2019版中考数学复习 配方法教案 新人教版
新人教版九年级数学上册:《配方法》教学案
配方法课题§2.2.3 配方法(三)教学目标(一)教学知识点1.利用方程解决实际问题.2.训练用配方法解题的技能.(二)能力训练要求1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.2.能根据具体问题的实际意义检验结果的合理性.3.进一步训练利用配方法解题的技能.(三)情感与价值观要求通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性.教学重点利用方程解决实际问题教学难点对于开放性问题的解决,即如何设计方案教学方法分组讨论法教具准备投影片二张第一张:练习(记作投影片§2.2.3 A)第二张:实际问题(记作投影片§2.2.3 B)教学过程Ⅰ.巧设情景问题,引入新课[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片§2.2.3 A)用配方法解下列一元二次方程:(1)x 2+6x+8=0;(2)x 2-8x+15=0;(3)x 2-3x-7=0;(4)3x 2-8x+4=0;(5)6x 2-11x-10=0;(6)2x 2+21x-11=0.[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、(4)、(6).[师]各组做完了没有?[生齐声]做完了.[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.[生甲]我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x 1=-2,x 2=-4.解方程(3)时,在配方的时候,他配错了,即x 2-3x-7=0,x 2-3x =7,x 2-3x+32=7+32 应为(-23)2. [师]很好,这里一次项-3x 的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?[生乙]方程(3)的解为x 1=2373,23732-=+x . [师]好,继续.[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x 1=25,x 2=-23. [生丁]××同学做的是方程(2)、(4)、(6).他解的完全正确,即方程(2)的解:x 1=5,x 2=3,方程(4)的解:x 1=2,x 2=23,方程(6)的解:x l =21,x 2=-11. [师]利用配方法求解方程时,一定要注意:①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1. 另外,大家在利用配方法求解方程时,要有一定的技能.这就需要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.这节课我们就来解决一个实际问题.Ⅱ.讲授新课[师]看大屏幕.(出示投影片§ 2.2.3B)在一块长16 m ,宽12 m 的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?[师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法.[生甲]我们组的设计方案如右图所示,其中花园四周是小路,它们的宽度都相等.这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2 m 或12 m .[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由.[生乙]甲组的设计符合要求.我们可以假设小路的宽度为x m ,则根据题意,可得方程 (16-2x)(12-2x)=21×16×12, 也就是x 2-14x-24=0.然后利用配方法来求解这个方程,即x 2-14x+24=0,x 2-14x =-24,x 2-14x+72=-24+72,(x-7)2=25,x-7=±5,即x-7=5,x-7=-5.∴x 1=12.x 2=2.因此,小路的宽度为2 m 或12 m .由以上所述知:甲组的设计方案符合要求.[生丙]不对,因为荒地的宽度是12 m ,所以小路的宽度绝对不能为12 m .因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2 m .[师]大家来作判断,谁说的合乎实际?[生齐声]丙同学说得有理.[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案.[生丁]我们组的设计方案如右图.我们是以矩形的四个顶点为圆心,以约5.5 m 长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为x m ,根据题意,可得πx 2=21×12×16. 解得x=± 96≈±5.5.因为半径为正数,所以x =-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求.[生戊]由丁同学组的启发,我又设计了一个方案,如右图.以矩形的对角线的交点为圆心,以5.5 m 长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?[生庚]我们组设计的方案如右图.顺次连结矩形各边的中点,所得到的四边形即是作为花园的场地.因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24 m 2(即21×6×8),所以四个直角三角形的面积之和为96 m 2,则剩下的面积也正好是96 m 2,即等于矩形面积的一半.因此这个设计方案也符合要求.[生辛]我们组设计的方案如下图.图中的阴影部分可作为建花园的场所.因为阴影部分的面积为96 m 2,正好是矩形面积的一半,所以这个设计也符合要求.[生丑]我们组设计的方案如右图.图中的阴影部分可作为建花园的场地.经计算,它符合要求.[生癸]我们组的设计方案如下图.图中的阴影部分是作为建花园的场地.[师]噢,同学们能帮癸组求出图中的x 吗?[生]能,根据题意,可得方程2×21 (16-x)(12-x) =21×16×12, 即x 2-28x+96=0,x 2-28x =-96,x 2-28x+142=-96+142,(x-14)2=100,x-14=±10.∴x 1=24,x 2=4.因为矩形的长为16 m ,所以x 1=24不符合题意.因此图中的x 只能为4 m.[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案. 接下来,我们再来看一个设计方案.Ⅲ.课堂练习(一)课本P 55随堂练习 11.小颖的设计方案如图所示,你能帮助她求出图中的x 吗?解:根据题意,得 (16-x)(12-x)=21×16×12, 即x 2-28x+96=0.解这个方程,得x 1=4,x 2=24(舍去).所以x=4.(二)看课本P 53~P 54,然后小结.Ⅳ.课时小结本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性.另外,还应注意用配方法解题的技能.Ⅴ.课后作业(一)课本P 55习题2.5 1、2(二)1.预习内容:P 56~P 572.预习提纲如何推导一元二次方程的求根公式.Ⅵ.活动与探究汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米,查有关资料知,甲种车的刹车距离S 甲(米)与车速x(千米/时)之间有下列关系:S 甲=0.1x+0.01x 2;乙种车的刹车距离S 乙(米)与车速x(千米/时)的关系如下图所示.请你就两车的速度方面分析相碰的原因.[过程]通过对本题的研究、探讨,让学生体会数学与现实生活紧密相连. 由甲车的刹车距离和车速的关系式S 甲=0.1x+0.01x 2,又S 甲=12,从而可求得甲 车速度,对乙车而言,从图象上知刹车距离与车速是成正比例函数关系,因而可设为x 乙=kx ,又其过点(60,15),从而得到k 值,由10<s 乙<12,可得乙车车速,进而可确定事故的原因.[结果]解:对于甲车:∵甲车刹车距离为12米,根据题意,得12=0.1x+0.01x 2.解这个方程,得x 1=30或x 2=-40(舍去),即甲车的车速为30千米/时,不超过限速.对于乙车:由图象知,其关系是一个正比例函数,设此函数为x 乙=kx∵经过点(60,15),∴15=60k , ∴k =41,即此函数解析式为S 乙=41x 根据题意,得10<41x<12. ∴40<x<48.∴乙车超过限速40千米/时的规定.∴就速度方面分析,两车相碰的原因在于乙车超速行驶.板书设计§2.2.3 配方法(三) 一、实际问题的设计方案:设计方案一:设计方案二:设计方案三:设计方案四:二、课堂练习三、课时小结四、课后作业。
2019版中考数学复习 配方法教案 新人教版
2019 版中考数学复习 配方法教案 新人教版
教学时间
教学媒体 教 知识
技能 学
过程 目 方法
情感 标 态度
教学重点
教学难点
课题
配方法
新 课型 授
多媒体
1.进一步理解配方法和配方的目的.
2.掌握运用配方法解一元二次方程的步骤.
3.会利用配方法熟练灵活地解二次项系数不是 1 的一元二次方程.
通过对比用配方法解二次项系数是 1 的一元二次方程,解二次项系数不是 1 的 一元二次方程,经历从简单到复杂的过程,对配方法全面认识.
D.-2
6. a , b , c 是 ABC的三条边 ○1 当 a2 2ab c2 2bc 时,试判断 ABC的形状. ○2 证明 a2 b2 c2 2ac 0 四、小结归纳
用配方法解一元二次方程的步骤:
1.把原方程化为 ax2 bx c 0a 0 的形式,
2.把常数项移到方程右边;
教学程序及教学内容
师生行为
设计意图
一、复习引入
导语:我们在上节课,已经学习了用直接开平方法解形如 x2=p 点题,板书课题. 回顾上节课内
(p≥0)或(mx+n)2=p(p≥0)的一元二次方程,以及用配方
容以得以衔接
法解二次项系数是 1,一次项系数是偶数的一元二次方程,这
节课继续学习配方法解一元二次方程.
分析:
复习完全平方
式的,为下面用
配方法解方程
作铺垫
让学生独立完成
○1 ,复习巩固上节
课内容. 通过对比方程○1 ○2 温故知新,对比 结构,尝试解方程 探究,发现二次 ○2 ,探讨二次项系 项系数不是 1 数不是 1 的一元二 的一元二次方 次方程的解法,教 程的解法,培养 师组织学生讨论, 学生发现问题 师生交流看法,肯 的能力
人教版九年级数学上册:21.2.1 配方法 教学设计
人教版九年级数学上册:21.2.1 配方法教学设计一. 教材分析人教版九年级数学上册21.2.1配方法是数轴和实数章节的一部分,主要介绍了配方法的基本原理和应用。
通过配方法,学生可以更好地理解实数的性质,特别是平方根的概念。
本节课的内容为后续学习二次函数和方程打下基础。
二. 学情分析九年级的学生已经掌握了实数的基本概念,具备一定的逻辑思维能力。
但部分学生对实数的性质和配方法的理解可能还不够深入。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 教学目标1.让学生理解配方法的原理,掌握配方法的基本步骤。
2.培养学生运用配方法解决实际问题的能力。
3.加深学生对实数性质的认识,为后续学习打下基础。
四. 教学重难点1.配方法的原理和步骤。
2.运用配方法解决实际问题。
五. 教学方法1.讲授法:讲解配方法的原理和步骤,引导学生理解实数的性质。
2.案例分析法:通过具体案例,让学生学会运用配方法解决问题。
3.讨论法:鼓励学生参与课堂讨论,提高学生的逻辑思维能力。
六. 教学准备1.教学课件:制作配方法的动画演示,帮助学生形象地理解原理。
2.案例素材:准备一些实际问题,用于课堂练习和巩固。
3.练习题:设计一些有关配方法的练习题,检验学生对知识点的掌握。
七. 教学过程1.导入(5分钟)利用课件展示实数的性质,引导学生回顾已学知识。
然后提出本节课的主题——配方法,激发学生的学习兴趣。
2.呈现(10分钟)讲解配方法的原理和步骤,让学生跟随教师的讲解,逐步理解实数的性质。
通过动画演示,让学生直观地感受配方法的过程。
3.操练(10分钟)呈现一些实际问题,让学生运用配方法进行解决。
引导学生分组讨论,共同完成任务。
教师巡回辅导,解答学生的疑问。
4.巩固(10分钟)让学生自主完成练习题,检验对配方法的理解。
教师选取部分学生的作业进行点评,总结错误原因,强化知识点。
5.拓展(10分钟)引导学生思考:配方法在实际生活中的应用。
人教版九年级数学上册《配方法》教案
《配方法》教案
教学目标:
1.会用配方法解简单的数字系数的一元二次方程.
2.了解用配方法解一元二次方程的基本步骤.
3.通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.
教学重点:
运用配方法解简单的数字系数的一元二次方程.
教学难点:
配方过程中,解一元二次方程的要点的理解.
教学过程:
解下列一元二次方程
5)1(2=x 5)2)(2(2=+x
5)6)(3(2=+x 53612)4(2=++x x
解方程015122=-+x x
解:15122=+x x ,(常数项移到右边)
222)2
12(15)212(12+=++x x (这里的二次项系数必须为1) 51)6(2=+x (整理)
51)6(±=+x (运用两边开平方)
因此方程015122=-+x x 有两个根
6511-=x 6512--=x (不合题意应舍去)
例:
2221810
221333640
.
x x x x
x x -+=+=-+=()()()学生讨论完成
课堂小结:
本节课重点学习了配方法解一元二次方程.当方程形如)0()(2≥=+n n m x 时,可直接用开平方法求解比较简单,但两边同时开平方时,要注意取正负号,不要与求算术平方根混淆.用配方法解一元二次方程首先要注意将方程化成一般形式,如果二次项系数不为1,
要先化二次项系数为1再开始配方,配方时应注意两边同时同上一次项系数一半的平方;最后整理出)0()(2≥=+n n m x 的形式,而后应用开平方求解.。
人教版数学九年级上册《配方法》教学设计1
人教版数学九年级上册《配方法》教学设计1一. 教材分析人教版数学九年级上册《配方法》是本学期的重点内容,主要让学生掌握配方法的基本概念、方法和应用。
通过配方法的学习,使学生能解决一些实际问题,提高他们的数学解决问题的能力。
本节课的教学内容主要包括配方法的基本概念、配方法的步骤和配方法在解决实际问题中的应用。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一些基本的代数运算和数学概念有一定的了解。
但学生在学习过程中,对于较为复杂的数学问题,仍存在一定的困难。
因此,在教学过程中,需要教师引导学生逐步理解配方法的概念和步骤,并通过大量的例子让学生掌握配方法在解决实际问题中的应用。
三. 教学目标1.知识与技能:让学生掌握配方法的基本概念、方法和应用。
2.过程与方法:通过学生的自主探究和合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生体验到数学在生活中的重要性。
四. 教学重难点1.配方法的基本概念和步骤。
2.配方法在解决实际问题中的应用。
五. 教学方法1.引导法:教师引导学生自主探究,发现配方法的基本概念和步骤。
2.讲解法:教师通过讲解配方法的原理和例子,使学生理解和掌握配方法。
3.练习法:学生通过大量的练习,巩固所学的配方法知识。
4.合作交流法:学生分组讨论,共同解决问题,培养学生的合作精神。
六. 教学准备1.准备相关的教学PPT,包括配方法的基本概念、步骤和应用。
2.准备一些实际问题,让学生在课堂上进行配方法的实践操作。
3.准备一些练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过一个实际问题,引导学生思考如何解决这个问题。
例如,一个长方形的长是10cm,宽是5cm,求这个长方形的面积。
让学生尝试使用已学的知识解决这个问题,从而引出配方法的概念。
2.呈现(15分钟)教师通过PPT呈现配方法的基本概念和步骤,配方法的定义、目的和应用。
人教版数学九年级上册21.2.2《配方法(1)》教学设计
人教版数学九年级上册21.2.2《配方法(1)》教学设计一. 教材分析《配方法(1)》是人教版数学九年级上册第21.2.2节的内容,主要讲述了配方法的基本概念和应用。
配方法是一种解决二次方程的有效方法,通过将二次方程转化为完全平方形式,从而简化计算和求解过程。
本节内容主要包括配方法的定义、配方法的步骤以及配方法在解决实际问题中的应用。
二. 学情分析九年级的学生已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。
但学生在解决实际问题时,往往对这些方法的应用范围和条件把握不清,不能灵活运用。
因此,在教学本节内容时,需要帮助学生巩固已有的知识,并通过实例讲解和练习,让学生理解和掌握配方法的特点和应用。
三. 教学目标1.知识与技能:使学生理解配方法的基本概念和步骤,能够运用配方法解决简单的实际问题。
2.过程与方法:通过实例分析和练习,培养学生运用配方法解决问题的能力,提高学生的数学思维水平。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 教学重难点1.配方法的基本概念和步骤。
2.配方法在解决实际问题中的应用。
五. 教学方法1.讲授法:通过讲解配方法的基本概念和步骤,使学生掌握配方法的理论知识。
2.案例分析法:通过实例分析,让学生了解配方法在解决实际问题中的应用。
3.练习法:通过课堂练习和课后作业,巩固学生对配方法的理解和应用。
4.小组讨论法:鼓励学生分组讨论,培养学生的团队合作精神和数学思维能力。
六. 教学准备1.教材和教辅:准备人教版数学九年级上册教材和相关教辅资料。
2.课件和幻灯片:制作课件和幻灯片,用于课堂讲解和展示。
3.练习题和答案:准备一些配方法的练习题,并准备相应的答案。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,例如:“某数加上其倒数的和为2,求这个数。
”让学生尝试解决此问题,引发学生对配方法的思考。
2.呈现(15分钟)讲解配方法的基本概念和步骤,并举例说明配方法在解决实际问题中的应用。
人教版数学九年级上册教学设计21.2.1《配方法》
人教版数学九年级上册教学设计21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21.2.1节的内容,主要是让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。
本节课的内容是学生在学习了二次函数的基础上进行学习的,对于学生来说,配方法是一种新的解决问题的方法,对于教师来说,需要引导学生从直观的图形理解配方法,逐步过渡到抽象的数学公式。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于二次函数的基本概念和性质有一定的了解。
但是,学生在学习过程中,对于一些抽象的数学公式可能会感到困惑,因此,教师需要通过具体的例子,引导学生理解配方法的原理和步骤。
三. 教学目标1.让学生理解配方法的原理和步骤,并能够运用配方法解决一些实际问题。
2.培养学生的逻辑思维能力和抽象思维能力。
3.通过对配方法的学习,培养学生解决问题的能力和创新精神。
四. 教学重难点1.配方法的原理和步骤。
2.如何引导学生从直观的图形理解配方法,逐步过渡到抽象的数学公式。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解配方法的原理和步骤。
2.采用数形结合的教学方法,通过直观的图形,帮助学生理解配方法。
3.采用小组合作的学习方法,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的教学PPT,包括配方法的原理和步骤,以及一些实际问题的例子。
2.准备一些相关的数学题目,用于巩固学生对配方法的理解。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这个问题,从而引出配方法的概念。
2.呈现(10分钟)通过PPT,向学生介绍配方法的原理和步骤,以及一些相关的例子。
3.操练(10分钟)让学生通过小组合作,解决一些实际问题,从而加深对配方法的理解。
4.巩固(5分钟)通过一些相关的数学题目,巩固学生对配方法的理解。
5.拓展(5分钟)引导学生思考,配方法在实际生活中有哪些应用,从而培养学生的创新精神。
人教版数学九年级上册22.2.2《配方法》教学设计1
人教版数学九年级上册22.2.2《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22章第2节的内容,这部分内容是在学生已经掌握了整式的加减、乘除,以及完全平方公式的基础上进行学习的。
配方法是一种解决问题的方法,通过构造完全平方公式,将问题转化为学生已经掌握的知识点,从而解决问题。
配方法在解决二次方程、二次不等式以及函数图像的平移等问题中有着广泛的应用。
二. 学情分析九年级的学生已经具备了一定的数学基础,能够理解和运用整式的加减、乘除以及完全平方公式。
但是,对于配方法的原理和应用,他们可能还不太清楚。
因此,在教学过程中,需要通过具体例子让学生理解配方法的原理,并通过练习让学生掌握配方法的应用。
三. 教学目标1.知识与技能:让学生掌握配方法的原理,并能够运用配方法解决相关问题。
2.过程与方法:通过具体例子,让学生理解配方法的过程,并能够独立完成配方法的操作。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 教学重难点1.配方法的原理理解2.配方法在解决实际问题中的应用五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过具体例子引导学生理解配方法,并通过练习让学生巩固所学知识。
六. 教学准备1.教学PPT七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这类问题。
例如,解决方程x^2 -5x + 6 = 0。
2.呈现(15分钟)讲解配方法的原理,并通过PPT展示配方法的具体步骤。
配方法的步骤如下:(1)将方程写成完全平方的形式;(2)根据完全平方公式,构造出两个相同的因式;(3)将方程转化为两个因式的乘积等于0的形式;(4)根据乘积等于0的性质,解出方程的解。
3.操练(15分钟)让学生独立完成配方法的操作,教师巡回指导。
4.巩固(10分钟)让学生解答一些相关的练习题,检验学生对配方法的理解和掌握程度。
5.拓展(10分钟)讲解配方法在解决二次方程、二次不等式以及函数图像的平移等问题中的应用。
新人教版九年级数学上册:《配方法》教案
§2.2 配方法课时安排3课时从容说课配方法是继探索一元二次方程近似解的基础上研究的一种求精确解的方法.它是一元二次方程的解法的通法.因为用配方法解一元二次方程比较麻烦,一个一元二次方程需配一次方,所以在实际解一元二次方程时,一般不用配方法.但是,配方法是导出求根公式的关键,且在以后的学习中,会常常用到配方法.因此,要理解配方法,并会用配方法解一元二次方程.本节的重点、难点是配方法.根据课程的特点,以及学生的认知结构特点,本节内容分三课时.在教学时,首先从前面两节课的实例引入求精确解.因为我们已经能解形如(x+a)2=b(b ≥0)的方程,所以想到要求一个一元二次方程的精确解时,是否可把方程转化为已经能解的方程,这时引入了一元二次方程的解法——配方法.配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征.教学方法主要是学生自主探索、发现的方法.第三课时课题§2.2.1 配方法(一)教学目标(一)教学知识点1.会用开平方法解形如(x+m)2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.(二)能力训练要求1.会用开平方法解形如(x+m)2=n(n≥0)的方程;理解配方法.2.体会转化的数学思想方法.3.能根据具体问题的实际意义检验结果的合理性.(三)情感与价值观要求通过师生的共同活动,学生的进一步操作来增强其数学应用意识和能力.教学重点利用配方法解一元二次方程教学难点把一元二次方程通过配方转化为(x+m)2=n(n≥0)的形式.教学方法讲练结合法教具准备投影片六张:第一张:问题(记作投影片§2.2.1 A)第二张:议一议(记作投影片§ 2.2.1 B)—第三张:议一议(记作投影片§ 2.2.1 C)第四张:想一想(记作投影片§2.2.1 D)第五张:做一做(记作投影片§2.2.1 E)第六张:例题(记作投影片§2.2.1 F)教学过程Ⅰ.创设现实情景,引入新课[师]前面我们曾学习过平方根的意义及其性质,现在来回忆一下:什么叫做平方根?平方根有哪些性质?[生甲]如果一个数的平方等于a,那么这个数就叫做a的平方根。
人教版数学九年级上册22.2.1《配方法》教案2
人教版数学九年级上册22.2.1《配方法》教案2一. 教材分析《配方法》是人教版数学九年级上册第22章第2节的一部分,主要介绍了配方法的概念、意义和应用。
配方法是解一元二次方程的一种方法,通过将方程转化为完全平方形式,使方程的解变得简单。
这一节的内容是学生学习一元二次方程解法的重要基础,也是后续学习二次函数和一元二次方程组的基础。
二. 学情分析九年级的学生已经具备了一定的代数基础,能够理解和运用一元一次方程、不等式的解法。
但是,对于一元二次方程,学生可能还存在一定的困难。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握配方法。
三. 教学目标1.让学生理解配方法的概念和意义。
2.引导学生掌握配方法的操作步骤。
3.培养学生运用配方法解决实际问题的能力。
四. 教学重难点1.配方法的概念和意义的理解。
2.配方法的操作步骤的掌握。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生主动探究;通过案例分析,使学生理解配方法的实际应用;通过小组合作,培养学生的合作意识和团队精神。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学PPT。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何解决这些问题。
例如,一个矩形的长比宽大3,已知矩形的面积为24,求矩形的长和宽。
2.呈现(10分钟)介绍配方法的概念和意义,讲解配方法的操作步骤。
通过PPT和案例,让学生直观地理解配方法的过程和效果。
3.操练(10分钟)让学生独立完成一些配方法的练习题。
在学生练习的过程中,教师进行个别辅导,解答学生的疑问。
4.巩固(10分钟)让学生分组讨论,总结配方法的操作步骤和注意事项。
每组派代表进行汇报,教师进行点评和总结。
5.拓展(10分钟)让学生运用配方法解决一些实际问题。
教师提供问题,学生分组讨论和解答。
6.小结(5分钟)教师引导学生总结本节课的主要内容和收获。
2019-2020学年九年级数学下册 配方法教案2 新人教版.doc
请同学们比较下列两个一元二次方程的联系与区别
1.x2+6x +8=0
2.3x2+18x+24=0
第三环节、学习新知:
活动内容1:学习例题
例3:解方程:3x2+8x―3=0
分析:将二次项系数化为1后,用配方法解此方程。
解:两边都除以3,得:x2+ x―1=0
移项,得 :x2+ x = 1
⑶有能力的同学请课余时 间用配方法交流探究方程:ax2+bx+c=0 (a不为 0)的解法.
教后感
第四环节:练习与提高
活动内容:课本习题2.4第1题
印度古算术中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮。告我总数有多少,两队猴子在一起?大意是说:一群猴子分两队,一队猴子数是猴子总数的八分之一的平方,另一队猴子数是12,那么猴子的总数是多少?请同学们解决这个问题。
第五环节:课堂小结:用配方法解一元二次方程的步骤:
(1)
(2)
(3)
(4)
第六环节:布置作业
(1)课本53页习题2.4第2题;
⑵一个人的血压与其年龄及性别有关,对女性来说,正常的收缩压p (毫米汞柱)与年龄x(岁)大致满足关系:p=0.01x2+0.05x+ 107.如果一个女性的收缩压为120毫米汞柱,那么她的年龄大概是多少?
2019-2020学年九年级数学下册配方法教案2新人教版
课题
第2课时
授课时间
主备人
集备人
课型
新授
教学目标
①经历配方法解一元二次方程的过程,获得解二元一次方程的基本技能;
人教版数学九年级上册教案21.2.1《配方法》
人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。
教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。
学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。
二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。
但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。
2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 教学重难点1.重点:配方法的原理和步骤。
2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。
2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。
3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。
六. 教学准备1.准备相关教案和教学资料。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。
例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。
21.2.2配方法(教案)-2018-2019学年九年级上学期数学教材(人教版)
1.理论介绍:首先,我们要了解配方法的基本概念。配方法是一种通过添加和减去相同的数,将一个二次方程转化为完全平方形式的方法。它在解决一元二次方程、不等式以及一些实际问题时发挥着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将方程x^2 + 4x + 3 = 0通过配方法转化为(x + 2)^2 - 1 = 0,以及这样的转化如何帮助我们更容易地求解方程。
21.2.2配方法(教案)-2018-2019学年九年级上学期数学教材(人教版)
一、教学内容
本节课选自2018-2019学年九年级上学期数学教材(人教版)第21章第2节,主题为“配方法”。教学内容主要包括以下两个方面:
1.配方法的定义与原理:介绍配方法的概念,通过具体例题让学生理解配方法的原理,掌握如何将一个二次方程转化为完全平方的形式。
其次,在新课讲授环节,我发现理论介绍部分学生们普遍能够接受,但在案例分析部分,有些同学对配方法的步骤和应用条件理解不够透彻。针对这个问题,我计划在接下来的课程中增加一些典型例题的讲解,让学生们通过实际操作来加深对配方法的理解。
此外,实践活动环节,学生们在分组讨论和实验操作中表现出较高的积极性。但在成果展示环节,有些小组的表达能力较弱,无法准确表达他们的思考过程。为了提高学生的表达能力,我打算在以后的教学中增加一些课堂展示和口头报告的练习。
五、教学反思
在今天的配方法教学中,我发现学生们对于配方法的原理和应用有了基本的掌握,但在实际操作中仍存在一些问题。让我来谈谈今天的课堂感受和需要改进的地方。
首先,我意识到在导入新课环节,通过提问的方式引起学生的兴趣和好奇心是有效的。大部分同学能够积极参与,分享自己在日常生活中遇到的平方问题。然而,也有部分同学显得比较拘谨,可能是因为对配方法还不够熟悉。在今后的教学中,我需要更加关注这部分同学,鼓励他们大胆发言,增强课堂互动。
【人教版】2019秋九年级数学上册教案:21.2.1.2 配方法1
第2课时配方法1.了解配方的概念,掌握运用配方法解一元二次方程的步骤.2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题.一、情境导入李老师让学生解一元二次方程x2-6x-5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?二、合作探究探究点:配方法【类型一】配方用配方法解一元二次方程x2-4x=5时,此方程可变形为( )A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=9解析:由于方程左边关于x的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x=5,所以x2-4x+4=5+4,所以(x-2)2=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【类型二】利用配方法解一元二次方程用配方法解方程:x-4x+1=0.解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解.解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=± 3.∴x1=2+3,x2=2- 3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题已知:x 2+4x +y 2-6y +13=0,求x -2yx 2+y 2的值. 解:原方程可化为(x +2)2+(y -3)2=0,∴(x +2)2=0且(y -3)2=0,∴x =-2且y =3,∴原式=-2-613=-813. 【类型四】用配方解决证明问题(1)用配方法证明2x -4x +7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x 2-4x +7=2(x 2-2x )+7=2(x 2-2x +1-1)+7=2(x -1)2-2+7=2(x -1)2+5.∵2(x -1)2≥0,∴2(x -1)2+5≥5,即2x 2-4x +7≥5,故2x 2-4x +7的值恒大于零.(2)x 2-2x +3;2x 2-2x +5;3x 2+6x +8等.【类型五】配方法与不等式知识的综合应用证明关于x 的方程(m -8m +17)x +2mx +1=0不论m 为何值时,都是一元二次方程.解析:要证明“不论m 为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m +17的值不等于0.证明:∵二次项系数m 2-8m +17=m 2-8m +16+1=(m -4)2+1,又∵(m -4)2≥0,∴(m-4)2+1>0,即m 2-8m +17>0.∴不论m 为何值时,原方程都是一元二次方程.三、板书设计教学过程中,强调配方法解方程就是将方程左边配成完全平方式的过程.因此需熟练掌握完全平方式的形式.。
2019年九年级数学上册 22.2.1 配方法教案 新人教版.doc
2019年九年级数学上册 22.2.1 配方法教案新人教版教学内容间接即通过变形运用开平方法降次解方程.教学目标理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.重难点关键1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.•难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±或mx+n=±(p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x 的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→ x2+6x+32=16+9左边写成平方形式→ (x+3)2=•25 •降次→x+3=±5 即 x+3=5或x+3=-5解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m. 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x-=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略三、巩固练习教材P38讨论改为课堂练习,并说明理由.教材P39练习1 2.(1)、(2).四、应用拓展例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB面积的一半.分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.•根据已知列出等式.解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题意,得:(8-x)(6-x)=××8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.五、归纳小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.六、布置作业1.教材P45复习巩固2.3(1)(2)2.选用作业设计.一、选择题1.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-32.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1C.x2+8x+42=1 D.x2-4x+4=-113.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于(). A.1 B.-1 C.1或9 D.-1或9二、填空题1.方程x2+4x-5=0的解是________.2.代数式的值为0,则x的值为________.3.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,•所以求出z的值即为x+y的值,所以x+y的值为______.三、综合提高题1.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长. 2.如果x2-4x+y2+6y++13=0,求(xy)z的值.3.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?课后反思理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题, 通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.。
2019-2020年九年级数学上册 21.2.1 配方法(2)教案 (新版)新人教版
完成填空:x2+6x+ =(x+)2
方程移项之后,两边应加什么数,可将左边配成完全平方式?
(学生审读并列方程组织学生讨论,交流然后师生总结)
【例1】用配方法解下列方程:
⑴x2-8x+1=0⑵x2+4x+1=0
【分析】显然这两个方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式。
解:(略)
(学生 先尝试自己完成,教师巡视发现问题及时纠正,然后再讲解。)
四、课堂训练
课本练习:
P31页练习,P34页练习1,2(1)
(学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正)
四、教学重点难点
教学重点
运用配方法解数字系数的一元二次方程。
教学难点
发现与理解配方,把一元二次方程转化为形如(x-a)2=b的过程。
五、教法学法
启发引导,问题驱动,合作交流,讲练结合。六、 Nhomakorabea学过程设计
师生 活动
设计意图
一、自主学习感受新知
【问题1】填空
(1)x2-8 x+_16__= (x-_4_)2;(2)9x2+12x+_4__=(3x+_2_)2;
知识与
技能
1.掌握配方法的基本步骤,会用配方法解一元二次方程;
2.在探究 用配方法解一元二次方程的过程中,进一步体会划归思想。
过程与
方法
学生经历从特殊到一般的认知过程,培养学生分析解决问题的能力。
人教版数学九年级上册21.2.2《配方法(2)》教案
人教版数学九年级上册21.2.2《配方法(2)》教案一. 教材分析《配方法(2)》是人教版数学九年级上册第21章第二节的一部分,主要介绍了配方法的进一步应用。
通过本节课的学习,学生能够掌握配方法的步骤和技巧,并能运用配方法解决实际问题。
本节课的内容与生活实际紧密相连,有助于培养学生的数学应用意识。
二. 学情分析九年级的学生已经掌握了配方法的基本概念和步骤,但部分学生在运用配方法解决实际问题时,仍存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生巩固已学知识,提高学生运用配方法解决实际问题的能力。
三. 教学目标1.知识与技能:掌握配方法的步骤和技巧,能够运用配方法解决实际问题。
2.过程与方法:通过小组合作、讨论交流,培养学生的合作意识和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生运用数学知识解决实际问题的意识。
四. 教学重难点1.配方法的步骤和技巧。
2.运用配方法解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.小组合作学习:引导学生分组讨论,培养学生的合作意识和解决问题的能力。
3.引导发现法:教师引导学生发现配方法的步骤和技巧,提高学生的自主学习能力。
六. 教学准备1.教学课件:制作课件,展示配方法的过程和实例。
2.练习题:准备一些配方法的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例引入课题,如:“小明家有一个长方形菜地,长为8米,宽为6米,他想将菜地改为正方形,请问如何改动?”引发学生的思考,激发学习兴趣。
2.呈现(10分钟)展示配方法的过程,引导学生发现配方法的步骤和技巧。
步骤1:将原式写成完全平方的形式。
步骤2:根据需要,将完全平方形式展开或变形。
步骤3:将展开或变形的式子应用到实际问题中。
3.操练(10分钟)学生分组讨论,尝试运用配方法解决实际问题。
教师巡回指导,解答学生的疑问。
新人教版九年级数学上册《配方法》教案
《配方法》教案理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题. 提出问题,列出缺一次项的一元二次方程ax 2+c =0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex +f)2+c =0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n ≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n ≥0)的方程.一、复习引入学生活动:请同学们完成下列各题. 问题1:填空(1)x 2-8x +________=(x -________)2;(2)9x 2+12x +________=(3x +________)2;(3)x 2+px +________=(x +________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p 2)2 p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x =±3,如果x 换元为2t +1,即(2t +1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t +1变为上面的x ,那么2t +1=±3 即2t +1=3,2t +1=-3 方程的两根为t 1=1,t 2=-2例1 解方程:(1)x 2+4x +4=1 (2)x 2+6x +9=2分析:(1)x 2+4x +4是一个完全平方公式,那么原方程就转化为(x +2)2=1. (2)由已知,得:(x +3)2=2直接开平方,得:x +3=±2 即x +3=2,x +3=- 2所以,方程的两根x 1=-3+2,x 2=-3- 2 解:略.例2 市政府计划2年内将人均住房面积由现在的10 m 2提高到14.4 m 2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x ,一年后人均住房面积就应该是10+10x =10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x =10(1+x)2解:设每年人均住房面积增长率为x ,则:10(1+x)2=14.4 (1+x)2=1.44直接开平方,得1+x =±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x 的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x 2+2bx +b 2的形式→x 2+6x +32=16+9 左边写成平方形式→(x +3)2=25降次→x +3=±5即x +3=5或x +3=-5 解一次方程→x 1=2,x 2=-8可以验证:x 1=2,x 2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m ,长为8 m .像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1 用配方法解下列关于x 的方程: (1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略. 三、巩固练习教材第9页 练习1,2.(1)(2).四、课堂小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤. 通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤. 难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x 2-4x +7=0 (2)2x 2-8x +1=0 老师点评:我们上一节课,已经学习了如何解左边不含有x 的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联? 二、探索新知讨论:配方法解一元二次方程的一般步骤: (1)先将已知方程化为一般形式; (2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.例1解下列方程:(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4(2)(x-2)2=7提问1这种解法的(理论)依据是什么?提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式; (2)化二次项系数为1; (3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.二、探索新知 用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-ca配方,得:x 2+b a x +(b 2a )2=-c a +(b2a)2即(x +b 2a )2=b 2-4ac4a 2∵4a 2>0,当b 2-4ac ≥0时,b 2-4ac 4a 2≥0∴(x +b 2a )2=(b 2-4ac 2a)2直接开平方,得:x +b2a =±b 2-4ac 2a即x =-b±b 2-4ac2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根. 例1 用公式法解下列方程:(1)2x 2-x -1=0 (2)x 2+1.5=-3x (3)x 2-2x +12=0 (4)4x 2-3x +2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 补:(5)(x -2)(3x -5)=0 三、巩固练习教材第12页 练习1.(1)(3)(5)或(2)(4)(6). 四、课堂小结 本节课应掌握:(1)求根公式的概念及其推导过程; (2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a ,b ,c ,注意各项的系数包括符号;3)计算b 2-4ac ,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况. 五、作业布置教材第17页 习题4,5.21.2.3 因式分解法掌握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程. 难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成:(1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x -1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1 三、巩固练习教材第14页 练习1,2.四、课堂小结 本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用. 2.培养学生分析、观察、归纳的能力和推理论证的能力. 3.渗透由特殊到一般,再由一般到特殊的认识事物的规律. 4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导 难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x 2-ax -3a =0的一个根是6,则求a 及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac 2a .观察两式右边,分母相同,分子是-b +b 2-4ac 与-b -b 2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程 x 1 x 2 x 1+x 2 x 1·x 2 x 2-2x =0 x 2+3x -4=0x 2-5x +6=0观察上面的表格,你能得到什么结论?(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 x 1 x 2 x 1+x 2 x 1·x 2 2x 2-7x -4=0 3x 2+2x -5=0 5x 2-17x +6=0小结:根与系数关系:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a ≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程 ax 2+bx +c =0(a ≠0) ∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积: (1)x 2-3x -1=0 (2)2x 2+3x -5=0 (3)13x 2-2x =0 (4)2x 2+6x = 3 (5)x 2-1=0 (6)x 2-2x +1=0例2 不解方程,检验下列方程的解是否正确? (1)x 2-22x +1=0 (x 1=2+1,x 2=2-1) (2)2x 2-3x -8=0 (x 1=7+734,x 2=5-734)例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.三、课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四、作业布置1.不解方程,写出下列方程的两根和与两根积.(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0(4)3x2+x+1=02.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.解下列方程:○1 x2-8x+7=0
○2 2x2+8x-2=0
○3 2x2+1=3x
○4 3x2-6x+4=0
题目设置说明:
1.○1 与上节课衔接(二次项系数为 1)
2.○2 至○4 二次项系数不为 1.二次项系数化为 1 后,○2 的一次项
系数为偶数.为后面做铺垫.○3 的一次项系数为分数,○4 无解.
教学程序及教学内容
师生行为
设计意图
一、复习引入
导语:我们在上节课,已经学习了用直接开平方法解形如 x2=p 点题,板书课题. 回顾上节课内
(p≥0)或(mx+n)2=p(p≥0)的一元二次方程,以及用配方
容以得以衔接
法解二次项系数是 1,一次项系数是偶数的一元二次方程,这
节课继续学习配方法解一元二次方程.
加深认识,深化 提高,形成学生 自己的知识体
2 / 3文档可自由编辑打印
必做:P42:3(3)(4)
系.
选做:P43:8、9
教 学 反思
3 / 3文档可自由编辑打印
右边是负数,则一元二次方程无解.
不写出完整的解方程过程,原方程变形为(x+m)2=n 的形
式后,若 n 为 0,原方程有两个相等的实数根;若 n 为正数,原
方程有两个不相等的实数根;若 n 为负数,则原方程无实数根.
五、作业设计
学生归纳,总结阐 述,体会,反思.并 做出笔记.
加强教学反 思,帮助学生 养成系统整理 知识的学 习惯
C.(2x+1)2+3=0 D.( 1 x-a)2=a
2
4.解决课本练习 2(2)到(6)
5.已知 x2+y2+z2-2x+4y-6z+14=0,则 x+y+z 的值是( ).
A.1 B.2 C.-1
D.-2
6. a , b , c 是 ABC的三条边 ○1 当 a2 2ab c2 2bc 时,试判断 ABC的形状. ○2 证明 a2 b2 c2 2ac 0 四、小结归纳
1 / 3文档可自由编辑打印
○2 .方程两边同除以二次项系数,化二次项系数为 1; ○3 .方程两边都加上一次项系数一半的平方; ○4 .原方程变形为(x+m)2=n 的形式;
与经验,总结成 文,为熟练运用 作准备
○5 .如果右边是非负数,就可以直接开平方求出方程的解,
如果右边是负数,则一元二次方程无解.
(3)运用总结的配方法步骤解方程○3 ,先观察将其变形,即将一
次项移到方程的左边,常数项移到方程的右边;解方程○4 配方
后右边是负数,确定原方程无解.
(4) 不写出完整的解方程过程,到哪一步就可以确定方程的解
得情况?
三、课堂训练
1.方程 4x2 4 3x 2 0化为x a2 b的形式,正确的是 ( )
A.(x- 1 )2= 8 B.(x- 2 )2=0 C.(x- 1 )2= 8
39
3
39
2= 10
9
).
完成.教师巡视指
导,了解学生掌握情
D.(x-
1 3
况,对于好的做法, )加以鼓励表扬.并集
体进行交流评价,体
会方法,形成规律.
使学生自主探 究,进一步领 会配方思想, 并熟练进行配 方.
3.下列方程中,一定有实数解的是( ). A.x2+1=0 B.(2x+1)2=0
1. 通过对配方法的探究活动,培养学生勇于探索的学习精神. 2. 感受数学的严谨性和数学结论的确定性. 3. 温故知新,培养学生利用旧知解决问题的能力.
用配方法解一元二次方程
用配方法解二次项系数不是 1 的一元二次方程,首先方程两边都除以二次项系数, 将方程化为二次项系数是 1 的类型.
教学过程设计
2019 版中考数学复习 配方法教案 新人教版
教学时间
教学媒体 教 知识
技能 学
过程 目 方法
情感 标 态度
教学重点
教学难点
课题
配方法
新 课型 授
多媒体
1.进一步理解配方法和配方的目的.
2.掌握运用配方法解一元二次方程的步骤.
3.会利用配方法熟练灵活地解二次项系数不是 1 的一元二次方程.
通过对比用配方法解二次项系数是 1 的一元二次方程,解二次项系数不是 1 的 一元二次方程,经历从简单到复杂的过程,对配方法全面认识.
A. x 3 2 5 4
2
x
3 2
3
B. x 3 2 5 4
C.
x
2
3 2
1 4
根据上述方程的根 的情况,学生思考并 D. 叙述
学生先自主,再合 作交流,总结经验,
初步了解一元 二次方程的根 的情况,并为 公式法的学习 奠定基础
2.配方法解方程 2x2- 4 x-2=0 应把它先变形为( 3
二、探究新知
1.填空:
○1 x2 8x ____ x ____2 ○2 x2 x ____ x ____2
○3 x2 ___ 4 x ____2 ○4 x2 ___ 9 x ____2
4
2.填空: ○1 x2 8x a是完全平方式, a =
○2 x2 mx 9是完全平方式, m
用配方法解一元二次方程的步骤:
1.把原方程化为 ax2 bx c 0a 0 的形式,
2.把常数项移到方程右边;
3.方程两边同除以二次项系数,化二次项系数为 1;
4.方程两边都加上一次项系数一半的平方;
5.原方程变形为(x+m)2=n 的形式;
6.如果右边是非负数,就可以直接开平方求出方程的解,如果
分析:
复习完全平方
式的,为下面用
配方法解方程
作铺垫
让学生独立完成
○1 ,复习巩固上节
课内容. 通过对比方程○1 ○2 温故知新,对比 结构,尝试解方程 探究,发现二次 ○2 ,探讨二次项系 项系数不是 1 数不是 1 的一元二 的一元二次方 次方程的解法,教 程的解法,培养 师组织学生讨论, 学生发现问题 师生交流看法,肯 的能力
(1)解方程○1 ,复习用配方法解二次项系数为 1 的一元二次方 定其可行性,总结
程步骤;
出一般步骤.
(2)对比○1 的解法得到方程○2 的解法,总结出用配方法解二次 让学生运用总结出
项系数不为 1 的一元二次方程的一般步骤: ○1 .把常数项移到方程右边;
的一般步骤解方程 ○3 ○4 ,其中○3 需要 通过学生亲自 先整理,○4 无解. 解方程的感受