I
2 /I
0.54 V
从数据看,不能反应,但实际上反应完全。 原因:反应生成了难溶物CuI,改变了反应的方向。 Ksp(CuI) = [Cu+][I-] = 1.1 10-12
一、 条件电极电位
实际溶液中的作用力问题:
不同电荷的离子之间存在着相互吸引的作用力
电荷相同的离子之间存在着相互排斥的作用力
离子与溶剂分子之间也可能存在着相互吸引或相互排斥的作
用力 由于这些离子间力的影响,使得离子参加化学反应的有 效浓度要比实际浓度低,为此, 引入活度这个概念.
§6-1 氧化还原反应平衡
在 5mol/L HCl中
=0.70 V =0.64 V
在 0.5mol/L H2SO4中 =0.68 V 在 1mol/L HClO4中 =0.76 V 在 1mol/L H3PO4中 在 2mol/L H3PO4中
=0.44 V =0.46 V
§6-1 氧化还原反应平衡
不同的酸度还会影响反应物、产物的存在形式:
H 3 AsO4
HAsO 2
pKa 1=2.2
无机化学第六章氧化还原总结
298.15K,忽略 离子强度时
0.0592 n
lg
Ox Red
n 为电极反应中转移的电子数; 式中: [Ox ]为电极反应中氧化型一侧各物质浓度幂的乘积
注意
[Red]为电极反应中还原型一侧各物质浓度幂的乘积
1)纯液体、固体不出现在方程式中。气体用分压(p/p) 表示;(p以kPa为单位, p=100kPa)
已知 (Cl2 / Cl-) = 1.36 V, 当[ Cl- ] = 10 mol·L-1 , p(Cl2) = 1.0 kPa 时, (Cl2 / Cl-) 的值是 ( 1.24V )
I2 + 2e- 2I-
(I2/ I )
(I2/ I )
0.0592 1 2 lg [ I ]2
0.535
利用 ´计算 的 Nernst 方程:
/ 0.0592 lg cOx
n
cRe d
2、氧化还原滴定曲线计算(电极电势)
(1)计量点前——根据被滴定电对计算
(2)化学计量点sp
SP
n11 '
n1
n22 '
n2
适用于对称电对——电极反应中 氧化型、还原型前的系数相同。
(3)计量点后——根据滴定剂电对计算
AgI /Ag :
AgI + e- Ag + I- ;
Cl2/Cl- :
Cl2 + 2e- 2Cl-
(-)Ag ︱ AgI (s) | I- (c1) ‖Cl- (c2)︱Cl2 (P ) ,Pt (+)
:写出反应 I2 + 2S2O32- = 2I- + S4O62- 所对应的原电池符号: 解:根据反应式可知:
第6章氧化还原滴定法
氧化态+zeOx + ze还原态 Red
(其中氧化态与还原态称为氧化还原电 对,一般以Ox/Red表示)
有机物测定
甲醇、甘油、甲酸等有机化合物可用高锰酸钾法在碱 性溶液中进行测定。如甲醇的测定,将一定量且过量 的高锰酸钾标准溶液加入待测物质的试液中,反应为 : 6MnO4-+CH3OH+8OH-=CO32-+6MnO42++6H2O 反应结束后,将溶液酸化,MnO42+歧化为MnO4-和 MnO2。再加入准确过量的FeSO4溶液,将所有的高价 锰还原为Mn2+,最后以KMnO4溶液返滴定剩余的Fe2+
实验证明,一般温度升高10℃,反 应速度可增加2~4倍。如高锰酸钾 氧化草酸,在室温下,该反应较慢, 不利于滴定,可以加热到70-80℃来 提高反应速率。 由于不同反应物所需的温度各不相 同,必须根据具体情况确定反应的 适宜温度
影响氧化还原反应速率的因素
浓度 温度 催化剂
影响氧化还原反应速率的因素
氧化还原滴定曲线
滴定曲线的特点 滴定的双平台及滴定突跃
被滴定物质和滴定剂电对的条件电极电 位 介质
滴定突跃的影响因素
被滴定物质和滴定剂电对的条件电极电 位的差值
氧化还原滴定终点的指示方法 电位计法
通过电位仪测定滴定 过程中溶液电极电位 的变化情况,并从滴 定曲线上确定滴定终 点
RT [Ox ] EE ln nF [Re d ]b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章氧化还原平衡与氧化还原滴定法一填空题:1 原电池通过()反应将()直接转化为电能。
2 利用氧化还原反应组成原电池,其电动势可判断氧化还原反应的方向。
若E o()时,ΔG o(),反应将正向自发进行。
若E o()时,ΔG o(),反应将逆向自发进行。
3 铜片插入盛有0.5mol.L-1 CuSO4溶液的烧杯中,银片插入盛有0.5mol,L-1 AgNO3溶液的烧杯中,组成原电池,电池反应为(),该电池中的负极是()。
4 在下列情况下,铜锌原电池的电动势是增大还是减小?(1)向ZnSO4溶液加入一些NaOH浓溶液();(2)向CuSO4溶液加入一些NH3浓溶液()。
5 已知φo(Fe3+/Fe2+)=0.77V,φo(MnO4/Mn2+)=1.51V,φo(F2/F-)=2.87V。
在标准状态下,上述三个电对中,最强的氧化剂是(),最强的还原剂是()。
6 将下述反应:Ag+(aq)+Fe2+(aq) =Ag(s) +Fe3+(aq),设计为电池,其电池符号为()。
7 反应3ClO- =ClO3- +2Cl-是属于氧化还原反应中的()。
8 某反应B(s) +A2+(aq) =B2+(aq) +A(s) ,φo(A2+/A)=0.8920V ,φo(B2+/B)=0.3000V ,该反应的平衡常数是()。
9 氢电极插入纯水中通氢气[p(H2)=100kPa],在298K时,其电极电势为(),是因为()。
10 以Mn2++2e=Mn及Mg2++2e=Mg两个标准电极组成原电池,则电池符号是()。
11 在强酸性溶液中,高锰酸钾和亚铁盐反应,配平的离子方程式是()。
12 根据标准溶液所用的氧化剂不同,氧化还原滴定通常主要有()法、()法和()法。
13 KMnO4试剂中通常含有少量杂质,且蒸馏水中的微量还原性物质又会与KMnO4作用,所以KMnO4标准溶液不能()配制。
14 K2Cr2O7易提纯,在通常情况下,分析纯K2Cr2O7可以用做(),所以可()配制标准溶液。
15 碘滴定法常用的标准溶液是()溶液;滴定碘法常用的标准溶液是()溶液。
16 氧化还原滴定所用的标准溶液,因其具有氧化性,故一般在滴定时装在()滴定管中。
17 氧化还原指示剂是一类可以参与氧化还原反应,本身具有()性质的物质,它们的氧化态和还原态具有()的颜色。
18 有的物质本身并不具备氧化还原性,但它能与滴定剂或反应生成物形成特别的有色化合物,从而指示滴定终点,这种指示剂叫做()指示剂。
19 用KMnO4溶液滴定至终点后,溶液中出现的粉红色不能持久,是由于空气中的()气体和灰尘都能与MnO4-缓慢作用,使溶液的粉红色消失。
20 在氧化还原滴定中,利用标准溶液本身的颜色变化指示终点的叫做()。
21 淀粉可用作指示剂是根据它能与()反应,生成()的物质。
22 用Na2C2O4标定KMnO4溶液时,Na2C2O4溶液要在75~85℃下滴定,温度低了则();温度高了则()。
23 碘量法的主要误差来源是()、()。
24 I2在水中溶解度很小且易挥发,通常将其溶解在较浓的()溶液中,从而提高其溶解度,降低其挥发性。
25 氧化还原指示剂的变色范围为()。
二判断题:26 由于φo(Li+/Li)=-3.0V,φo(Na+/Na)=-2.7V,所以与同一氧化剂发生化学反应时,Li 的反应速率一定比Na的反应速率快。
27 电极的φo值越大,表明其氧化态越易得到电子,是越强的氧化剂。
28 标准氢电极的电极电势为零,是实际测定的结果。
29 电极反应Cl2+2e =2Cl-,φo=+1.36V,故1/2Cl2+e =Cl-,φo=1/2×1.36V。
30 由铜片和CuSO4溶液、银片和AgNO3溶液组成的原电池中,如将CuSO4溶液加水稀释,原电池的电动势会减小。
31 根据φo(AgCl/Ag)<φo(Ag+/Ag)可合理判定,K sp(AgI) <K sp(AgCl)。
32 在任一原电池内,正极总是有金属沉淀出来,负极总是有金属溶解下来成为阳离子。
33 原电池工作一段时间后,其电动势将发生变化。
34 MnO4- +8H+ +5e =Mn2+ +4H2O,φo=+1.51V,高锰酸钾是强氧化剂,因为它在反应中得到的电子数多。
35 CuS 不溶于水和盐酸,但能溶解于硝酸,因为硝酸的酸性比盐酸强。
36 SeO42-+4H+ +2e=H2SeO3 +H2O,φo=1.15V,因为H+在此处不是氧化剂,也不是还原剂,所以H+浓度的变化不影响电极电势。
37 在电极电势一定的铜电极溶液中,加入一些水使电极溶液体积增大,将会使电极电势有所升高。
38 查得φo(A+/A)>φo(B+/B) ,则可以判定在标准状态下B++A=B+A+是自发的。
39 同一元素在不同化合物中,氧化数越高,其得电子能力越强;氧化数越低,其失电子能力越强。
40 原电池电动势在反应过程中,随反应进行不断减少。
同样,两电极的电极电势也随之不断减少。
41 对于某电极,如H+ 或OH-参加反应,则溶液的pH改变时,其电极电势也将发生变化。
42 铁能置换铜离子,因此铜片不能溶解于三氯化铁溶液中。
43 在(-)Zn│ZnSO4(1mol.L-1)‖CuSO4(1mol.L-1)│Cu(+) 原电池中,向ZnSO4溶液中通入NH3后,原电池的电动势将升高。
44 两个电极都由锌片插入不同浓度的ZnSO4溶液中构成,它们连接的电池电动势为零。
45 两电极分别是Pb2+(1mol.L-1)+2e=Pb ,1/2Pb2+(1mol.L-1)+e=1/2Pb ,将两电极分别和标准氢电极连成原电池,它们的电动势相同,但反应的K值不同。
46 在浓度一定的锌盐溶液中,如插入面积不同的锌片,则大锌片构成的电极,其电极电势会比小锌片的高。
47 改变氧化还原反应中某反应物的浓度就很容易使反应方向逆转的,是那些E o 接近零的反应。
48 已知φo(H3AsO4/HAsO2)=0.58V,φo(I2/I-)=0.54V,当H3AsO4和I-反应时,溶液pH越小,则I-越容易被氧化。
49 原电池反应E值越大,其自发进行的倾向越大,故反应速率越快。
三选择题:50 MA(s)+e=M(s)+A-,此类难溶电解质溶解度越低的,其φo(MA/A)将()。
A 越高B 越低C 不受影响D 无法判断51 Pb2++2e=Pb,φo=-0.1263V,则()。
A Pb2+浓度增大时,φo增大B Pb2+浓度增大时,φo减小C 金属铅的量增大时,φo增大D 金属铅的量增大时,φo减小52 已知φo(Zn2+/Zn)=-0.76V ,φo(Cu2+/Cu)=0.34V 。
由Cu2++Zn=Zn2++Cu 组成的原电池,测得其电动势为1.00V,因此两电极溶液中()。
A c(Cu2+)=c(Zn2+)B c(Cu2+)>c(Zn2+)C c(Cu2+)<c(Zn2+)D c(Cu2+)、c(Zn2+)的关系无法确定53 Cl2/Cl-和Cu2+/Cu的标准电极电势分别是+1.36V和+0.34V,反应Cu2+(aq)+2Cl-(aq)=Cu(s)+Cl2(g) 的E o值是()。
A ―2.38VB ―1.70VC ―1.02VD +1.70V54 氢电极插入纯水,通入H2(100kPa)至饱和,则其电极电势()。
A φo=0B φo>0C φo<0D 因未加酸不可能产生55 在S4O62-中S的氧化数是()。
A +2B +4C +6D +2.556 原电池(-)Zn│ZnSO4(1mol.L-1)‖NiSO4(1mol.L-1)│Ni(+),在负极溶液中加入NaOH,其电动势()。
A 增加B 减少C 不变D 无法判断57 由电极MnO4-/Mn2+和Fe3+/Fe2+组成的原电池。
若加大溶液的酸度,原电池的电动势将()。
A 增大B 减小C 不变D 无法判断58 反应4Al+3O2+6H2O =4Al(OH)3(s),ΔG o=-nFE o 中的n=()。
A 12B 2C 3D 459 已知φo(Fe3+/Fe2+) =0.77V,φo(Cu2+/Cu) =0.34V ,则反应2Fe3+ (1mol.L-1) +Cu =2Fe2+ (1mol.L-1) +Cu2+ (1mol.L-1) ()。
A 呈平衡态B 正向自发进行C 逆向自发进行60 K2Cr2O7 +HCl →KCl +CrCl3+Cl2+H2O 在完全配平的方程式中Cl2的系数是()。
A 1B 2C 3D 461 下列反应:Cr2O72-+3Sn2++14H+=2Cr3++3Sn4++7H2O,在298K时的平衡常数为()。
A lg K o =3E o/0.0592 B lg K o =2E o/0.0592C lg K o =6E o/0.0592D lg K o=12E o/0.059262 电极反应MnO4-+8H++5e=Mn2++4H2O 的能斯特(Nernst)方程式为()。
A φ(MnO4-/Mn2+)=φo(MnO4-/Mn2+)-0.0592/5lg[c(MnO4-)·c8(H+)]/[c(Mn2+)·c4(H2O)]B φ(MnO4-/Mn2+)=φo(MnO4-/Mn2+)-0.0592/5lg[c(MnO4-)·c8(H+)]/c(Mn2+)C φ(MnO4-/Mn2+)=φo(MnO4-/Mn2+)-0.0592/5lg c(Mn2+)/ [c(MnO4-)·c8(H+)]D φ(MnO4-/Mn2+)=φo(MnO4-/Mn2+)-0.0592/5lg[c(Mn2+)·c4(H2O)]/ [c(MnO4-)·c8(H+)]63 两锌片分别插入不同浓度的ZnSO4水溶液中,测得φⅠ=-0.70V,φⅡ=-0.76V,说明量溶液中锌离子的浓度是()。
A Ⅰ的Zn2+浓度>Ⅱ的Zn2+浓度B Ⅰ的Zn2+浓度等于Ⅱ的Zn2+浓度C Ⅰ的Zn2+浓度<Ⅱ的Zn2+浓度DⅠ的Zn2+浓度等于Ⅱ的Zn2+浓度的2倍64 已知A(s)+D2+(aq)=A2+(aq)+D(s),E o>0;A(s)+B2+(aq)=A2+(aq)+B(s) ,E o>0;则在标准态时,D2+(aq)+B(s)=D(s)+B2+(aq) 为()。
A 自发的B 非自发的C 达平衡态D 无法判定65 某电极和饱和甘汞电极构成原电池,测得φ=0.3997V,这个电极的电极电势比饱和甘汞电极的电极电势(0.2415V)()。
A 高B 低C 也可能高,也可能低66 铁在酸性溶液中比在纯水中更易腐蚀,是因为()。