七年级数学下册三角形

合集下载

七年级下册数学三角形的内角和

七年级下册数学三角形的内角和

七年级下册数学三角形的内角和一、三角形内角和定理。

1. 定理内容。

- 三角形的内角和等于180°。

2. 证明方法。

- 方法一:测量法(不完全严谨,但可作为初步感知)- 用量角器分别测量三角形的三个内角,然后将三个角的度数相加,会发现其和接近180°。

由于测量存在误差,所以这只能是一种初步验证的方法。

- 方法二:剪拼法。

- 把三角形的三个角剪下来,然后将它们的顶点拼在一起,可以发现这三个角能拼成一个平角,从而直观地说明三角形内角和为180°。

- 方法三:推理证明(以平行线的性质为基础)- 已知:△ABC。

- 求证:∠A + ∠B+∠C = 180°。

- 证明:过点A作直线EF∥BC。

- 因为EF∥BC,根据两直线平行,内错角相等,所以∠B = ∠FAB,∠C = ∠EAC。

- 又因为∠FAB+∠BAC + ∠EAC=180°(平角的定义),所以∠B+∠BAC+∠C = 180°,即三角形内角和为180°。

二、三角形内角和定理的应用。

1. 在求三角形内角的度数中的应用。

- 例1:在△ABC中,∠A = 50°,∠B = 60°,求∠C的度数。

- 解:根据三角形内角和定理,∠C = 180° - ∠A - ∠B。

- 已知∠A = 50°,∠B = 60°,则∠C = 180° - 50° - 60° = 70°。

2. 在判断三角形的类型中的应用。

- 例2:一个三角形的三个内角的度数之比为1:2:3,判断这个三角形是什么类型的三角形。

- 解:设三角形的三个内角分别为x,2x,3x。

- 根据三角形内角和定理可得:x + 2x+3x = 180°。

- 合并同类项得6x = 180°,解得x = 30°。

- 那么三个角的度数分别为30°,2×30° = 60°,3×30° = 90°。

七年级数学下册利用“边边边”判定三角形全等(第1课时)课件(新版)北师大版

七年级数学下册利用“边边边”判定三角形全等(第1课时)课件(新版)北师大版
第1课时 利用“边边边”判定三角形全等
探究新知
► 活动1 知识准备 如图4-3-1所示,△ABC≌△DEF,点A与点D,点B与点E分
别是对应顶点,∠B=42°,∠A=48°,AB=13 cm,则∠F= _9_0__°,DE=_1_3__cm.
图4-3-1
第1课时 利用“边边边”判定三角形全等
► 活动2 教材导学 探究三角形全等的条件(边边边) 1.(1)已知三角形的三条边长分别是4 cm,5 cm,7 cm,画
第1课时 利用“边边边”判定三角形全等
► 知识点二 三角形具有稳定性
只要三角形三边的长确定了,这个三角形的形状和大小就完 全确定了,所以三角形具有稳定性.
三角形的稳定性在生产和生活中有着广泛的应用.比如,房 屋的人字梁具有三角形的结构,它坚固稳定;大桥钢架、输电 线支架、索道支架等都采用三角形结构.这都是三角形的稳定 性的应用.
图4-3-2 综上,试概括你发现的结论.
第1课时 利用“边边边”判定三角形全等
2.已知两个三角形的三条边对应相等,你能判定这两个三 角形全等吗?
◆知识链接——[新知梳理]知识点一
第1课时 利用“边边边”判定三角形全等
新知梳理
► 知识点一 边边边 [文字叙述] 三边分别相等的两个三角形__全__等__,简写为
图4-3-5
第1课时 利用“边边边”判定三角形全等
解:用一定长度的绳子在AM和AN上截取AB=AC,再选取适当 长度(不小于BC)的绳子,将其对折,得绳子的中点D,把绳子的 端点固定在B,C两点,拽住绳子的中点D,向外拉直BD和CD,确 定出D点在钢板上的位置,过A,D画射线AD,则AD平分∠MAN.在 △ABD和△ACD中,∵AB=AC(作法),BD=CD(线段中点的定义)

七年级数学下册第四章三角形知识归纳

七年级数学下册第四章三角形知识归纳

第四章三角形三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的判定ASAAASHL(适用于RtΔ)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示.2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”.3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;4、∠A、∠B、∠C为ΔABC的三个内角。

二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.用字母可表示为a+b〉c,a+c〉b,b+c〉a;a—b<c,a-c<b,b-c 〈a.2、判断三条线段a,b,c能否组成三角形:(1)当a+b>c,a+c>b,b+c〉a同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。

3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即a b c a b-<<+.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。

2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边.注:直角三角形的性质:直角三角形的两个锐角互余。

(3)钝角三角形,即有一个内角是钝角的三角形。

3、判定一个三角形的形状主要看三角形中最大角的度数.4、直角三角形的面积等于两直角边乘积的一半.5、任意一个三角形都具备六个元素,即三条边和三个内角.都具有三边关系和三内角之和为1800的性质。

北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

1.三角形内角和定理:三角形三个内角的和等于180°.
2.三角形内角和定理的应用:①在三角形中,已知任意两个内角的度数可以 求出第三个内角的度数;②已知三角形三个内角的关系,可以求出各个内角 的度数;③求一个三角形中各角之间的关系.
3.三角形按角分类:
直角三角形:有一个角是直角的三角形 锐角三角形:三个角都是锐角的三角形 钝角三角形:有一个角是钝角的三角形
∠A、∠C的公共边是
.
,∠A的对边是
栏目索引
,
图4-1-3 答案 ∠B;BC;AC 解析 △ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A、∠C的公共 边是AC.
1 认识三角形
知识点二 三角形三个内角之间的关系
栏目索引
4.(2017广西南宁中考)如图4-1-4,△ABC中,∠A=60°,∠B=40°,则∠C等于
其所在直 直角三角形
线)的交
点位置 钝角三角形
交点在三角形内 交点在直角顶点处 交点在三角形外
三条中线交于三 角形内一点(这一 点称为三角形的 重心)
交点在三角形内
共同点
每个三角形都有三条高、三条中线、三条角平分线,它们(或它们所在的直线) 都分别交于一个点,它们都是线段
1 认识三角形
栏目索引
知识拓展
(1)得到线段垂直;(2)得到角相等 (1)得到线段相等; (2)得到面积相等
得到角相等
1 认识三角形
栏目索引
线段 的位置
锐角三角形 直角三角形
钝角三角形
三条高全在三角形内
三条中线全在三
角形内 一条高在三角形内,另外两条
与两直角边重合
三条角平分线全 在三角形内
三角形内一条,三角形外两条

七年级下册数学 三角形和不等式的复习 知识点讲解【精编】

七年级下册数学 三角形和不等式的复习 知识点讲解【精编】

三角形和不等式复习温故而知新(一)三角形知识梳理1、等腰三角形的性质:①等腰三角形的两底角相等(等边对等角)②等腰三角形“三线合一”的性质:顶角平分线、底边上的中线、底边上的高互相重合。

③等腰三角形两底角的平分线相等,两腰上的高、中线也相等等腰三角形的判定:有两个角相等的三角形是等腰三角形(等角边对等边)2、等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半。

等边三角形的判定:有一个角等于60º的等腰三角形是等边三角形。

3、如果知道一个三角形为直角三角形首先要想的定理有:①勾股定理:222+=(注意区分斜边与直角边)a b c②在直角三角形中,如有一个内角等于30º,那么它所对的直角边等于斜边的一半③在直角三角形中,斜边上的中线等于斜边的一半4、线段垂直平分线上的点到这一条线段两个端点距离相等。

线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。

5、角平分线上的点到角两边的距离相等。

角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。

6、互逆命题和互逆定理7、全等三角形课堂复习等腰三角形1、已知,等腰三角形的一条边长等于6,另一条边长等于,则此等腰三角形的周长是()A.9 B.12 C.15 D.12或152. 等腰三角形的底角为15°,腰上的高为16,那么腰长为______ ____3、等腰三角形的一个角是80度,则它的另两个角是4、等腰三角形的顶角为120°,腰长为4,则底边长为__________C EA D B等边三角形1、如图:等边三角形ABC 中,D 为AC 的中点,E 为BC 延长线上一点,且DB=DE,若△ABC 的周长为12,则△DCE 的周长为___________. 垂直平分线1、如图1,在△ABC 中,已知AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长.2、如图:△ABC 中,AB=AC,∠BAC=1200,EF 垂直平分AB, EF=2,求AB 与BC 的长。

苏科版数学七年级下册认识三角形

苏科版数学七年级下册认识三角形
拿出长度分别为3cm、 4cm 、5cm、 6cm和 9cm的木条,任意用三根首尾相 接搭三角形。
探究交流
根据:两点之间线段最短!
A
若把A、B看作定点,
c
b 可得AC+BC>AB;
同理:AC+ AB >BC;
B
a
C AB +BC>AC。
三角形的任意两边之和大于第三边。
A
探究交流
a
b
Bc
C
任意两边之和大于第三边。
才艺展示
1、如图是用三根细棍组成的图形, 其中符合三角形概念的图形是
(D )
A
B
C
D
才艺展示
2、三条线段的长度分别为: (1)3、8、10 (2)5、2、7 (3)5、5、11 (4)13、12、20
能组成三角形的有(B )组。 A、1 B、2 C、3 D、4 点拨: 比较较小的两边之和与最长边的大 小即可.
才艺展示
3、有3、5、7、10的四根木条,要 摆出一个三角形,有(B)种摆法。
A、1 B、2 C、3 D、4
小结思考
本节课你有什么收获?
1. 学习了三角形的概念,及三角形的基 本要素,重点研究了三角形3边间的关系.
2. 从三角形3边关系的研究中可知:三 角形的3边长度相互制约----三角形的 任意两边之和大于第三边.
A
C
B
DE
探究交流 三角形按角分有几种分法?
(1)
(2)
(3)
所有内角都是锐角的三角形————锐角三角形 有一个内角是直角的三角形————直角三角形
有一个内角是钝角的三角形————钝角三角形
探究交流
将下列三角形按角分类

七年级数学下册北师大版第五章《三角形》知识点总结

七年级数学下册北师大版第五章《三角形》知识点总结

七年级数学下册北师大版第五章《三角形》知识点总结第一篇:七年级数学下册北师大版第五章《三角形》知识点总结第五章《三角形》知识点总结(北师大版七年级下)一、三角形及其有关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形的表示:三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。

3、三角形的三边关系:(1)三角形的任意两边之和大于第三边。

(2)三角形的任意两边之差小于第三边。

(3)作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

4、三角形的内角的关系:(1)三角形三个内角和等于180°。

(2)直角三角形的两个锐角互余。

5、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

6、三角形的分类:(1)三角形按边分类:不等边三角形三角形等腰三角形底和腰不相等的等腰三角形等边三角形(2)三角形按角分类:直角三角形(有一个角为直角的三角形)锐角三角形(三个角都是锐角的三角形)钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

7、三角形的三种重要线段:(1)三角形的角平分线:定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

性质:三角形的三条角平分线交于一点。

交点在三角形的内部。

(2)三角形的中线:定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

性质:三角形的三条中线交于一点,交点在三角形的内部。

(3)三角形的高线:定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

七年级数学下册课件(北师大版)利用三角形全等测距离

七年级数学下册课件(北师大版)利用三角形全等测距离
答此题的关键就是构建全等三角形,并确定所要测量 的边的对应边.
例2 如图,在一条河的两岸各耸立着一座宝塔A,B,隔
河相对,在无任何过河工具的情况下,你能测量出 两座宝塔间的距离吗?说说你的方法和理由.
导引:因为没有过河的工具, 所以无法直接测量两塔 间的距离,所以,可通 过构建全等三角形,转 化到岸上来测量.
想一想
如图所示,A,B 两点分别位于一个池塘的两端,小明想用 绳子测量A,B 间的距离但绳子不够长,一个叔叔帮他出了这样 一个主意:先在地上取一个可以直接到达A 点和B 点的点C,连 接AC 并延长到D,使CD=CA; 连接BC 并延长到E,使CE=CB, 连接DE 并测量出它的长度,DE 的长 度就是AB 间的距离.
距离.你能说明其中的道理吗?
解:因为∠ACB=90°,
所以∠ACD=180°-∠ACB=90°.
BC=DC,
在△ABC 和△ADC 中, ACB= ACD,
AC=AC,
所以△ABC ≌△ADC (SAS).
所以AB=AD.
3 如图,已知零件的外径为a,要求它的厚度x,动手制作 一个简单的工具,利用三角形全等的知识,求出x.
个三角形全等的依据是( D ) A.SAS B.ASA C.AAS D.SSS
5 教室里有几盆花,如图①,要想测量这几盆花两旁的
A,B 两点间的距离不方便,因此,选点A,B 都能到 达的一点O,如图②,连接BO 并延长BO 到点C,使 CO=BO,连接AO 并延长AO 到点D,使DO=AO. 那么C,D 两点间的距离就是A,B 两点间的距离.
一个办法:他面向碉堡的方向站好,然后调整帽子,使视线通过帽 檐正好落在碉堡的底部;然后,他转过一个角度,保持刚才的姿态, 这时视线落在了自己所在岸的某一点上;接着,他用步测的办法量 出自己与那个点的距离,这个距离就是他与碉堡间的距离.

七年级 下册 数学 PPT课件 精品课 第4章三角形 三角形的中线、角平分线

七年级 下册 数学 PPT课件 精品课 第4章三角形 三角形的中线、角平分线

归纳
知2-导
铅笔支起三角形卡片的点就是三 角形的重心!
(来自《教材》)
知2-讲
位置图例:任何三角形的三条中线都交于一点,且该 点在三角形的内部,如图,这个点叫三角形的重心.
(来自《点拨》)
角的平分线
C
如右图,如果∠AOB=∠BOC,
那么射线OB叫做∠AOC的角
B
平分线。
O
A
从角的顶点出发,把这个角分成相等的两个角的射
(2) 在每个三角形中,这三条角平分线之间有怎样的 位置关系?
三角形的三条角平分线线交于一点
A
∵BE是△ABC的角平分线
∴∠__A_B_E=_∠__C_B_E= 1 ∠__AB_C__
F
E
O
2
∵CF是△ABC的角平分线
∴∠ACB=2_∠__A_C_F_=2_∠__B_C_F_
B
D
C
练一练
• 1、AD是ΔABC的角平分线(如图),
【解析】(1)因为∠1+∠BCD=90°,∠1=∠B,所以
∠B+∠BCD=90°,所以∠CDB=90°,
所以△BDC是直角三角形,即CD⊥AB,故CD是△ABC的高.
(2)因为∠ACB=∠CDB=90°,
所以S△ABC
= 1 AC·BC=1
2
2
AB·CD.
又因为AC=8,BC=6,AB=10,
所以CD= AC BC 68 24 .
(2)易错警示:求三角形的边时,要注意隐含条件:三角形
的三边关系.
(来自《点拨》)
知1-练
3 如图,△ABC的面积为3,BD:DC=2:1,E 是AC的中点,AD与BE相交于点P,那么四边 形PDCE的面积为( B )

人教版七年级下数学三角形知识点归纳、典型例题及考点分析

人教版七年级下数学三角形知识点归纳、典型例题及考点分析

BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。

A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。

第10讲 认识三角形与图形全等-七年级数学下册同步精品讲义

第10讲  认识三角形与图形全等-七年级数学下册同步精品讲义

第10讲认识三角形与图形全等目标导航知识精讲知识点01三角形(1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.相邻两边的公共端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角,简称三角形的角.(2)按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).(3)三角形的主要线段:角平分线、中线、高.(4)三角形具有稳定性.【知识拓展1】(2021秋•阳新县期末)如图表示的是三角形的分类,则正确的表示是()A.M表示三边均不相等的三角形,N表示等腰三角形,P表示等边三角形B.M表示三边均不相等的三角形,N表示等边三角形,P表示等腰三角形C.M表示等腰三角形,N表示等边三角形,P表示三边均不相等的三角形D.M表示等边三角形,N表示等腰三角形,P表示三边均不相等的三角形【即学即练1】(2021秋•静安区期末)下列说法错误的是()A.任意一个直角三角形都可以被分割成两个等腰三角形B.任意一个等腰三角形都可以被分割成两个等腰三角形C.任意一个直角三角形都可以被分割成两个直角三角形D.任意一个等腰三角形都可以被分割成两个直角三角形【即学即练2】(2021秋•双牌县期末)下面是小强用三根火柴组成的图形,其中符合三角形概念的是()A.B.C.D.知识点02三角形的角平分线、中线和高(1)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.(2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.(3)三角形一边的中点与此边所对顶点的连线叫做三角形的中线.(4)三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.(5)锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.【知识拓展2】(2021秋•两江新区期末)如图,在△ABC中,AB=5,AC=3,AD为BC边上的中线,则△ABD与△ACD的周长之差为()A.2B.3C.4D.5【即学即练1】(2021秋•沙坪坝区校级期末)数学课上,同学们在作△ABC中AC边上的高时,共画出下列四种图形,其中正确的是()A.B.C.D.【即学即练2】(2021秋•思明区校级期末)如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是()A.BC=2AD B.AB=2AF C.AD=CD D.BE=CF知识点03三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.【知识拓展3】(2021秋•正阳县期末)如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且△ABC的面积为24,则△BEF的面积是()A.2B.4C.6D.8【即学即练1】(2021秋•同安区期末)如图,S△ABD=S△ACD,已知AB=8cm,AC=5cm,那么△ABD和△ACD的周长差是cm.【即学即练2】(2021秋•嘉鱼县期末)如图,在△ABC中,AD,AE分别是边BC上的高和中线,AD=2cm,△ACE的面积是3cm2,则BC=cm.知识点04三角形的重心(1)三角形的重心是三角形三边中线的交点.(2)重心的性质:①重心到顶点的距离与重心到对边中点的距离之比为2:1.②重心和三角形3个顶点组成的3个三角形面积相等.③重心到三角形3个顶点距离的和最小.(等边三角形)【知识拓展4】(2021秋•泉州期末)如图,在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,若GE=3,则线段CB的长度为()A.10B.9C.6D.【即学即练1】(2021秋•莱州市期末)如图,点O是△ABC的重心,连接AO并延长交BC于点D.若BC =6,则CD=.【即学即练2】(2021秋•广丰区期末)三角形的中线把三角形分成了面积相等的两部分,而三条中线交于一点,这一点叫此三角形的心.知识点05三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略.【知识拓展5】(2021秋•樊城区期末)若线段AP,BP,AB满足AP+BP>AB,则关于P点的位置,下列说法正确的是()A.P点一定在直线AB上B.P点一定在直线AB外C.P点一定在线段AB上D.P点一定在线段AB外【即学即练1】(2021秋•宜春期末)下列长度的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.4,5,9【即学即练2】(2021秋•岑溪市期末)已知一个三角形有两边长分别为3和9,则它的第三边长可能是()A.4B.5C.6D.7知识点06三角形内角和定理(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.【知识拓展6】(2021秋•大余县期末)如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线.∠BAC=50°,∠ABC=60°.则∠DAE+∠ACD等于()A.75°B.80°C.85°D.90°【即学即练1】(2021秋•铅山县期末)如图,BD平分∠ABC,CD平分∠ACD,若∠A=80°,则∠D的度数为()A.100°B.120°C.130°D.140°【即学即练2】(2021秋•连江县期末)如图,已知△ABC中,BD,CE分别是△ABC的角平分线,BD与CE交于点O,如果设∠A=n°(0<n<180),那么∠COD的度数是()A.45°+n°B.90°C.90°﹣D.180°﹣n°知识点07全等图形(1)全等形的概念能够完全重合的两个图形叫做全等形.(2)全等三角形能够完全重合的两个三角形叫做全等三角形.(3)三角形全等的符号“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.(4)对应顶点、对应边、对应角把两个全等三角形重合到一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.【知识拓展1】(2021秋•潜江期末)下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形【即学即练1】图中所示的网格是正方形网格,则下列关系正确的是()A.∠1>∠2B.∠1<∠2C.∠1+∠2=90°D.∠1+∠2=180°【即学即练2】(2021秋•辛集市期末)观察下面的6组图形,其中是全等图形的有()A.3组B.4组C.5组D.6组知识点08直角三角形的性质(1)有一个角为90°的三角形,叫做直角三角形.(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.【知识拓展8】(2021秋•富川县期末)在一个直角三角形中,一个锐角等于56°,则另一个锐角的度数是()A.26°B.34°C.36°D.44°【即学即练1】(2021秋•越城区期末)如图,在△ABC中,点P在边BC上(不与点B,点C重合),()A.若∠BAC=90°,∠BAP=∠B,则AC=PCB.若∠BAC=90°,∠BAP=∠C,则AP⊥BCC.若AP⊥BC,PB=PC,则∠BAC=90°D.若PB=PC,∠BAP=∠CAP,则∠BAC=90°【即学即练2】(2021秋•嘉鱼县期末)在△ABC中,∠A=90°,∠B=40°,则∠C =度.能力拓展【考点1】:认识三角形例题1.(2021·石家庄市第四十一中学七年级期末)若三角形的两边长是2cm 和5cm,第三边长的数值是奇数,则这个三角形的周长是()A.9cm B.12cm C.10cm D.14cm【变式1】(2021·山东烟台市·七年级期末)用直角三角板作ABC的高,下列作法正确的是()A.B.C.D.【变式2】(2021·浙江温州市·七年级期末)如图,三角形ABC 中,AC BC ⊥,CD AB ⊥于点D ,则下列线段关系成立的是( )A .AD BC AB +< B .BD AC AB +< C .2BC AC CD +>D . AC BC AB +<例题2.(2020·辽宁锦州市·七年级期末)已知三角形ABC ,且AB =3厘米,BC =2厘米,A 、C 两点间的距离为x 厘米,那么x 的取值范围是________.【变式1】(2021·广西南宁市·七年级期末)现有一张边长为1的正方形纸片,第一次沿着线段1AP 剪开,留下三角形1ABP ;第二次取1BP 的中点2P ,再沿着2AP 剪开,留下三角形2ABP ;第三次取2BP 的中点3P ,再沿着3AP 剪开,留下三角形3ABP ;…,如此进行下去,在第n 次后,被剪去图形的面积之和是________.【变式2】(2020·浙江杭州市·七年级期末)已知直线//m n ,将一块含有45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 相交于点D .若124︒∠=,则2∠的度数为_______.例3.(2021·兰州市第三十六中学七年级期末)把两个形状相同,大小不同的三角板如图所示拼在一起,已知B DAC x ∠=∠=,2C BAD x ∠=∠=. (1)求C ∠的度数;(2)如图,如果ACF BCF ∠=∠,试比较AEC ∠和BFC ∠的大小.【变式1】(2021·浙江台州市·七年级期末)如图,在平面内有三个点、、A B C(1)根据下列语句画图: ①连接AB ; ②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ; (2)比较,,AB BD AB BC CD AD +++的大小关系.【变式2】(2021·四川绵阳市·东辰国际学校七年级期末)如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图①放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转(1)试说明∠DPC=90°;(2)如图②,若三角板PBD保持不动,三角板PAC绕点P逆时针旋转旋转一定角度,PF平分∠APD,PE 平分∠CPD,求∠EPF;(3)如图③.在图①基础上,若三角板PAC开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请求出旋转的时间.【考点2】:图形的全等例题1.(2001·浙江省杭州第十中学七年级期末)如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①②去【变式1】(2020·四川成都市·七年级期末)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A .90°B .120°C .135°D .150°【变式2】(2020·山东泰安市·七年级期末)下列说法正确的是( )A .全等三角形是指形状相同的两个三角形B .全等三角形是指面积相等的两个三角形C .两个等边三角形是全等三角形D .全等三角形是指两个能完全重合的三角形例题2.(2021·湖北黄石市·七年级期末)如图,是一个33⨯的正方形网格,则∠1+∠2+∠3+∠4=________.【变式1】(2020·重庆七年级期末)如图,图中由实线围成的图形与①是全等形的有______.(填番号)【变式2】(2020·山西临汾市·七年级期末)如图,ABC ADE ≅,如果5,7,6AB cm BC cm AC cm ===,那么DE 的长是______.例题3.(2020·江苏苏州市·七年级期末)如图,用三种不同的方法沿网格线把正方形分割成4个全等的图形(三种方法得到的图形相互间不全等).【变式1】(2018·全国七年级期末)如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,DE⊥AB,垂足为点F,且AB=DE.(1)求证:BD=BC;(2)若BD=6cm,求AC的长.【变式2】(2019·山东青岛市·七年级期末)图①,图②都是由一个正方形和一个等腰直角三角形组成的图形.(1)用实线把图①分割成六个全等图形;(2)用实线把图②分割成四个全等图形.分层提分题组A 基础过关练一.选择题(共6小题)1.(2021秋•思明区校级期末)如图,CM是△ABC的中线,AM=4cm,则BM的长为()A.3cm B.4cm C.5cm D.6cm2.(2021秋•东城区校级期末)如图,AD是△ABC中∠BAC的角平分线,DE⊥AC于点E,DE=4,AC=6,那么△ACD的面积是()A.10B.12C.16D.243.(2021秋•玉林期末)下列长度的三条线段能构成三角形的是()A.3,4,8B.5,6,11C.5,5,10D.3,7,94.(2021秋•全椒县期末)如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠BAC=50°,∠ABC=60°,则∠DAE=()A.5°B.4°C.8°D.6°5.(2021秋•无为市期末)如图,已知方格纸中是4个相同的正方形,则∠1+∠2=()A.60°B.90°C.100°D.120°6.(2021秋•望城区期末)在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°二.填空题(共8小题)7.(2021秋•岚皋县校级月考)图中以AE为边的三角形共有个.8.(2021秋•天河区期末)在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多3cm,已知AB=4cm,则AC的长为cm.9.(2021秋•定海区校级月考)如图,△ABC中,D是BC边上的一点(不与B,C重合),点E,F是线段AD的三等分点,记△BDF的面积为S1,△ACE的面积为S2,若S1+S2=3,则△ABC的面积为.10.(2021秋•港南区期中)如图,BD、CE是△ABC的高,若AB=4,AC=6,CE=5,则BD的长度是.11.(2021秋•广丰区期末)三角形的中线把三角形分成了面积相等的两部分,而三条中线交于一点,这一点叫此三角形的心.12.(2021秋•巢湖市期末)△ABC的两边长分别是2和5,且第三边为奇数,则第三边长为.13.(2021秋•包河区期末)如图,在△ABC中,∠ACB=90°,点D在AB上,将△BDC沿CD折叠,点B落在AC边上的点B′处,若∠ADB′=20°,则∠A的度数是.14.(2021秋•大连月考)直角三角形中两个锐角的差为20°,则较小的锐角度数是°.三.解答题(共3小题)15.(2021秋•启东市期末)如图,在△ABC中,∠CAE=18°,∠C=42°,∠CBD=27°.(1)求∠AFB的度数;(2)若∠BAF=2∠ABF,求∠BAF的度数.16.(2021秋•双台子区期末)如图,在△ABC中,CD平分∠ACB,AE⊥CD,垂足为F,交BC于点E,若∠BAE=33°,∠B=37°,求∠EAC的度数.17.(2021秋•临漳县期末)阅读并填空将三角尺(△MPN,∠MPN=90°)放置在△ABC上(点P在△ABC 内),如图1所示,三角尺的两边PM、PN恰好经过点B和点C.我们来探究:∠ABP与∠ACP是否存在某种数量关系.(1)特例探索:若∠A=50°,则∠PBC+∠PCB=度;∠ABP+∠ACP=度;(2)类比探索:∠ABP、∠ACP、∠A的关系是;(3)变式探索:如图2所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是.题组B 能力提升练一.选择题(共7小题)1.(2021秋•兴城市期末)如图,在△ABC中,∠C=90°,∠B=70°,点D、E分别在AB、AC上,将△ADE沿DE折叠,使点A落在点F处.则∠BDF﹣∠CEF=()A.20°B.30°C.40°D.50°2.(2021秋•椒江区期末)如图,在△ABC中,∠A=60°,∠B=70°,CD是∠ACB的平分线,CH⊥AB 于点H,则∠DCH的度数是()A.5°B.10°C.15°D.20°3.(2021秋•开州区期末)如图,在△ABC中,D在BC的延长线上,过D作DF⊥AB于F,交AC于E.已知∠A=35°,∠ECD=85°,则∠D=()A.30°B.40°C.45°D.50°4.(2021秋•忠县期末)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD 沿线段BD翻折,使得点A落在A'处,若∠A'BC=30°,则∠CBD=()A.5°B.10°C.15°D.20°5.(2021秋•密山市期末)如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=4,则S△ABC等于()A.16B.24C.32D.306.(2021秋•潮安区期末)如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为()A.4B.2C.6D.87.(2021秋•江宁区期中)如图,在四边形ABCD与四边形A'B'C'D'中,AB=A'B',∠B=∠B',BC=B'C'.下列条件中:①∠A=∠A',AD=A'D';②∠A=∠A',CD=C'D';③∠A=∠A',∠D=∠D';④AD=A'D',CD=C'D'.添加上述条件中的其中一个,可使四边形ABCD≌四边形A'B'C'D'.上述条件中符合要求的有()A.①②③B.①③④C.①④D.①②③④二.填空题(共8小题)8.(2021秋•博兴县期末)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=76°,∠C=64°,则∠DAE的度数是.9.(2021秋•平罗县期末)如图,△ABC中,D在BC的延长线上,过D作DF⊥AB于F,交AC于E.已知∠A=35°,∠ECD=85°,则∠D=.10.(2021秋•博白县期末)如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C 平分∠ACB,若∠BA'C=120°,则∠1+∠2的度数为.11.(2020秋•十堰期末)如图,在2×2的方格纸中,∠1+∠2等于.12.(2021秋•鹿城区校级月考)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示,连接BE并延长交AD于点F,若AG=2BG,则=.13.(2021春•东阳市期末)如图,把一张长方形纸板裁去两个边长为3cm的小正方形和两个全等的小长方形,再把剩余部分(阴影部分)四周折起,恰好做成一个有底有盖的长方体纸盒,纸盒底面长方形的长为3kcm,宽为2kcm,则:(1)裁去的每个小长方形面积为cm2.(用k的代数式表示)(2)若长方体纸盒的表面积是底面积的正整数倍,则正整数k的值为.14.(2021秋•湖州期末)如图,在△ABC中,AE是△ABC的角平分线,D是AE延长线上一点,DH⊥BC 于点H.若∠B=30°,∠C=50°,则∠EDH=.15.(2021秋•山亭区期末)定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是.三.解答题(共4小题)16.(2021秋•建昌县期末)如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=70°,∠ECD=20°.求∠ACB的度数.17.(2021秋•沙依巴克区校级期末)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE 平分∠BAC,求∠EAD的度数.18.(2021秋•南昌期末)如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,AE平分∠BAC交BC于点E.(1)若∠C=40°,求∠DAE的度数;(2)若EF⊥AE,交AC于点F,请补全图形,并在第(1)问的条件下,求∠FEC的度数.19.(2021秋•邗江区期末)点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,一直角三角板的直角顶点放在点O处.(1)如图1,将三角板DOE的一边OD与射线OB重合时,则∠COD=∠COE;(2)如图2,将图1中的三角板DOE绕点O逆时针旋转一定角度,当OC恰好是∠BOE的角平分线时,求∠COD的度数;(3)将图1中的三角尺DOE绕点O逆时针旋转旋转一周,设旋转的角度为α度,在旋转的过程中,能否使∠AOE=3∠COD?若能,求出α的度数;若不能,说明理由.题组C 培优拔尖练一.选择题(共3小题)1.(2021秋•拱墅区校级月考)如图,O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,则的最大值是()A.B.1C.D.2.(2021春•九龙坡区校级期末)如图,在△ABC中,延长CA至点F,使得AF=CA,延长AB至点D,使得BD=2AB,延长BC至点E,使得CE=3CB,连接EF、FD、DE,若S△DEF=36,则S△ABC为()A.2B.3C.4D.53.(2021春•青山区期末)如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF 交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CH.A.①②③④B.①②③C.②④D.①③二.填空题(共3小题)4.(2021秋•武昌区期末)如图,在△ABC中,∠ACB=2α,CD平分∠ACB,∠CAD=30°﹣α,∠BAD =30°,则∠BDC=.(用含α的式子表示)5.(2021春•高邮市期中)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A4B4C4,则其面积S4=.6.(2021春•宝应县月考)如图,A,B,C分别是线段A1B、B1C、C1A的中点,若△A1B1C1的面积是28,那么△ABC的面积是.三.解答题(共5小题)7.(2021秋•青田县期末)如图,直线l∥线段BC,点A是直线l上一动点.在△ABC中,AD是△ABC的高线,AE是∠BAC的角平分线.(1)如图1,若∠ABC=65°,∠BAC=80°,求∠DAE的度数;(2)当点A在直线l上运动时,探究∠BAD,∠DAE,∠BAE之间的数量关系,并画出对应图形进行说明.8.(2021秋•西湖区校级期末)新定义:在△ABC中,若存在一个内角是另外一个内角度数的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=60°,∠C=40°,可知∠A=2∠C,所以△ABC为2倍角三角形.(1)在△DEF中,∠E=40°,∠F=35°,则△DEF为倍角三角形.(2)如图1,直线MN与直线PQ相交于O,∠POM=30°,点A、点B分别是射线OP、OM上的动点;已知∠BAO、∠OBA的角平分线交于点C,在△ABC中,如果有一个角是另一个角的2倍,请求出∠BAC 的度数.(3)如图2,直线MN⊥直线PQ于点O,点A、点B分别在射线OP、OM上,已知∠BAO、∠OAG的角平分线分别与∠BOQ的角平分线所在的直线交于点E、F,若△AEF为3倍角三角形,试求∠ABO的度数.9.(2021秋•兴庆区校级期末)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,求出∠PFD与∠AEM的数量关系;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.10.我们把两个能够互相重合的图形称为全等形.(1)请你用四种方法把长和宽分别为5和3的矩形分成四个均不全等的小矩形或正方形,且矩形或正方形的各边长均为整数;(2)是否能将上述3×5的矩形分成五个均不全等的整数边矩形?若能,请画出.11.(2021秋•思明区校级期末)问题提出:(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”.如图1,△ABC中,AC=7,BC=9,AB=10,P为AC上一点,当AP=时,△ABP与△CBP是偏等积三角形;问题解决:(2)如图2,四边形ABED是一片绿色花园,△ACB、△DCE是等腰直角三角形,∠ACB=∠DCE=90°(0<∠BCE<90°),①△ACD与△BCE是偏等积三角形吗?请说明理由;②已知BE=60m,△ACD的面积为2100m3.如图3,计划修建一条经过点C的笔直的小路CF,F在BE 边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.。

七年级下册数学全等三角形模型

七年级下册数学全等三角形模型

七年级下册数学全等三角形模型一、全等三角形的概念。

1. 定义。

- 能够完全重合的两个三角形叫做全等三角形。

- 重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

- 例如,在△ABC和△DEF中,如果△ABC与△DEF能够完全重合,那么A与D、B 与E、C与F是对应顶点,AB与DE、BC与EF、AC与DF是对应边,∠A与∠D、∠B与∠E、∠C与∠F是对应角。

2. 表示方法。

- 全等用符号“≌”表示,读作“全等于”。

- 例如,△ABC≌△DEF,表示△ABC和△DEF全等。

书写时要注意对应顶点的字母写在对应的位置上。

二、全等三角形的性质。

1. 对应边相等。

- 如果△ABC≌△DEF,那么AB = DE,BC = EF,AC = DF。

- 例如,已知两个全等三角形的其中一条对应边的长度为5cm,那么另一个三角形中与之对应的边的长度也为5cm。

2. 对应角相等。

- 如果△ABC≌△DEF,那么∠A=∠D,∠B = ∠E,∠C=∠F。

- 在解决角度问题时,若两个三角形全等,已知一个三角形中的某个角的度数,就可以得出另一个三角形中对应角的度数。

三、全等三角形的判定模型(人教版七年级下册)1. SSS(边边边)模型。

- 判定条件:三边对应相等的两个三角形全等。

- 图形示例:- 如在△ABC和△DEF中,AB = DE,BC = EF,AC = DF,则△ABC≌△DEF。

- 应用举例:- 已知一个三角形的三边长度分别为3cm、4cm、5cm,另一个三角形三边长度也分别为3cm、4cm、5cm,根据SSS判定,这两个三角形全等。

2. SAS(边角边)模型。

- 判定条件:两边和它们的夹角对应相等的两个三角形全等。

- 图形示例:- 在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,则△ABC≌△DEF。

- 应用举例:- 若在△ABC中,AB = 5cm,∠A = 60°,AC = 4cm,在△DEF中,DE = 5cm,∠D = 60°,DF = 4cm,根据SAS判定,△ABC≌△DEF。

七年级数学下册课件(冀教版)三角形的内角和外角

七年级数学下册课件(冀教版)三角形的内角和外角
导引:图中△CEF 的三边的延长线只有EF 的延长线FA, CE 的延长线EB,延长线FA 与边FC 构成的角为 ∠AFC;延长线EB 与边EF 构成的角为∠BEF.由三 角形外角的概念可以判断∠AFC,∠BEF 是△CEF 的外角.
总结
判定一个角是三角形的外角的三个条件:一 是顶点在三角形的一个顶点上;二是一边是三角 形的一条边;三是另一边是三角形的另一条边的 延长线.
∠A 等于( A )
A.40°
B.60°
C.80°
D.90°
7 在△ABC 中,∠A∶∠B∶∠C=3∶4∶5,则∠C 等于( C )
A.45°
B.60°
C.75°
D.90°
知识点 2 三角形内角和的应用
例2 在△ABC 中,∠A∶∠B∶∠C=1∶2∶3,试判断△ABC
的形状,并说明理由.
导引:引用辅助量x °,用x °表示出△ABC 的三个内角, 在△ABC 中,运用三角形内角和定理构造方程,解 方程后,求出△ABC 中各角的度数,再判断△ABC
5 直角三角尺和直尺如图放置.若∠1=20°,则∠2的度数为( C ) A.60° B.50° C.40° D.30°
6 如图,在△ABC中,∠ABC,∠ACB 的平分线BE,CD 相交于 点F,∠ABC=42°,∠A=60°,则∠BFC=( C )
A.118° B.119° C.120° D.121°
解:(1)如图,过A 作AF∥BD,∴∠BAF=∠ABD=40°. 显然AF∥EC,∴∠CAF=∠ECA=50°.∴∠BAC= ∠BAF+∠CAF=40°+50°=90°.∴△ABC 为直
角三角形.
(2)∵∠DBC=75°,∠DBA=40°,∴∠ABC= ∠DBC-∠DBA=75°-40°=35°.∴在Rt△ABC 中,∠BCA=90°-∠ABC=90°-35°=55°.

七年级下册数学三角形的三边关系

七年级下册数学三角形的三边关系

三角形的三边关系【知识要点】1.三角形的三边关系是指:三角形任意两边之和大于第三边; 三角形任意两边之差小于第三边.2.三角形的分类:①按角分为:锐角三角形、直角三角形和钝角三角形; ②按边分为:等腰三角形和不等边三角形;等边三角形是等腰三角形中的特殊三角形.【典型例题】例1. 已知等腰三角形一边长为12cm ,腰长是底边长的34,求这个三角形的周长.例2.若a 、b 、c 为△ABC 的三边之长,化简:.a b c b c a c a b --+--+--例3.一个三角形有两边相等,周长为18cm,其中不相等的边长为4cm,求其它两边的长; 若把“不相等的边长为4cm ”改为“其中一边长为4cm ”,其它条件不变,求其它两边的长 .例4.(1)小明从家C 点去学校B 点,有两条路可走,C →O →B ;C →A →B ,可小明每回上学都走C →O →B ,因为他认为该路比另一条要近,小明的想法对吗?为什么?(2)若还有一条路C →E →D →B ,走哪一条路更近?为什么?BAC例5. 如图所示,已知P 是△ABC 内任意一点,求证:1()2AB BC CA PA ++<+PB PC AB +<BC CA ++例6.已知三角形的一边是另一边的两倍,求证:它的最小边在它的周长的61与41之间.【初试锋芒】一.选择题1.以下列各组线段的长为边,能组成三角形的是( )A 、1cm ,2cm ,4cmB 、8cm ,6cm ,4cmC 、12cm ,5cm ,6cmD 、2cm ,3cm ,6cm 2.有长度分别为10cm ,7cm ,5cm 和3cm 的四根铁丝,选其中三根组成三角形则( ) A 、共有4种选法B 、只有3种选法C 、只有2种选法D 、只有1种选法3.已知三角形三条边的长分别是5,6和a ,则a 的取值范围是( ) A 、111<<a B 、62<<a C 、2>aD 、51<<a4.在一个三角形中,两条边长分别为2和7,另一条边的长是奇数,符合这样条件的三角形( )A 、不存在B 、只有一个C 、只有两个D 、有三个 5.ABC ∆的三边c b a ,,,且()()0=-⋅-+c a c b a ,那么ABC ∆中( ) A 、c b a >> B 、c b a =+ C 、c a = D 、不能确定其边的关系 6.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cmB. cm 12C. cm 15D. 12cm 或15cm7.三角形的两边长分别为2和5,则三角形的周长t 的取值范围是( ) A 、73<<t B 、129<<tC 、1410<<tD 、无法确定二.解答题1.三角形的两条边长分别为3cm 和4cm .①求第三边c 的取值范围.②当周长为偶数时,求第三边的长.2.已知△ABC 的周长为18cm ,且a +b =2c ,b =2a ,求a 、b 、c【大展身手】1.下列长度的各组线段中,能组成三角形的是( ) A 、3,3,6B 、3,7,11C 、2.5,4.5,2D 、41,31,21 2.等腰三角形的一边长为2cm ,另一边长为6cm ,则其第三边长( ) A 、2cmB 、5cmC 、7cmD 、6cm3. 已知三角形的两边长为2和7,第三边的数值是奇数,那么这个三角形的周长是( ) A .14 B .15 C .16 D .17 4.已知三角形三条边的长分别是2,3和a ,则a 的取值范围是( ) A 、32<<aB 、50<<aC 、2>aD 、51<<a5.一棵9m 高的大树从离地面4m 高的地方折断,则树顶与地面的接触点距离树根可能是( )A .1mB .3mC .9mD .13m 6.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值为( ) A .6个B. 5个C. 4个D. 3个二.解答题1.设a 、b 、c 是△ABC 的三边,化简a b c a b c +++--2.已知等腰三角形的周长为20.(1)当一边长为6时,另两边的长是多少?(2)当一边长为4时,另两边的长是多少?。

七年级数学下册专题第8讲三角形重点、考点知识总结及练习

七年级数学下册专题第8讲三角形重点、考点知识总结及练习

=90°+ 1 ∠A, 2
即 D 90 1 A . 2
【方法总结】
角平分线把一个角分成两个相等的角,利用倒角可得到角乊间的关系。此题可记住结论:
当 BD、CD 是三角形 ABC 的角平分线时, D 90 1 A 2
【随堂练习】 1.(2017 春•辉县市期末)如图,△ABC 中,AD 是 BC 边上的高,AE 是∠BAC 的平分线,∠EAD=5°,∠B=50°,求∠C 的度数.
专题 第 8 讲三角形
知识点 1 三角形的三边关系
1、三角形三条边乊间的关系: 三角形任意两边乊和大于第三边,三角形任意两边乊差小于第三边. 2、解题技巧:“当三条线段中最长的线段小于另两条线段乊和时,戒当三条线段中最短的线 段大于另两条线段乊差时,即可组成三角形”
【典例】
1. 已知 a、b、c 为△ABC 的三边,化简:|a+b﹣c|﹣|a﹣b﹣c|+|a﹣b+2c|=________. 【答案】3a﹣b 【解析】解:∵△ABC 的三边长分别是 a、b、c, ∴必须满足两边乊和大于第三边,则: a+b﹣c=(a+b)-c>0, a﹣b﹣c=a-(b+c)<0, a﹣b+c=(a+c)-b>0(即 a﹣b+2c>0),
⊥AC 于 M,探究线段 PK、PM 不 CG 乊间的数量关系.
【解析】解:连接 AP,
∵CG⊥AB,PK⊥AB,PM⊥AC,
∴S△ABC=
1 2
AB•CG,S△ABP=
1 2
AB•PK,S△ACP=
1 2
AC•PM,
∵S△ABC=S△ABP+S△ACP,
∴ 1 AB•CG= 1 AB•PK+ 1 AC•PM,

初一下册数学《三角形》知识点复习总结

初一下册数学《三角形》知识点复习总结

初一下册数学《三角形》知识点复习总结初一下册数学《三角形》知识点复习总结章一一、三角函数1.定义:在rt△abc中,∠c=rt∠,则sina= ;cosa= ;tga= ;ctga= .2. 特殊角的三角函数值:0° 30° 45° 60° 90°sinαcosαtgα /ctgα /3. 互余两角的三角函数关系:sin(90°-α)=cosα;…4. 三角函数值随角度变化的关系5.查三角函数表二、解直角三角形1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

2. 依据:①边的关系:②角的关系:a+b=90°③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

三、对实际问题的处理1. 俯、仰角:2.方位角、象限角:3.坡度:4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

初一下册数学《三角形》知识点复习总结章二一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

4.三角形的内角和定理,能用平行线的性质推出这一定理。

5.能应用三角形内角和定理解决一些简单的实际问题。

二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。

三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;用三角形三边不等关系判定三条线段可否组成三角形。

四、知识框架五、知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

七年级数学下册 第四章 三角形 1 认识三角形第2课时 三角形的三边关系教学课件 北师大版

七年级数学下册 第四章 三角形 1 认识三角形第2课时 三角形的三边关系教学课件 北师大版
谢谢观赏
You made my day!
我们,还在路上……
பைடு நூலகம்
课程讲授
2 三角形的三边关系
问题1:任意画出一个△ABC,从其中一个顶点B出发,
沿三角形的边到点C,有几条线路可以选择,各条线路
的长有什么关系?
A
两点之间线段最短.
由此可以得到: AC BC AB
B
C
AB BC AC AC AB BC
提示:两点之间,线段最短.
课程讲授
2 三角形的三边关系
问题1:观察下图中的三角形,试着比较它们之间的不 同之处.
提示:可根据三角形三边的长度关系进行比较.
顶角
腰 底角
不等边三角形 (三条边长度均不相等)
等腰三角形 底边
(两条边长度相等)
等边三角形 (三条边长相等)
课程讲授
1 等腰三角形和等边三角形
以“是否有边相等”,可以将三角形分为两类: _三__边__都__不__相__等__的__三__角__形_和__等__腰__三__角__形_. 三条边各不相等的三角形叫做__不__等__边__三__角__形____. 有两条边相等的三角形叫做__等__腰__三__角__形_. 三条边都相等的三角形叫做_等__边__三__角__形_.
等腰三角形与等边三角形的关系: 等边三角形是特__殊__的等边三角形,即_底__边__和__腰__相__等__ 的等腰三角形.
课程讲授
1 等腰三角形和等边三角形
三边都不 相等的三 角形
等腰三角形
等边三 角形
三角形
课程讲授
1 等腰三角形和等边三角形
练一练:根据三角形的分类,判断下列说法是否正确。
(1)一个钝角三角形可能是等腰三角形.( √ ) (2)等边三角形是特殊的等腰三角形.( √ ) (3)等腰三角形的腰和底一定不相等.( × ) (4)等边三角形是锐角三角形.( √ ) (5)直角三角形一定不是等腰三角形.( × )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8、如图, AD、AF分别是△ABC 的高和角平线,C 76,B 36 则 DAF =______度。
填一填
9、若三角形三个内角的度数
之比为12∶23∶346 ,则这三个内角 的度数分别是_143_8_00_0、、__5_64_00_0、、__1_890_0_80_0。
10、在△ABC中,根据下列条 件,求∠C的度数。 ③①②∠∠ABB=A⊥4=03B08C,0,∠∠A∶AB=∠3753C0 =,3∶4
学习了本节课你有 哪些收获?
谢谢
【思路点拨】要证明AD平分∠BAE只需证明∠BAD=∠DAE即可, 根据三角形的外角等于不相邻内角的和,则∠ADC=∠B+∠BAD, 又∠DAC=∠EAC+∠DAE,则根据题目的已知条件: ∠B=∠EAC, ∠ADC=∠DAC,可以求得∠BAD=∠DAE。
例3 若一个多边形外角和与内角和相等,则这个多边形是_____边形。
第十七章 三角形 复习课件
你学会了哪些?
三角形的边
与三角形有关


的线段
中线

角平分线

三角形的内角和 多边形的内角和
三角形的外角
多边形的外角和
如图,在△ABC中,AD是BC边上的中线,△ADC的周
例1 长比△ABD的周长多3cm, AB与AC的和为13cm,求AC的
长。
解:∵AD是BC边上的中线, ∴D为BC的中点, ∴CD=BD。 ∵C△ADC-C△ABD=3, ∴AC-AB=3, 又∵AB+AC=13, ∴AC=8cm,即AC的长度是8cm。
6、同上题图,若
A
△ACD的面积为
630cm2,则△ABC 的面积为1_62_00_cc_mm_2。2 B D C
填一填
7、如图,在△ABC中,CE,
BF是两条高,C50E°=,3205°,则∠EBF的A 度数
∠FBC的度
E
F
数是__24_0_°_。
B
C
看你会不会
解:设这个多边形的边数是n,则(n-2)·180°=360°,解得 n=4,故这个多边形为四边形。
【思路点拨】抓住多边形的内角和与多边形的外角和的相等关系列 方程,然后解方程可求出多边形的边数。
看你会不会
1、已知一个三角形的三边 长为3、8、x,则x的取值范 围是 5<x<11 。
2、已知一个三角形的三边 长3、a+2、8,则a的取值 范围是 3<a<9 。
∠∠CC== 68590500
填一填
11、如图,在△ABC中,两条
角平分线BD和CE相交于点o,
若∠BOC=1200,那么∠A的度
数是 600 。
A
EO D
B
C
画一画
1、已知:∠a,线段a, 求作:Rt△ABC,使∠A=∠a ∠C为Rt∠,BC=a(要求尺规作
图,保留作图痕迹,写出结论,
但不要求写作法)
填一填
3、等腰三角形一边的长是 53 另一边的长是8,则它的周
长是 181或9 21 。
4、一个三角形的两边长分别 是 2cm 和9cm,第三边的长为 奇数,则第三边的长为__9c_m__。
填一填
5、如图,已知:AD是△ABC
的中线,△ABC的面积为580cm2,
则△ABD的面积是_24_50_cm__2。
【思路点拨】根据中线的定义知CD=BD。 结合三角形周长公 式知AC-AB=5cm,又AC+AB=11cm, 易求AC的长度。
例2
如图,在△ABC中,D、E分别是BC上两点,∠B=∠EAC,
∠ADC=∠DAC。试证明:D平分∠BAE。
证明: ∵∠ADC=∠B+∠BAD, ∠DAC=∠EAC+∠DAE。 ∠ADC=∠DAC,∠B=∠EAC, ∴∠BAD=∠DAE,即AD平分∠BAE。
相关文档
最新文档