六年级上册数学教案圆的面积 第1课时 圆面积的意义和计算公式_西师大版()

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的面积第1课时圆面积的意义和计算公

与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖

悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学

教师被称为“老师”有案可稽。清代称主考官也为“老师”,而

一般学堂里的先生则称为“教师”或“教习”。可见,“教师”

一说是比较晚的事了。如今体会,“教师”的含义比之“老师”

一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。

教学内容:

“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。教科书

第19~20页,圆面积的意义和圆面积计算公式的推导。

宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。教学提示:

教材首先通过“已知云南景洪的曼飞龙白塔的塔基是圆柱形石座,底面周长是42.6米,求这座塔基的占地面积”的实际情境提出圆面积的概念,使学生在以前所学知识的基础上理解“圆的面积就是它所占平面的大小”。

由于以前学生所求的图形面积都是多边形(如三角形、长方形、正方形、平行四边形、梯形等)的面积,而像圆这样的曲边图形的面积计算,学生还是第一次接触到。教材没有直给出圆的面积计算公式,而是先通过例1,把圆的面积与正方形的面积进行比较,利用数格子的方法估算圆的面积,使学生对圆的面积有一个初步的感性认识。进而引导学生运用转化的思想来推导圆的面积计算公式。

由于让学生完全自主地探索如何把圆转化成长方形是有很大难度的,教材上给出了明确的提示,让学生利用学具进行操作,在此基础上,让学生自主发现圆的面积与拼成的长方形面积的关系,圆的周长、半径和长方形的长、宽的关系,并推导出圆的面积计算公式。

最后,本节课教材安排了两道例题,例1用石塔占地突出圆面积的概念,强调与周长的区别。通过“估”和“数”的活动,使学生感受到圆的面积与r有关,为后面的圆面积公式的推导作准备。

感受过程:(1)圆的面积比4个小正方形面积小,就是比4r²小。(2)用数方格的方式,让学生知道圆面积比3r²大。(3)结论:圆面积是半径平方的3倍多一些。

例2用实验的方法探索圆面积的计算公式。

实验的方式:(1)图形转化。(浸透极限思想)(2)讨论:平行四边形与圆的关系。(3)比较推理(4)归纳圆面积计算公式。

◆教学目标:

1.知识与技能:知道圆面积的含义。理解和掌握圆面积计算公式。会运用圆面积公式计算圆面积。

2.过程与方法:通过教具演示,渗透转化的数学思想和极限思想,使学生经历探索圆的面积计算公式的过程。

3.情感态度与价值观:激发学生参与教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

◆重点难点:

教学重点:圆面积的计算方法。

教学难点:推导圆面积计算公式。

◆教学准备:

教具准备:多媒体课件

学具准备:8和16等份的圆形纸片各1个,正方形、圆形物品、圆规、

剪刀等。

教学过程:

(一)新课导入

(投影出示——《马儿的困惑》的场景)

谈话:同学们,你们知道马儿吃草的大小是一个什么图形呀?

预设:是一个圆形。

那么,要想知道马儿吃草的大小,就是求圆形的什么呢?

预设:圆的面积。

教师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

圆的面积是指的什么?

归纳:圆所占平面的大小,就是圆的面积。

【设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。】

(二)探究新知

1.初步感知圆的面积。

(1)估一估圆的面积。

投影出示一个圆,如图。

有一个圆,并以圆的半径r为边长画一个小正方形。

请同学们估一估,圆的面积大约是小正方形面积的多少倍?

让学生独立思考,同桌合作交流,然后反馈学生估的结果。

预设:

生1:这个圆面上可以画4个这样的小正方形,但圆的面积没有四个小正方形的面积大。所以,我估计,圆的面积大约是小正方形面积的3倍。

教师给予肯定:这样的估计有道理。

生2:我不是想在圆面上画4个这样的小正方形。是想把这个圆对折两次后,平分成4等份,一等份的圆和大半个小正方形的面积相等,4等份一定比两个正方形大,比4个正方形小,所以,我也估计,圆的面积大约是小正方形面积的3倍。

教师给予肯定:分析得不错。难道圆的面积刚好是小正方形面积的3倍吗?

(2)数方格验证,得出结论。

提问:如果我们将正方形的边长r平均分成4份,在小正方形内就有16个方格。于是得到现在的图,(出示)你能用数方格的方法回答刚才的问题吗?(非常接近1格的算做1格,其余不足1格的算半格)

反馈学生数的结果:小正方形有16个方格,14圆里大约有13格。

教师接着问:整个圆里大约有多少个方格?(13×4=52)

52大约是16的多少倍?

师生共同小结:圆的面积是小正方形面积的3倍多一些,也就是半径平方(r2)的3倍多一些。

(板书:S=r2的3倍多。)

【设计意图:通过本环节让学生对圆的面积与正方形的面积进行比较,估一估圆的面积与正方形的面积的关系,然后通过数格子的方法进行验证,使学生对圆的面积有一个初步的感知,也为下面的推导圆的面积公式做好铺垫。】

2.探究圆的面积计算公式。

相关文档
最新文档