六年级下册第五单元 《数学广角-鸽巢问题》知识点归纳

合集下载

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。

二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。

模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。

【练习1】把4支铅笔放进3个笔筒中,有()种放法。

【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。

【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。

【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。

【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。

规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。

那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。

你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。

六年级数学下册期末总复习《5单元数学广角——鸽巢问题》必记知识点

六年级数学下册期末总复习《5单元数学广角——鸽巢问题》必记知识点

六年级数学下册期末总复习《5单元数学广角——鸽巢问题》必记知识点一、鸽巢问题基本原理•定义:鸽巢问题,也被称为抽屉原理或鸽笼原理,是一种组合数学原理。

它描述的是,如果n 个物体被放入m 个容器(n > m),那么至少有一个容器包含两个或更多的物体。

••简单示例:••如果有 3 个苹果放入 2 个盒子中,至少有一个盒子包含 2 个或更多的苹果。

•如果有 5 只鸽子飞入 4 个鸽笼,至少有一个鸽笼包含 2 只或更多的鸽子。

二、鸽巢问题的数学表达•公式:物体个数÷ 鸽巢个数= 商…… 余数,至少个数= 商+ 1(当余数存在时)。

••应用:••如果有10 个苹果放入9 个抽屉,那么至少有一个抽屉包含至少 2 个苹果(因为10 ÷ 9 = 1 …… 1,至少个数= 1 + 1 = 2)。

三、鸽巢原理的变种•鸽巢原理(二):把多于kn 个物体任意分进n 个鸽巢中(k 和n 是非0自然数),那么一定有一个鸽巢中至少放进了(k+1) 个物体。

••应用:••如果有15 只鸽子飞入 4 个鸽笼,至少有一个鸽笼包含至少 4 只鸽子(因为15 = 3 × 4 + 3,所以至少有一个鸽笼包含3+1=4 只鸽子)。

四、摸球问题与鸽巢原理•摸同色球:•要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。

•如果有两种颜色的球,至少需要摸 3 个球来保证有两个同色的球;三种颜色则需要摸 4 个球,以此类推。

•极端思想:•在摸球时,先考虑最不利的情况(即先摸出不同颜色的球),然后再考虑下一个球,以确保满足条件。

五、鸽巢原理的应用实例•生日悖论:在一个至少有23 人的群体中,存在至少两个人的生日在同一天的概率超过50%。

•选举投票:在一个有n 个候选人和超过n 个选民的选举中,至少有一个候选人获得了超过1/2 的选票(通过多轮投票或淘汰制)。

六、解题步骤1.分析题意:明确“鸽巢”和“物体”分别是什么。

六年级下册数学同步复习与测试讲义-第五章 数学广角-鸽巢问题 人教新课标版(含解析)

六年级下册数学同步复习与测试讲义-第五章 数学广角-鸽巢问题 人教新课标版(含解析)
例:[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉.也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算.
【ห้องสมุดไป่ตู้典例题】
例1:在任意的37个人中,至少有( )人属于同一种属相.
A、3 B、4 C、6
分析:把12个属相看做12个抽屉,37人看做37个元素,利用抽屉原理最差情况:要使属相相同的人数最少,只要使每个抽屉的元素数尽量平均,即可解答
A.5B.7C.9D.11
4.袋中有60粒大小相同的弹珠,每15粒是同一种颜色,为保证取出的弹珠中一定有2粒是同色的,至少要取出( )粒才行.
A.4B.5C.6D.7
5.1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少有( )只鸽子.
A.20B.21C.22D.23
=49(人)
答:这个班至少有49人.
故答案为:49.
【点评】抽屉原理一:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件.
抽屉原理二:把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体.
13.【分析】1年有12个月,把这13辆电动清洁能源小客车平均分在12个月里面,每个月分到1辆,还余1辆,余下的1辆无论是分到哪个月,这个月都至少有2辆,由此求解.
【解答】解:25÷4=6(枚)…1(枚),
6+1=7(枚)
答:有一个小三角形内至少有7枚棋子.
故选:C.
【点评】抽屉原理问题的解答思路是:要从最不利情况考虑,准确地建立抽屉和确定元素的总个数,然后根据“至少数=元素的总个数÷抽屉的个数+1(有余数的情况下)”解答.

六年级下册数学广角鸽巢知识点

六年级下册数学广角鸽巢知识点

六年级下册数学广角鸽巢知识点六年级下册数学广角鸽巢知识点1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用①什么是鸽巣原理, 先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法,如下表放法盒子1盒子21322131243无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果〞。

这个结论是在“任意放法〞的情况下, 得出的一个“必然结果〞。

类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信我们把这些例子中的“苹果〞、“鸽子〞、“信〞看作一种物体,把“盒子〞、“鸽笼〞、“信箱〞看作鸽巣, 可以得到鸽巣原理最简单的表达形式②利用公式进行解题:物体个数÷鸽巣个数=商……余数至少个数=商+12、摸2个同色球计算方法。

①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1.物体数=颜色数×(至少数-1)+1②极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

③公式:两种颜色:2+1=3(个)三种颜色:3+1=4(个)四种颜色:4+1=5(个)数学长度单位简介及换算分米(dm)、厘米(cm)、纳米(nm)等,长度的标准单位是“米〞,分米dm,米m。

毫米mm,厘米cm,用符号“m〞表示。

1里=150丈=5米。

2里=1公里(10米)。

1丈=10尺。

1丈=3.33米。

1尺=3.33分米。

小学数学四边形定义知识点(1)什么是四边形?有四条线段围成的图形叫四边形。

(2)什么是平等四边形?两组对边分别平行的四边形叫做平行四边形。

(3)什么是平行四边形的高?从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。

(4)什么是梯形?只有一组对边平行的四边形叫做梯形。

六年级下学期数学鸽巢问题完整版讲义教师版+学生版

六年级下学期数学鸽巢问题完整版讲义教师版+学生版

鸽巢问题★ 知识概要1、鸽巢问题如果物体数除以抽屉数有余数,用所得的商加 1 ,就会发现“总有一个抽屉里至少有商加 1 个物体” 。

物体数+抽屉数=商……余数至少数:商+12、题型1)如果把m个物体任意放进n个抽屉中,(m>n , m和n是非0自然数),那么一定有一个抽屉中至少放进了 2 个物体。

2)如果把多于kn(k 是正整数,n 是非0 的自然数)个物体放进n 个抽屉里,那么一定有一个抽屉里至少有(k+1)个物体。

3)苹果数=抽屉数x(至少数-1) +14)最不利原理★ 精讲精练例1、( 1)11 只鸽子飞进了 4 个鸽笼,总有一个鸽笼至少飞进了 3 只鸽子。

为什么?解析:11 + 4=2 (只)……3 (只)2+1=3 (只)( 2) 5 个人坐 4 把椅子,总有一把椅子上至少坐2 人。

为什么?解析:5 + 4=1 (人) .. 1 (人)1+1=2 (人)演练1、(1)一个小组13 个人,其中至少有2 人是同一个月出生的,为什么?解析:13+12=1 (人)……1 (人)1+1=2 (人)2)9 只白鸽飞回 4 个鸽笼,至少有一个鸽笼里要飞进 3 白鸽,为什么?解析:9 + 4 = 2 (只)1 (只)2+1=3 (只)例2、(1)一个小组13个人,其中至少有(2 )人是同一个月出生的。

(2)6只鸽子飞回5个鸽舍,至少有(2 )只鸽子要飞进同一个鸽舍里。

演练2、(1)9只白鸽飞回2个鸽笼,至少有一个鸽笼里要飞进( D )白鸽。

A. 2只B. 3只C. 4只D. 5只(2)1987年某地一年新生婴儿有368名,他们中至少有(A )是同一天出生的。

A. 2名B. 3名C. 4名D. 10名以上例3、(1)17名同学参加考试,考试题是3道判断题(答案只有对或错),每名同学都在答题纸上依次写上了3道题的答案。

至少有多少名同学的答案是一样的?解析:答题情况:2 >2 >2=8 (种)17为=2 (名)••…1 (名)至少有2+1=3 (名)(2)全班40人去动物园,动物园有狮子馆、大象馆、鳄鱼馆和海洋馆。

鸽巢问题知识点总结

鸽巢问题知识点总结

鸽巢问题知识点总结一、概述鸽巢问题是一类经典的组合数学问题,它通常涉及到将若干个物体放入若干个容器中,保证容器内物体数量不超过规定值的情况下,求出最多可以放置多少个物体。

鸽巢问题有着广泛的应用,例如在密码学、计算机科学、图论等领域都有着重要的应用。

二、基本概念1. 鸽巢原理:若将n+1个或更多的物体放入n个盒子中,则至少有一个盒子内有两个或以上的物体。

2. 抽屉原理:如果有m个物品放进n个抽屉里,且m>n,则至少有一个抽屉里面至少有两个物品。

3. 完全背包问题:在给定的一组物品和一个容量为V的背包中,每种物品都有无限件可用。

装入背包中的物品总价值最大是多少?4. 01背包问题:在给定的一组物品和一个容量为V的背包中,每种物品只能选择一件。

装入背包中的物品总价值最大是多少?三、解题思路1. 鸽巢原理解题思路:(1)确定鸽子和鸽巢:将物体视为鸽子,容器视为鸽巢。

(2)确定限制条件:设每个鸽巢最多可以放置k个鸽子。

(3)确定问题:求出最多可以放置多少个物体。

(4)应用鸽巢原理:根据鸽巢原理,当物体数量大于nk时,至少有一个容器内放置了两个或以上的物体。

因此,最多可以放置的物体数量为nk。

2. 抽屉原理解题思路:(1)确定抽屉和物品:将容器视为抽屉,将物体视为物品。

(2)确定限制条件:设每个抽屉最多可以放置k个物品。

(3)确定问题:求出最多可以放置多少个物品。

(4)应用抽屉原理:根据抽屉原理,当物品数量大于nk时,至少有一个抽屉内放置了两个或以上的物品。

因此,最多可以放置的物品数量为nk。

3. 完全背包问题解题思路:(1)初始化状态:设f[i]表示前i件物品恰好装满容量为j的背包所能获得的最大价值,则f[0]=0。

(2)状态转移方程:f[i][j]=max{f[i-1][j-k*V[i]]+k*W[i]|0<=k*V[i]<=j}。

(3)求解最优解:最终的最大价值为f[n][V]。

4. 01背包问题解题思路:(1)初始化状态:设f[i][j]表示前i件物品恰好装满容量为j的背包所能获得的最大价值,则f[0][0]=0。

六年级下册数学第五单元知识点

六年级下册数学第五单元知识点

六年级下册数学第五单元知识点一、鸽巢原理(抽屉原理)1. 基本概念。

- 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

例如:把4个苹果放到3个抽屉里,那么至少有一个抽屉里有2个苹果。

- 可以用公式表示为:物体数÷抽屉数 = 商……余数,至少数=商 + 1(当余数不为0时);至少数 = 商(当余数为0时)。

2. 简单应用示例。

- 例1:有5只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了几只鸽子?- 这里物体数是5(鸽子的数量),抽屉数是3(鸽笼的数量)。

- 5÷3 = 1·s·s2,商是1,余数是2。

- 根据公式至少数 = 商+1,所以至少有一个鸽笼飞进了1 + 1=2只鸽子。

- 例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进几本书?- 7÷3 = 2·s·s1,商是2,余数是1。

- 至少数 = 商 + 1,也就是2+1 = 3本,总有一个抽屉里至少放进3本书。

二、鸽巢原理的拓展应用。

1. 摸球问题中的应用。

- 例:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,最少要摸出几个球?- 把两种颜色看作2个抽屉(红、蓝),考虑最差情况:先摸出2个球,一个红球和一个蓝球,此时再任意摸出1个球,无论这个球是红色还是蓝色,都能保证有2个球同色。

- 所以最少摸出2 + 1=3个球。

2. 人数与生日问题中的应用。

- 例:六年级共有367名学生,其中至少有几名学生的生日是同一天?- 一年最多有366天(闰年),把366天看作366个抽屉,367名学生看作367个物体。

- 367÷366 = 1·s·s1,至少数 = 商+1,所以至少有1 + 1 = 2名学生的生日是同一天。

六下第五章 数学广角—鸽巢问题

六下第五章  数学广角—鸽巢问题

第五章数学广角第一课鸽巢问题(一)1.初步了解“鸽巢问题(一)”的基本特点。

2.能通过猜测、验证、观察、分析等数学活动,总结出“鸽巢问题”的一般性结论。

3.能对生活中简单的“鸽巢问题”做出合理的解释。

1.试一试:把4枝铅笔房放进3个文具盒中,看看会有几种情况?把各种不同的情况用数字形式记录下来:2.假设:把4枝铅笔房放进3个文具盒中,如果每个文具盒只放一支铅笔,最多能放()枝,剩下的1枝还要放进其中的一个文具盒,所以总有一个文具盒至少放进了()枝。

3.思考:把5枝铅笔放进4个文具盒,总有一个文具盒至少放进()枝铅笔。

把10枝铅笔放进9个文具盒,总有一个文具盒至少放进()枝铅笔。

把100枝铅笔放进99个文具盒,总有一个文具盒至少放进()枝铅笔。

把5枝铅笔放进3个文具盒呢?把10枝铅笔放进7个文具盒呢?把100 枝铅笔放进90个文具盒呢?3.经过操作、观察、思考、分析,我们可以得出结论:只要放的铅笔数比文具盒的数量多,就总有一个文具盒里至少放进了()枝铅笔。

把4枝铅笔放进3个文具盒中,不管怎样放,总有一个文具盒至少放进2枝铅笔。

为什么?【我先来做一做】【解答】因为把4枝铅笔房放进3个文具盒中,假设每个文具盒只放一支铅笔,最多能放3枝,剩下的1枝还要放进其中的一个文具盒,所以总有一个文具盒至少放进了2枝。

【点拨】“鸽巢问题”又称“抽屉问题”,这是鸽巢问题(抽屉问题)中一个最基本的类型:把一些物体任意放进若干个抽屉里,只要物体的数量比抽屉的数量多,就总有一个抽屉至少放进了2个物体。

在这里,“4枝铅笔”就是“4个待分的物体”、“3个文具盒”就是“3个抽屉”。

根据抽屉问题的原理:待分的物体比抽屉多,就总有一个抽屉至少放进了2个物体。

1.把8本课外书发给7个同学,其中至少有一个同学得到了2本,为什么?2.一个聚会上,来了姓赵、姓钱、姓孙、姓李、姓黄的共9位客人,他们当中至少有()人同一个姓氏。

3.在美术作品征集活动中,全班32名同学共交来了35件作品,说明有1名同学至少交了()件以上作品。

第五单元数学广角--鸽巢问题(易错梳理)-六年级下册数学单元复习讲义人教版

第五单元数学广角--鸽巢问题(易错梳理)-六年级下册数学单元复习讲义人教版

数学广角—鸽巢问题知识盘点知识点1:鸽巢原理1、原理1:(n+1)只鸽子飞进n(n为整数,n≥2)个鸽巢,则必定有一个鸽巢里至少飞进2只鸽子。

2、原理2:把多于kn个物体任意分放进n个鸽巢中(k和n是非0自然数),那么一定有一个鸽巢里至少放进了(k+1)个物体知识点2:用鸽巢原理解决问题要保证摸出两个同色的球,至少摸出的球的数量要比颜色数多1。

易错集合易错点:运用鸽巢问题解决实际问题典例把16个苹果放进7个抽屉,总有一个抽屉里至少放了()个苹果;10只鸽子飞进4个巢,总有一个鸽巢至少飞进()只鸽子。

(个),即平均每个抽屉放2个苹果后,还余2个,余下的2个无论放到哪个抽屉,总有一个抽屉里至少会有2+1=3(个)苹果;10只鸽子飞进4个巢,10÷4=2(只)……2(只),即平均每个鸽巢飞进2只鸽子后,还有2只鸽子没有飞进,余下的2只无论飞进哪个鸽巢里,总有一个鸽巢至少飞进2+1=3(只)。

解答16÷7=2(个)……2(个),2+1=3(个);10÷4=2(只)……2(只),2+1=3(只)。

✨针对练习学校有数学、英语、美术、书法四个兴趣小组,每名学生最多参加两个兴趣小组(可以不参加),至少选多少名学生,才能保证有零名学生参加兴趣小组的情况完全相同?跟踪训练一、选择题1、某小学六年级有38名学生是四月份出生的,那么他们至少有()人生日在同一天。

A、8B、7C、3D、22、10个同学分到4个班,至少有一个班分到的学生人数不少于()人。

A、1B、2C、3D、43、一个盒子里装有黄、白乒乓球各5个,要想取出的乒乓球中一定有两个黄色的,则至少取()个。

A、3B、5C、6D、74、某班有男生25人,女生18人,下面说法正确的是()。

A、至少有2名男生是在用一个月出生的B、至少有2名女生是在同一个月出生的C、至少有5个人是在同一个月出生的D、以上选项都错误5、在学校科技比赛中,有31名同学报名参加了航模、海模和创意制作三个项目的比赛,总有一个项目至少有()名同学参加。

小学数学人教六年级下册数学广角鸽巢问题鸽

小学数学人教六年级下册数学广角鸽巢问题鸽
,余数是整数。
整数的性质在数学中有着广泛的 应用,尤其在解决一些涉及整除
和取余的问题时非常有用。
03 鸽巢问题解题方法
列举法
通过一一列举的方式,将每种可能的 情况都列出来,然后判断哪种情况符 合题目的要求。这种方法适用于问题 规模较小,可以穷举所有情况的问题 。
例如,有3只鸽子飞进2个鸽巢,列举 出所有可能的情况:第一个鸽巢1只 ,第二个鸽巢2只;第一个鸽巢2只, 第二个鸽巢1只;第一个鸽巢3只,第 二个鸽巢0只。由此可以得出至少有 一个鸽巢有2只或以上的鸽子。
04 鸽巢问题经典案例
物品分配问题
将多于n个物品放入n个容器,至少有一个容器包含两个或 以上的物品。
例如,将5个苹果放入4个盘子中,至少有一个盘子中会有 两个苹果。
鸽巢与信鸽问题
如果n个鸽子飞进n-1个鸽巢,那么至少有一个鸽巢中有两只鸽子。
类似地,如果有n封信要放入n-1个信箱,则至少有一个信箱中会有两封信。
05 鸽巢问题拓展与应用
拓展到多个抽屉情况
当有n个抽屉和m个鸽子(m>n)时 ,至少有一个抽屉里至少有⌈m/n⌉只 鸽子。
VS
如果每个抽屉里放k-1个鸽子,那么 最多可以放(k-1)n个鸽子,当第(k1)n+1个鸽子放入时,必然有一个抽 屉里至少有k个鸽子。
应用到实际生活中问题
生日悖论
在一个班级中,如果有23个或更 多的学生,那么至少有两个学生 同月同日出生的概率大于50%。
小学数学人教六年级下册数学广角 鸽巢问题鸽
目录
• 鸽巢问题简介 • 鸽巢问题基本原理 • 鸽巢问题解题方法 • 鸽巢问题经典案例 • 鸽巢问题拓展与应用 • 学生自主思考与探究
01 鸽巢问题简介

六下(人教)第五单元数学广角 - 鸽巢问题(抽屉原理)(附答案

六下(人教)第五单元数学广角 - 鸽巢问题(抽屉原理)(附答案

六下(人教)第五单元数学广角 - 鸽巢问题(抽屉原理)(附答案六下人教版同步奥数第五单元数学广角――鸽巢问题能力提升思维突破挑战极限第五单元数学广角――鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。

二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。

模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。

【练习1】把4支铅笔放进3个笔筒中,有()种放法。

【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。

【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。

【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。

第 1 页共 14 页六下人教版同步奥数第五单元数学广角――鸽巢问题能力提升思维突破挑战极限【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。

规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。

那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。

小学六年级数学广角鸽巢知识点

小学六年级数学广角鸽巢知识点

小学六年级数学广角鸽巢知识点
小学六年级数学的广角鸽巢主要涉及以下几个知识点:
1. 广角的定义:广角是指大于180°且小于360°的角。

2. 广角的性质:广角的补角是一个锐角。

例如,如果A是一个广角,则其补角B是一个锐角,且A + B = 360°。

3. 平角和延长角:平角是一个角度为180°的广角,延长角是一个角度大于180°但小于360°的广角。

4. 广角的度数计算:要计算广角的度数,可以直接减去360°的整数倍即可。

例如,一个角度为480°的广角,可以计算为480 - 360 = 120°。

5. 广角的测量工具:使用量角器可以准确地测量广角的度数。

6. 广角的应用:广角常常出现在几何图形的构造和测量中。

例如,在绘制多边形或圆形物体的过程中,可能会遇到需要测量广角的情况。

希望以上信息能对你有所帮助!如有其他问题,请继续提问。

(完整版)六年级下数学广角鸽巢问题讲义

(完整版)六年级下数学广角鸽巢问题讲义

数学广角——鸽巢问题学生/课程年级学科授课教师日期时段核心内容普通自行车里的数学及抽屉原理课型一对一/一对N教学目标1、通过“自行车里的数学”学习,让学生巩固所学的圆、排列组合及比例等知识。

2、理解“抽屉原理”,并且会用“抽屉原理”解决实际应用问题。

3、通过“抽屉原理”的灵活运用,提高学生解决数学问题的能力和兴趣。

重、难点1、准确理解以下数量关系:在总齿数一定的情况下,前齿轮转的圈数×前齿轮齿数=后齿轮转的圈数×后齿轮的齿数。

2、自行车前进过程中,前后齿轮之间的比例关系。

3、理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

知识导图知识梳理(1)自行车里的数学①前齿轮转的圈数×前齿轮的齿数=后齿轮转的圈数×后齿轮的齿数前齿轮所转总长度=后齿轮所转总长度车轮所走路程=车轮周长×周数③前、后齿轮齿数相差大的,比值就大,这种组合走得就远。

因而车速快,但骑车人较费力。

前、后齿轮齿数相差较小时,车速较慢,但骑车人较省力。

(2)抽屉原理①如果物体数除以抽屉数有余数,用所得的商加1,就会发现:总有一个抽屉有商加1个物体。

物体数÷抽屉数=商……余数至少数=商+1②运用最不利原则解决鸽巢问题。

导学一自行车里的数学知识点讲解 1:普通自行车里的数学例 1. 一辆自行车前齿轮36个齿,后齿轮18个齿,车轮直径5分米。

每蹬一圈自行车前进多少米?例 2. 一辆自行车前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米,求自行车的车轮直径是多少?(保留两位小数)例 3. 一种儿童专用自行车的前轮直径是28厘米,后轮直径是35厘米,前轮行走40圈的路程,后轮要行走多少圈?【学有所获】前齿轮转的圈数×=×后齿轮的齿数。

[学有所获答案]前齿轮的齿数;后齿轮转的圈数例 4. 一种自行车轮胎外直径35.36厘米,如果平均每分钟转100圈,通过长1670米的武汉长江大桥,需要多少分钟?(得数保留整数)我爱展示1.一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,脚蹬一圈自行车前进多少米?2.一辆自行车前齿轮有32个,后齿轮有16个,蹬一圈自行车约前进6.28m,求这辆自行车的车轮直径是多少?3.一种自行车轮胎的外直径是0.7米。

最新人教部编版六年级数学下册《第5单元 数学广角—鸽巢问题【全单元】》精品PPT优质课件

最新人教部编版六年级数学下册《第5单元 数学广角—鸽巢问题【全单元】》精品PPT优质课件

第一种情况:
第二种情况:
二 探究新知
3 盒子里有同样大小的红球和蓝球各 4 个,要 想摸出的球一定有2个同色的,至少要摸出几个 球?
至少要摸出3个球
只要摸出的球数比它们的颜色种 数多1,就能保证有两个球同色。
三 对应练习
做一做
1. 向东小学六年级共有367名学生,其中六(2)班有49
名学生。
六年级里至少有两 人的生日是同一天。
二 探究新知
还可以在左边笔筒里放 2 支,中间笔 筒里放 1 支,右边笔筒里放 1 支。
二 探究新知
假设法
还可以怎么想?
先放 3 支,在每个笔 筒中放 1 支,剩下的 1 支就要放进其中的 一个笔筒。所以至少 有一个笔筒中有 2 支 铅笔。
二 探究新知
二 探究新知
把5支笔放进4个笔筒里呢?还用摆吗? 5支笔放进4个笔筒里,不管怎么放, 总有一个盒子里至少有2支笔。 把6支笔放进5个盒子里呢? 把7支笔放进6个盒子里呢? 把8支笔放进7个盒子里呢? ……
3根混在一起。如果让你闭上眼睛, 出4根才能保证一
每次最少拿出几根才能保证一定有 定有2根同色的筷
2根同色的筷子?如果要保证有2双 子。每次最少拿6
不同色的筷子呢?(指一双筷子为 根才能保证一定
其中一种颜色,另一双筷子为另一 有2双不同色的筷
种颜色。)
子。
四 巩固练习
2.填空乐园。 (1)一副扑克牌有54张,至少抽( 51 )张才能保 证其中最少有一张是“A”。 (2)有黑、白色的同一品牌的袜子各5只,如果闭着 眼睛,至少拿出( 3 )只才能使拿出的袜子中一定 有一双是同色的。
列,你有什么发现?
如果只涂两行的话,结论有什么变化呢?

人教版六年级下册数学知识点预习:第五单元 数学广角-鸽巢问题

人教版六年级下册数学知识点预习:第五单元 数学广角-鸽巢问题

人教版六年级下册数学知识点预习:第五单元数学广角-鸽巢问题(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的学习资料,如英语资料、语文资料、数学资料、物理资料、化学资料、生物资料、地理资料、历史资料、政治资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of learning materials for everyone, such as English materials, language materials, mathematics materials, physical materials, chemical materials, biological materials, geographic materials, historical materials, political materials, other materials, etc. Please pay attention to the data format and writingmethod!人教版六年级下册数学知识点预习:第五单元数学广角-鸽巢问题第五单元数学广角-鸽巢问题1、鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用①什么是鸽巣原理,先从一个简单的例子入手,把3个苹果放在2个盒子里,共有四种不同的放法,如下表放法盒子1盒子2130221312403无论哪一种放法,都可以说“必有一个盒子放了两个或两个以上的苹果”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
③公式:Hale Waihona Puke 两种颜色:2+1=3(个)
三种颜色:3+1=4(个)
四种颜色:4+1=5(个)
我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣,可以得到鸽巣原理最简单的表达形式
②利用公式进行解题:
物体个数÷鸽巣个数=商……余数
至少个数=商+1
2、摸2个同色球计算方法。
①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。
物体数=颜色数×(至少数-1)+1
六年级下册第五单元《数学广角-鸽巢问题》知识点归纳
一.复习巩固第五单元知识。
二.注意知识点归纳总结。
三.熟记以下知识点。
第五单元 数学广角-鸽巢问题
1、鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用
①什么是鸽巣原理,先从一个简单的例子入手,把3个苹果放在2个盒子里,共有四种不同的放法,如下表
放法
盒子1
盒子2
1
3
0
2
2
1
3
1
2
4
0
3
无论哪一种放法,都可以说“必有一个盒子放了两个或两个以上的苹果”。这个结论是在“任意放法”的情况下,得出的一个“必然结果”。
类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子
如果有6封信,任意投入5个信箱里,那么一定有一个信箱至少有2封信
相关文档
最新文档