作轴对称图形

合集下载

轴对称

轴对称

轴对称1、轴对称图形:一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴。

2、成轴对称图形的前提是一个图形,且这个图形满足两个条件:①存在直线(对称轴)②沿着这条直线折叠,折痕两旁的部分能重合.3、一个轴对称图形的对称轴是直线且不一定只有一条,可能有两条或多条.如图所示:4、轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点。

5、成轴对称:①前提是两个图形②存在一条直线③两个图形沿着这条直线对折能够完全重合.6、轴对称:①成轴对称的两个图形一定全等②它与轴对称图形的区别主要是:它是指两个图形,而轴对称图形前提是一个图形③成轴对称的两个图形除了全等外还有特定的位置关系.如图所示:A BC D1、已知下面四个汽车标志图案,其中是轴对称图形的图案是______________。

2、如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为_____________cm 2.3、下列轴对称图形中,只有两条对称轴的图形是()A .B .C .D .4、仔细观察下列图案,并按规律在横线上画出合适的图形._________5、下列平面图形中,不是轴对称图形的是 ( )6、下列英文字母属于轴对称图形的是 ( ) A 、N B 、S C 、 H D 、 K7、下列图形中对称轴最多的是 ( ) A 、圆 B 、正方形 C 、等腰三角形 D 、线段8、下列图形: ①角 ②两相交直线 ③圆 ④正方形,其中轴对称图形有 ( ) A 、4个 B 、3个 C 、2个 D 、1个1、轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.2、若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称。

轴对称图形制作教案设计

轴对称图形制作教案设计

教案设计:轴对称图形制作
一、教学目标:
1.能够理解轴对称图形的概念和特点;
2.能够使用画板工具制作轴对称图形;
3.能够通过轴对称图形的制作,发展创造力和艺术能力。

二、教学重点:
1.轴对称图形的概念和作用;
2.画板工具的使用方法;
3.创造力和艺术能力的培养。

三、教学准备:
1.电子设备;
2.画板软件。

四、教学过程:
1.对轴对称图形的介绍:
轴对称图形是通过一条轴对称线将图形分成两个相互对称的部分。

轴对称图形具有平衡和稳定的美感,容易吸引人们的视线。

例如:植物的叶子、蝴蝶的翅膀、对称的建筑等。

2.使用画板工具制作轴对称图形:
(1) 在画板上选择一个图形,例如选择正方形。

(2) 在正方形上选取一条对称线,可以选择中心对称或者其他位置的对称线,如下图所示:
(3) 将选择好的对称线沿着这条线进行对称,就可以得到一个完美的轴对称图形了。

3.创造力和艺术能力的培养:
通过制作轴对称图形的实践过程中,学生们可以发挥自己的创造力,尝试不同的颜色和形状组合,创造出自己的独特作品。

同时,这也可以培养学生的艺术能力,提高他们对美的敏感度。

五、教学评价:
学生制作轴对称图形的过程中,可以通过老师的指导和同学之间的交流合作,提高他们对轴对称图形的理解和创作能力。

同时,由于制作轴对称图形的过程比较简单,所以可以适当加入一些挑战性的内容,让学生们有更多的机会去发挥自己的想象和创作能力。

最终,通过学生们的展示和评价,可以发现每个学生的作品都各具特色,展现了他们的创造力和艺术能力,这些也可以成为鼓励学生更好地发掘自己潜力的正面评价和激励。

轴对称知识点

轴对称知识点

轴对称
1. 轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线叫做对称轴。

2. 轴对称:把一个图形沿一条直线折叠,与另一个图形重合,那么这两个图形关于这条直线成轴对称。

3. 轴对称性质⎩⎨
⎧等不一定对称如果对称则全等,但全
等对应边相等,对应角相
..b a
4. 画轴对称图形或成轴对称的两个图形的对称轴
(1)找出任意一对对应点 (2)连接对应点
(3)画出线段的垂直平分线(即为所求) 5. 作轴对称图形
(1)找——在原图上找特殊点(如线段的端点) (2)画——画各个特殊点关于对称轴的对称点 (3)连——依次连接各对称点
6. 关于坐标轴对称的点的坐标的特点:
P (x,y )⎩⎨
⎧--)
,(),(21y x P y y x P x ——轴对称关于——轴对称关于 (关于谁对称谁不变)
7. 垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

⎩⎨
⎧线上的点在线段的垂直平分到线段两端点距离相等
段两端点距离相等垂直平分线上的点到线
..b a
8. 等腰三角形⎪⎩

⎨⎧三线合一等角对等边等边对等角...c b a
9. 等边三角形⎪⎩

⎨⎧︒︒的等腰三角形有一个角是)三角相等(都等于三边相等60.60..c b a
10. 30°角所对的直角边是斜边的一半。

轴对称图形有哪些

轴对称图形有哪些

轴对称图形有哪些
轴对称图形有:正方形、长方形、等腰三角形、等边三角形、等腰梯形.
1、正方形:是特殊的平行四边形,两组对边分别平行且相等;四条边都相等;对角线互相垂直平分;具有不稳定性(易变形);
2、长方形:有一个角是直角的平行四边形叫做长方形;两条对角线相等;对边平行且相等;具有稳定性;
3、等腰三角形:有两条边相等的三角形叫做等腰三角形;顶角是直角;底边上的高等于腰上的高;等腰三角形的性质:两条边相等的三角形是等边三角形;等腰三角形的判定:在同一个三角形中,如果有两个角相等,那么这两个角所对的边也相等;
4、等边三角形:三条边都相等的三角形叫做等边三角形;
5、等腰梯形:有一个角是直角的梯形叫做等腰梯形;等腰梯形的判定:在同一个梯形中,如果有两个角相等,那么这两个角所对的边也相等;
6、菱形:具有一个角为直角的平行四边形叫做菱形;
7、圆:圆是一种特殊的平行四边形,它的定义域是所有的实数;
8、扇形:由圆心角的角度和弧度决定的图形叫做扇形;
9、圆锥:由圆锥面、底面圆和母线组成的几何体叫做圆锥;10、球:在地球表面,由坚硬的岩石组成的天然形体叫做球;11、椭圆:定义:过焦点的圆叫做椭圆;12、双曲线:定义:过焦点的双曲线;13、抛物线:定义:与x 轴有两个交点的曲线叫做抛物线;14、直线:无限长的,平行于x 轴y 轴的线段叫做。

八年级数学上册 画轴对称图形 人教版4

八年级数学上册    画轴对称图形   人教版4
(2)如果点P 的坐标是(-a,0),其中a>0,点P关于y轴的
对称点是 P 1 ,点 P 1 关于直线l的对称点是 P 2 ,求 P 1 P 2
的长(用含a的代数式表示).
图13-2-13
解:(1)由题意可知,A 1 (8,0),B 1 (7,0),C 1 (7,2).
如图13-2-14,A1B1C1 即为所求作的图形.
例2 如图13-2-3,在方格纸上建立的平面直角坐标
系中,Rt△ABC关于y轴对称的图形为Rt△DEF,则点A 的对应点D的坐标是__(2_,_1_)_.
图13-2-3 解析:由题图知点A的坐标是(-2,1),所以点A关于y 轴对称的对应点D的坐标是(2,1).
例3 如图13-2-4,利用关于坐标轴对称的点的坐标 特征,作出△ABC关于x轴对称的图形△A′B′C.
图13-2-4
解:∵△ABC关于x轴对称的图形为△A′B′C′,且 △ABC三个顶点的坐标分别是A(-1,4),B(-3,-3), C(2,1), ∴△A′B′C′三个顶点的坐标分别是A′(-1,-4), B′(-3,3),C′(2,-1). 如图13-2-5,△A′B′C′即为所求.
图13-2-5
图13-2-12
题型五 关于坐标轴对称的点的坐标特征的综合运用 例9 如图13-2-13,在平面直角坐标系中,直线l过点
M(3,0)且平行于y轴. (1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0), C(-1,2),△ABC关于直线l的对称图形是 A1B1C1 ,作
出 A1B1C1,并写出点 A1, B1,C1 的坐标;
图13-2-14
(1) 图13-2-15 (2)
当a=3时,P(-3,0).∵点P与点P 1 关于y轴对称,∴ P 1 (3,0).

轴对称图形课件

轴对称图形课件

)
(
)
(
)
(
)


1、生活中的轴对称现象 2、轴对称图形和对称轴的概念 3、区分轴对称图形和两个图形成轴对称
轴对称和轴对称图形关系:
联系:都是沿一条直线折叠后能够互相重合。 区别: 轴对称图形是一个图形。 轴对称是两个图形之间的关系。
画出它们的对称轴
1.下面哪些图形是轴对称图形? 画“√”
(
)
(
)
(
)
(
)
(
在下列常见几何图形中,判断是否是对称图 形,若是对称图形的,画出它的对称轴.
一个图形 刚才我们研究了一个图形具有轴对称的特征,你 两个图形 想不想看看两个图形是否也具有这样的特征呢?
那 么 请 大 家 再 看 看 右 面 两 组 图 形
•请你认真观察哟! •每一组里,左边的图形沿直线对折后与 右边的图形完全重合吗?
请你想一想:你能将上图中的每一个图形沿某条
直线对折,使直线两旁的部分完全重合吗?
轴对称图形
如果一个图形能够沿某条 直线对折,对折的两部分是完 全重合的,那么就称这样的图 形为轴对称图形, 这条直线叫这个图形的对 称轴。
折痕所在的直线叫 对称轴。
1.准备一张纸
你能得到什么结论呢?
2.对折纸
3.展开你的想象力,在纸上画出你想要画的图案 4.沿线条剪下 5.把纸张开 6.向同组的同学展示你的作品
像这样,把一个图形沿着某一 条直线翻折过去,如果它能够与另 一个图形重合,那么就说这两个图 形成轴对称, 我们把这条直线叫做它们的对 称轴,两个图形中的对应点(即两 个图形重合时互相重合的点)叫做 对称点.
请你来做一做:
•请你标出下面图中A、B、C三点的对 称点A1、B1、C1

作轴对称图形 知识讲解

作轴对称图形  知识讲解

作轴对称图形知识讲解【学习目标】1.理解轴对称变换,能作出已知图形关于某条直线的对称图形.2.能利用轴对称变换,设计一些图案,解决简单的实际问题.3.运用所学的轴对称知识,认识和掌握在平面直角坐标系中,与已知点关于x轴或y轴对称点的坐标的规律,进而能在平面直角坐标系中作出与一个图形关于x轴或y轴对称的图形.4.能运用轴对称的性质,解决简单的数学问题或实际问题,提高分析问题和解决问题的能力.【要点梳理】要点一、对称轴的作法若两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此只要找到一对对应点,再作出连接它们的线段的垂直平分线就可以得到这两个图形的对称轴.轴对称图形的对称轴作法相同.要点诠释:在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.【高清课堂:389300 作轴对称图形,用坐标表示轴对称】要点二、用坐标表示轴对称1.关于x轴对称的两个点的横(纵)坐标的关系已知P点坐标,则它关于x轴的对称点的坐标为,如下图所示:即关于x轴的对称的两点,坐标的关系是:横坐标相同,纵坐标互为相反数.2.关于y轴对称的两个点横(纵)坐标的关系已知P点坐标为,则它关于y轴对称点的坐标为,如上图所示.即关于y轴对称的两点坐标关系是:纵坐标相同,横坐标互为相反数.3.关于与x轴(y轴)平行的直线对称的两个点横(纵)坐标的关系P点坐标关于直线的对称点的坐标为.P点坐标关于直线的对称点的坐标为.【典型例题】类型一、作轴对称图形1、(2016•临夏州)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.。

轴对称--完整版课件

轴对称--完整版课件

BC=10cm,那么△BCD的周长是
_______cm.
26cm
A
E D
B
C
一,本章知识结构图
等腰三角形
等边三角形
生 活
轴对称
作图形的对称轴
中 的
用坐标表示轴对称

作轴对称图形

轴对称变换
轴对称的性质
•对应点所连的线段的中垂线就是 对称轴 •对应线段相等,对应角相等
轴对称变换
准确做图形对称轴的方法
因为对称轴垂直平分每对对应点所连接 的线段,所以只要找一对对应点,用圆规 作出对应点所连线段的垂直平分线即可。
8、已知,如图: AB=AC AD=DC=BC
则∠A=
Байду номын сангаас
360
A
D
B
C
9.在△ABC中,AB=AC,DE 为AB的垂直 A 平分线,D为垂足,交AC与E,若AB=8cm, △ABC的周长为21cm,求△BCE的周长.
D E
10.如图∠ ABC=70°, ∠ A=50°
B
C
AB的垂直平分线交AC于D,则∠DBC=___.
A
E
B
D
C
11 如图, ∠ABC、∠ACB的平分线相 交于F,过F作DE//BC交AB于D,交AC于E, 若AB=9cm, AC=8cm,则△ADE的周长是 多少? A
AB=AD+DB=AD+DF D F E AC=AE+EC=AE+EF
B
C
13、如图,在△ABC中,AB=AC=16cm,
AB的垂直平分线交AC于D,如果
利用轴对称变换作图1
作出三角形关于直线L对称的图形

作轴对称图形的对称轴

作轴对称图形的对称轴

五、作业布置
1、课本P66习题13.1第12、13题 2、导学案P23课题13.1轴对称(第3课时) 3、名师学案P33~P34
在数学的领域中,提出问题的艺术比解答 问题的艺术更为重要.
——康托尔
线l,则l就是这个五角星的一条
对称轴.
类似地,你能做出这个五角星的其他对称轴吗?
例2 如图,△ABC和△AˊBˊCˊ是两个成轴对称的图 形,请作出它的对称轴.
l
作法: (1)找出两个图形的一对对 应点C和C′,连接CC′. (2)作出线段CC′的垂直平 分线l,则l就是△ABC和 △AˊBˊCˊ的对称轴.
八年级 上册
13.1 轴对称
第3课时 作轴对称图形的对称轴
学习目标
1. 掌握线段垂直平分线的画法; 2. 会作轴对称图形或成轴对称的两个图形的对称轴.
重难点
轴对称图形或成轴对称的两个图形的对称轴的作法
一、读书思考
阅读教科书第62~64页,思考下列问题: 1.怎样用尺规作已知线段的垂直平分线? 2.如何准确地作出轴对称图形或成轴对称 的两个图形的对称轴?
影部分面积等于正方形面积的一半, 即 1 a2 .2Biblioteka 【答案】 1 a22
2. 如图,A,B是路边两个新建小区,要在公路l上 增设一个公共汽车站.使两个小区到车站的路程一样长, 该公共汽车站应建在什么位置?
【提示】连接AB,作AB的垂 直平分线,则与公路的交点 就是要建的公共汽车站.
3. 有A,B,C三个村庄,现准备要建一所学校,要求 学校到三个村庄的距离相等,请你确定学校的位置.
【提示】学校在连接任意两 点的两条线段的垂直平分线 的交点处.
4.如图,△ABC中,边AB,BC的垂直平分线交于点P.

轴对称图形知识点归纳

轴对称图形知识点归纳

轴对称知识梳理一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.2.线段的垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线3.轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.4.等腰三角形有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.5.等边三角形三条边都相等的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离相等.3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).4.等腰三角形的性质(1)等腰三角形的两个底角相等(简称“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。

(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.5.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.三、有关判定1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.三个角都相等的三角形是等边三角形.4.有一个角是60°的等腰三角形是等边三角形.。

构建轴对称图形的四种方法

构建轴对称图形的四种方法

前面,人眼能从镜子里看见哪几个物体?
图5
分析:这是一道实际问题,从问题背景中 构建数学模型是解题的关键.(1)可转化为点 M 到直线 a 的最短距离;(2)可转化得到这样 的数学模型:直线 a、b 间有一点 M,试分别在 a、b 上求出两点,使 M 点与这两点构成的三角 形的周长最短. 要求周长最短,即要求三条线 段的和最小,结合题意,可利用轴对称的性质 将问题转化为两点之间线段最短的问题.
同理dmd所以mccddmaccdda这实际上是将mcd的周长即将三条不在同一直线上的线段和转化成了两点之间的距离问题由于两点之间线段最短因此连接与直线ab的交点cd即为所求的两点




构建轴对称图形
的四种方法
山东省枣庄二中 朱述亚
根据已知图形的某些特征并结合轴对称 △AED,则△ABD≌△AED,所以 AE=AB,
性质,常常能较容易地从图形的各元素的对应 ∠B=∠AED.
关系中发现其内在联系,找到解题的思路.下
面举例说明.
一、以角平分线为对称轴来解题
例 1 如图 1,△ABC 中,P 为∠A 外角平
分线上一点,求证:PB+PC>AB+AC.
图2
证明:以 AD 为对称轴,作△ABD 的对称
△AED,则 AB =AE,∠B = ∠AEB,DE =BD.
点 A、B,连接 AB 分别交 a、b 于点 C、D,则最短
的牧马路线为:M→C→D→M.
图4
连接 AA1,则由三角形外角定理可得∠1= ∠DAA1+∠DA1 A=2∠DAA1.
同 理 ,∠ 2 = 2 ∠ EAA1,∴ ∠ 1 + ∠ 2 = 2(∠DAA1+∠EAA1)=2∠DAE.故选 B.

轴对称图形怎么画

轴对称图形怎么画

轴对称图形怎么画轴对称是一种基础的几何概念,指一个物体可沿一条轴线对称,使得沿轴线可以重合,而对称轴则把图形分成两个完全相同的部分。

这种对称可以应用于很多方面,如设计、绘画等。

轴对称图形的绘制一般可以分为以下几个步骤:1. 选择轴线首先需要选择一个轴线,这条轴线将用来对称图形。

轴线可以是任何直线,如横线、竖线或倾斜线等,但必须是明显的直线。

2. 绘制对称图形的一半在轴线的一侧绘制图形的一半。

这一半可以是任何形状,如圆形、正方形、三角形、星形等。

重要的是要确保这一半图形与轴线对称。

3. 绘制对称图形的另一半将对称轴看作一面镜子,将第2步中绘制的一半图形翻转到轴线的另一侧。

然后将这一个完整的图形,与第2步的图形组合,使得轴线对称。

4. 润色完成基本的轴对称图形后,可以进行润色,如增加颜色,添加细节等。

下面是轴对称图形的一些例子:1. 倾斜线轴对称图形首先,在页面上绘制一条倾斜的线。

然后,在线的一侧绘制一个正方形。

将这个正方形翻转到另一侧,然后将这个完整的图形用倾斜线对称。

这样就得到了一个倾斜线轴对称图形。

2. 水平线轴对称图形首先,在页面上绘制一条水平线。

然后,在线的上方绘制一个正方形。

将这个正方形翻转到下方,然后将这个完整的图形用水平线对称。

这样就得到了一个水平线轴对称图形。

3. 圆形轴对称图形首先,在页面上绘制一个圆。

然后,在圆的一侧绘制一个三角形。

将这个三角形翻转到另一侧,然后将这个完整的图形用圆形对称。

这样就得到了一个圆形轴对称图形。

总之,轴对称图形的绘制取决于选择的轴线,以及要绘制的形状和图案。

轴对称图形是一种基本的几何概念,它们在很多领域都有广泛的应用。

通过熟练掌握轴对称的基本原理,我们可以绘制出各种形状优美且对称的图形。

人教版画轴对称图形课件

人教版画轴对称图形课件
人教版. 画轴对称图形课件(PPT优秀课件)
人教版. 画轴对称图形课件(PPT优秀课件)
新课讲解
B
作法:(1)过点A画直线l的垂线,垂
C
足为点O,在垂线上截取OA′=OA,A′
就是点A关于直线l的对称点.
lA
O
(2)同理,分别画出点B、C
A′
关于直线l的对称点B′、C′ .
C′ B′
(3)连结A′B′、B′C′、C′A′,得到△ A′B′C′即为所求.
第十三章 轴对称
13.2 画轴对称图形
第1课时 画轴对称图形
学习目标
1.掌握作轴对称图形的方法.(重点) 2.能够按要求画简单平面图形经过一次对称后的图形. (难点) 3.通过画轴对称图形,增强学生学习几何的趣味感.
情境引入
情境引入
我们前面学习了轴对称图形以及轴对称图形 的一些相关的性质.如果有一个图形和一条直线, 如何画出这个图形关于这条直线对称的图形呢? 这节课我们一起来学习作轴对称图形的方法.
A.20° B.30° C.40° D.50°
方法归纳:折叠是一种轴对称变换,折叠前后的图 形形状和大小不变,对应边和对应角相等.
新课讲解
2 作轴对称图形
问题1:如何画一个点的轴对称图形? 画出点A关于直线l的对称点A′.
作法: (1)过点A作l的垂线,垂足为点O. (2)在垂线上截取OA′=OA.
(1)认真观察,左脚印和右脚印 有什么关系?
P
P'
成轴对称
(2)对称轴是折痕所在的直线,即
直线l,它与图中的线段PP ′是什么
关系?
直线l垂直平分线段PP′
l
知识要点
对称图形,
这个图形与原图形的形状、大小完全相同;新图形上的每一点 都是原图形上的某一点关于直线l的对称点;连结任意一对对应 点的线段被对称轴垂直平分.

做完轴对称图形的心得体会

做完轴对称图形的心得体会

做完轴对称图形的心得体会轴对称图形是经过某个中心轴线旋转180度后重合的图形。

在学习过程中,我对轴对称图形有了更深入的认识,也体会到了其中的奥妙和美妙。

首先,轴对称图形具有很强的对称性。

通过学习轴对称图形,我发现无论是几何图形还是生活中的实物,只要满足轴对称的条件,它们的左右对称部分总是完全一致的。

这种对称性给人一种和谐的感觉,让人觉得图形是平衡的,和平的。

例如,花朵、蝴蝶等生物的翅膀就是轴对称的,它们看起来非常美丽。

因此,轴对称图形的存在不仅是自然界的体现,也是人们追求美的一种表现。

其次,轴对称图形的作画过程需要我们具备一定的观察力和规律发现能力。

在画轴对称图形的过程中,我们需要观察图形的各个部分,找到中心轴线和对称点。

然后按照中心轴线将图形分为左右两部分,将一个部分作画完毕后,再沿着中心轴线将其复制到另一边。

而观察图形、发现规律的能力是成长过程中非常重要的素质之一。

通过观察和发现,我们能够更好地理解问题的本质,从而提高自己解决问题的能力。

另外,轴对称图形的绘制过程需要我们具备一定的耐心和细致的态度。

在绘制轴对称图形时,我们不能急于求成,而是要仔细地勾勒每一个点、每一条线,保证图形的对称性和美观性。

要始终保持稳定的心态,耐心地细致描绘,才能够画出完美的轴对称图形。

这种耐心和细致的态度在学习和生活中同样重要。

只有有耐心,才能够克服困难,坚持不懈地达到自己的目标。

此外,轴对称图形的学习也能培养我们的创造力和想象力。

在做轴对称图形的过程中,我们可以根据已有的图形进行创造和自由发挥。

通过各种组合方式,构建出丰富多样的轴对称图形。

这样的练习培养了我们的创造力和想象力,提升了我们的审美能力和艺术素养。

而创造力和想象力都是在今后的学习和工作中能够派上用场的重要素质。

总结起来,做完轴对称图形,我获得了很多收获和体会。

轴对称图形的对称性让我感受到了美和平衡,轴对称图形的观察和发现让我进一步培养了自己的思维能力,轴对称图形的绘制过程让我学会了耐心和细致,轴对称图形的创造过程让我锻炼了自己的想象力和创造力。

初中数学教学课件: 作轴对称图形(人教版八年级上) 公开课一等奖课件

初中数学教学课件:  作轴对称图形(人教版八年级上)  公开课一等奖课件

A
C
B ′
泵站应修在管道的C处,可使所用的输气管线最短.
归纳 实际上是通过轴对称变换,把A,B在直线同
侧的问题转化为在直线的两侧的问题,从而可利
用“两点之间线段最短”加以解决.
2. 八年级某班同学做游戏,在活动区域边放了一些球,则
小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到
球跑到目的地A处. 路线:小明——P——A


高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
段A′B′?
作法: 1、过点A作直线L的垂线,垂足为点O, 在垂线上截OA′=OA,
A
A′
B 点A′就是点A关于直线L的对称点; 2、类似地,作出点B关于直线L的对称点B′;
3、连接A′B′.
B′
∴线段A′B′即为所求.
2.如图,已知△ABC和直线l,怎样作出与△ABC关于
直线l对称的图形呢? B C A O A′ l

第02讲轴对称图形的作法

第02讲轴对称图形的作法

轴对称图形的作法月日姓名知识点1 轴对称图形的作法画一图形关于某条直线的轴对称图形的步骤:1、找到关键点2、画出关键点的对应点3、按照原图顺序依次连接各点。

知识点2 轴对称与轴对称图形的区别和联系1、用坐标轴表示对称(1)点(x,y)关于x轴对称的点的坐标为(-x,y);(2)点(x,y)关于y轴对称的点的坐标为(x,-y);(3)点(x,y)关于原点对称的点的坐标为(-x,-y)。

注意:关于谁谁不变,关于原点都相反2、关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)3、关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);【作图题专练】1.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.2.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M.(1)如图,在l上求作一点M,使得|AM-BM|最小;作法:(2)如图,在l上求作一点M,使得|AM-BM|最大作法:(3)如图,在l上求作一点M,使得AM+BM最小.O B(4)如果两点位于直线异侧,请你去解决上述问题3、如图:A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点(保留作图痕迹)4、如图,写出△ABC的各顶点坐标,并画出△ABC关于Y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标。

B。

轴对称

轴对称

一、知识整理1.轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线叫做对称抽。

2.成轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.两个图形关于一条直线对称,也叫成轴对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.3. 对称轴和对称点:轴对称图形对折重合后的折痕所在的直线是对称轴,能够互相重合的点叫做对称点.4.轴对称和轴对称图形的性质轴对称的性质:①由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形全等(即形状、大小完全相同)②新图形上的每一点,都是原图形上的某一点关于直线l的对称点③连接任意一对对应点的线段被对称轴垂直平分轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.5.线段的垂直平分线的定义、性质、尺规作法定义:经过线段中点并且垂直于这条线段的直线叫做这条线段的垂直平分线.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.6、画出已知图形关于某条直线对称的图形①对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。

这种方法我们可以称之为“以点带面”法。

②在直角坐标系中,关于x轴对称的点的坐标的特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标的特点:横坐标互为相反数,纵坐标不变。

二、典例讲解例1::下列图形中不是轴对称图形的是()A B C D答案:C例2:在下列说法中,正确的是( )A .如果两个三角形全等,则它们必是关于直线成轴对称的图形B .如果两个三角形关于某直线成轴对称,那么它们是全等三角形C .等腰三角形是关于底边中线成轴对称的图形D .一条线段是关于经过该线段中点的直线成轴对称的图形答案:B (点拨:全等的三角形不一定是成轴对称,而成轴对称的两个三角形一定是全等的.)例3:如图所示,∠ABC 内有一点P ,在BA 、BC 边上各取一点P 1、P 2,使△PP 1P 2的周长最小..如图12-17,以BC 为对称轴作P 的对称点M ,以BA 为对称轴作出P 的对称点N ,连MN 交BA 、BC 于点P 1、P 2.∴ △PP 1P 2为所求作三角形.例4:如图,已知△ABC 是等腰直角三角形,∠BAC=90°,BE 是∠ABC 的平分线,DE ⊥BC ,垂足为D.(1)请你写出图中所有的等腰三角形; (2)请你判断AD 与BE 垂直吗?并说明理由. (3)如果BC=10,求AB+AE 的长.:(A )(B )(C ) (D )解:(1)△ABC ,△ABD ,△ADE ,△EDC. (2)AD 与BE 垂直.证明: 由BE 为∠ABC 的平分线,知∠ABE=∠DBE ,∠BAE=∠BDE=90°,BE=BE , ∴ △ABE 沿BE 折叠,一定与△DBE 重合. ∴ A 、D 是对称点, ∴ AD ⊥BE. (3)10.例5:如图所示,△ABC 是等边三角形,延长BC 至E ,延长BA 至F ,使AF=BE ,连结CF 、EF ,过点F 作直线FD ⊥CE 于D ,试发现∠FCE 与∠FEC 的数量关系,并说明理由.解:如图所示,延长BE 到G ,使EG=BC ,连FG . ∵AF=BE ,△ABC 为等边三角形,∴BF =BG ,∠ABC =60°,∴△GBF 也是等边三角形.在△BCF 和△GEF 中, ∵BC=EG ,∠B=∠G=60°,BF=FG , ∴△BCF ≌△GEF , ∴CE=DE ,又∵FD ⊥CE ,∴∠FCE=∠FEC (等腰三角形的“三线合一”).三、1.李芳同学球衣上的号码是253,当他把镜子放在号码的正左边时,镜子中的号码是_______.(A)(B)(C)(D)2.我国的文字非常讲究对称美,分析图中的四个图案,图案( )有别于其余三个图案.3.如图是我国几家银行的标志,在这几个图案中是轴对称图形的有( ) A .1个 B .2个 C .3个 D .4个4.轴对称是指 个图形的位置关系;轴对称图形是指 个具有特殊形状的图形.5.设A 、B 两点关于直线MN 对称,则______垂直平分________.6.等腰三角形是_______对称图形,它至少有________条对称轴.7.点(1,3)P -关于x 轴的对称点的坐标为 .8.已知点P 在线段AB 的垂直平分线上,PA=6,则PB= .9.点M )3,5(-关于x 轴的对称点的坐标是( )A . )3,5(--B .)3,5(-C .)3,5(D .)3,5(-10.已知:如图,ABC △的顶点坐标分别为(43)A --,,(03)B -,,(21)C -,,如将B 点向右平移2个单位后再向上平移4个单位到达1B 点,若设ABC △的面积为1S ,1AB C △的面积为2S ,则12S S ,的大小关系为( ) A .12S S > B .12S S =C .12S S <D .不能确定11.已知M (a,3)和N (4,b )关于y 轴对称,则2008)(b a +的值为( ) A.1 B 、-1 C.20077 D.20077-四、课后作业1.下列说法中,不正确的是( ) A .等边三角形是轴对称图形,它的三条高是它的对称轴;B .等腰三角形是轴对称;C .关于某一条直线对称的两个三角形一定全等;D .若△ABC 与△A 1B 1C 1关于直线L 对称,那么它们对应边的高、中线、对应角的平分线分别关于L 对称2.如图所示,Rt △ABC 中,∠C=90°,AB 的垂直平分线DE 交BC 于D ,交AB 于点E . 当∠B=30°时,图中一定相等的线段有( ) A .AC=AE=BE B .AD=BD C .CD=DE D .AC=BD3.如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB •的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是 20cm ,则线段MN 的长是___________.4.如图是未完成的上海大众汽车汽车标志图案,该图案是以直线l为对称轴的轴对称图形,现已完成对称轴的左边的部分,请你补全标志图案,画出对称轴右边的部分.5.已知A (2m +n,2)、B (1,n -m ),当m ,n 分别为何值时 (1)A 、B 关于x 轴对称; (2)A 、B 关于y 轴对称;6.平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,4),B (2,4),C (3,-1). (1)试在平面直角坐标系中,标出A 、B 、C 三点; (2)求△ABC 的面积.(3)若111C B A 与△ABC 关于x 轴对称,写出1A 、1B 、1C 的坐标.答案: 练习:1.A (点拨:把球衣上253的号码沿水平方向翻折180°,得到的图案即是他背对镜子时的像.)2.D (点拨:图案D 有两条对称轴,其余三个图案都只有一条对称轴.)3.C (点拨;只有中国建设银行的标志不是轴对称图形.) 4.2;1 5.MN ;AB 6. 轴;1 7. (-1,-3) 8. 6 9. C 10.B11.A课后作业:1. A2.B3.20cm4.略5.解:(1)由题意得,⎩⎨⎧=-+=+0212m n n m ,解得⎩⎨⎧-==11n m ,所以当m=1,n=-1时,点A 、B 关于x 轴对称. (2)由题意得,⎩⎨⎧=--=+212m n n m ,解得⎩⎨⎧=-=11n m ,所以当m=-1,n=1时,点A 、B 关于y 轴对称.6.解:略。

轴对称图形制作方法

轴对称图形制作方法
制作方法 制作轴对称图形首先是把图形分解成对称的两半。
1.“插入”--“形状”—选择一对称图形—设置
好颜色---右击图形--“剪切”--“编辑”菜单-
-“选择性粘贴”--“图片(Windows 元文件)”。
2.复制图片成两份,利用绘图工具中的“载剪” 工具分别对两份图片载剪成左右对称的两部分。 3.复制右半图成两份,一份置顶层,另一份置底 层(底层这份不用作任,自顶部,慢速 5.左半图:退出层叠,之后,到右侧,慢速 6.右半图:伸展,之后,自左侧,慢速 7.右半图:退出层叠,单击,到左侧,慢速 8.左半图:伸展,之后,自右侧,慢速
1.虚线:擦除,单击,自顶部,慢速 2.左半图:动作路径,之后,向左,慢速 3.右半图:动作路径,之后,向右,慢速
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A O
C
就能得到要作的图形。 作法:
1、过点A作直线l的垂线,垂足 l 为点O,在垂线上截取OA’=OA,
A’
点A’就是点A关于直线l的对称
C’
点;
B’
∴△A’B’C’即为所求。
2、类似地,分别作出点B、C关 于直线l的对称点B’、C’;
3、连接A’B’、B’C’、C’A’。
例1变式:如图,已知△ABC和直线l,作出与 △ABC关于直线l对称的图形。
B
B
B
C
A
C
A
l
C’
B’
∴△AB’C’即为所求。 作法:
B AA’
C Cl
A B’
∴△A’B’C即为所求。 作法:
1、分别作出点B、C关于 1、分别作出点A、B关于
直线l的对称点B’、C’; 直线l的对称点A’、B’;
2、连接AB’、B’C’、C’A。 2、连接A’B’、B’C、CA’。
试一试:如图,实线所构成的图形为已知图形,
做一做 1 如图,已知点 A 和 直线l ,试画出
点A关于直线l的对称点A′并写出画法。
l
. . A
o
A’
作法:1.画AO l于O,
2.延长AO到 A’ , 使A’O = AO, 则点A’即为 所求。
做一做 2 如图,已知线段 AB 和 直线l ,试
. 画出线段 AB关于直线l的对称线段并写出画法。
直线L为对称轴,请画出已知图形的轴对称图形。
L
E BD
D' B'
C C'
A
A'
A B
L C
C' A'
B'
对于某些图形,只要画出图形中的一些特殊点(如线段端 点)的对称点,连接这些对称点,就可以得到原图形的轴 对称图形
B A’
Cl A
B’
作已知图形关于已知直线对称的图形的一般步聚:
1、找点(确定图形中的一些特殊点);
A l
ห้องสมุดไป่ตู้
A0 画法:
(1) 作点A的对称点A0 ,
(2) 作点B的对称点B0,
(3) 连结线段A0B0 .
.B0
则线段A0B0即为所求。 B
做一做 3
例1:如图,已知△ABC和直线l,作出与△ABC关于
直线l对称的图形。 分析:△ABC可以由三个顶点的
位置确定,只要能分别作出这三个顶点
B
关于直线l的对称点,连接这些对称点,
第1题
在方格纸上画出轴对称图形的另一半。
再见
N (M1) M
以上答案 M1 都不对
M
M
N1
A
B
C
D
图形变式:
已知△ABC,直线L,画出△ABC关于直线
L对称的图形。
L
L
A A'
A A'
C'
C C'
B
B' B
C B'
巩固练习:
1、在图中分别画出点A关于两条直线的对 称点 A'和A''。
2、画出所示图形关于直线L的对称图形。
·A'
L
A · ·A''
1、轴对称图形的特点
2、已知两个图形成轴对称,作出轴对称 图形对称轴的方法
我们得到的两个图形成轴对称 折痕所在的直线就是它们的对称轴
新图形上的每一个点都是原图形上的 某一点关于直线l的对称点 连结任意一对对应点的线段被对称轴平分
如何作已知图形的轴对称图形?
引入
如果给出一个图形和一条直线,那么如何画出这个图 形关于这条直线的轴对称图形?
2、画点(画出特殊点关于已知直线的对称点);
3、连线(连接对称点)。
四、练习
练一练:
如下各图,已知线段AB和直线L,试画 出线段AB关于直线L的对称线段A'B' 。
L B
A
A'
A L
A'
B'
B
B' ①

练习题:
判断下列画线段MN的轴对称图形,哪一个是正确的( C )
N1 N (M1)
N (N1)
相关文档
最新文档