人教版九年级下中考数学分类集训10 圆
九年级中考数学圆知识点归纳及练习含答案(20200708003743)
( 1)切线的判定定理:过半径外端且垂直于半径的直线是切线;
两个条件:过半径外端且垂直半径,二者缺一不可
即: ∵ MN OA 且 MN 过半径 OA 外端
∴ MN 是 ⊙ O 的切线
O
(2)性质定理:切线垂直于过切点的半径(如上图) 推论 1:过圆心垂直于切线的直线必过切点。
M
A
N
推论 2:过切点垂直于切线的直线必过圆心。
C
B
A
O
【例 9】已知:如图, AB 是 ⊙ O 的直径,弦 CD⊥ AB 于 E, ∠ ACD =30 °, AE=2cm.求 DB
【答案】 4 3cm.
【例 10】已知:如图, ⊙ O 的直径 AE=10cm , ∠ B=∠ EAC .求 AC 的长.
【答案】提示:连结 CE.不难得出 AC 5 2cm.
( 1)求证: BA·BM=BC· BN ; ( 2)如果 CM 是 ⊙ O 的切线, N 为 OC 的中点,当 AC=3 时,求 AB 的值.
【答案】( 1)证明:连接 MN 则 ∠ BMN=90 °=∠ ACB ,
BC
∴△ ACB ∽△ NMB , ∴
BM
AB
, ∴ AB·BM=B·C BN
BN
所引 ⊙O 的切线长为 ( ).
A .16cm
B. 4 3cm
C. 4 2cm
D . 4 6cm
【答案】 B
【例 3】 ⊙O 中, ∠ AOB =100 °,若 C 是 上一点,则 ∠ ACB 等于 ( ).
A .80°
B. 100 °
C. 120 °
D .130 °
【答案】 A
【例 4】三角形的外心是 ( ). A .三条中线的交点 C .三条边的垂直平分线的交点
人教版九年级数学中考圆的有关概念及性质专项练习及参考答案
人教版九年级数学中考圆的有关概念及性质专项练习基础达标一、选择题1.(2018广西贵港)如图,点A,B,C均在☉O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°∠A=66°,∴∠COB=132°.∵CO=BO,∴∠OCB=∠OBC=1(180°-132°)=24°,2故选A.2.(2018江苏盐城)如图,AB为☉O的直径,CD是☉O的弦,∠ADC=35°,则∠CAB的度数为() A.35° B.45°C.55°D.65°,∠ABC=∠ADC=35°,∵AB为☉O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABC=55°,故选C.3.(2018湖北襄阳)如图,点A,B,C,D都在半径为2的☉O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4B.2√2C.√3D.2√3OA⊥BC,∴CH=BH,AA⏜,⏜=AA∴∠AOB=2∠CDA=60°,∴BH=OB·sin∠AOB=√3,∴BC=2BH=2√3,故选D.二、填空题4.如图,☉O的直径AB过弦CD的中点E,若∠C=25°,则∠ADC=.∠C=25°,∴∠A=∠C=25°.∵☉O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°-25°=65°.5.(2018江苏扬州)如图,已知☉O的半径为2,△ABC内接于☉O,∠ACB=135°,则AB=.√2AD,BD,OA,OB,∵☉O的半径为2,△ABC内接于☉O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2√2.三、解答题6.“今有圆材,埋在壁中,不知大小,以锯锯之,深1寸,锯道长一尺,问径几何?”这是《九章算术》中的问题,用现在的数学语言可以表述为:如图,CD为☉O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,求直径CD的长.,连接OA,根据垂径定理,得AE=5寸.在Rt△AOE中,设OA=x寸,则OE=(x-1)寸,根据勾股定理有52+(x-1)2=x2,解得x=13,所以直径CD=26寸.7.(2018浙江湖州)如图,已知AB是☉O的直径,C,D是☉O上的点,OC∥BD,交AD于点E,连接BC. (1)求证:AE=ED;⏜的长.(2)若AB=10,∠CBD=36°,求AAAB是☉O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED.OC⊥AD,∴AA⏜,⏜=AA∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴AA ⏜的长=72π×5180=2π.能力提升一、选择题1.(2018贵州安顺)已知☉O 的直径CD=10 cm,AB 是☉O 的弦,AB ⊥CD ,垂足为M ,且AB=8 cm,则AC 的长为( ) A.2√5 cm B.4√5 cmC.2√5 cm 或4√5 cmD.2√3 cm 或4√3 cmAC ,AO ,∵☉O 的直径CD=10cm,AB ⊥CD ,AB=8cm,∴AM=12AB=12×8=4cm,OD=OC=5cm,当C 点位置如图1所示时,∵OA=5cm,AM=4cm,CD ⊥AB , ∴OM=√AA 2-AA 2=√52-42=3cm, ∴CM=OC+OM=5+3=8cm,∴AC=√AA 2+AA 2=√42+82=4√5cm;当C 点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5-3=2cm,在Rt △AMC 中,AC=√AA 2+AA 2=√42+22=2√5cm . 故选C.2.(2018湖北咸宁)如图,已知☉O 的半径为5,弦AB ,CD 所对的圆心角分别是∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD=6,则弦AB 的长为( ) A.6 B.8 C.5√2 D.5√3,延长AO交☉O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为☉O的直径,∴∠ABE=90°,∴AB=√AA2-AA2=√102-62=8,故选B.二、填空题3.(2018湖北孝感)已知☉O的半径为10 cm,AB,CD是☉O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD之间的距离是cm.或14当弦AB和CD在圆心同侧时,如图1,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF-OE=2cm.②当弦AB和CD在圆心异侧时,如图2,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.三、解答题4.如图,有一座拱桥是圆弧形的,它的跨度为60 m,拱高18 m,当洪水泛滥到跨度只有30 m时,要采取紧急措施.若拱顶离水面只有4 m,即PN=4 m时是否要采取紧急措施?.如图,设弧的圆心为O,由圆的对称性知点P,N,O共线,连接OA,OA',PO,设PO交AB于点M,该圆的半径为r,由题意得PM=18,AM=30,则(r-18)2+302=r2,解得r=34.当PN=4时,ON=30,所以A'N=16,则A'B'=32>30,故不需要采取紧急措施.5.(2018湖北宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2-AD2=CB2-CD2,∴(7+x)2-72=42-x2,解得x=1或x=-8(舍去)∴AC=8,BD=√82-72=√15,∴S菱形ABFC=8√15.∴S半圆=1·π·42=8π.2。
人教版九年级下中考分类集训10圆
人教版九年级下中考分类集训10圆学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,BC 是半圆O 的直径,D ,E 是BC 上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒ 2.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP=2,BP=6,∠APC=30°,则CD 的长为( )A B .C .D .8 3.如图,P 与x 轴交于点()5,0A -,()10B ,,与y 轴的正半轴交于点C .若60ACB ∠=︒,则点C 的纵坐标为( )A B . C .D .2 4.如图,在△ABC 中,∠C=90°,AB=4,以C 点为圆心,2为半径作⊙C ,则AB 的中点O 与⊙C 的位置关系是( )A .点O 在⊙C 外B .点O 在⊙C 上 C .点O 在⊙C 内D .不能确定 5.若一个正多边形的中心角等于其内角,则这个正多边形的边数为( )A .3B .4C .5D .66.如图,在ABC 中,ACB 90∠=,A 30∠=,AB 4=,以点B 为圆心,BC 长为半径画弧,交AB 于点D ,则CD 的长为( )A .1π6B .1π3 C .2π3 D .π37.如图,扇形OAB 中,∠AOB=100°,OA=12,C 是OB 的中点,CD ⊥OB 交AB 于点D ,以OC 为半径的CE 交OA 于点E ,则图中阴影部分的面积是( )A .B .C .D .8.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是( )A .πB .2πC .πD .2π 9.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A .48πB .45πC .36πD .32π10.一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是( )A.20πB.15πC.12πD.9π11.如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于1 2EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为( )A.40°B.55°C.65°D.75°12.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A.点在圆内B.点在圆上C.点在圆心上D.点在圆上或圆内13.下列命题是假命题的是( )A.平行四边形既是轴对称图形,又是中心对称图形B.同角(或等角)的余角相等C.线段垂直平分线上的点到线段两端的距离相等D.正方形的对角线相等,且互相垂直平分14.下列命题中:①如果a>b,那么a2>b2②一组对边平行,另一组对边相等的四边形是平行四边形③从圆外一点可以引圆的两条切线,它们的切线长相等④关于x的一元二次方程ax2+2x+1=0有实数根,则a的取值范围是a≤1其中真命题的个数是()A.1 B.2 C.3 D.4二、填空题15.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O 的半径为2,则CD的长为_____16.如图所示,AB 为O 的直径,点C 在O 上,且OC AB ⊥,过点C 的弦CD 与线段OB 相交于点E ,满足65AEC ∠=︒,连接AD ,则BAD ∠=_____度.17.如图,AC 是O 的弦,5AC =,点B 是O 上的一个动点,且45ABC ∠︒=,若点,M N 分别是,AC BC 的中点,则MN 的最大值是_____.18.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm 的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm ),请你帮小华算出圆盘的半径是_____cm .19.如图,四边形ABCD 为⊙O 的内接四边形,∠A =100°,则∠DCE 的度数为_______;20.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB =∠________.21.如图,直线y=x ﹣4与x 轴、y 轴分别交于M 、N 两点,⊙O 的半径为2,将⊙O 以每秒1个单位的速度向右作平移运动,当移动时间______秒时,直线MN 恰好与圆相切.22.如图,AB 是⊙O 的弦,点C 在过点B 的切线上,且OC ⊥OA ,OC 交AB 于点P ,已知∠OAB =22°,则∠OCB =__________.23.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.24.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积1S 来近似估计O 的面积S ,设O 的半径为1,则1S S -=__________.25.若一个圆锥的底面圆的周长是5πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角度数是_____.26.如图,AB 为⊙O 的直径,点P 为AB 延长线上的一点,过点P 作⊙O 的切线PE ,切点为M ,过A 、B 两点分别作PE 的垂线AC 、BD ,垂足分别为C 、D ,连接AM ,则下列结论正确的是___________.(写出所有正确结论的序号)①AM 平分∠CAB ;②AM 2=AC •AB ;③若AB =4,∠APE =30°,则BM 的长为3π;④若AC =3,BD =1,则有CM =DM27.命题“如果a +b =0,那么a ,b 互为相反数”的逆命题为____________________________.三、解答题28.如图,在△ABC 中,AB=AC ,以AB 为直径的圆交AC 于点D ,交BC 于点E ,延长AE 至点F ,使EF=AE ,连接FB ,FC ,(1)求证:四边形ABFC 是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC 的面积.29.如图,O 的两条弦//AB CD (AB 不是直径),点E 为AB 中点,连接EC ,ED . (1)直线EO 与AB 垂直吗?请说明理由;(2)求证:EC ED =.30.已知:如图,四边形ABCD 是O 的内接四边形,直径DG 交边AB 于点E ,AB 、DC 的延长线相交于点F.连接AC ,若ACD BAD ∠∠=.()1求证:DG AB ⊥;()2若AB 6=,tan FCB 3∠=,求O 半径. 31.如图,AB 是⊙O 的弦,过点O 作OC ⊥OA ,OC 交于AB 于P ,且CP=CB .(1)求证:BC 是⊙O 的切线;(2)已知∠BAO=25°,点Q 是弧A m B 上的一点.①求∠AQB 的度数;②若OA=18,求弧A m B 的长.32.在Rt ABC ∆中,90C ∠=︒.(1)如图①,点O 在斜边AB 上,以点O 为圆心,OB 长为半径的圆交AB 于点D ,交BC 于点E ,与边AC 相切于点F .求证:12∠=∠;(2)在图②中作M ,使它满足以下条件:①圆心在边AB 上;②经过点B ;③与边AC 相切.(尺规作图,只保留作图痕迹,不要求写出作法)33.如图,在正六边形ABCDEF 中,对角线AE 与BF 相交于点M ,BD 与CE 相交于点N . (1)求证:AE=FB ;(2)在不添加任何辅助线的情况下,请直接写出所有与△ABM 全等的三角形.34.如图,在四边形ABCD 中,BC=CD=2,AB=3,AB ⊥BC ,CD ⊥BC .(1)求tan ∠BAD ;(2)把四边形ABCD 绕直线CD 旋转一周,求所得几何体的表面积.35.如图1,在ABC ∆中,AB AC =,O 是ABC ∆的外接圆,过点C 作BCD ACB ∠=∠交O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF AC =,连接AF .(1)求证:ED EC =;(2)求证:AF 是O 的切线;(3)如图2,若点G 是ACD ∆的内心,25BC BE ⋅=,求BG 的长.36.如图,⊙O 为锐角△ABC 的外接圆,半径为5.(1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧BC 的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E 到弦BC 的距离为3,求弦CE 的长.参考答案1.C【分析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD ,如图所示:∵BC 是半圆O 的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键. 2.C【分析】作OH ⊥CD 于H ,连结OC ,如图,根据垂径定理由OH ⊥CD 得到HC=HD ,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA -AP=2,接着在Rt △OPH 中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt △OHC 中利用勾股定理计算出【详解】作OH ⊥CD 于H ,连结OC ,如图,∵OH ⊥CD ,∴HC=HD ,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA ﹣AP=2,在Rt △OPH 中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1, 在Rt △OHC 中,∵OC=4,OH=1,∴∴故选C .【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键3.B【分析】连接PA ,PB ,PC ,过P 作PD ⊥AB 于D ,PE ⊥y 轴于E ,根据圆周角定理得到∠APB=120°,根据等腰三角形的性质得到∠PAB=∠PBA=30°,由垂径定理得到AD=BD=3,解直角三角形得到=,于是得到结论.【详解】连接PA ,PB ,PC ,过P 作PD AB ⊥于D ,PE BC ⊥于E ,∵60ACB ∠=︒,∴120APB ∠=︒,∵PA PB =,∴30PAB PBA ∠=∠=︒,∵()5,0A -,()10B ,, ∴6AB =,∴3AD BD ==,∴PD =,PA PB PC ===∵PD AB ⊥,PE BC ⊥,90AOC ∠=︒,∴四边形PEOD 是矩形,∴OE PD ==2PE OD ==,∴CE ===∴OC CE OE =+=,∴点C 的纵坐标为.故选B .【点睛】本题考查了圆周角定理,坐标与图形性质,垂径定理,勾股定理,正确的作出辅助线是解题的关键.4.B【分析】连接OC ,根据OC 的长与半径的长进行比较可得答案.【详解】解:连接OC ,由直角三角形斜边上的中线为斜边的一半,可得:OC=12AB =2=r ,故点O 在⊙C 上, 故选B.【点睛】要确定点与圆的位置关系, 主要确定点与圆心的距离与半径的大小关系, 本题可直角三角形斜边上的中线为斜边的一半算出点与圆心的距离d, 则d>r 时, 点在圆外; 当d=r 时, 点在圆上; 当d<r 时,点在圆内.5.B【解析】【分析】根据正n 边形的中心角的度数为360°÷n 进行计算即可得到答案. 【详解】360°÷n=()2180n n -⨯.故这个正多边形的边数为4.故选B .【点睛】考查的是正多边形内角、外角和中心角的知识,掌握中心角的计算公式是解题的关键. 6.C【解析】【分析】先根据ACB 90∠=,AB 4=,A 30∠=,得圆心角和半径的长,再根据弧长公式可得到弧CD 的长.【详解】ACB 90∠=,AB 4=,A 30∠=,B 60∠∴=,BC 2=,CD ∴的长为60π22π1803⨯=, 故选C . 【点睛】本题考查了弧长公式的运用和含30度角的直角三角形性质,熟练掌握弧长公式是解题的关键.弧长公式:n πR l (180=弧长为l ,圆心角度数为n ,圆的半径为R).7.C【分析】连接OD 、AD ,根据点C 为OA 的中点可得∠CDO=30°,继而可得△ADO 为等边三角形,求出扇形AOD 的面积,最后用扇形AOB 的面积减去扇形COE 的面积,再减去S 空白ADC 即可求出阴影部分的面积.【详解】如图,连接OD ,BD ,∵点C 为OB 的中点,∴OC=12OB=12OD , ∵CD ⊥OB ,∴∠CDO=30°,∠DOC=60°, ∴△BDO 为等边三角形,OD=OB=12,OC=CB=6,∴∴S 扇形BOD =260?·12360π=24π, ∴S 阴影=S 扇形AOB ﹣S 扇形COE ﹣(S 扇形BOD ﹣S △COD )=22100?·12100?·612463603602πππ⎛---⨯⨯ ⎝+6π, 故选C .【点睛】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=2360n r π. 8.A【解析】【分析】图中阴影部分面积等于6个小半圆的面积和﹣(大圆的面积﹣正六边形的面积)即可得到结果.【详解】解:6个月牙形的面积之和2132622πππ⎛=--⨯⨯= ⎝, 故选A .【点睛】本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键.9.A【解析】【分析】先求出圆锥底面圆半径,然后根据“圆锥的全面积=侧面积+底面积”进行求解即可.【详解】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴28r ππ=,∴4r =,∴圆锥的全面积=2163248S S rl r πππππ+=+=+=侧底,故选A.【点睛】本题考查了圆锥的全面积,正确把握圆锥全面积公式是解题的关键.10.B【解析】【分析】根据勾股定理得出底面半径,易求周长以及母线长,从而求出侧面积.【详解】解:由勾股定理可得:底面圆的半径3==,则底面周长6π=,底面半径=3,由图得,母线长=5,侧面面积165152ππ=⨯⨯=.故选:B.【点睛】本题考查了由三视图判断几何体,利用了勾股定理,圆的周长公式和扇形面积公式求解.11.C【解析】试题分析:由作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选C.考点:作图—基本作图.12.D【解析】【分析】在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.【解答】用反证法证明时,假设结论“点在圆外”不成立,那么点应该在圆内或者圆上.故选D.【点评】考查反证法以及点和圆的位置关系,解题的关键是掌握点和圆的位置关系. 13.A【解析】【分析】根据轴对称图形、中心对称图形的概念,余角的性质,线段垂直平分线的性质,正方形的性质逐项进行判断即可.【详解】A.平行四边形不是轴对称图形,是中心对称图形,故A选项是假命题,符合题意;B.同角(或等角)的余角相等,是真命题,不符合题意;C.线段垂直平分线上的点到线段两端的距离相等,是真命题,不符合题意;D.正方形的对角线相等,且互相垂直平分,是真命题,不符合题意,故选A.【点睛】本题考查了判断命题真假,熟练掌握轴对称图、中心对称图形、余角的性质、线段垂直平分线的性质、正方形的性质是解本题的关键.14.A【解析】分析:直接利用切线长定理以及平行四边形的判定和一元二次方程根的判别式分别判断得出答案.详解:①如果a >b ,那么a 2>b 2,错误;②一组对边平行,另一组对边相等的四边形是平行四边形,错误;③从圆外一点可以引圆的两条切线,它们的切线长相等,正确;④关于x 的一元二次方程ax 2+2x+1=0有实数根,则a 的取值范围是a≤1且a≠0,故此选项错误.故选A .点睛:此题主要考查了命题与定理,正确把握相关性质是解题关键.15【分析】连接OA ,OC ,根据∠COA=2∠CBA=90°可求出AC=然后在Rt △ACD 中利用三角函数即可求得CD 的长.【详解】解:连接OA ,OC ,∵∠COA=2∠CBA=90°,∴在Rt △AOC 中,=∵CD ⊥AB ,∴在Rt △ACD 中,CD=AC·sin ∠CAD=12=,【点睛】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.16.20【分析】由直角三角形的性质得出25OCE ∠=︒,由等腰三角形的性质得出25ODC OCE ∠=∠=︒,求出130DOC ∠=︒,得出40BOD DOC COE ∠=∠-∠=︒,再由圆周角定理即可得出答案.【详解】解:连接OD ,如图:∵OC AB ⊥,∴90COE ∠=︒,∵65AEC ∠=︒,∴906525OCE ∠=︒-︒=︒,∵OC OD =,∴25ODC OCE ∠=∠=︒,∴1802525130DOC ∠=︒-︒-︒=︒,∴40BOD DOC COE ∠=∠-∠=︒, ∴1202BAD BOD ∠=∠=︒, 故答案为20.【点睛】本题考查了圆周角定理、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握圆周角定理是解题的关键.17.2【分析】由题意可知当AB 取得最大值时,MN 就取得最大值,当AB 是直径时,AB 最大,连接AO 并延长交O 于点B ′,连接CB ',根据三角函数进行计算,即可得到答案.【详解】 解:点,M N 分别是,BC AC 的中点,12MN AB ∴=, ∴当AB 取得最大值时,MN 就取得最大值,当AB 是直径时,AB 最大,连接AO 并延长交O 于点B ′,连接CB ',AB '是O 的直径,90ACB ∴∠'︒=.45,5ABC AC ∠︒==,45AB C ∴∠'︒=,sin 4522AC AB ∴'==2MN ∴=最大.【点睛】本题考查三角函数,解题的关键是熟练掌握三角函数.18.10【解析】【分析】如图,先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【详解】如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=12 AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.【点睛】本题考查了垂径定理的应用,勾股定理,正确添加辅助线构造出直角三角形是解本题的关键.19.100°【分析】直接利用圆内接四边形的性质,即可解答【详解】∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为100°【点睛】此题考查圆内接四边形的性质,难度不大20.70°【分析】根据CB =CD ,得到30CAB CAD ∠=∠=︒,根据同弧所对的圆周角相等即可得到50ABD ACD ∠=∠=︒,根据三角形的内角和即可求出.【详解】∵CB =CD ,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒,∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.故答案为70.︒【点睛】考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.21.4﹣或.【解析】作EF ∥MN ,且与⊙O 切,交x 轴于点M ,交y 轴于点N ,如图所示.设直线MN 的解析式为y=x +b ,即x ﹣y +b=0,因MN 与⊙O 相切,且⊙O 的半径为2,可得2== ,解得或b=﹣,即直线MN 的解析式为y=x +或y=x ﹣2,所以点M 的坐标为(,0)或(﹣,0).令y=x ﹣4中y=0,解得x=4,即可得点M (4,0).根据运动的相对性,且⊙O 以每秒1个单位的速度向右作平移运动,移动的时间为4﹣秒或4+秒.点睛:本题考查了直线与圆的位置关系、一次函数图象上点的坐标特征以及平移的性质,解题的关键是求出点E、M的坐标.在解决本题时,利用运动的相对性变移圆为移直线,从而降低了解题的难度.22.44°【分析】首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.【详解】连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案为44°【点睛】此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.23.54【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.π-24.3【分析】如图,过点A 作AC ⊥OB ,垂足为C ,先求出圆的面积,再求出△ABC 面积,继而求得正十二边形的面积即可求得答案.【详解】如图,过点A 作AC ⊥OB ,垂足为C ,∵O 的半径为1, ∴O 的面积S π=,OA=OB=1,∴圆的内接正十二边形的中心角为∠AOB=3603012︒=︒, ∴AC=12OB=12, ∴S △AOB =12OB •AC=14, ∴圆的内接正十二边形的面积S 1=12S △AOB =3,∴则13S S π-=-,故答案为3π-.【点睛】本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.25.150【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】∵圆锥的底面圆的周长是45cm ,∴圆锥的侧面扇形的弧长为5π cm ,65180n ππ⨯∴=,n解得:150故答案为150.【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积26.①②④【解析】【分析】连接OM,由切线的性质可得OM⊥PC,继而得OM∥AC,再根据平行线的性质以及等边对等角即可求得∠CAM=∠OAM,由此可判断①;通过证明△ACM∽△AMB,根据相似三角形的对应边成比例可判断②;求出∠MOP=60°,利用弧长公式求得BM的长可判断③;由BD⊥PC,AC⊥PC,OM⊥PC,可得BD∥AC//OM,继而可得PB=OB=AO,PD=DM=CM,进而有OM=2BD=2,在Rt△PBD中,PB=BO=OM=2,利用勾股定理求出PD的长,可得CM=DM=DP,由此可判断④.【详解】连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB,故①正确;∵AB为⊙O的直径,∴∠AMB=90°,∵∠CAM=∠MAB,∠ACM=∠AMB,∴△ACM∽△AMB,∴AC AM AM AB=,∴AM2=AC•AB,故②正确;∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴BM的长为60π22π1803⨯=,故③错误;∵BD⊥PC,AC⊥PC,OM⊥PC,∴BD∥AC//OM,∴△PBD∽△PAC,∴PB BD1 PA AC3==,∴PB=13 PA,又∵AO=BO,AO+BO=AB,AB+PB=PA,∴PB=OB=AO,又∵BD∥AC//OM,∴PD=DM=CM,∴OM=2BD=2,在Rt△PBD中,PB=BO=OM=2∴,∴CM=DM=DP故答案为①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.27.如果a,b互为相反数,那么a+b=0【解析】【分析】交换原命题的题设与结论即可得到其逆命题.【详解】解:逆命题为:如果a,b互为相反数,那么a+b=0.故答案为如果a,b互为相反数,那么a+b=0.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.28.(1)证明见解析;(2)【解析】分析:(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题.详解:(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB 2﹣AD 2=CB 2﹣CD 2,∴(7+x )2﹣72=42﹣x 2,解得x=1或﹣8(舍弃)∴AC=8,∴S 菱形ABFC点睛:本题考查平行四边形的判定和性质、菱形的判定、线段的垂直平分线的性质勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.29.(1)直线EO 与AB 垂直.理由见解析;(2)证明见解析.【分析】(1)依据垂径定理的推论平分弦(不是直径)的直径垂直于弦可得结论;(2)易证EF CD ⊥,由垂径定理可得结论.【详解】解:(1)直线EO 与AB 垂直.理由如下:如图,连接EO ,并延长交CD 于F .∵ EO 过点O ,E 为AB 的中点,EO AB ∴⊥.(2)EO AB ⊥,//AB CD ,EF CD ∴⊥.∵ EF 过点O ,CF DF ∴=,EF ∴垂直平分CD ,EC ED ∴=.【点睛】本题考查了垂径定理,灵活利用垂径定理及其推论是解题的关键.30.()1证明见解析;()2O 半径为5.【解析】【分析】()1连接AG ,根据圆周角定理得到90ACD AGD DAG ∠∠∠==,,计算即可; ()2连接OA ,根据圆内接四边形的性质得到FCB BAD ∠=∠,根据正切的定义计算.【详解】()1连接AG ,ACD ∠与∠AGD 是同弦所对圆周角ACD AGD ∠∠∴=,ACD BAD ∠∠=,BAD AGD ∠∠∴=, DG 为O 的直径,A 为圆周上一点,DAG 90∠∴=,BAD BAG 90∠∠∴+=,AGD BAG 90∠∠∴+=,AEG 90∠∴=,即DG AB ⊥;()2解:四边形ABCD 是O 的内接四边形,FCB BAD ∠∠∴=,tan FCB 3∠=,DE tan BAD 3AE∠∴==, 连接OA ,由垂径定理得11AE AB 6322==⨯=, DE 9∴=,在Rt OEA 中,222OE AE OA +=,设O 半径为r ,则有222(9r)3r -+=,解得,r 5=,O ∴半径为5.【点睛】本题考查的是圆内接四边形的性质、圆周角定理的推论、垂径定理、勾股定理以及解直角三角形,掌握相关的定理、灵活运用锐角三角函数的定义是解题的关键.31.(1)见解析;(2)①∠AQB=65°,②l 弧AmB =23π.【解析】【分析】(1)连接OB ,根据等腰三角形的性质得到∠OAB=∠OBA ,∠CPB=∠CBP ,再根据∠PAO+∠APO=90°,继而得出∠OBC=90°,问题得证;(2)①根据等腰三角形的性质可得∠ABO=25°,再根据三角形内角和定理可求得∠AOB 的度数,继而根据圆周角定理即可求得答案;②根据弧长公式进行计算即可得.【详解】(1)连接OB ,∵CP=CB ,∴∠CPB=∠CBP ,∵OA ⊥OC ,∴∠AOC=90°,∵OA=OB ,∴∠OAB=∠OBA ,∵∠PAO+∠APO=90°,∴∠ABO+∠CBP=90°,∴∠OBC=90°,∴BC 是⊙O 的切线;(2)①∵∠BAO=25° ,OA=OB ,∴∠OBA=∠BAO=25°,∴∠AOB=180°-∠BAO-∠OBA=130°,∴∠AQB=12∠AOB=65°; ②∵∠AOB=130°,OB=18,∴l 弧AmB=36013018018π-⨯()=23π. 【点睛】本题考查了圆周角定理,切线的判定等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.32.(1)见解析(2)见解析【解析】【分析】(1)连接OF ,可证得OF BC ∥,结合平行线的性质和圆的特性可求得12OFB ∠=∠=∠,可得出结论;(2)由(1)可知切点是ABC ∠的角平分线和AC 的交点,圆心在BF 的垂直平分线上,由此即可作出M . 【详解】(1)证明:如图①,连接OF ,∵AC 是O 的切线,∴OE AC ⊥,∵90C ∠=︒,∴OE BC ∥,∴1OFB ∠=∠,∵OF OB =,∴2OFB ∠=∠,∴12∠=∠.(2)如图②所示M 为所求.①①作ABC ∠平分线交AC 于F 点,②作BF 的垂直平分线交AB 于M ,以MB 为半径作圆,即M 为所求.证明:∵M 在BF 的垂直平分线上,∴MF MB =,∴MBF MFB ∠=∠,又∵BF 平分ABC ∠,∴MBF CBF ∠=∠,∴CBF MFB ∠=∠,∴MF BC ,∵90C ∠=︒,∴FM AC ⊥,∴M 与边AC 相切.【点睛】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,33.证明见解析【解析】【分析】(1)证明△AFE 与△BAF 全等,利用全等三角形的性质证明即可;(2)先证明△ABM ≌△DEN ,同理得出△ABM ≌△FEM ≌△CBN ,【详解】(1)∵正六边形ABCDEF ,∴AF=EF=AB ,∠AFE=∠FAB ,在△AFE 与△BAF 中,AF AF AFE FAB AB FE =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△BAF (SAS ),∴AE=FB ;(2)与△ABM 全等的三角形有△DEN ,△FEM ,△CBN ;∵六边形ABCDEF 是正六边形,∴AB=DE ,∠BAF=120°, ∴∠ABM=30°, ∴∠BAM=90°, 同理∠DEN=30°,∠EDN=90°, ∴∠ABM=∠DEN ,∠BAM=∠EDN ,在△ABM 和△DEN 中,BAM EDN AB DE ABM DEN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABM ≌△DEN (ASA ).同理利用ASA 证明△FEM ≌△ABM ,△CBN ≌△ABM .【点睛】考查了正多边形和圆以及全等三角形的判定,掌握正多边形的性质和全等三角形的判定是解题的关键.34.(1)tan ∠BAD=2;(2)表面积=(π.【解析】分析:(1)过点D 作DE AB ⊥,根据tan ,DE BAD AE∠=计算即可. ()2把四边形ABCD 绕直线CD 旋转一周,会形成一个圆柱,上面会有一个凹圆锥,分别计算即可.详解:(1)过点D 作DE AB ⊥,则四边形BCDE 是正方形.2,DE BC ==2tan 2.32DE BAD AE ∠===-(2)侧面积:4π×3=12π,底面积=4π,凹圆锥侧面积14π.2==所以表面积(16π=+. 点睛:考查三角函数以及圆锥圆柱侧面积的计算,熟记公式是解题的关键.35.(1)证明见解析;(2)证明见解析;(3)BG=5.【分析】(1)根据等腰三角形的性质可得A ABC CB =∠∠,再根据圆周角定理以及ACB BCD ∠=∠可得BCD ADC ∠=∠,即可得ED=EC ;(2)连接OA ,可得OA BC ⊥,继而根据CA CF =以及三角形外角的性质可以推导得出CAF ACB ∠=∠,可得//BC AF ,从而可得OA AF ⊥,问题得证;(3)证明ABE CBA ∆∆,可得2AB BC BE =⋅,从而求得5AB =,连接AG ,结合三角形内心可推导得出BAG BGA ∠=∠,继而根据等腰三角形的判定可得5BG AB ==.【详解】(1)∵AB AC =,∴A ABC CB =∠∠,又∵ACB BCD ∠=∠,ABC ADC ∠=∠,∴BCD ADC ∠=∠,∴ED EC =;(2)连接OA ,∵AB AC =,∴AB AC =,∴OA BC ⊥,∵CA CF =,∴CAF CFA ∠=∠,∴2ACD CAF CFA CAF ∠=∠+∠=∠,∵ACB BCD ∠=∠,∴2ACD ACB ∠=∠,∴CAF ACB ∠=∠,∴//BC AF ,∴OA AF ⊥,∴AF 为O 的切线;(3)∵ABE CBA ∠=∠,BAD BCD ACB ∠=∠=∠,∴ABE CBA ∆∆,∴AB BE BC AB=, ∴2AB BC BE =⋅,∵25BC BE ⋅=,∴5AB =,连接AG ,∴BAG BAD DAG ∠=∠+∠,BGA GAC ACB ∠=∠+∠,∵点G 为内心,∴DAG GAC ∠=∠,又∵BAD BCD ACB ∠=∠=∠,∴BAD DAG GAC ACB ∠+∠=∠+∠,∴BAG BGA ∠=∠,∴5BG AB ==.【点睛】本题考查了等腰三角形的判定与性质,切线的判定,相似三角形的判定与性质,三角形的内心等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.36.(1)画图见解析;(2)【解析】【分析】(1)以点A 为圆心,以任意长为半径画弧,分别与AB 、AC 有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A 与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE 交BC 于点F ,连接OC 、CE ,由AE 平分∠BAC ,可推导得出OE ⊥BC ,然后在Rt △OFC 中,由勾股定理可求得FC 的长,在Rt △EFC 中,由勾股定理即可求得CE 的长.【详解】(1)如图所示,射线AE 就是所求作的角平分线;(2)连接OE 交BC 于点F ,连接OC 、CE ,∵AE 平分∠BAC ,∴BE CE =,∴OE ⊥BC ,EF=3,∴OF=5-3=2,在Rt △OFC 中,由勾股定理可得,在Rt△EFC中,由勾股定理可得【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.。
人教版九年级数学中考复习圆(含答案)
人教版九年级数学中考复习圆一、选择题(本大题共10小题,每小题4分,满分40分)1.如图,四边形ABCD是☉O的内接正方形,P是CD上不同于点C的任意一点,则∠BPC的大小是()A.22.5°B.30°C.45°D.50°2.如图,AB为☉O的直径,AB=30,点C在☉O上,∠A=24°,则AC的长为()A.9πB.10πC.11πD.12π3.如图,已知☉O为四边形ABCD的外接圆,O为圆心.若∠BCD=120°,AB=AD=2,则☉O的半径长为()A.3√22B.√62C.32D.2√334.在平面直角坐标系中,圆心为坐标原点,☉O的半径为10,则点P(-8,6)与☉O的位置关系为()A.点P在☉O上B.点P在☉O外C.点P在☉O内D.无法确定5.如图,点A,B,C在半径为6的☉O上,AB的长为2π,则∠ACB的大小是()A.20°B.30°C.45°D.60°6.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线y =√3x +2√3上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( ) A.3 B.2 C.√3 D.√27.如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE.则图中阴影部分的面积是( )A.6√3-43πB.6√3-83πC.12√3-43πD.12√3-83π8.如图,半圆O 的直径AB =10 cm,弦AC =6 cm,D 是BC的中点,则弦AD 的长为( )A.4 cmB.3√5 cmC.4√5 cmD.5√5 cm9.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( ) A.√28B.√34C.√24D.√3810.如图,AB 是☉O 的直径,C ,D 是☉O 上的点,且O C∥BD,A D 分别与BC ,OC 相交于点E ,F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ;③CB 平分∠ABD ;④AF =DF ;⑤BD =2OF ;⑥△CEF ≌△BED.其中结论一定成立的是( ) A.②④⑤⑥ B.①③⑤⑥ C.②③④⑥D.①③④⑤二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD = °.x-3交x轴于点A,交y轴于点B,P是x轴上一动点,以点P为圆心,以1个12.如图,直线y=-34单位长度为半径作☉P,当☉P与直线AB相切时,点P的坐标是.13.如图,在Rt△OAB中,∠AOB=45°,AB=2,将Rt△OAB绕点O顺时针旋转90°得到Rt△OCD,则AB扫过的阴影部分的面积为.14.如图,在一个圆柱形铁桶内底面的点A处有一只飞虫,在其上边沿的点B处有一面包残渣.cm,铁桶的底面直径为40 cm,桶高已知C是点B正下方的桶内底面上一点,劣弧AC的长为40π360 cm,则该飞虫从点A到达点B的最短路径为 cm.三、(本大题共2小题,每小题8分,满分16分)15.如图,AB,CD是☉O的直径,弦CE∥AB,CE所对的圆心角的度数为50°,求∠AOC的度数.16.如图,已知AB是☉O的直径,点C,D在☉O上,∠D=60°且AB=6,过点O作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交☉O于点F,求阴影部分的面积S.四、(本大题共2小题,每小题8分,满分16分)17.如图,四边形ABCD是☉O的内接四边形,DB平分∠ADC,连接OC,OC⊥BD.(1)求证:AB=CD;(2)若∠A等于66°,求∠ADB的度数.18.如图,☉O为△ABC的内切圆,∠ACB=90°,AO的延长线交BC于点D,AC=4,CD=2,求☉O的半径.五、(本大题共2小题,每小题10分,满分20分)19.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作☉O,分别与AC,BC相交于点M,N.(1)过点N作☉O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.20.已知☉O是△ABC的外接圆,∠CAD=∠ABC.(1)如图1,试判断直线AD与☉O的位置关系,并说明理由;(2)如图2,将直线AD沿直线AC翻折后交☉O于点E,连接OA,OE,CE.若∠ABC=30°,求证:四边形ACEO是菱形.六、(本题满分12分)21.如图,已知平面直角坐标系中一条圆弧经过正方形网格的格点A,B,C.(1)用直尺画出该圆弧所在圆的圆心M的位置;(2)若点A的坐标为(0,4),点D的坐标为(7,0),试验证点D是否在经过点A,B,C的圆上;(3)在(2)的条件下,求证:直线CD是☉M的切线.七、(本题满分12分)22.如图,已知点A,B,C,D均在☉O上,AD∥BC,BD平分∠ABC,∠BAD=120°,四边形ABCD的周长为15.(1)求☉O的半径;(2)求图中阴影部分的面积.八、(本题满分14分)23.小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中的位置).例如,图2是某巷子的俯视图,巷子路面宽4 m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE,CE的夹角都是45°时,连接EF,交CD 于点G,若GF的长度至少能达到车身宽度,则车辆能通过.(1)小平认为长8 m、宽3 m的消防车不能通过该直角转弯,请你帮他说明理由;(2)小平提出将拐弯处改为圆弧(MM'和NN'是以O为圆心,分别以OM和ON为半径的弧),长8 m、宽3 m的消防车就可以通过该弯道了,具体方案如图3,其中OM⊥OM',你能帮小平算出,ON 至少为多少时,这种消防车可以通过该巷子?答案一、选择题(本大题共10小题,每小题4分,满分40分)3.如图,四边形ABCD是☉O的内接正方形,P是CD上不同于点C的任意一点,则∠BPC的大小是A.22.5°B.30°C.45°D.50°4.如图,AB为☉O的直径,AB=30,点C在☉O上,∠A=24°,则AC的长为A.9πB.10πC.11πD.12π3.如图,已知☉O为四边形ABCD的外接圆,O为圆心.若∠BCD=120°,AB=AD=2,则☉O的半径长为A.3√22B.√62C.32D.2√334.在平面直角坐标系中,圆心为坐标原点,☉O的半径为10,则点P(-8,6)与☉O的位置关系为A.点P在☉O上B.点P在☉O外C.点P在☉O内D.无法确定5.如图,点A,B,C在半径为6的☉O上,AB的长为2π,则∠ACB的大小是A.20°B.30°C.45°D.60°6.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线y =√3x +2√3上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为 A.3 B.2 C.√3 D.√27.如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE.则图中阴影部分的面积是A.6√3-43πB.6√3-83πC.12√3-43πD.12√3-83π8.如图,半圆O 的直径AB =10 cm,弦AC =6 cm,D 是BC的中点,则弦AD 的长为A.4 cmB.3√5 cmC.4√5 cmD.5√5 cm提示:连接OC ,OD ,作DE ⊥AB 于点E ,OF ⊥AC 于点F.∴∠AFO =∠DEO =90°.∵CD=BD ,∴∠DOB =∠OAC =2∠BAD.∵OA =OD ,∴△AOF ≌△ODE (AAS),∴OE =AF =12AC =3 cm .在Rt△DOE 中,DE =√OD 2−OE 2=4 cm,在Rt△ADE 中,AD =√DE 2+AE 2=4√5 cm . 9.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是 A.√28B.√34C.√24D.√3810.如图,AB是☉O的直径,C,D是☉O上的点,且O C∥BD,A D分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED.其中结论一定成立的是A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,AB为☉O的直径,点C在☉O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=20°.x-3交x轴于点A,交y轴于点B,P是x轴上一动点,以点P为圆心,以1个12.如图,直线y=-34,0).单位长度为半径作☉P,当☉P与直线AB相切时,点P的坐标是(−7313.如图,在Rt△OAB中,∠AOB=45°,AB=2,将Rt△OAB绕点O顺时针旋转90°得到Rt△OCD,则AB扫过的阴影部分的面积为π.14.如图,在一个圆柱形铁桶内底面的点A处有一只飞虫,在其上边沿的点B处有一面包残渣.cm,铁桶的底面直径为40 cm,桶高已知C是点B正下方的桶内底面上一点,劣弧AC的长为40π360 cm,则该飞虫从点A到达点B的最短路径为40√3 cm.提示:如图,连接AB,OC,OA,AC,作OH⊥AC于点H.设∠AOC=n°.∵AC的长=40π3,∴nπ·20180=40π3,∴n=120.∵OA=OC,OH⊥AC,∴∠COH=∠AOH=60°,CH=AH,∴AC=2CH=2·OC·sin 60°=2×20×√32=20√3(cm).在Rt△ABC中,AB=√BC2+AC2=√602+(20√3)2=40√3(cm),∴该飞虫从点A到达点B的最短路径为40√3 cm.三、(本大题共2小题,每小题8分,满分16分)15.如图,AB,CD是☉O的直径,弦CE∥AB,CE所对的圆心角的度数为50°,求∠AOC的度数.解:连接OE.由已知可得∠COE=50°.∵OC=OE,∴∠OCE=∠OEC=12(180°-50°)=65°.∵CE∥AB,∴∠AOC=∠OCE=65°.16.如图,已知AB是☉O的直径,点C,D在☉O上,∠D=60°且AB=6,过点O作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交☉O于点F,求阴影部分的面积S.解:(1)∵∠D =60°,∴∠B =60°.∵AB 是☉O 的直径,∴∠ACB =90°,∠CAB =30°. 又∵AB =6,∴OA =3. ∵OE ⊥AC ,∴OE =12OA =32.(2)连接OC.易得△COE ≌△AFE ,∠COF =60°, ∴阴影部分的面积S =S 扇形FOC =60π×32360=32π.四、(本大题共2小题,每小题8分,满分16分)17.如图,四边形ABCD 是☉O 的内接四边形,DB 平分∠ADC ,连接OC ,OC ⊥BD. (1)求证:AB =CD ;(2)若∠A 等于66°,求∠ADB 的度数.解:(1)∵DB 平分∠ADC ,∴AB =BC . ∵OC ⊥BD ,∴BC =CD . ∴AB=CD ,∴AB =CD. (2)∵四边形ABCD 是☉O 的内接四边形, ∴∠BCD =180°-∠A =114°. ∵BC=CD ,∴BC =CD , ∴∠BDC =12×(180°-114°)=33°. ∵DB 平分∠ADC , ∴∠ADB =∠BDC =33°.18.如图,☉O为△ABC的内切圆,∠ACB=90°,AO的延长线交BC于点D,AC=4,CD=2,求☉O的半径.解:设☉O与AC的切点为M,圆的半径为r.连接OM.∵OM⊥AC,∠ACB=90°,∴OM∥DC,∴∠MOC=∠DCO.又∵∠MCO=∠DCO,∴∠MOC=∠MCO,∴CM=OM=r,由条件易得△AOM∽△ADC,∴OMCD =AMAC,即r2=4−r4,解得r=43.∴☉O的半径是43.五、(本大题共2小题,每小题10分,满分20分)19.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作☉O,分别与AC,BC相交于点M,N.(1)过点N作☉O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.证明:(1)连接ON.∵CD是Rt△ABC的斜边AB上的中线,∴AD=CD=DB,∴∠DCB=∠DBC.又∵OC=ON,∴∠DCB=∠ONC,∴∠ONC=∠DBC,∴ON∥AB.∵NE是☉O的切线,ON是☉O的半径,∴∠ONE=90°,∴∠NEB=90°,即NE⊥AB.(2)由(1)可知ON∥AB.BC.又∵OC=OD,∴CN=NB=12∵CD是☉O的直径,∴∠CMD=90°.又∵∠ACB=90°,∴MD∥BC.BC,∵D是AB的中点,∴MD=12∴MD=NB.20.已知☉O是△ABC的外接圆,∠CAD=∠ABC.(1)如图1,试判断直线AD与☉O的位置关系,并说明理由;(2)如图2,将直线AD沿直线AC翻折后交☉O于点E,连接OA,OE,CE.若∠ABC=30°,求证:四边形ACEO是菱形.解:(1)直线AD与☉O相切.理由:作直径AP,连接CP.∵∠APC=∠ABC,∠CAD=∠ABC,∴∠CAD=∠APC.∵AP是☉O的直径,∴∠ACP=90°,∴∠CAP+∠APC=90°,∴∠CAP+∠CAD=90°,即∠DAP=90°,∴AD⊥AP,∴直线AD与☉O相切.(2)连接OC.∵∠ABC=30°,∴∠CAE=∠CAD=∠ABC=30°,∴∠AOC=2∠ABC=60°,∠COE=2∠CAE=60°.∵OA=OC=OE,∴△AOC,△COE都是等边三角形,∴OA=AC=OC,OC=CE=EO,∴OA=AC=CE=EO,∴四边形ACEO是菱形.六、(本题满分12分)21.如图,已知平面直角坐标系中一条圆弧经过正方形网格的格点A,B,C.(1)用直尺画出该圆弧所在圆的圆心M的位置;(2)若点A的坐标为(0,4),点D的坐标为(7,0),试验证点D是否在经过点A,B,C的圆上;(3)在(2)的条件下,求证:直线CD是☉M的切线.解:(1)图略.(2)由点A(0,4),可得小正方形的边长为1,从而点B(4,4),C(6,2),M(2,0),则圆弧所在圆的半径为√22+42=2√5,点D到点M的距离为7-2=5>2√5,所以点D不在经过点A,B,C的圆上.(3)设过点C与x轴垂直的直线与x轴的交点为E,连接MC,作直线CD.由(2)知小正方形的边长为1,所以CE=2,ME=4,ED=1,MD=5.在Rt△CEM中,MC2=ME2+CE2=42+22=20,在Rt△CED中,CD2=ED2+CE2=12+22=5,所以MD2=MC2+CD2,所以∠MCD=90°.因为MC为☉M的半径,所以直线CD是☉M的切线.七、(本题满分12分)22.如图,已知点A,B,C,D均在☉O上,AD∥BC,BD平分∠ABC,∠BAD=120°,四边形ABCD的周长为15.(1)求☉O的半径;(2)求图中阴影部分的面积.解:(1)∵AD∥BC,∠BAD=120°,∴∠ABC=60°.又∵BD 平分∠ABC ,AD ∥BC , ∴∠ABD =∠DBC =∠ADB =30°, ∴AB=AD =CD ,∴AB =AD =CD. ∵四边形ABCD 的周长为15,∴BC +3CD =15. 又∵在Rt△BDC 中,BC =2CD ,∴BC +32BC =15,∴BC =6, ∴☉O 的半径为3.(2)连接OA ,OD ,过点O 作OE ⊥AD 于点E. 在Rt△AOE 中,∠AOE =30°, ∴OE =OA ·cos 30°=3√32, ∴S △AOD =12AD ·OE =12×3×3√32=9√34, ∴S 阴影=S扇形AOD -S △AOD =60π×32360-9√34=6π−9√34. 八、(本题满分14分)23.小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中的位置).例如,图2是某巷子的俯视图,巷子路面宽4 m,转弯处为直角,车辆的车身为矩形ABCD ,CD 与DE ,CE 的夹角都是45°时,连接EF ,交CD 于点G ,若GF 的长度至少能达到车身宽度,则车辆能通过.(1)小平认为长8 m 、宽3 m 的消防车不能通过该直角转弯,请你帮他说明理由;(2)小平提出将拐弯处改为圆弧(MM'和NN '是以O 为圆心,分别以OM 和ON 为半径的弧),长8 m 、宽3 m 的消防车就可以通过该弯道了,具体方案如图3,其中OM ⊥OM',你能帮小平算出,ON 至少为多少时,这种消防车可以通过该巷子?解:(1)作FH ⊥EC ,垂足为H.∵FH =EH =4,∴EF =4√2,且∠GEC =45°. ∵GC =4,∴GE =GC =4,∴GF=4√2-4<3,即GF的长度未达到车身宽度,∴消防车不能通过该直角转弯.(2)若点C,D分别与点M',M重合,则△OGM为等腰直角三角形,如图所示.∴OG=4,OM=4√2,∴OF=ON=OM-MN=4√2-4,∴FG=8-4√2<3,∴点C,D在MM'上.设ON=x,连接OC.在Rt△OCG中,OG=x+3,OC=x+4,CG=4,由勾股定理,得OG2+CG2=OC2,即(x+3)2+42=(x+4)2,解得x=4.5.答:ON至少为4.5 m时,这种消防车可以通过该巷子.。
2020年九年级数学中考三轮冲刺分类训练:《圆》
中考三轮冲刺分类训练:《圆》1.如图,在Rt△ABC中,∠ACB=90°,点O在AB上,以线段OB的长为半径的⊙O与AC 相切于点D,⊙O分别交BC、AB于点M、N,连接ND并延长交BC延长线于点P.(1)求证:∠BOD=2∠P;(2)已知⊙O的半径为5.①若AN=8,则DC=;②连接DM,当AN=时,四边形OBMD是菱形.2.如图1,点E在矩形ABCD的边AD上,AD=6,tan∠ACD=,连接CE,线段CE绕点C 旋转90°,得到线段CF,以线段EF为直径做⊙O.(1)请说明点C一定在⊙O上的理由;(2)点M在⊙O上,如图2,MC为⊙O的直径,求证:点M到AD的距离等于线段DE的长;(3)当△AEM面积取得最大值时,求⊙O半径的长;(4)当⊙O与矩形ABCD的边相切时,计算扇形OCF的面积.3.综合与实践正方形内“奇妙点”及性质探究:定义:如图1,在正方形ABCD中,以BC为直径作半圆O,以D为圆心,DA为半径作,与半圆O交于点P我们称点P为正方形ABCD的一个“奇妙点”.过奇妙点的多条线段与正方形ABCD无论是位置关系还是数量关系,都具有不少优美的性质值得探究.性质探究:如图2,连接DP并延长交AB于点E,则DE为半圆O的切线.证明:连接OP,OD.由作图可知,DP=DC,OP=OC,又∵OD=OD.∴△OPD≌△OCD.(SSS)∴∠OPD=∠OCD=90°∴DE是半圆O的切线.问题解决:(1)如图3,在图2的基础上,连接OE.请判断∠BOE和∠CDO的数量关系,并说明理由;(2)在(1)的条件下,请直接写出线段DE,BE,CD之间的数量关系;(3)如图4,已知点P为正方形ABCD的一个“奇妙点”,点O为BC的中点,连接DP 并延长交AB于点E,连接CP并延长交AB于点F,请写出BE和AB的数量关系,并说明理由;(4)如图5,已知点E,F,G,H为正方形ABCD的四个“奇妙点”连接AG,BH,CE,DF,恰好得到一个特殊的“赵爽弦图”.请根据图形,探究并直接写岀一个不全等的几何图形面积之间的数量关系.4.如图,在锐角等腰三角形ABC中,AB=AC,点O为△ABC外接圆的圆心,连结OC,过点B作AC的垂线,交⊙O于点D,交OC于点E,交AC于点F,连结AD和CD.(1)若∠BAC=2α,则∠BDA=(用含α的代数式表示).(2)①求证:OC∥AD;②若E为OC的中点,求的值.(3)若x=,y=,求y关于x的函数关系式.5.请仅用无刻度的直尺,根据下列条件分别在图(1),图(2),(3)中作出△ABC的边AB上的高CD.(1)如图(1),以锐角三角形ABC的边AB为直径的圆,与边BC、AC分别交于点E、F;(2)如图(2),以等腰三角形ABC的底边AB为直径的圆,顶点C在圆内;(3)如图(3),以钝角三角形ABC的一短边AB为直径的圆,与最长的边AC相交于点E.6.如图1、图2,在圆O中,OA=1,AB=,将弦AB与弧AB所围成的弓形(包括边界的阴影部分)绕点B顺时针旋转α度(0≤α≤360),点A的对应点是A′.(1)点O到线段AB的距离是;∠AOB=°;点O落在阴影部分(包括边界)时,α的取值范围是;(2)如图3,线段B与优弧ACB的交点是D,当∠A′BA=90°时,说明点D在AO的延长线上;(3)当直线A′B与圆O相切时,求α的值并求此时点A′运动路径的长度.7.如图,AB是⊙O的直径,在圆上取点C,延长BC到D,使BC=CD,连接AD交⊙O于点E,过点C作CF⊥AD,垂足为F.(1)求证:CF是⊙O的切线.(2)若AE=2,sin∠BAE=,求CF的长.8.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,若AC∥EF,试判断线段KG、KD、GE间的数量关系,并说明理由;(3)在(2)的条件下,若sin E=,AK=2,求⊙O的半径.9.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.10.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(2)如图②,当直线l与⊙O相交于点E,F时,若∠DAE=18°,求∠BAF的大小.11.如图1,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,=,BE分别交AD、AC于点F、G.(1)判断△FAG的形状,并说明理由;(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE 于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,若BG=26,BD﹣DF=7,求AB的长.12.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD、过点D 作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)求证:△FDB∽△FAD;(3)如果⊙O的半径为5,sin∠ADE=,求BF的长.13.已知,AB为⊙O的直径,C,D为⊙O上两点,过点D的直线EF与⊙O相切,分别交BA,BC的延长线于点E,F,BF⊥EF(I)如图①,若∠ABC=50°,求∠DBC的大小;(Ⅱ)如图②,若BC=2,AB=4,求DE的长.14.如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,过点D作⊙O的切线,与AB,AC的延长线分别交于点E,F,连结AD.(1)求证:AF⊥EF;(2)若tan∠CAD=,AB=5,求线段BE的长.15.如图,⊙O是以AB为直径的△ABC的外接圆,点D是劣弧的中点,连结AD并延长,与过C点的直线交于P,OD与BC相交于点E.(1)求证:OE=AC;(2)连接CD,若∠PCD=∠PAC,试判断直线PC与⊙O的位置关系,并说明理由.(3)在(2)的条件下,当AC=6,AB=10时,求切线PC的长.16.如图,⊙O是△ABC的外接圆,过点A、B两点分别作⊙O的切线PA、PB交于一点P,连接OP(1)求证:∠APO=∠BPO;(2)若∠C=60°,AB=6,点Q是⊙O上的一动点,求PQ的最大值.参考答案1.(1)证明:∵⊙O与AC相切于点D,∴OD⊥AC,∵∠ACB=90°,∴OD∥AC,∴∠ODN=∠P,∵ON=OD,∴∠ODN=∠OND,∴∠OND=∠P,∵∠BOD=∠OND+∠ODN,∴∠BOD=2∠P;(2)解:①连接BD,∵BN是⊙O的直径,∴∠BDN=90°,∴∠BDO+∠ODN=90°,∵∠ADN+∠ODN=90°,∴∠BDO=∠ADN,∵OB=OD,∴∠OBD=∠ODB,∴∠ADN=∠OBD,∵∠A=∠A,∴△ADN∽△ABD,∴=,∴AD2=AN•AB=8×18=144,∴AD=12,∵OD∥BC,∴△AOD∽△ABC,∴=,∴=,∴AC=,∴CD=;②当AN=5时,四边形OBMD是菱形,理由:连接OM交BD于E,∵四边形BMDO是菱形,∴OM⊥BD,OE=EM=OM=OB,∴∠OBD=30°,∴∠OBC=60°,∴∠A=30°,∴AO=2OD=10,∴AN=AO﹣ON=10﹣5=5,故答案为:,5.2.(1)解:点C一定在⊙O上的理由如下:连接OC,如图1所示:由旋转的性质得:∠ECF=90°,∵EF是⊙O的直径,O为圆心,∴OE=OF,∴OC=OE=OF,∴点C一定在⊙O上;(2)证明:由旋转的性质得:∠ECF=90°,CE=CF,∵OE=OF,∴CO⊥EF,∵MC为⊙O的直径,∴CM⊥EF,OC=OM,∠MEC=90°,∴EM=CE,过点M作MN⊥AD于N,如图2所示:∵∠DEC+∠DCE=90°,∠DEC+∠DEM=90°,∴∠DEM=∠DCE,在△MEN和△CED中,,∴△MEN≌△CED(AAS),∴MN=DE,即点M到AD的距离等于线段DE的长;(3)解:∵点E在矩形ABCD的边AD上,AD=6,∴∠D=90°,设AE=x,则DE=6﹣x,由(2)得:点M到AD的距离等于线段DE的长,∴S=×x×(6﹣x)=﹣x2+3x=﹣(x﹣3)2+,△AEM∴当x=3时,△AEM面积取得最大值,此时,DE=6﹣3=3,∵tan∠ACD==,∴CD==4,由勾股定理得:CE2=DE2+CD2,即CE2=32+42,∴CE=5,由(2)得:CM⊥EF,OC=OM,∠MEC=90°,∴∠CEF=45°,在Rt△CEF中,EF===5,∴⊙O半径的长为;(4)解:当⊙O与矩形ABCD的边相切时,只有点O与点D重合时存在,此时⊙O半径r=CD=4,∠COF=90°,∴扇形OCF的面积==4π.3.解:(1)∠BOE=∠CDO,理由如下:∵PD=DC,OD=OD,OP=OC,∴△OPD≌△OCD(SSS),∴∠OPD=∠OCD=90°,∠POD=∠COD,,∴∠POC+∠PDC=360°﹣∠OPD﹣∠OCD=180°,∴∠POC+∠BOP=180°,∴∠BOP=∠PDC,在Rt△POE和Rt△BOE中,∵OE=OE,OP=OB,∴△POE≌△BOE(HL),∴.∵,∴∠BOE=∠CDO;(2)线段DE,BE,CD之间的数量关系是DE=BE+CD,理由:由(1)知,△OPD≌△OCD,△POE≌△BOE,∴PD=DC,PE=BE,∵DE=PE+PD,∴DE=CD+BE;(3)如图4,连接OE,OD,由(1)可知,∠BOE=∠CDO,又∵∠B=∠OCD=90°,点O为BC的中点,∴tan∠BOE=tan∠CDO,∴,∴,∵四边形ABCD是正方形,∴AB=BC,∴;(4)答案不唯一,如图5,连接DE,∵点E是正方形ABCD的“奇妙点”,∴DE=CD,∵DF⊥CE,∴EF=CF,∴EF=,∴设EF=a,则CE=2a,∴△ABH的面积=a×2a=a2,正方形EFGH的面积=a2,∴△ABH的面积=正方形EFGH的面积;同理正方形EFGH的面积等于正方形ABCD面积的等等.4.解:(1)记AO交BD于H,交BC于G,∵点O是等腰三角形△ABC的外接圆的圆心,∴AG平分∠BAC,AG⊥BC,∴∠CAG=∠BAC=α,∴∠ACB=90°﹣α,∴∠BDA=∠ACB=90°﹣α,故答案为:90°﹣α;(2)①如图1,由(1)知,∠OAC=α,∵OA=OC,∴∠OCA=∠OAC=α,由(1)知,∠ACB=90°﹣α,∵BD⊥AC,∴∠BFC=90°,∴∠CBF=90°﹣∠ACB=α,∴∠CAD=∠CBF=α,∴∠CAD=∠OCA=α,∴OC∥AD;②由①知,∠OAC=α=∠CAD,∵BD⊥AC,∴AH=AD,设OH=a,在Rt△EFC中,∠OCA=α,∴∠OEH=∠CEF=90°﹣α,在Rt△BGF中,∠CBF=α,∴∠OHE=∠BHG=90°﹣α,∴OE=OH=a,∵点E是OC的中点,∴OC=2a,∴OA=OC=2a,∴AH=OA+OH=2a+a=3a,∴=;(3)如图2,记AO与⊙O的另一个交点为M,连接CM,由(1)知,∠CBD=∠BAG=α,∵∠BCM=∠BAG=α,∴∠CBD=∠BCM,由(1)知,AG⊥BC,∵AB=AC,∴BG=CG,∴△BGH≌△CGM(ASA),∴HG=MG,设MG=m,⊙O的半径为r,∴OG=r﹣m,AG=2r﹣m,AH=2r﹣2m,由(2)知,AD=AH=2r﹣2m,∵y=,∴y===2﹣①,∵BD⊥AC,∴∠AFB=90°,∴∠ABD=90°﹣∠BAC=90°﹣2α,∴∠ACD=∠ABD=90°﹣2α,∵∠COM=2∠CAM=2α,∴∠BCE=90°﹣∠COM=90°﹣2α,由(2)知,∠CBE=∠CAD=α,∴△ACD∽△BCE,∴==,∵x=,∴=x,∴AC2=4x•CG2,在Rt△ACG中,AG2=AC2﹣CG2=4x•CG2﹣CG2=(4x﹣1)CG2,∴CG==,在Rt△COG中,CG==,∴=,∴,∴,∴﹣1=4x﹣1,∴=②,将②代入①中,得y=2﹣2×=2﹣,即y关于x的函数关系式y=2﹣.5.解:(1)连接BE、AF,交于点G,连接CG并延长交AB于D,如图1所示:则CD即为△ABC的边AB上的高;理由如下:∵AB为圆的直径,∴∠AEB=∠BFA=90°,∴BE作AC,AF⊥BC,∴BE、AF为△ABC的两条高,∵△ABC的三条高交于一点,∴CD为△ABC的边AB上的高;(2)延长BC、AC分别交AB为直径的圆于E、F,延长AE、BF交于点G,连接GC并延长交AB于D,如图2所示:则CD即为△ABC的边AB上的高;理由如下:∵AB为圆的直径,∴BE⊥AC,AF⊥BC,∴AE、BF为△ABC的两条高,∵△ABC的三条高交于一点,∴CD为△ABC的边AB上的高;(3)延长CB交AB为直径的圆于F,连接AF并延长交EB的延长线于G,连接CG交AB 延长线于D,则CD即为△ABC的边AB上的高;理由如下:∵AB为圆的直径,∴∠AEB=∠BFA=90°,∴BE⊥AC,AF⊥BC,∴BE、AF为△ABC的两条高,∵△ABC的三条高交于一点,∴CD为△ABC的边AB上的高.6.解:(1)如图1,过点O作OD⊥AB于点D,由垂径定理知,AD=AB=,又OA=1,∴sin∠AOD==,∴∠AOD=60°.∴OD=OA•cos60°=又OA=OB,如图2,当A′B与OB重叠时,a=∠OBA=30°;当OB绕点B顺时针旋转至与圆相交,交点为B′,连接OB′,则OB=OB′=BB′,此时△OBB′是等边三角形,∴∠OBB′=60°,∴α的取值范围是:30°≤α≤60°.故答案是:;120;30°≤α≤60°;(2)连接AD,∵∠A′BA=90°,∴AD为直径,所以D在AO的延长线上;(3)①当A′B与⊙O相切,∴∠OBA′=90°,此时∠ABA′=90°+30°=120°或∠ABA′=90°﹣30°=60°∴α=120°或300°②当α=120°时,A′运动路径的长度==当α=300时,A′运动路径的长度==.7.解:(1)连接OC.∵BC=CD,OB=OA,∴OC∥AD,∵CF⊥AD,∴OC⊥CF,∴CF是⊙O的切线.(2)连接BE.∵AB是直径,∴∠BEA=90°,∵sin∠BAE==,设BE=2k,AB=3k,则AE=k,∵AE=2,∴k=2,BE=4,∵CF∥BE,BC=CD,∴EF=DF,∴CF=BE=2.8.解:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)KG2=KD•GE,理由是:连接GD,如图2,∵AC∥EF,∴∠C=∠E,∵∠C=∠AGD,∴∠E=∠AGD,∵∠GKD=∠GKD,∴△GKD∽△EKG,∴,∴KG2=KD•EK,由(1)得:EK=GE,∴KG2=KD•GE;(3)连接OG,OC,如图3所示,由(1)得:KE=GE.∵AC∥EF∴∠E=∠ACH∵sin E=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK﹣CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r﹣3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r﹣3t)2+(4t)2=r2,解得r=t=,答:⊙O的半径为.9.(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴=,即=,解得r=,即设⊙O的半径为;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.10.解:(1)连接OC、∵l是⊙O的切线,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC=30°,∵OA=OC,∴∠OAC=∠OCA=30°,(2)连接BE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠AED+∠BEF=90°,∵∠AED+∠DAE=90°,∴∠BEF=∠DAE=18°,∵,∴∠BAF=∠BEF=18°11.解:(1)等腰三角形;理由:如图1,∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∴AF=BF,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(2)成立;∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(3)由(2)得:AF=BF=FG,∵BG=26,∴FB=13,∴解得:BD=12,DF=5,∴AD=AF﹣DF=13﹣5=8,∴AB==4.12.(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴EF是⊙0的切线;(2)证明:∵EF是⊙O的切线,∴∠ODB+∠BDF=90°,∴∠OBD=∠ODB,∴∠OBD+∠BDF=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠OBD=90°,∴∠DAB=∠BDF,∵∠BFD=∠DFA,∴△FDB∽△FAD;(3)∵∠DAC=∠DAB,∴∠ADE=∠ABD,在Rt△ADB中,sin∠ADE=sin∠ABD==,而AB=10,∴AD=8,在Rt△ADE中,sin∠ADE==,∴AE=,∵OD∥AE,∴△FDO∽△FEA,∴=,即=,∴BF=.13.解(1)如图1,连接OD,BD,∵EF与⊙O相切,∴OD⊥EF,∴OD∥BF,∴∠AOD=∠B=50°,∵OD=OB,∴∠OBD=∠ODB=∠AOD=25°;(2)如图2,连接AC,OD,∵AB为⊙O的直径,∴∠ACB=90°,∵BC=2,AB=4,∴∠CAB=30°,∴AC=AB•cos30°=4×=2,∵∠ODF=∠F=∠HCO=90°,∴∠DHC=90°,∴AH=AO•cos30°=2×=,∵∠HAO=30°,∴OH=OA=OD,∵AC∥EF,∴DE=2AH=2.14.(1)证明:连结OD,∵直线EF与⊙O相切于点D,∴OD⊥EF,∵OA=OD,∴∠1=∠3,∵点D为的中点,∴∠1=∠2,∴∠2=∠3,∴OD∥AF,∴AF⊥EF;(2)解:连结BD,∵,∴,在Rt△ADB中,AB=5,∴BD=,AD=,在Rt△AFD中,可得DF=2,AF=4,∵OD∥AF,∴△EDO∽△EFA,∴,又∵OD=2.5,设BE=x,∴,∴,即BE=.15.(1)证明:∵AB为直径∴AC⊥BC,又∵D为中点,∴OD⊥BC,OD∥AC,又∵O为AB中点,∴OE=AC;(2)解:PC为⊙O的切线,理由:连接CO,DC,∵CO=OB,∴∠OCB=∠OBC,∵∠BCD=∠BAD,∠PCD=∠PAC,∴∠OCB+∠BCD+∠PCD=∠OBC+∠BAD+∠PAC,∴∠OCP=∠OBC+∠BAC,又∵AB为⊙O的直径,∴∠OBC+∠BAC=90°,∴∠OCP=90°,即PC为⊙O的切线;(3)解:由(1)可知,OE=3,BE=4,DE=2,在Rt△BED和Rt△ABD中,由勾股定理得:BD=2,AD=4,∵点D是劣弧的中点,∴CD=2,∵∠P是△PCD和△PAC的公共角,由∠PCD=∠PAC,则△PCD∽△PAC,∴=,即=,∴PC=PD,∴(PD)2=PD(4+PD),解得:PD=5,∴PC=×5=15.16.(1)证明:连接OA、OB,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,在RT△PAO和RT△PBO中,,∴RT△PAO≌RT△PBO(HL),∴∠APO=∠BPO;(2)解:∵PA、PB是⊙O的切线,∴∠PAB=∠PBA=∠C=60°,OP⊥AB,∴△PAB为等边三角形,延长PO交⊙O于Q,连接AQ、BQ,则此时PQ最大,∵∠APB=60°,∴∠APO=∠BPO=30°∴PQ=2×AP=2×AB=2××6=6.。
人教版九年级数学中考复习《圆》(含答案)
人教版九年级数学中考复习《圆》一、选择题(本大题共10小题,每小题4分,满分40分)1.如图,四边形ABCD是☉O的内接正方形,P是CD上不同于点C的任意一点,则∠BPC的大小是()A.22.5°B.30°C.45°D.50°2.如图,AB为☉O的直径,AB=30,点C在☉O上,∠A=24°,则AC的长为()A.9πB.10πC.11πD.12π3.如图,已知☉O为四边形ABCD的外接圆,O为圆心.若∠BCD=120°,AB=AD=2,则☉O的半径长为()A.3√22B.√62C.32D.2√334.在平面直角坐标系中,圆心为坐标原点,☉O的半径为10,则点P(-8,6)与☉O的位置关系为()A.点P在☉O上B.点P在☉O外C.点P在☉O内D.无法确定5.如图,点A,B,C在半径为6的☉O上,AB的长为2π,则∠ACB的大小是()A.20°B.30°C.45°D.60°6.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线y =√3x +2√3上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( ) A.3 B.2 C.√3 D.√27.如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE.则图中阴影部分的面积是( )A.6√3-43πB.6√3-83πC.12√3-43πD.12√3-83π8.如图,半圆O 的直径AB =10 cm,弦AC =6 cm,D 是BC的中点,则弦AD 的长为( )A.4 cmB.3√5 cmC.4√5 cmD.5√5 cm9.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( ) A.√28B.√34C.√24D.√3810.如图,AB 是☉O 的直径,C ,D 是☉O 上的点,且O C∥BD,A D 分别与BC ,OC 相交于点E ,F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ;③CB 平分∠ABD ;④AF =DF ;⑤BD =2OF ;⑥△CEF ≌△BED.其中结论一定成立的是( ) A.②④⑤⑥ B.①③⑤⑥ C.②③④⑥D.①③④⑤二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD = °.x-3交x轴于点A,交y轴于点B,P是x轴上一动点,以点P为圆心,以1个12.如图,直线y=-34单位长度为半径作☉P,当☉P与直线AB相切时,点P的坐标是.13.如图,在Rt△OAB中,∠AOB=45°,AB=2,将Rt△OAB绕点O顺时针旋转90°得到Rt△OCD,则AB扫过的阴影部分的面积为.14.如图,在一个圆柱形铁桶内底面的点A处有一只飞虫,在其上边沿的点B处有一面包残渣.cm,铁桶的底面直径为40 cm,桶高已知C是点B正下方的桶内底面上一点,劣弧AC的长为40π360 cm,则该飞虫从点A到达点B的最短路径为 cm.三、(本大题共2小题,每小题8分,满分16分)15.如图,AB,CD是☉O的直径,弦CE∥AB,CE所对的圆心角的度数为50°,求∠AOC的度数.16.如图,已知AB是☉O的直径,点C,D在☉O上,∠D=60°且AB=6,过点O作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交☉O于点F,求阴影部分的面积S.四、(本大题共2小题,每小题8分,满分16分)17.如图,四边形ABCD是☉O的内接四边形,DB平分∠ADC,连接OC,OC⊥BD.(1)求证:AB=CD;(2)若∠A等于66°,求∠ADB的度数.18.如图,☉O为△ABC的内切圆,∠ACB=90°,AO的延长线交BC于点D,AC=4,CD=2,求☉O的半径.五、(本大题共2小题,每小题10分,满分20分)19.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作☉O,分别与AC,BC相交于点M,N.(1)过点N作☉O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.20.已知☉O是△ABC的外接圆,∠CAD=∠ABC.(1)如图1,试判断直线AD与☉O的位置关系,并说明理由;(2)如图2,将直线AD沿直线AC翻折后交☉O于点E,连接OA,OE,CE.若∠ABC=30°,求证:四边形ACEO是菱形.六、(本题满分12分)21.如图,已知平面直角坐标系中一条圆弧经过正方形网格的格点A,B,C.(1)用直尺画出该圆弧所在圆的圆心M的位置;(2)若点A的坐标为(0,4),点D的坐标为(7,0),试验证点D是否在经过点A,B,C的圆上;(3)在(2)的条件下,求证:直线CD是☉M的切线.七、(本题满分12分)22.如图,已知点A,B,C,D均在☉O上,AD∥BC,BD平分∠ABC,∠BAD=120°,四边形ABCD的周长为15.(1)求☉O的半径;(2)求图中阴影部分的面积.八、(本题满分14分)23.小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中的位置).例如,图2是某巷子的俯视图,巷子路面宽4 m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE,CE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,则车辆能通过.(1)小平认为长8 m、宽3 m的消防车不能通过该直角转弯,请你帮他说明理由;。
人教版九年级数学中考真题分类(解答题)专练: 圆的综合(一)有答案
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯人教版九年级数学中考真题分类(解答题)专练:圆的综合(一)1.(2020•齐齐哈尔)如图,AB为⊙O的直径,C、D为⊙O上的两个点,==,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.2.(2020•泸州)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6,CD=4,且CE=2AE,求EF的长.3.(2020•乐山)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.4.(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.5.(2020•德州)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.6.(2020•甘孜州)如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:∠CAD=∠CAB;(2)若=,AC=2,求CD的长.7.(2020•金华)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.8.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,=,求CD的长.9.(2020•衢州)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.10.(2020•嘉兴)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.参考答案1.(1)证明:连接OD,∵==,∴∠BOD=180°=60°,∵=,∴∠EAD=∠DAB=BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=AB=3,∴AD==3.2.(1)证明:如图1,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴,∴=,∴AC=9,∴AB==3,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH∥BC,∴△AHE∽△ABC,∴,∴==,∴AH=,EH=2,如图2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AFH+∠BFH=∠AFH+∠FAH=90°,∴∠FAH=∠BFH,∴△AFH∽△FBH,∴=,∴=,∴FH=,∴EF=﹣2.3.证明:(1)如图1,连接AD、BC,∵AB是半圆O的直径,∴∠ADB=90°,∵DE⊥AB,∴∠ADE=∠ABD,又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,∴DF=AF,∴∠DAF=∠ADF=∠ABD,又∵∠DAC=∠DBC,∴∠ABD=∠DBC,∴=,∴即点D平分;(2)如图2所示,连接OD、AD,∵点E是线段OA的中点,∴,∴∠AOD=60°,∴△OAD是等边三角形,∴AD=AO=AH,∴△ODH是直角三角形,且∠HDO=90°,∴DH是⊙O的切线.4.(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∵∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.5.(1)证明:连接OD,∵AB为⊙O的直径,点D是半圆AB的中点,∴∠AOD=AOB=90°,∵DH∥AB,∴∠ODH=90°,∴OD⊥DH,∴直线DH是⊙O的切线;(2)解:连接CD,∵AB为⊙O的直径,∴∠ADB=∠ACB=90°,∵点D是半圆AB的中点,∴=,∴AD=DB,∴△ABD是等腰直角三角形,∵AB=10,∴AD=10sin∠ABD=10sin45°=10×=5,∵AB=10,BC=6,∴AC==8,∵四边形ABCD是圆内接四边形,∴∠CAD+∠CBD=180°,∵∠DBH+∠CBD=180°,∴∠CAD=∠DBH,由(1)知∠AOD=90°,∠OBD=45°,∴∠ACD=45°,∵DH∥AB,∴∠BDH=∠OBD=45°,∴∠ACD=∠BDH,∴△ACD∽△BDH,∴,∴=,解得:BH=.6.(1)证明:如图1,连接OC,,∵CD是切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,∴∠1=∠4.∵OA=OC,∴∠2=∠4,∴∠1=∠2,即∠CAD=∠CAB.(2)解:如图2,连接BC,∵=,∴设AD=2x,AB=3x,∵AB是⊙O的直径,∴∠ACB=∠ADC=90°,∴∠ACB=90°,∵AD⊥DC,∴∠ADC=90°,∵∠DAC=∠CAB,∴△ACD∽△ABC,∴=,∴=,解得,x1=2,x2=﹣2(舍去),∴AD=4,∴CD==2.7.解:(1)∵的半径OA=2,OC⊥AB于点C,∠AOC=60°,∴AC=OA•sin60°=2×=,∴AB=2AC=2;(2)∵OC⊥AB,∠AOC=60°,∴∠AOB=120°,∵OA=2,∴的长是:=.8.(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tan A==tan∠BCE==,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴==,∵AD=8,∴CD=4.9.(1)证明:∵AE=DE,OC是半径,∴=,∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴=,∴=,∴CE=3.6,∵OC=AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.10.解:证法错误;证明:连结OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.。
人教版九年级数学中考圆的综合专项练习及参考答案
人教版九年级数学中考圆的综合专项练习类型一 与全等结合1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.第1题图(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;第1题解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°, ∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB , ∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中,⎩⎪⎨⎪⎧AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL).2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ;(3)若sin B =45,求cos ∠BDM 的值.第2题图(1)证明:如解图,连接OD ,∵CA 、CD 分别与⊙O 相切于点A 、D , ∴OA ⊥AC ,OD ⊥CD , 在Rt △OAC 和Rt △ODC 中,⎩⎪⎨⎪⎧OA =OD OC =OC,∴Rt△OAC≌Rt△ODC(HL),∴AC=DC;(2)证明:由(1)知,△OAC≌△ODC,∴∠AOC=∠DOC,∴∠AOD=2∠AOC,∵∠AOD=2∠OBD,∴∠AOC=∠OBD,∴BD∥CM;(3)解:∵BD∥CM,∴∠BDM=∠M,∠DOC=∠ODB,∠AOC=∠B,∵OD=OB=OM,∴∠ODM=∠OMD,∠ODB=∠B=∠DOC,∵∠DOC=2∠DMO,∴∠DOC=2∠BDM,∴∠B=2∠BDM,如解图,作OE平分∠AOC,交AC于点E,作EF⊥OC于点F,第2题解图∴EF =AE ,在Rt △EAO 和Rt △EFO 中,∵⎩⎪⎨⎪⎧OE =OE AE =EF , ∴Rt △EAO ≌Rt △EFO (HL), ∴OA =OF ,∠AOE =12∠AOC ,∴点F 在⊙O 上,又∵∠AOC =∠B =2∠BDM , ∴∠AOE =∠BDM , 设AE =EF =y , ∵sin B =45,∴在Rt △AOC 中,sin ∠AOC =AC OC =45,∴设AC =4x ,OC =5x ,则OA =3x ,在Rt △EFC 中,EC 2=EF 2+CF 2, ∵EC =4x -y ,CF =5x -3x =2x , ∴(4x -y )2=y 2+(2x )2, 解得y =32x ,∴在Rt △OAE 中,OE =OA 2+AE 2=(3x )2+(32x )2=352x ,∴cos ∠BDM =cos ∠AOE =OA OE =3x 352x=255.3. 如图,⊙O 是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E . (1)求证:∠1=∠BCE ; (2)求证:BE 是⊙O 的切线; (3)若EC =1,CD =3,求cos ∠DBA .第3题图(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵, ∴AB =BD在△ABF 与△DBE 中, ⎩⎪⎨⎪⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB, ∴△ABF ≌△DBE (AAS), ∴BF =BE , ∵BE ⊥DC ,BF ⊥AC , ∴∠1=∠BCE ; (2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°, ∵∠BCE +∠EBC =90°,且∠1=∠BCE , ∴∠BAC =∠EBC , ∵OA =OB , ∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°, ∴∠EBO =90°, 又∵OB 为⊙O 的半径, ∴BE 是⊙O 的切线;第3题解图(3)解:在△EBC 与△FBC 中,⎩⎪⎨⎪⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS), ∴CE =CF =1.由(1)可知:AF =DE =1+3=4, ∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.类型二 与相似结合4. 如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.第4题图(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,∴∠AFB =∠ACB =72°, ∵BD 平分∠ABC , ∴∠DBC =36°, ∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA ,∴AE DE =EF EA, ∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC , ∴AG 垂直平分BC , ∴AG 过圆心O , ∵AD ∥BC , ∴AD ⊥AG , ∴AD 是⊙O 的切线.第4题解图5. 如图,AB 为半圆的直径,O 为圆心,OC ⊥AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F .(1)求证:∠CED =45°;(2)求证:AE =BD ;(3)求AO OF的值.第5题图(1)证明:∵∠CDA =12∠COA =12×90°=45°, 又∵CE ⊥DC ,∴∠DCE =90°,∴∠CED =180°-90°-45°=45°;(2)解:如解图,连接AC ,∵D 为BC ︵的中点,∴∠BAD =∠CAD =12×45°=22.5°, 而∠CED =∠CAE +∠ACE =45°,∴∠CAE =∠ACE =22.5°,∴AE =CE ,∵∠ECD =90°,∠CED =45°,∴CE =CD ,又∵CD ︵=BD ︵,∴CD =BD ,∴AE =CE =CD =BD ,∴AE =BD ;第5题解图(3)解:设BD =CD =x ,∴AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x ,又∵AB 是直径,则∠ADB =90°,∴△AOF ∽△ADB ,∴AO OF =AD DB =x +2x x=1+ 2. 6. 如图,AB 为⊙O 的直径,P 点为半径OA 上异于点O 和点A 的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE ⊥AB ,OE //AD 交BE 于E 点,连接AE 、DE ,AE 交CD 于点F .(1)求证:DE 为⊙O 的切线;(2)若⊙O 的半径为3,sin ∠ADP =13,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.第6题图(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE,∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;第6题解图(3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB ,∴PF =AP ·BE AB ,在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE∠PAD =∠BOE ,∴△APD ∽△OBE ,∴PD BE =AP OB ,∴PD =AP ·BE OB ,∵AB =2OB ,∴PF =12PD , ∴PF =FD .7. 如图①,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,OD ∥AC ,OD 交⊙O 于点E ,且∠CBD =∠COD .(1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,求证:四边形OACE 是菱形.(3)如图②,作CF ⊥AB 于点F ,连接AD 交CF 于点G ,求FG FC的值.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠ABC +∠BAC =90°,∵OD ∥AC ,∴∠ACO =∠COD .∵OA=OC,∴∠BAC=∠ACO,又∵∠COD=∠CBD,∴∠CBD=∠BAC,∴∠ABC+∠CBD=90°,∴∠ABD=90°,即OB⊥BD,又∵OB是⊙O的半径,∴BD是⊙O的切线;(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE,∴四边形OACE是菱形;第7题解图(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴FCBD=AFOB,即FC=BD·AFOB,又∵FG∥BD,∴△AFG∽△ABD,∴FGBD=AFAB,即FG=BD·AFAB,∴FC FG =AB OB=2, ∴FG FC =12. 8. 如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC ⊥OB 交⊙O 于点C ,作直径CD 过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE ·CP ;(3)当AB =43且CF CP =34时,求劣弧BD ︵的长度.第8题图(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠FAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE ∽△CPB ,∴BC PC =CE CB, ∴BC 2=CE ·CP ;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34, ∴CE CP =34, 设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32, ∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.类型三 与全等相似结合9. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG .(1)求证:AB =CD ;(2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.第9题图(1)证明:∵AC 为直径,∴∠ABC =∠ADC =90°,∴∠ABC =∠BAD =90°,∴BC ∥AD ,∴∠BCA =∠CAD ,又∵AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD;(2)证明:∵AE为⊙O的切线且O为圆心,∴OA⊥AE,即CA⊥AE,∴∠EAB+∠BAC=90°,而∠BAC+∠BCA=90°,∴∠EAB=∠BCA,而∠EBA=∠ABC,∴△EBA∽△ABC,∴EBAB=BABC,∴AB2=BE·BC,由(1)知AB=CD,∴CD2=BE·BC;(3)解:由(2)知CD2=BE·BC,即CD 2=92BC ①, ∵FG ∥BC 且点F 为AC 的三等分点,∴G 为AB 的三等分点,即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③, 将③代入①得,CD =332. 10.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).第10题图 (1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.。
2021年数学人教版九年级中考复习专题之圆:圆周角定理练习(八)
2021年数学人教版九年级中考复习专题之圆:圆周角定理练习(八)一.选择题1.如图,⊙O中,AB是直径,弦CD⊥AB于点E,∠BOD=50°,则∠BAC的度数是()A.100°B.50°C.40°D.25°2.如图,AB是⊙O的直径,AB=2DE,若∠COD=90°,则∠E的度数为()A.15°B.22.5°C.30°D.45°3.如图,AB是⊙O的直径,C、D是圆上两点,∠AOC=110°,则∠D的度数为()A.25°B.35°C.55°D.70°4.如图,圆心为C、直径为MN的半圆上有不同的两点A、B,在CN上有一点P,∠CBP =∠CAP=10°,若的度数是40°,则的度数是()A.10°B.15°C.20°D.25°5.如图,已知AB是半圆O的直径,弦AD、BC相交于点P,若∠DPB=α,那么CD:AB等于()A.sinαB.cosαC.tanαD.6.如图,正方形ABCD内接于⊙O,点E在劣弧AD上,则∠BEC等于()A.45°B.60°C.30°D.55°7.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()A.4﹣B.4﹣C.8﹣D.8﹣8.如图,B是线段AC的中点,过点C的直线l与AC成60°的角,在直线L上取一点P,使∠APB=30°,则满足条件的点P的个数是()A.3个B.2个C.1个D.不存在9.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是()A.45°B.60°C.75°D.90°10.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α的度数是()A.52°B.60°C.72°D.76°二.填空题11.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD =.12.如图,在⊙O中,弦AB,CD相交于点P.若∠A=40°,∠APD=75°,则∠B=.13.如图,△ABC内接于⊙O,半径为5,BC=6,CD⊥AB于D点,则tan∠ACD的值为.14.如图,⊙O的半径为6,点A、B、C在⊙O上,且∠ACB=45°,则弦AB的长是.15.如图,AB是⊙O的直径,C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为.16.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C旋转,与量角器外沿交于点D,若射线CD将△ABC 分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是.三.解答题17.已知:如图,在△ABC中,BC=AC=6,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)求点O到直线DE的距离.18.如图,AB是⊙O的直径,C是的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为4,求BC的长.19.如图,在半径为5的⊙O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动.(1)当点P与点C关于AB对称时,求CP的长;(2)当点P运动到弧AB的中点时,求CP的长;(3)点P在弧AB上运动时,求CP的长的取值范围.20.已知⊙O中,弦AB⊥AC,且AB=AC=6,点D在⊙O上,连接AD,BD,CD.(1)如图1,若AD经过圆心O,求BD,CD的长;(2)如图2,若∠BAD=2∠DAC,求BD,CD的长.参考答案一.选择题1.解:∵AB为⊙O的直径,弦CD⊥AB,∴=,∴∠BAC=∠BOD=×50°=25°.故选:D.2.解:∵AB是⊙O的直径,∵AB=2DO,而AB=2DE,∴DO=DE,∴∠DOE=∠E,∵OC=OD,∠COD=90°∴△COD为等腰直角三角形,∴∠CDO=45°,∵∠CDO=∠DOE+∠E,∴∠E=∠CDO=22.5°.故选:B.3.解:∵∠AOC=110°,∴∠BOC=180°﹣110°=70°,∴∠D=∠BOC=35°,故选:B.4.解:∵的度数是40°,∴∠ACM=40°∵∠CBP=∠CAP=10°,∴A、C、P、B四点共圆,∴∠ACM=∠ABP=40°,∵∠CPB=10°,∴∠ABC=40°﹣10°=30°,∵AC=BC,∴∠CAB=∠ABC=30°,∴∠ACB=120°,∴∠BCN=180°﹣∠ACM﹣∠ACB=20°,∴的度数是20°.故选:C.5.解:连接BD,由AB是直径得,∠ADB=90°.∵∠C=∠A,∠CPD=∠APB,∴△CPD∽△APB,∴CD:AB=PD:PB=cosα.故选:B.6.解:∵正方形ABCD内接于⊙O,∴∠BEC等于90°÷2=45°.故选:A.7.解:连接AD,∵BC是切线,点D是切点,∴AD⊥BC,∴∠A=2∠P=80°,∴S扇形AEF==π,S△ABC=AD•BC=4,∴阴影部分的面积=S△ABC﹣S扇形AEF=4﹣π.故选:A.8.解:如图,分别以AC,BC为边,作等边△APC,取PA的中点O,以O为圆心OA 为半径作⊙O交直线l于P,P′,由圆周角定理可知:∠APB=∠AP′B=30°,所以满足条件的点P的个数为2个.故选:B.9.解:如图,连接OB、OC,则∠BOC=90°,根据圆周角定理,得:∠BPC=∠BOC=45°.故选:A.10.解:连接OC,OD,∵∠BAO=∠CBO=∠DCO=∠EDO=α,∵OA=OB=OC,∴∠ABO=∠BCO=α,∴∠AOB=∠BOC=∠COD=∠DOE=180°﹣2α,∴4∠AOB+∠AOE=360°,∴∠AOB=76°,∴在等腰三角形AOB中,∠α=∠BAO==52°.故选:A.二.填空题(共6小题)11.解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=50°,∴∠CAD=90°﹣∠D=40°.故答案为:40°.12.解:∵∠A=40°,∠APD=75°,∴∠C=75°﹣40°=35°,∴∠B=35°,故答案为:35°.13.解:作直径BE,连接CE,作CF⊥BE于点F.∵CF⊥BE,CD⊥AB又∵∠A=∠E,∴∠ECF=∠ACD.∵BE是直径,CF⊥BE,∴∠BCE=90°,∠EBC=∠ECF=∠ACD,∴EC==8,∴tan∠EBC===.∴tan∠ACD=tan∠EBC=.故答案是:.14.解:连接OA,OB,∠AOB=2∠ACB=2×45°=90°,则AB===6.15.解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故答案为:110°.16.解:①设CD′交AB于E,设AB的中点为O,连接OD′当EB=EC,此时∠EBC=∠ECB=40°,易知∠BOD′=2∠BCD′=80°,∴点D′在量角器上对应的度数是80°;②设CD″交AB于F,连接OD″,当BF=BC时,∠BCD″=70°,易知∠BOD″=2∠BCD″=140°,∴点D″在量角器上对应的度数是140°;故答案为80°或140°三.解答题(共4小题)17.(1)证明:连接CD,∵BC是圆的直径,∴∠BDC=90°,∴CD⊥AB,又∵AC=BC,∴AD=BD,即点D是AB的中点;(2)证明:连接OD,∵AD=BD,OB=OC,∴DO是△ABC的中位线,∴DO∥AC,OD=AC=×6=3,又∵DE⊥AC,∴DE⊥DO,∴点O到直线DE的距离为3.18.(1)证明:延长CE交⊙O于点M,∵AB是⊙O的直径,CE⊥AB,∴=,∵C是的中点,∴=,∴=,∴∠BCM=∠CBD,∴CF=BF;(2)解:连接AC,∵AB是⊙O的直径,CE⊥AB,∴∠BEF=∠ADB=90°,∵∠ABD=∠FBE,∴Rt△ADB∽Rt△FEB,∴,∵AD=2,⊙O的半径为4,∴AB=8,∴,∴BF=4EF,又∵BF=CF,∴CF=4EF,利用勾股定理得:BE==EF,又∵∠ACB=∠CEB=90°,∠ABC=∠CBE,∴△EBC∽△ECA,∴,∴CE2=AE•BE,∴(CF+EF)2=(8﹣BE)•BE,∴25EF2=(8﹣EF)•EF,∴EF=,∴BC==2.(本题可以连接OC交BD于H,解直角三角形△CBH即可)19.解:(1)∵点P与点C关于AB对称,∴CP⊥AB,设垂足为D.∵AB为⊙O的直径,∴∠ACB=90°.∴AB=10,BC:CA=4:3,∴BC=8,AC=6.又∵AC•BC=AB•CD,∴CD=4.8,∴CP=2CD=9.6;(2)当点P运动到弧AB的中点时,连接PB,过点B作BE⊥PC于点E.∵P是弧AB的中点,∴AP=BP=5,∠ACP=∠BCP=45°,∵BC=8,∴CE=BE=4,∴PB=5,∴PE==3,∴CP=CE+PE=7;(3)点P在弧AB上运动时,恒有CP>CA,当CP过圆心O,即PC取最大值10,∴CP的取值范围是6<CP≤10.20.解:(1)∵AD经过圆心O,∴∠ACD=∠ABD=90°,∵AB⊥AC,且AB=AC=6,∴四边形ABCD为正方形,∴BD=CD=AB=AC=6;(2)连接OC,OB,OD,过O点作OE⊥BD,∵AB⊥AC,AB=AC=6,∴BC为直径,∴BC=6,∴BO=CO=DO=BC=3,∵∠BAD=2∠DAC,∴∠CAD=30°,∠BAD=60°,∴∠COD=60°,∠BOD=120,∴△COD为等边三角形,∠BOE=60°,∴CD=CO=DO=3,在直角三角形CDB中,BD=CD=3,则BE=,∴BD=2BE=3.。
2019版人教版九年级数学下中考分类集训10 圆D卷
2019版人教版九年级下中考分类集训10 圆D卷姓名:________ 班级:________ 成绩:________一、单选题1 . 一个圆的半径为r,圆周长为;另一个半圆的半径为2r,半圆弧长为,那么下列结论中,成立的是()A.B.C.D.2 . 如图,四边形ABCD中,对角线AC⊥BD于点O,且AO=BO=4,CO=8,∠ADB=2∠ACB,则四边形ABCD的面积为()A.48B.42C.36D.323 . 如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm24 . 钟面上的分针的长为1,从9点到9点15分,分针在钟面上扫过的面积是()D.A.B.C.5 . 如图,点、、是上的点,,连结交于点,若,则的度数为()A.B.C.D.6 . 如图,正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8B.C.10D.7 . 已知圆O的面积为25π,若PO=5.5,则点P在()A.圆O外B.圆O上C.圆O内D.圆O上或圆O内8 . 已知⊙O的半径为5cm,点A到圆心O的距离OA=5cm,则点A与⊙O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定9 . 如图,A,B,E为⊙O上的点,⊙O的半径OC⊥AB于点D,已知∠CEB=30°,OD=1,则⊙O的半径为()A.B.2C.D.410 . 一个多边形的每一个外角都等于72°,则这个多边形的内角和等于()A.360°B.540°C.720°D.900°11 . 如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则的长为()A.B.C.D.12 . 如图,⊙O是四边形ABCD的内切圆,下列结论一定正确的有()个:①AF=BG;②CG=CH;③AB+CD=AD+BC;④BG<CG.A.1B.2C.3D.413 . 如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC 的长是()A.2B.2C.4D.4二、填空题14 . 矩形OBCD按如图所示放置在平面直角坐标系中(坐标原点为O),连接AC(点A,C的坐标见图示)交OB于点E,则阴影部分的四边形OECD的面积为_____________.15 . 如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,设∠A=α,则∠E+∠F=______(用含α的式子表示).16 . 如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC=_____.17 . 一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O按逆时针方向旋转的角度约为度.(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)18 . 如图,PA、PB是⊙O的切线,切点分别为A、B,已知⊙O的半径为2,∠P=60°,则弦AB的长为_____.19 . 如图,正六边形内接于,正六边形的周长是12,则的半径是__________.20 . 如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(-2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是__________,半径为_________.21 . 半径为5的圆内接正六边形的边心距为__________.22 . 如图,将一个三角形中含60°的角剪去,得到一个四边形,则∠1+∠2=_____.23 . 如图,点D、E为△ABC边BC、AC上的两点,将△ABC沿线段DE折叠,点C落在BD上的C′处,若∠C=30°,则∠AEC′=_________.24 . 请你写出一个原命题与它的逆命题都是真命题的命题____________________ .25 . 计算:sin245°+tan30°=____.26 . 如图,线段与相切于点,线段与相交于点,,,则的半径长为.三、解答题27 . 如图,在中,是弦,是直径,且经过的中点,连接.(1)用尺规作图作出弦的垂直平分线,并标出与的交点(保留作图痕迹,不写作法);(2)在(1)的条件下,若的半径为,,求的长.28 . 如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,OA=6.(1)求∠C的大小;(2)求阴影部分的面积。
九年级数学适应性训练《圆》(2)(1)
九年级数学适应性训练《圆》一、选择题(共10小题,每小题3分,共30分)1.已知线段OA =3 cm ,⊙O 的半径为4 cm ,则点A 与⊙O 的位置关系是( ) A .A 点在⊙O 外 B .A 点在⊙O 上C .A 点在⊙O 内D .不能确定2.已知⊙O 的半径为10 cm ,如果一条直线和圆心O 的距离为10 cm ,那么这条直线和这个圆的位置关系为( ) A .相离 B .相切 C .相交 D .相交或相离 3.半径为5 cm 的圆中,有一条长为6 cm 的弦,则圆心到此弦的距离为( ) A .3 cm B .4 cm C .5 cm D .6 cm 4.如图,A 、B 是⊙O 上的两点,AC 是⊙O 的切线,∠B =70°,则∠BAC =( )A .70°B .35°C .20°D .10°5.如图,P A 切⊙O 于点A ,PBC 是的割线且过圆心,P A =4,PB =2,则⊙O 的半径为( ) A .3B .4C .6D .86.如图,已知⊙O 的直径AB 与弦AC 的夹角为30°,过C 点的切线PC 与AB 的延长线交于P ,PC =5,则⊙O 的半径为( )A .335B .635 C .10 D .5 7.在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =8 cm ,则它的外心与定点C 的距离为( )A .5 cmB .6 cmC .7 cmD .8 cm 8.如图,AD 、AE 和BC 分别切⊙O 于D 、E 、F .若∠BAC =50°,则∠DFE 的度数为( ) A .130°B .125°C .115°D .65°9.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .23B .23C .3D .3210.如图,AB 为⊙O 的直径,点M 为半圆的中点,点P 为另一半圆上一点(不与A 、B 重合),点I 为△ABP 的内心,IN ⊥BP 于N ,下列结论:① ∠APM =45°;② AB =2IM ;③ ∠BIM =∠BAP ;④ 22=+PM OB IN ,其中正确的个数有( ) A .1个B .2个C .3个D .4个二、填空题(本大题共6个小题,每小题3分,共18分)11.如图所示,△ABC 的内切圆⊙O 切AC 、AB 、BC 分别于D 、E 、F .若AB =9,AC =7,CD =2,则BC =___________12.如图,在Rt△ABC中,∠C=90°,BC=4 cm,AC=3 cm,以点C为圆心,以3 cm长为半径作圆,则⊙O与AB的位置关系是___________13.点P是半径为5的⊙O内一点,且OP=3,在过点P的所有弦中,长度为整数的弦一共有___________条14.如图,正方形ABCD的边长为4,点E是AB上的一点,将△BCE沿CE折叠至△FCE.若CF、CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为___________2,0)、B(0,2),点P为△AOB外接圆上的一点,且∠AOP=45°,则P 15.如图,已知A(3点坐标为___________________________16.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.如图,点E为线段AB中点,点P是线段AC上的动点.在绕点B按逆时针方向旋转过程中,点P的对应点是点P1,则线段EP1长度的最大值为________,最小值为________ 三、解答题(共6题,共52分)17.(本题6分)如图,∠ACB=90°,AC=3,BC=4,以BC上一点O为圆心,OC长为半径⊙O与AB切于点D,求⊙O的半径18.(本题8分)如图,在△ABC中,AB=AC,内切圆⊙O与边BC、AC、AB分别切于D、E、F(1) 求证:BD=CD2,求AC(2) 若∠C=30°,CE=319.(本题8分)如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM于点D,交BN于点C,F是CD的中点,连接OF(1) 求证:OD∥BE(2) 猜想:OF与CD有何数量关系?并说明理由20.(本题8分)如图,AB为⊙O的直径,CD切⊙O于点C,与BA的延长线交⊙O于点D,OE⊥AB交于点E,连接CA、CE、CB,过点A作AF⊥CE于点F,延长AF交BC于点P(1) 求证:CA=CP(2) 连接OF,若AC=3,∠D=30°,求线段OF的长21.(本题10分)AB为⊙O的直径,P A为⊙O的切线,BC∥OP交⊙O于C,PO交⊙O于D,(1) 求证:PC为⊙O的切线(2) 过点D作DE⊥AB于E,交AC于F,PO交AC于H,BD交AC于G,DF=FG,DF=5,CG=6,求S△AGB的半径22.(本题12分)如图,抛物线y =ax 2+bx +c 的对称轴是y 轴,且经过原点和点(a ,161),点P 在抛物线上运动,以点⊙P 为圆心的P 经过定点A (0,2) (1) 求抛物线的解析式(2) 求证:点P 在运动过程中,⊙P 始终与x 轴相交(3) 设与x 轴相交于M (x 1,0)、N (x 2,0)(x 1<x 2)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标。
九年级数学(下)专项训练《圆》含答案
九年级数学(下)专项训练《圆》一、选择题1.如图,∠O =30°,C 为OB 上一点,且OC =6,以点C 为圆心,半径为3的圆与OA 的位置关系是( )A .相离B .相交C .相切D .均有可能第1题图 第3题图 第4题图2.(2016·贺州中考)已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为( )A .2B .4C .6D .83.(2016·兰州中考)如图,在⊙O 中,若点C 是AB ︵的中点,∠A =50°,则∠BOC 的度数为( ) A .40° B .45° C .50° D .60° 4.(2016·杭州中考)如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A 、C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB =3∠ADB ,则( )A .DE =EB B.2DE =EB C.3DE =DO D .DE =OB第5题图 第6题图 第7题图5.如图,⊙O 的半径是2,AB 是⊙O 的弦,点P 是弦AB 上的动点,且1≤OP ≤2,则弦AB 所对的圆周角的度数是( )A .60°B .120°C .60°或120°D .30°或150° 6.(2016·德州中考)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )A .3步B .5步C .6步D .8步 7.(2016·山西中考)如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE ︵的长为( )A.π3B.π2C .πD .2π 8.(2016·滨州中考)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC ∥BD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ;③CB 平分∠ABD ;④AF =DF ;⑤BD =2OF ;⑥△CEF ≌△BED ,其中一定成立的是( )A .②④⑤⑥B .①③⑤⑥C .②③④⑥D .①③④⑤第8题图 第9题图 第10题图二、填空题 9.(2016·安顺中考)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,CD =6,则BE =________.10.(2016·齐齐哈尔中考)如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C =________度. 11.(2016·贵港中考)如图,在Rt △ABC 中,∠C =90°,∠BAC =60°,将△ABC 绕点A 逆时针旋转60°后得到△ADE .若AC =1,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是________(结果保留π).12.(2016·呼和浩特中考)在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且AB ∥CD ,若AB 和CD 之间的距离为18,则弦CD 的长为________.13.(2016·成都中考)如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,则AB =________.第11题图 第13题图 第14题图14.如图,在扇形OAB 中,∠AOB =60°,扇形半径为r ,点C 在AB ︵上,CD ⊥OA ,垂足为D ,当△OCD 的面积最大时,AC ︵的长为________.三、解答题 15.(2016·宁夏中考)如图,已知△ABC ,以AB 为直径的⊙O 分别交AC 于D ,BC 于E ,连接ED ,若ED =EC .(1)求证:AB =AC ;(2)若AB =4,BC =23,求CD 的长.16.(2016·新疆中考)如图,在⊙O 中,半径OA ⊥OB ,过OA 的中点C 作FD ∥OB 交⊙O 于D 、F 两点,且CD =3,以O 为圆心,OC 为半径作弧CE ,交OB 于E 点. (1)求⊙O 的半径OA 的长; (2)计算阴影部分的面积.17.(2016·西宁中考)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA =∠CBD .(1)求证:CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E ,BC =6,AD BD =23,求BE 的长.18.★如图,在平面直角坐标系xOy中,直线y=3x-23与x轴、y轴分别交于A,B两点,P是直线AB上一动点,⊙P的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.参考答案与解析1.C 2.D 3.A 4.D 5.C6.C 解析:根据勾股定理得斜边为82+152=17,则该直角三角形能容纳的圆形(内切圆)半径r =8+15-172=3(步),即直径为6步.7.C 解析:连接OE 、OF .∵CD 是⊙O 的切线,∴OE ⊥CD ,∴∠OED =90°.∵四边形ABCD 是平行四边形,∠C =60°,∴∠A =∠C =60°,∠D =120°.∵OA =OF ,∴∠A =∠OF A =60°,∴∠DFO =120°,∴∠EOF =360°-∠D -∠DFO -∠DEO =30°,∴FE ︵的长=30π·6180=π.8.D 解析:①∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD ⊥BD ,∴①正确;②∵∠AOC 是⊙O 的圆心角,∠AEC 是⊙O 的圆内部的角,∴∠AOC ≠∠AEC ,∴②错误;③∵OC ∥BD ,∴∠OCB =∠DBC .∵OC =OB ,∴∠OCB =∠OBC ,∴∠OBC =∠DBC ,∴CB 平分∠ABD ,∴③正确;④∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD ⊥BD .∵OC ∥BD ,∴∠AFO =90°.∵点O 为圆心,∴AF =DF ,∴④正确;⑤由④有AF =DF ,∵点O 为AB 中点,∴OF 是△ABD 的中位线,∴BD =2OF ,∴⑤正确;⑥∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,∴⑥错误.9.4-7 解析:连接OC .∵弦CD ⊥AB 于点E ,CD =6,∴CE =ED =12CD =3.在Rt △OEC 中,∠OEC =90°,CE =3,OC =4,∴OE =42-32=7,∴BE =OB -OE =4-7.10.45 解析:连接OD .∵CD 是⊙O 的切线,∴OD ⊥CD .∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴AB ⊥OD ,∴∠AOD =90°.∵OA =OD ,∴∠A =∠ADO =45°,∴∠C =∠A =45°.11.π2 解析:由题意可得△ABC ≌△ADE .∵∠C =90°,∠BAC =60°,AC =1,∴AB =2.∵∠DAE =∠BAC =60°,∴S 扇形BAD =60×π×22360=2π3,S扇形△CAE =60π×12360=π6,∴S 阴影=S扇形DAB+S △ABC -S △ADE -S 扇形ACE =2π3-π6=π2.12.24 解析:如图,设AB 与⊙O 相切于点F ,连接OF ,OD ,延长FO 交CD 于点E .∵2πR =26π,∴R =13,∴OF =OD =13.∵AB 是⊙O 的切线,∴OF ⊥AB .∵AB ∥CD ,∴EF ⊥CD ,即OE ⊥CD ,∴CE =ED .∵EF =18,OF =13,∴OE =5.在Rt △OED 中,∵∠OED =90°,OD =13,OE =5,∴ED =OD 2-OE 2=12,∴CD =2ED =24.13.392 解析:作直径AE ,连接CE ,∴∠ACE =90°.∵AH ⊥BC ,∴∠AHB =90°,∴∠ACE =∠AHB .又∵∠B =∠E ,∴△ABH ∽△AEC ,∴AB AE =AH AC ,∴AB =AH ·AEAC.∵AC =24,AH =18,AE =2OC =26,∴AB =392.14.14πr 解析:∵OC =r ,CD ⊥OA ,∴DC =OC 2-OD 2=r 2-OD 2,∴S △OCD =12OD ·r 2-OD 2,∴()S △OCD 2=14OD 2·(r 2-OD 2)=-14OD 4+14r 2OD 2=-14(OD 2-r 22)2+r 416,∴当OD 2=r 22,即OD =22r 时,△OCD 的面积最大,∴∠OCD =45°,∴∠COA =45°,∴AC ︵的长=45πr 180=14πr .15.(1)证明:∵ED =EC ,∴∠EDC =∠C .∵∠B +∠ADE =180°,∠EDC +∠ADE =180°,∴∠B =∠EDC ,∴∠B =∠C ,∴AB =AC ;(2)解:连接AE .∵AB 为直径,∴AE ⊥BC .由(1)知AB =AC ,∴AC =4,BE =CE =12BC= 3.∵∠C =∠C ,∠EDC =∠B ,∴△EDC ∽△ABC ,∴CE AC =CDBC,即CE ·BC =CD ·AC ,∴3·23=4CD ,∴CD =32.16.解:(1)连接OD .∵OA ⊥OB ,∴∠AOB =90°.∵CD ∥OB ,∴∠OCD =90°.在Rt △OCD 中,∵C 是AO 的中点,CD =3,∴OD =2OC .设OC =x ,∴x 2+(3)2=(2x )2,∴x =1,∴OD =2,∴⊙O 的半径为2;(2)∵sin ∠CDO =OC OD =12,∴∠CDO =30°.∵FD ∥OB ,∴∠DOB =∠CDO =30°,∴S 阴影=S △CDO +S 扇形OBD -S 扇形OCE =12×1×3+30π×22360-90π×12360=32+π12.17.(1)证明:连接OD .∵OB =OD ,∴∠OBD =∠BDO .∵∠CDA =∠CBD ,∴∠CDA =∠ODB .又∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠ADO +∠ODB =90°,∴∠ADO +∠CDA =90°,即∠CDO =90°,∴OD ⊥CD .∵OD 是⊙O 的半径,∴CD 是⊙O 的切线;(2)解:∵∠C =∠C ,∠CDA =∠CBD ,∴△CDA ∽△CBD ,∴CD BC =AD BD .∵AD BD =23,BC=6,∴CD =4.∵CE ,BE 是⊙O 的切线,∴BE =DE ,BE ⊥BC ,∴BE 2+BC 2=EC 2,即BE 2+62=(4+BE )2,解得BE =52.18.解:(1)原点O 在⊙P 外.理由如下:∵直线y =3x -23与x 轴、y 轴分别交于A ,B 两点,∴点A 的坐标为(2,0),点B 的坐标为(0,-23).在Rt △OAB 中,tan ∠OBA =OAOB =223=33,∴∠OBA =30°.如图①,过点O 作OH ⊥AB 于点H ,在Rt △OBH 中,OH =OB ·sin ∠OBA = 3.∵3>1,∴原点O 在⊙P 外;(2)如图②,当⊙P 过点B 时,点P 在y 轴右侧时,∵PB =PC ,∴∠PCB =∠OBA =30°,∴⊙P 被y 轴所截的劣弧所对的圆心角的度数为180°-30°-30°=120°,∴弧长为120°×π×1180=2π3;同理:当⊙P 过点B 时,点P 在y 轴左侧时,弧长同样为2π3.∴当⊙P 过点B 时,⊙P 被y 轴所截得的劣弧的长为2π3; (3)如图③,当⊙P 与x 轴相切时,且位于x 轴下方时,设切点为D ,作PD ⊥x 轴,∴PD ∥y 轴,∴∠APD =∠ABO =30°.在Rt △DAP 中,AD =DP ·tan ∠DP A =1×tan30°=33,∴OD =OA -AD =2-33,∴此时点D 的坐标为⎝⎛⎭⎫2-33,0;当⊙P 与x 轴相切时,且位于x 轴上方时,根据对称性可以求得此时切点的坐标为⎝⎛⎭⎫2+33,0.综上所述,当⊙P 与x 轴相切时,切点的坐标为⎝⎛⎭⎫2-33,0或⎝⎛⎭⎫2+33,0.。
2023年中考九年级数学高频考点提升练习--圆的综合(含答案)
2023年中考九年级数学高频考点提升练习--圆的综合1.如图,AB是⊙O的直径,点C为⊙O上一点,OE⊥BC于点H,交⊙O于点E,点D为OE的延长线上一点,DC的延长线与BA的延长线交于点F﹐且∠BOD=∠BCD,连结BD、AC、CE.(1)求证:DF为⊙O的切线;(2)过E作EG⊥FD于点G,求证:△CHE≌△CGE;(3)如果AF=1,sin∠FCA=√33,求EG的长.2.如图,在平面直角坐标系中,直线y=−12x+2与x轴交于点A,与y轴交于点B,抛物线y=−23x 2+bx+c过点B且与直线相交于另一点C(52,34).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0) (0<n<52)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?3.综合与探究如图,抛物线y=−x2+bx+c经过A(−1,0),D(3,4)两点,直线AD与y 轴交于点Q.点P(m,n)是直线AD上方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,并且交直线AD于点E.(1)请直接写出抛物线与直线AD的函数关系表达式;(2)当CP//AD时,求出点P的坐标;(3)是否存在点P,∠CPE=∠QFE?若存在,求出m的值;若不存在,请说明理由.4.如图,在梯形ABCD中,AD⊙BC,⊙B=90°,BC=6,AD=3,⊙DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动,已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边⊙EFG,设E点移动距离为x(x>0).(1)⊙EFG的边长是(用含有x的代数式表示),当x=2时,点G的位置在;(2)若⊙EFG与梯形ABCD重叠部分面积是y,求y与x之间的函数关系式;(3)探究(2)中得到的函数y在x取何值时,存在最大值?并求出最大值.5.如图,抛物线y=−34x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3),点M(m,0)为线段OA上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.(1)求抛物线的解析式,并写出此抛物线的对称轴;(2)如果以点P、N、B、O为顶点的四边形为平行四边形,求m的值;(3)若△BPN与△OPM面积相等,直接写出点M的坐标.6.在平面直角坐标系xOy中,⊙C的半径为r(r>1),点P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:过圆心C的任意直线CP与⊙C交于点A,B,若满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图点P为⊙C的一个“完美点”.(1)当⊙O的半径为2时,﹣12)⊙O的“完①点M( 32,0)⊙O的“完美点”,点(﹣√32美点”;(填“是”或者“不是”)②若⊙O的“完美点”P在直线y=34x上,求PO的长及点P的坐标;(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.7.平面直角坐标系xOy中有点P和某一函数图象M,过点P作x轴的垂线,交图象M 于点Q ,设点P ,Q 的纵坐标分别为 y P , y Q .如果 y P >y Q ,那么称点P 为图象M 的上位点;如果 y P =y Q ,那么称点P 为图象M 的图上点;如果 y P <y Q ,那么称点P 为图象M 的下位点. (1)已知抛物线 y =x 2−2 .① 在点A (-1,0),B (0,-2),C (2,3)中,是抛物线的上位点的是 ;② 如果点D 是直线 y =x 的图上点,且为抛物线的上位点,求点D 的横坐标 x D 的取值范围;(2)将直线 y =x +3 在直线 y =3 下方的部分沿直线 y =3 翻折,直线 y =x +3 的其余部分保持不变,得到一个新的图象,记作图象G .⊙H 的圆心H 在x 轴上,半径为 1 .如果在图象G 和⊙H 上分别存在点E 和点F ,使得线段EF 上同时存在图象G 的上位点,图上点和下位点,求圆心H 的横坐标 x H 的取值范围.8.在平面直角坐标系xOy 中,⊙O 的半径为1,点A 在⊙O 上,点P 在⊙O 内,给出如下定义:连接AP 并延长交⊙O 于点B ,若AP =kAB ,则称点P 是点A 关于⊙O 的k 倍特征点.(1)如图,点A 的坐标为(1,0).①若点P 的坐标为(−12,0),则点P 是点A 关于⊙O 的 ▲倍特征点;②在C 1(0,12),C 2(12,0),C 3(12,−12)这三个点中,点 ▲是点A 关于⊙O 的12倍特征点; ③直线l 经过点A ,与y 轴交于点D ,∠DAO =60°.点E 在直线l 上,且点E 是点A 关于⊙O 的12倍特征点,求点E 的坐标;(2)若当k取某个值时,对于函数y=−x+1(0<x<1)的图象上任意一点M,在⊙O上都存在点N,使得点M是点N关于⊙O的k倍特征点,直接写出k的最大值和最小值.9.如图,已知抛物线y=x2+bx-3c经过点A(1,0)和点B(0,-3),与x 轴交于另一点C .(1)求抛物线的解析式;(2)若点P 是抛物线上的动点,点Q 是抛物线对称轴上的动点,是否存在这样的点P ,使以点A、C、P、Q 为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,在⊙ABC中,⊙ACB =90°,AB=10,AC=8,CD是边AB的中线.动点P 从点C出发,以每秒5个单位长度的速度沿折线CD-DB向终点B运动.过点P作PQ⊙AC于点Q,以PQ为边作矩形PQMN,使点C、N始终在PQ的异侧,且PN= 2.设矩形PQMN与⊙ACD重叠部分图形的面积是S,点P的运动时间为t(s)3PQ(t>0).(1)当点P在边CD上时,用含t的代数式表示PQ的长.(2)当点N落在边AD上时,求t的值.(3)当点P在CD上时,求S与t之间的函数关系式.(4)连结DQ,当直线DQ将矩形PQMN分成面积比为1:2的两部分时,直接写出t的值.11.如图1,在平面直角坐标系中,抛物线y= √36x2﹣114x+3 √3与x轴交于点A、B两点(点A在点B的左侧),与y轴交于点C,过点C作CD⊙x轴,且交抛物线于点D,连接AD,交y轴于点E,连接AC.(1)求S⊙ABD的值;(2)如图2,若点P是直线AD下方抛物线上一动点,过点P作PF⊙y轴交直线AD于点F,作PG⊙AC交直线AD于点G,当⊙PGF的周长最大时,在线段DE上取一点Q,当PQ+ 35QE的值最小时,求此时PQ+35QE的值;(3)如图3,M是BC的中点,以CM为斜边作直角⊙CMN,使CN⊙x轴,MN⊙y 轴,将⊙CMN沿射线CB平移,记平移后的三角形为⊙C′M′N′,当点N′落在x轴上即停止运动,将此时的⊙C′M′N′绕点C′逆时针旋转(旋转度数不超过180°),旋转过程中直线M′N′与直线CA交于点S,与y轴交于点T,与x轴交于点W,请问⊙CST是否能为等腰三角形?若能,请求出所有符合条件的WN′的长度;若不能,请说明理由.12.在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=12x2−32x−2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若⊙DPQ与⊙ABC相似,求其“共根抛物线”L2的顶点P的坐标.13.如图,已知抛物线与x轴交于A(−1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D是第一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x 轴于点F,交BC于点E,过点D作DM⊥BC,垂足为M.求线段DM的最大值;(3)已知P为抛物线对称轴上一动点,若△PBC是直角三角形,求出点P的坐标.14.如图,D是⊙ABC的BC边上一点,连接AD,作⊙ABD的外接圆,将⊙ADC沿直线AD折叠,点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)填空:①当⊙CAB=90°,cos⊙ADB=13,BE=2时,边BC的长为.②当⊙BAE=时,四边形AOED是菱形.15.如图,在平面直角坐标系xOy中,已知点A(0,4),点B是x轴正半轴上一点,连结AB,过点A作AC⊙AB,交x轴于点C,点D是点C关于点A的对称点,连结BD,以AD为直径作⊙Q交BD于点E,连结AE并延长交x轴于点F,连结DF.(1)求线段AE的长;(2)若AB﹣BO=2,求tan⊙AFC的值;(3)若⊙DEF与⊙AEB相似,求BEDE的值.16.如图,已知AB为⊙O的直径,C为⊙O上一点,BG与⊙O相切于点B,交AC的延长线于点D(点D在线段BG上),AC = 8,tan⊙BDC = 4 3(1)求⊙O的直径;(2)当DG= 52时,过G作GE//AD,交BA的延长线于点E,说明EG与⊙O相切.答案解析部分1.【答案】(1)证明:如图,连结OC ,∵OE⊙BC , ∴⊙OHB=90°, ∴⊙OBH+⊙BOD=90°, ∵OB=OC , ∴⊙OBH=⊙OCB , ∵⊙BOD=⊙BCD , ∴⊙BCD+⊙OCB=90°, ∴OC⊙CD ,∵点C 为⊙O 上一点, ∴DF 为⊙O 的切线(2)证明:∵⊙OCD=90°, ∴⊙ECG+⊙OCE=90°, ∵OC=OE , ∴⊙OCE=⊙OEC , ∴⊙ECG+⊙OEC=90°, ∵⊙OEC+⊙HCE=90°, ∴⊙ECG=⊙HCE , 在⊙CHE 和⊙CGE 中, {∠CHE =∠CGE =90°∠ECG =∠HCE CE =CE,∴⊙CHE⊙⊙CGE (AAS ) (3)解:∵AB 是⊙O 的直径,∴⊙ACB=90°, ∴⊙ABC+⊙BAC=90°, ∵DF 为⊙O 的切线, ∴⊙OCA+⊙FCA=90°, ∵OA=OC , ∴⊙OAC=⊙OCA , ∴⊙FCA=⊙ABC ,∴sin∠ABC =sin∠FCA =√33,设AC= √3a ,则AB=3a ,∴BC =√AB 2−AC 2=√(3a)2−(√3a)2=√6a , ∵⊙FCA=⊙ABC ,⊙AFC=⊙CFB , ∴⊙ACF⊙⊙CFB ,∴AF CF =CF BF =AC BC =1√2,∵AF=1, ∴CF= √2 , ∴BF =(√2)21=2 ,∴BF-AF=AB=1,∴OC =12,BC =√63,∵OE⊙BC ,∴CH =12BC =√66,∴OH =√OC 2−CH 2=(12)2−(√66)2=√36,∴HE=OE-OH= 12−√36,∵⊙CHE⊙⊙CGE ,∴EG=HE= 12−√36.2.【答案】(1)解:∵直线 y =−12x +2 与x 轴交于点A ,与y 轴交于点B ,令x=0,则y=2,令y=0,则x=4, ∴A (4,0),B (0,2),∵抛物线 y =−23x 2+bx +c 经过B (0,2), C(52,34) ,∴{2=c 34=−23×254+52b +c ,解得: {b =76c =2 , ∴抛物线的表达式为: y =−23x 2+76x +2 ; (2)解:当点P 在x 轴上方时,点P 与点C 重合,满足 ∠PAO =∠BAO , ∵C(52,34) ,∴P(52,34) ,当点P 在x 轴下方时,如图,AP 与y 轴交于点Q ,∵∠PAO =∠BAO ,∴B ,Q 关于x 轴对称,∴Q (0,-2),又A (4,0),设直线AQ 的表达式为y=px+q ,代入,{−2=q0=4p +q ,解得: {p =12q =−2 ,∴直线AQ 的表达式为: y =12x −2 ,联立得:{y =12x −2y =−23x 2+76x +2,解得:x=3或-2,∴点P 的坐标为(3, −12 )或(-2,-3),综上,当 ∠PAO =∠BAO 时,点P 的坐标为: (52,34) 或(3,−12 )或(-2,-3); (3)解:①如图,⊙MNC=90°,过点C 作CD⊙x 轴于点D ,∴⊙MNO+⊙CND=90°,∵⊙OMN+⊙MNO=90°,∴⊙CND=⊙OMN,又⊙MON=⊙CDN=90°,∴⊙MNO⊙⊙NCD ,∴MO ND =NO CD ,即 m 52−n =n 34 , 整理得: m =−43n 2+103n ; ②如图,∵⊙MNC=90°,以MC 为直径画圆E ,∵N(n,0) (0<n <52) , ∴点N 在线段OD 上(不含O 和D ),即圆E 与线段OD 有两个交点(不含O 和D ), ∵点M 在y 轴正半轴,当圆E 与线段OD 相切时,有NE= 12 MC ,即NE 2= 14MC 2, ∵M (0,m ), C(52,34) , ∴E ( 54, 38+m 2 ), ∴(38+m 2)2 = 14[(52)2+(m −34)2] , 解得:m= 2512, 当点M 与点O 重合时,如图,此时圆E 与线段OD (不含O 和D )有一个交点,∴当0<m < 2512时,圆E 与线段OD 有两个交点, 故m 的取值范围是:0<m < 2512. 3.【答案】(1)解:∵抛物线 y =−x 2+bx +c 经过 A(−1,0) , D(3,4) 两点,∴{−(−1)2+b ×(−1)+c =0−32+b ×3+c =4,解之得: {b =3c =4 ∴抛物线的函数关系表达式为 y =−x 2+3x +4 ,设直线 AD 的函数关系表达式为 y =kx +b ,∵直线 AD 经过 A(−1,0) , D(3,4) 两点,∴{k ×(−1)+b =0k ×3+b =4,解之得: {k =1b =1 ∴直线 AD 的函数关系表达式为 y =x +1 .(2)解:把 x =0 代入 y =−x 2+3x +4 ,得 y =4 .∴点 C 坐标是(0,4),∵CP//AD∴k CP =k AD =1 ,设直线 CP 的函数关系表达式为 y =x +b ,∵将点 C (0,4),代入 y =x +b 得: b =4 ,∴直线 CP 的函数关系表达式为 y =x +4 ,∵直线 CP 与抛物线 y =−x 2+3x +4 相交于 P ,则有: x +4=−x 2+3x +4 ,解之得: x 1=0 , x 2=2 ,把 x =2 代入 y =x +4 ,得 y =6 ,∴点P 的坐标是(2,6).(3)解:存在点 P ,使得 ∠CPE =∠QFE .过点 C 作 CG ⊥PF ,垂足为 G .过点 Q 作 QH ⊥PF ,垂足为 H .则四边形CGHQ为矩形.∴CG=QH,∠CGP=∠QHF=90°.∴当PG=HF时,△CGP≌△QHF,这时∠CPG=∠QFH,即∠CPE=∠QFE.设P(m,−m2+3m+4),则PG=−m2+3m+4−4=−m2+3m.∵HF=QO=1.∴−m2+3m=1,解得m=3+√52或m=3−√52.4.【答案】(1)x;D(2)解:①当0<x≤2时,⊙EFG在梯形ABCD内部,所以y= √34x2;②分两种情况:⊙.当2<x<3时,如图1,点E、点F在线段BC上,⊙EFG与梯形ABCD重叠部分为四边形EFNM,∵⊙FNC=⊙FCN=30°,∴FN=FC=6﹣2x.∴GN=3x﹣6.∵在Rt⊙NMG中,⊙G=60°,GN=3x﹣6,∴GM= 12(3x﹣6),由勾股定理得:MN= √32(3x﹣6),∴S⊙GMN= 12×GM×MN= 12× 12(3x﹣6)× √32(3x﹣6)= √38(3x﹣6)2,所以,此时y= √34x2﹣√38(3x﹣6)2=﹣7√38x2+9√32x−9√32;⊙.当3≤x≤6时,如图2,点E在线段BC上,点F在射线CH上,⊙EFG与梯形ABCD重叠部分为⊙ECP,∵EC=6﹣x,∴y= √38(6﹣x)2= √38x2﹣3√32x+ 9√32,⊙.当x>6时,点E,F都在线段BC的延长线上,没公共部分,∴y=0(3)解:当0<x≤2时,∵y= √34x2,在x>0时,y随x增大而增大,∴x=2时,y最大= √3;当2<x<3时,∵y=﹣9√37x 2+9√32x−9√32在x= 187时,y最大= 9√37;当3≤x≤6时,∵y= √38x−3√32x+9√32,在x<6时,y随x增大而减小,∴x=3时,y最大= 9√38.综上所述:当x= 187时,y最大=9√37.5.【答案】(1)解:∵抛物线y=−34x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3),∴{−34×16+4 b+c=0c=3,解得{b=94c=3,∴抛物线y=−34x 2+94x+3=−34(x−32)2+7516;∴抛物线的对称轴为直线x=32(2)解:设直线A(4,0),B(0,3)的解析式为y=ax+d,∴{4a+d=0d=3,解得{a=−34 d=3,∴直线AB的表达式为:y=−34x+3;∵点M(m,0)为线段OA上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴PN//y轴,即PN//OB,且点N在点P上方,若以点P、N、B、O为顶点的四边形为平行四边形,则只需要PN=OB,∴−34m2+94m+3−(−34m+3)=3,解得m=2;即当m=2时,以点P、N、B、O为顶点的四边形为平行四边形.(3)解:M(1,0)6.【答案】(1)不是;是;解:如图1,根据题意,|PA−PB|=2,∴|OP+2−(2−OP)|=2,∴OP=1. 若点P在第一象限内,作PQ⊙x轴于点Q,∵点P在直线y=34x上,OP=1,∴OQ=45,PQ=3 5 .∴P( 45,35). 若点P在第三象限内,根据对称性可知其坐标为(﹣45,﹣35). 综上所述,PO的长为1,点P的坐标为( 45,35)或(−45,−35)).(2)解:对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,∴|CP+r﹣(r﹣CP)|=2.∴CP=1.∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线y=﹣2x+1与y轴交于点D,如图2,当⊙C 移动到与y 轴相切且切点在点D 的上方时,t 的值最大.设切点为E ,连接CE ,∵⊙C 的圆心在直线y =﹣2x+1上,∴此直线和y 轴,x 轴的交点D(0,1),F( 12,0), ∴OF = 12,OD =1, ∵CE⊙OF ,∴⊙DOF⊙⊙DEC ,∴OD DE =OF CE, ∴1DE =12, ∴DE =2,∴OE =3,t 的最大值为3,当⊙C 移动到与y 轴相切且切点在点D 的下方时,t 的值最小.同理可得t 的最小值为﹣1.综上所述,t 的取值范围为﹣1≤t≤3.7.【答案】(1)解:① A ,C ②∵点D 是直线 y =x 的图上点,∴点D 在 y =x 上. 又∵点D 是 y =x 2−2 的上位点, ∴点D 在 y =x 与y =x 2−2 的交点R ,S 之间运动. ∵{y =x 2−2,y =x.∴{x 1=−1,y 1=−1. {x 2=2,y 2=2.∴点R( −1 , −1 ),S( 2 , 2 ). ∴−1<x D <2 .(2)解:如图,当圆与两条直线的反向延长线相切时,为临界点,临界点的两边都满足要求.将y=x+3沿直线y=3翻折后的直线的解析式为y=−x+3当y=x+3=0时,x=−3,∴A(-3,0),OA=3当x=0时,y=x+3=3∴C(0,3),OC=3∴OA=OC∵∠AOC=90°∴∠CAO=45°∴AH1=rsin45°=1√22=√2∵A(-3,0)∴x H1=−3+√2同理可得x H2=3−√2∴线段EF上同时存在图象G的上位点,图上点和下位点,圆心H的横坐标x H的取值范围为x H>3−√2或x H<−3+√2.8.【答案】(1)解:①34②C3③如图所示,设直线AD交圆O于B,连接OE,过点E作EF⊙x轴于F,∵点E 是点A 关于⊙O 的12倍的特征点, ∴AE AB =12, ∴E 是AB 的中点,∴OE⊙AB ,∵⊙EAO=60°,∴⊙EOA=30°,∴AE =12OA =12,EF =12OE , ∴OE =√OA 2−AE 2=√32, ∴EF =√34, ∴OF =√OE 2−EF 2=34, ∴点E 的坐标为(34,√34); (2)k 的最小值为2−√24,k 有最大值为2+√249.【答案】(1)解:把A (1,0),B (0,-3)代入 y=x 2+bx-3c ,得 {1+b −3c =0−3c =−3解得 {b =2c =1∴抛物线的解析式为y=x 2+2x-3;(2)解:对于y=x 2+2x-3,∵x =−b 2a=−1 ,A(1,0)∴C 点坐标为(-3,0),AC=4,Q点的横坐标为-1.如图所示:若以点A、C、P、Q 为顶点的平行四边形以AC为边,则PQ=AC=4.①当P点的横坐标为x1=-1-4=-5时,y1=x2+2x−3=25−10−3=12,即P1(-5,12)②当P点的横坐标为x2=-1+4=3时,y2=x2+2x−3=9+6−3=12,即P2(3,12);若以点A、C、P、Q为顶点的平行四边形以AC为对角线,则设P3的横坐标为x3,则有x3−12=−3+12,解得x3=-1,y3=x2+2x−3=1−2−3=−4,即P3(-1,-4)。
2021年数学人教版九年级中考复习专题之圆:垂径定理
2021年数学人教版九年级中考复习专题之圆:垂径定理一.选择题(共10小题)1.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.2.如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,﹣3),那么经过点P的所有弦中,最短的弦的长为()A.4 B.5 C.8 D.103.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.如图,点C是⊙O上一点,⊙O的半径为,D、E分别是弦AC、BC上一动点,且OD =OE=,则AB的最大值为()A.B.C.D.5.如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=8,BE=2,则CD=()A.5 B.8 C.2D.46.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A.3B.4C.5D.67.如图,⊙O的直径AB=10,E在⊙O内,且OE=4,则过E点所有弦中,长度为整数的条数为()A.4 B.6 C.8 D.108.如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.119.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4 B.C.D.10.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2二.填空题(共6小题)11.如图,有半径分别为2和4的两个同心圆,矩形ABCD的边AB,CD分别为两圆的弦,那么矩形ABCD面积的最大值为.12.如图AB是⊙O的直径,弦CD⊥OB于点E,交⊙O于点D,已知OC=5cm,CD=8cm,则AE=cm.13.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为.14.如图,射线PB,PD分别交圆O于点A,B和点C,D,且AB=CD=8.已知圆O半径等于5,OA∥PC,则OP的长度为.15.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.①AD AN(填“>”,“=”或“<”);②AB=8,ON=1,⊙O的半径为.16.如图,已知AB是圆O的直径,PQ是圆O的弦,PQ与AB不平行,R是PQ的中点.作PS ⊥AB,QT⊥AB,垂足分别为S,T,并且∠SRT=60°,则的值等于.三.解答题(共4小题)17.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.18.如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.19.如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为E、F.(1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么与的大小有什么关系?AB与CD的大小有什么关系?为什么?∠AOB与∠COD呢?20.如图,已知在四边形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O交边DC于E、F两点,AD=1,BC=5,设⊙O的半径长为r.(1)联结OF,当OF∥BC时,求⊙O的半径长;(2)过点O作OH⊥EF,垂足为点H,设OH=y,试用r的代数式表示y;(3)设点G为DC的中点,联结OG、OD,△ODG是否能成为等腰三角形?如果能,试求出r的值;如不能,试说明理由.参考答案一.选择题1.解:设OA与BC相交于D点.∵AB=OA=OB=6∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD==3所以BC=6.故选:A.2.解:过P作弦AB⊥OP,则AB是过P点的⊙O的最短的弦,连接OB,则由垂径定理得:AB=2AP=2BP,在Rt△OPB中,PO=3,OB=5,由勾股定理得:PB=4,则AB=2PB=8,故选:C.3.解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选:D.4.解:如图,当OD⊥AC、OE⊥BC时∠ACB最大,AB最大,连接OC,∵⊙O的半径为2,OD=,∴∠ACO=30°,∴AC=2CD=2=2=2,同理可得∠BCO=30°,∴∠ACB=60°,∵OD=OE,OD⊥AC、OE⊥BC,∴AC=BC,∴△ABC是等边三角形,∴AB=AC=2,即AB的最大值为2.故选:A.5.解:连接OD,∵AB为⊙O的直径,弦CD⊥AB于点E,∴CD=2DE.∵AE=8,BE=2,∴⊙O的半径=5,∴OE=5﹣2=3,在Rt△ODE中,∵OE=3,OD=5,∴DE==4,∴CD=2DE=8.故选:B.6.解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣∠BOC)=30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.7.解:∵AB=10,∵OB=OA=OC=5,过E作CD⊥AB于E,连接OC,则CD是过E的⊙O的最短的弦,∵OB⊥CD,∴∠CEO=90°,由勾股定理得:CE===3,∵OE⊥CD,OE过O,∴CD=2CE=6,∵AB是过E的⊙O的最长弦,AB=10,∴过E点所有弦中,长度为整数的条数为1+2+2+2+1=8,故选:C.8.解:由题意可得,OA=13,∠ONA=90°,AB=24,∴AN=12,∴ON=,故选:A.9.解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.10.解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选:D.二.填空题(共6小题)11.解:连接OA,OD,作OP⊥AB于P,OM⊥AD于M,ON⊥CD于N,根据矩形的面积以及三角形的面积公式发现:矩形的面积是三角形AOD的面积的4倍.因为OA,OD的长是定值,则∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90°,则AD===6,S==×OM==,△AODOM=4,即AB=8.则矩形ABCD的面积的最大值是AB•AD=8×=48.故答案为:48.12.解:∵CD⊥OB,∴CE=DE=CD=4,在Rt△OCE中,OE==3,∴AE=AO+OE=5+3=8(cm).故答案为8.13.解:连接OC,∵CD⊥AB,∴CH=DH=CD=×8=4,∵直径AB=10,∴OC=5,在Rt△OCH中,OH==3,故答案为:3.14.解:作OE⊥AB于E,OF⊥CD于F,连接OP,如图,∴OE=OF,而OE⊥AB,OF⊥CD,∴PO平分∠BPD,∴∠APO=∠OPC,∵OA∥PC,∴∠AOP=∠OPC,∴∠APO=∠AOP,∴PA=AO=5,∵OE⊥AB,∴AE=BE=AB=4,在Rt△AOE中,OE==3,在Rt△POE中,PO==3.故答案为3.15.解:(1)AD=AN,证明:∵CD⊥AB∴∠CEB=90°∴∠C+∠B=90°,同理∠C+∠CNM=90°∴∠CNM=∠B∵∠CNM=∠AND∴∠AND=∠B,∵∠D=∠B,∴∠AND=∠D,∴AN=AD,(2)设OE的长为x,连接OA∵AN=AD,CD⊥AB∴DE=NE=x+1,∴OD=OE+ED=x+x+1=2x+1,∴OA=OD=2x+1,∴在Rt△OAE中OE2+AE2=OA2,∴x2+42=(2x+1)2.解得x=或x=﹣3(不合题意,舍去),∴OA=2x+1=2×+1=,即⊙O的半径为,故答案为.16.解:连结OP,OQ,OR,如图,∵R是PQ的中点,∴OR⊥PQ,∵OP=OQ,∴∠POR=∠QOR,∵PS⊥AB,∴∠PSO=∠PRO=90°,∴点P、S、O、R四点在以OP为直径的圆上,∴∠PSR=∠POR,同理可得∠QTR=∠QOR,∴∠PSR=∠QTR,∴∠RST =∠RTS ,而∠SRT =60°,∴△RST 为等边三角形,∴∠RST =60°,∠RTS =60°,∴∠RPO =∠RSO =60°,∠RQO =∠RTO =60°,∴△OPQ 为等边三角形,∴PQ =OP ,∴AB =2PQ ,∴=.故答案为.三.解答题(共4小题)17.解:(1)连接AO ,如右图1所示,∵CD 为⊙O 的直径,AB ⊥CD ,AB =8,∴AG ==4,∵OG :OC =3:5,AB ⊥CD ,垂足为G ,∴设⊙O 的半径为5k ,则OG =3k ,∴(3k )2+42=(5k )2,解得,k =1或k =﹣1(舍去),∴5k =5,即⊙O 的半径是5;(2)如图2所示,将阴影部分沿CE 翻折,点F 的对应点为M , ∵∠ECD =15°,由对称性可知,∠DCM =30°,S 阴影=S 弓形CBM ,连接OM ,则∠MOD =60°,∴∠MOC =120°,过点M 作MN ⊥CD 于点N ,∴MN=MO•sin60°=5×,∴S阴影=S扇形OMC﹣S△OMC==,即图中阴影部分的面积是:.18.解:(1)如图(1),∵OD⊥BC,∴BD=BC=×6=3,∵∠BDO=90°,OB=5,BD=3,∴OD==4,即线段OD的长为4.(2)存在,DE保持不变.理由:连接AB,如图(2),∵∠AOB=90°,OA=OB=5,∴AB==5,∵OD⊥BC,OE⊥AC,∴D和E分别是线段BC和AC的中点,∴DE=AB=,∴DE保持不变.19.(1)解:OE=OF,理由是:∵OE⊥AB,OF⊥CD,OA=OB,OC=OD,∴∠OEB=∠OFD=90°,∠EOB=∠AOB,∠FOD=∠COD,∵∠AOB=∠COD,∴∠EOB=∠FOD,∵在△EOB和△FOD中,∴△EOB≌△FOD(AAS),∴OE=OF.(2)解:弧AB=弧CD,AB=CD,∠AOB=∠COD,理由是:∵OE⊥AB,OF⊥CD,∴∠OEB=∠OFD=90°,∵在Rt△BEO和Rt△DFO中,∴Rt△BEO≌Rt△DFO(HL),∴BE=DF,由垂径定理得:AB=2BE,CD=2DF,∴AB=CD,∴弧AB=弧CD,∠AOB=∠COD.20.解:(1)∵OF∥BC,OA=OB,∴OF为梯形ABCD的中位线,∴OF=(AD+BC)=(1+5)=3,即⊙O的半径长为3;(2)连接OD、OC,过点D作DM⊥BC于M,如图1所示:则BM=AD=1,∴CM=BC﹣BM=4,∴DC===2,∵四边形ABCD的面积=△DOC的面积+△AOD的面积+△BOC的面积,∴(1+5)×2r=×2×y+×r×1+×r×5,整理得:y=;(3)△ODG能成为等腰三角形,理由如下:∵点G为DC的中点,OA=OB,∴OG是梯形ABCD的中位线,∴OG∥AD,OG=(AD+BC)=(1+5)=3,DG=CD=,由勾股定理得:OD==,分三种情况:①DG=DO时,则=,无解;②OD=OG时,如图2所示:=3,解得:r=2;③GD=GO时,作OH⊥CD于H,如图3所示:∠GOD=∠GDO,∵OG∥AD,∴∠ADO=∠GOD,∴∠ADO=∠GDO,在△ADO和△HDO中,,∴△ADO≌△HDO(AAS),∴OA=OH,则此时圆O和CD相切,不合题意;综上所述,△ODG能成为等腰三角形,r=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级下中考数学分类集训10 圆一、单选题1.在ABC 中,90ACB ∠=,3AC =,4BC =,CD AB ⊥于D ,以点C 为圆心,2.5长为半径画圆,则下列说法正确的是( )A .点A 在C 上B .点A 在C 内 C .点D 在C 上 D .点D 在C 内2.圆锥的底面半径为1,母线长为2,则这个圆锥的侧面积是( )A .πB .2πC .3πD .4π3.若⊙O 的半径是4 cm ,点A 在⊙O 内,则OA 的长可能是( )A .4 cmB .6 cmC .3 cmD .10 cm 4.如图,AD 是O 的直径,若40B ︒∠=,则DAC ∠的度数为( )A .30°B .40°C .50°D .60°5.如图,等边三角形ABC 内接于O ,若O 的半径为2,则图中阴影部分的面积等于( )A .3πB .23πC .43πD .2π6.如果一个多边形的每一个内角都是108︒,那么这个多边形是( )A .四边形B .五边形C .六边形D .七边形7.如图,O 与正八边形OABCDEFG 的边OA ,OG 分别相交于点M 、N ,则弧MN 所对的圆周角MPN ∠的大小为( )A .30B .45︒C .67.5︒D .75︒8.如图,在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,以BC 为直径的⊙O 与AD 相切,点E 为AD 的中点,下列结论正确的个数是( )(1)AB+CD=AD ;(2)S △BCE =S △ABE +S △DCE ;(3)AB•CD=214BC ;(4)∠ABE=∠DCE ,A .1B .2C .3D .4 9.现有两个圆,1O 的半径等于篮球的半径,2O 的半径等于一个乒乓球的半径,现将两个圆的周长都增加1米,则面积增加较多的圆是( )A .1OB .2OC .两圆增加的面积是相同的D .无法确定10.下列性质中,正方形具有而菱形不一定具有的性质是 ( )A .对角线相等B .四条边相等C .对角线互相平分D .对角线互相垂直11.如图,在菱形ABCD 中,已知AB =10,AC =16,那么菱形ABCD 的面积为( )A .48B .96C .80D .19212.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14 B.22斛C.36斛D.66斛13.如图,锐角△ABC中,BC>AB>AC,求作一点P,使得∠BPC与∠A互补,甲、乙两人作法分别如下:甲:以B为圆心,AB长为半径画弧交AC于P点,则P即为所求.乙:作BC的垂直平分线和∠BAC的平分线,两线交于P点,则P即为所求.对于甲、乙两人的作法,下列叙述正确的是( )A.两人皆正确B.甲正确,乙错误C.甲错误,乙正确D.两人皆错误14.如图,∠ACB=90°,∠B=30°,CD⊥AB于点D,若AD=2cm,BD的长()A.2cm B.4cm C.6cm D.8cm二、填空题15.如图,Rt△ABC中,∠ABC=Rt∠,点D是BC边上一点,以BD为直径的半圆与边AC相切于点E.若AB=3,BC=4,则BD=_____.16.命题“如果a>b,那么ac>bc”的逆命题是_____.17.如图,AB是O的直径,点C、D在O上,若110DCB∠=︒,则AED=∠______.18.如图,直线2y=+与x轴、y轴分别交于A、B两点,把AOB绕点A顺时针旋转60后得到''AO B,则点'B的坐标是______ .19.当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为▲ cm.20.如图,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为弧AN上一点.且弧AC =弧AM,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③弧AM=弧BM;④∠ACM+∠ANM=∠MOB;⑤AE=12 MF.其中正确结论的序号是_____.21.如图,将正六边形ABCDEF绕点D逆时针旋转27°得正六边形A′B′C′DE′F′,则∠1=___°.22.如图,矩形ABCD 中,点G 是AD 的中点,GE⊥CG 交AB 于E,BE=BC,连接CE 交BG 于F,则∠BFC 等于_______.23.在△ABC中,∠A:∠B:∠C=2:3:4,则∠C=_____.24.在平面直角坐标系中,点P的坐标为(﹣4,0),半径为1的动圆⊙P沿x轴正方向运动,若运动后⊙P与y轴相切,则点P的运动距离为______.25.计算2sin30°= .26.弧长为8π半径为12的扇形,它的圆心角的度数是_____.27.如图,正方形ABCD内接于⊙O,点E为DC的中点,BE的延长线交⊙O于点F,若⊙O的半,则BF的长为________.三、解答题28.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.(1)用直尺和圆规画出该圆弧所在圆的圆心M的位置(不用写作法,保留作图痕迹).(2)若A 点的坐标为(0,4),D 点的坐标为(7,0),直线CD 与⊙M 的位置关系为________,再连结MA 、MC ,将扇形AMC 卷成一个圆锥,求此圆锥的侧面积.29.请你用三角板、圆规或量角器等工具,画∠POQ =60°,在它的边OP 上截取OA =50mm ,OQ 上截取OB =70mm ,连结AB ,画∠AOB 的平分线与AB 交于点C ,并量出AC 和O C 的长 .(结果精确到1mm ,不要求写画法).30.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,CD BD =,过点D 作EF ⊥AC ,垂足为E ,交AB 的延长线于点F .(1)求证:直线EF 是⊙O 的切线;(2)若AE =1,∠F =30°,则⊙O 半径长为 .31.已知:如图,AB 是⊙O 的一条弦,点C 为AB 的中点,CD 是⊙O 的直径,过C 点的直线l 交AB 所在直线于点E ,交⊙O 于点F .(1)判定图中∠CEB 与∠FDC 的数量关系,并写出结论;(2)将直线l 绕C 点旋转(与CD 不重合),在旋转过程中,E 点、F 点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明.32.已知线段m ,n ,k ,求作ABC ∆,使AB m =,AC n =,BC 边上中线长为k .33.(本题满分10分)如图,ABC ∆内接于O ,CD 是直径,CBG BAC ∠=∠,CD 与AB 相交于点E ,过点E 作EF BC ⊥,垂足为F ,过点O 作OH AC ⊥,垂足为H ,连接BD 、OA . (1)求证:直线BG 与O 相切; (2)若54BE OD =,求EF AC的值.34.已知如图:在⊙O 中,直径AB ⊥弦CD 于G ,E 为DC 延长线上一点,BE 交⊙O 于点F .(1)求证:∠EFC =∠BFD ;(2)若F 为半圆弧AB 的中点,且2BF =3EF ,求tan ∠EFC 的值.35.求半径为3的圆的内接正方形的边长.36.下面是小芸设计的“过圆外一点作已知圆的切线”的尺规作图过程.已知:⊙O 及⊙O 外一点 P .求作:⊙O 的一条切线,使这条切线经过点 P .作法:①连接 OP ,作 OP 的垂直平分线 l ,交 OP 于点 A ;②以 A 为圆心,AO 为半径作圆,交⊙O 于点 M ;③作直线 PM ,则直线 PM 即为⊙O 的切线.根据小芸设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明:证明:连接OM,由作图可知,A 为OP 中点,∴OP 为⊙A 直径,∴∠=90°()(填推理的依据)即OM⊥PM.又∵点M 在⊙O 上,∴PM 是⊙O 的切线.()(填推理的依据)参考答案1.D要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系,设点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.解:∵在△ABC中,∠ACB=90°,AC=3,BC=4,∴=5(勾股定理).又∵CD⊥AB于D,∴12AC•BC=12AB•CD,即3×4=5CD,解得,CD=125=2.4.∵圆的半径为2.5cm,∴2.4cm<2.5cm∴点D在⊙C内.故选D.考查了点与圆的位置关系,判断点与圆的位置关系,也就是比较点与圆心的距离和半径的大小关系.2.B根据题意得出圆锥的底面半径为1,母线长为2,直接利用圆锥侧面积公式求出即可.依题意知母线长为:2,底面半径r=1,则由圆锥的侧面积公式得S=πr l=π×1×2=2π.故选:B.此题主要考查了圆锥侧面面积的计算,对圆锥的侧面面积公式运用不熟练,易造成错误.3.C设点A与圆心O的距离d,已知点A在圆内,则d<r.结合选项可得解.当点A是⊙O内一点时,OA<4cm,A、B、D均不符.故选C.本题考查了点与圆的位置关系,确定点与圆的位置关系,就是比较点与圆心的距离和半径的大小关系.4.C连接CD,根据同弧所对圆周角相等,得出∠D=∠B,再利用直径所对的圆周角等于90°即可得出∠DAC的度数.连接CD,由题意可得:∠D=∠B=40°,AD 是O 的直径,∴∠ACD=90°,∠DAC=90°-∠D=90°-40°=50°,故选:C .本题考查了圆的基本性质,同弧所对的圆周角相等,直径所对的圆周角等于90°,掌握圆的基本性质是解题的关键.5.C连接OC ,如图,利用等边三角形的性质得120AOC ∠=,AOB AOC SS =,然后根据扇形的面积公式,利用图中阴影部分的面积AOC S =扇形进行计算.解:连接OC ,如图, ABC 为等边三角形,120AOC ∠∴=,AOB AOC S S =,∴图中阴影部分的面积212024.3603AOC S 扇形ππ⋅⨯===故选C .本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.6.B一个多边形的每一个内角都等于108°,根据内角与相邻的外角互补,因而每个外角是72度.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出多边形的边数. 180°−108°=72°,多边形的边数是:360°÷72°=5.则这个多边形是五边形.故选:B .考查了多边形内角与外角,已知多边形的内角求边数,可以根据多边形的内角与外角的关系来解决. 7.C首先求得正八边形OABCDEFG 的内角的度数,然后由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.解:∵八边形OABCDEFG 是正六边形,∴()180821358AOG ︒⨯-∠==︒,即135MON ∠=︒, ∴167.52MPN MON ∠=∠=︒. 故选C .本题考查圆周角定理与正六边形的性质.此题比较简单,注意掌握正六边形内角的求法与在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用,注意数形结合思想的应用.8.D设AD 和半圆O 相切的切点为F ,连接OF ,根据切线长定理以及相似三角形的判定和性质逐项分析即可.解:设AD 和半圆O 相切的切点为F ,∵在直角梯形ABCD 中AB ∥CD ,AB ⊥BC ,∴90ABC DCB ∠=∠=,∵AB 为直径,。