矩阵论第二章
西北工业大学矩阵论课件PPT第二章例题 范数理论

1
则 A0 1 1, x0 1,但是
A0 x0 (n,0,,0)T
从而
A0 x0 n 1 A0 1 x0
故矩阵1-范数与向量的∞-范数不相容。
例 已知
0 Ai
i 1
1i ,
x
1 0
(i 1)
1 i 0
1
则 A ( 3 ), A 2 (1 2 ), Ax 1 ( 4 )。
第二章 范数理论
§1 向量的范数
例1 对 x (x1, x2,, xn )T Cn,规定
n
x 2
xi 2 xH x
i 1
则它是一种向量范数,称为向量2-范数。
注 直接证明第三条公理时要用到Cauchy
-Schwarz不等式
n
n
n
( xi yi )2
xi 2
yi 2
x
2 2
y
2 2
A F 1 4 2 9 25 11 4 111 4 16
70
A m 45 20, A 1 max6, 8, 5, 5 2 8, A max3 2, 9, 4, 8 9
例 判断矩阵1-范数与向量的∞-范数是否相容?
解取
1
A0
0
1 0
1
0
,
x0
1 1
0 0 0
U使得
U H AU diag(1,2,,n ) (i 0,i 1,2,,n)
于是
A U diag(1,2,,n )U H
U diag( 1, 2 ,, n ) diag( 1, 2 ,, n )U H PHP
其中 P diag( 1, 2 ,, n )U H是可逆矩阵。
从而
矩阵论复习题 第二章

第二章 内积空间一、基本要求1、掌握欧氏空间和酉空间的定义与性质,掌握Hermite 矩阵的定义,理解欧氏(酉)空间中度量的概念.2、掌握线性无关组的Schmidt 正交化与对角化方法,理解标准正交基的性质.3、理解Hermite 二次型的定义.4、掌握在一组基下的度量矩阵的概念,标准正交基下度量矩阵的性质及两组标准正交基下的度量矩阵的关系.5、了解欧氏子空间的定义.6、掌握正交矩阵与酉矩阵的定义与性质,理解正交(酉)变换与正交(酉)矩阵的关系.7、掌握对称矩阵与Hermite 矩阵的定义与性质,理解对称(Hermite)变换与对称(Hermite)矩阵的关系.8、掌握矩阵可对角化的条件,会求一个正交(酉)矩阵把实对称(Hermite)矩阵化为对角形矩阵,会求一组标准正交基使线性变换在该基下对应的矩阵是对角形矩阵.二、基本内容1、内积空间设数域F 上的线性空间)(F V n ,若)(F V n 中任意两个向量βα,都有一个确定的数与之对应,记为),(βα,且满足下列三个条件(1) 对称性:),(),(αββα=,其中),(αβ表示对数),(αβ取共轭;(2) 线性性:),(),(),(22112211βαβαβααk k k k +=+;(3) 正定性:0),(≥αα,当且仅当0=α时,0),(=αα,则称),(βα为向量α与β的内积.当R F =时,称)(R V n 为 欧氏空间;当C F =时,称)(C V n 为酉空间.注意:在n R 中,),(),(βαβαk k =;在n C 中,),(),(βαβαk k =. 通常的几个内积:(1) n R 中,αββαβαT T ni i i y x ===∑=1),(n C 中,βαβαH i ni i y x ==∑=1),(. 其中T n T n y y y x x x ),,,(,),,,(2121 ==βα.(2) n m R ⨯中,n m ij n m ij b B a A ⨯⨯==)(,)(,ij m i nj ij Hb a B A tr B A ∑∑====11)(),(. (3) 在实多项式空间][x P n 及],[b a 上连续函数空间],[b a C 中,函数)(),(x g x f 的内积为⎰=b adx x g x f x g x f )()())(),(( 2、向量的长度、夹角、正交性定义 ),(ααα=,称为α的长度,长度为1的向量称为单位向量,ααα=0是α的单位向量.长度有三个性质:(1) 非负性:0≥α,且00),(=⇔=ααα;(2) 齐次性:k k k ,αα=表示数k 的绝对值;(3) 三角不等式:βαβα+≤+.定理(Cauchy-Schwarz 不等式)βαβα≤),(.α与β的夹角θ定义为βαβαθ),(arccos =.当0),(=βα时,称α与β正交,记βα⊥.若非零向量组s ααα,,,21 两两正交,即0),(ji j i ≠=αα,称s ααα,,,21 是一个正交组;又若s i i ,,2,1,1 ==α,则称s ααα,,,21 为标准正交组,即 ⎩⎨⎧≠==.,0,,1),(j i j i j i αα 定理(勾股定理) 0),(222=⇔+=+βαβαβα,即βα⊥.3、标准正交基标准正交基指欧氏(酉)空间中由两两正交的单位向量构成的基.构造方法:对欧氏(酉)空间的一个基进行Schmidt 正交化可得正交基,再对正交基进行单位化可得标准正交基.把线性无关向量s ααα,,,21 正交化为s βββ,,,21 正交向量组: 设.,,3,2,),(),(,1111s k i k i i i i k k k =-==∑-=ββββααβαβ再把i β单位化:s i i i i ,,2,1,1==ββε,则s εεε,,,21 为标准正交组.在标准正交组n εεε,,,21 下,向量可表为:=+++=n n x x x εεεα 2211n n εεαεεαεεα),(),(),(2211+++ , 坐标),(i i x εα=表示α在i ε上的投影长度.4、基的度量矩阵度量矩阵是以欧氏(酉)空间的基中第i 个元素与第j 个元素的内积为i 行j 列元素构成的方阵.设欧氏(酉)空间V 的一个基为n x x x ,,,21 ,令),,2,1,)(,(n j i x x a j i ij ==,则该基的度量矩阵为n n ij a A ⨯=)(.基的度量矩阵是实对称(Hermite)正定矩阵,它的阶数等于欧氏(酉)空间的维数,正交基的度量矩阵是对角矩阵,标准正交基的度量矩阵是单位矩阵.设酉空间V 的一个基为n x x x ,,,21 ,该基的度量矩阵为A ,V y x ∈,在该基下的坐标(列向量)分别为α与β,那么x 与y 的内积βαA y x T =),(.当V 为欧氏空间时,βαA y x T =),(.当此基为标准正交基,酉空间V 的x 与y 的内积βαT y x =),(,欧氏空间V 的x 与y 的内积βαT y x =),(.设欧氏空间n V 的两个基分别为(Ⅰ)n x x x ,,,21 和(Ⅱ)n y y y ,,,21 ,且由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵为C ,基(Ⅰ)的度量矩阵为A ,基(Ⅱ)的度量矩阵为B ,则有:(1) AC C B T =.(2) 基(Ⅰ)是标准正交基的充要条件是I A =.(3) 若基(Ⅰ)与基(Ⅱ)都是标准正交基,则C 是正交矩阵.(4) 若基(Ⅰ)(或(Ⅱ))是标准正交基,C 是正交矩阵,则基(Ⅱ)(或基(Ⅰ))是标准正交基.5、正交变换与对称变换(ⅰ) 关于正交变换,下面四种说法等价:1) T 是欧氏空间n V 的正交变换,即对于任意的n V x ∈,有),(),(x x Tx Tx =;2) 对于任意的n V y x ∈,,有),(),(y x Ty Tx =;3) T 在n V 的标准正交基下的矩阵为正交矩阵;4) T 将n V 的标准正交基变换为标准正交基.(ⅱ) 关于对称变换,下面两种说法等价:1) T 是欧氏空间n V 的对称变换,即对于任意的n V y x ∈,,有),(),(Ty x y Tx =; 2) T 在n V 的标准正交基下的矩阵为对称矩阵.(ⅲ) 若T 是欧氏空间n V 的对称变换,则T 在n V 的某个标准正交基下的矩阵为对角矩阵.(ⅳ) 在欧氏空间n V 中,若正交变换T 的特征值都是实数,则T 是对称变换.6、相似矩阵(1) n n C A ⨯∈相似于上(下)三角矩阵.(2) n n C A ⨯∈相似于Jordan 标准形矩阵.(3) n n C A ⨯∈酉相似于上三角矩阵.(4) 设n n C A ⨯∈,则H H AA A A =的充要条件是存在酉矩阵P ,使得Λ=AP P H (对角矩阵).(5) 设n n C A ⨯∈的特征值都是实数,则T T AA A A =的充要条件是存在正交矩阵Q ,使得Λ=AQ Q T .(6) 实对称矩阵正交相似于对角矩阵.三、典型例题例1、在n R 中,设),,,(),,,,(2121n n ηηηβζζζα ==,分别定义实数),(βα如下: (1) 21212)(),(i n i i ηζβα∑==;(2) ))((),(11∑∑===nj j n i i ηζβα;判断它们是否为n R 中α与β的内积.解 (1) 设R k ∈,由==∑=21122))((),(n i i i k k ηζβα),()(21212βαηζk k in i i =∑=知,当0<k 且0),(≠βα时,),(),(βαβαk k ≠.故该实数不是n R 中α与β的内积.(2) 取0)0,,0,1,1(≠-= α,有0),(,01==∑=ααζn i i故该实数不是n R 中α与β的内积.例2、n R 中,向量组n ααα ,,21线性无关的充要条件是0),(),(),(),(),(),(),(),(),(212221212111≠n n n n n n αααααααααααααααααα. 证 方法一 设),,(21n A ααα =,则⇔≠====⨯⨯0),(2A A A A A T T n n j T i n n j i αααα n A ααα,,,021 ⇔≠线性无关.方法二 设02211=+++n n x x x ααα ,则n i x x x i n n ,,2,1,0),(2211 ==+++αααα,即⎪⎪⎩⎪⎪⎨⎧=++=++=++,0),(),(,0),(),(,0),(),(1121211111n n n n n n n n x x x x x x αααααααααααα 齐次方程组仅有零解的充要条件是系数矩阵的行列式0),(≠j i αα,即n ααα,,,21 线性无关.例3、设欧氏空间3][t P 中的内积为⎰-=11)()(),(dt t g t f g f (1) 求基2,,1t t 的度量矩阵.(2) 采用矩阵乘法形式计算21)(t t t f +-=与2541)(t t t g --=的内积. 解 (1) 设基2,,1t t 的度量矩阵为33)(⨯=ij a A ,根据内积定义计算)(j i a ij ≤2)1,1(1111===⎰-dt a ,0),1(1112===⎰-tdt t a , 32),1(112213===⎰-dt t t a ,32),(11222===⎰-dt t t t a , 0),(113223===⎰-dt t t t a ,52),(1142233===⎰-dt t t t a . 由度量矩阵的对称性可得)(j i a a ji ij >=,于是有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5203203203202A . (2) )(t f 和)(t g 在基2,,1t t 下的坐标分别为T T )5,4,1(,)1,1,1(--=-=βα,那么05415203203203202)1,1,1(),(=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==βαA g f T . 例4、欧氏空间3][t P 中的多项式)(t f 和)(t g 的内积为⎰-=11)()(),(dt t g t f g f , 取t t f =)(1,记子空间))((1t f L W =.(1) 求T W 的一个正交基;(2) 将T W 分解为两个正交的非零子空间的和.解 (1) 设T W t k t k k t g ∈++=2210)(,则有0),(1=g f ,即0)()()(112210111=++=⎰⎰--dt t k t k k t dt t g t f , 也就是01=k .于是可得},,)()({20220R k k t k k t g t g W T ∈+==.取T W 的一个基为2,1t ,并进行正交化可得,31),(),()(,1)(211112221-=-==t g g g g t t t g t g 那么,)(),(21t g t g 是T W 的正交基.(2) 令))(()),((2211t g L V t g L V ==,则1V 与2V 正交,且21V V W T +=. 例5、已知欧氏空间2V 的基21,x x 的度量矩阵为⎥⎦⎤⎢⎣⎡=5445A , 采用合同变换方法求2V 的一个标准正交基(用已知基表示).解 因为A 对称正定,所以存在正交矩阵Q ,使得Λ=AQ Q T (对角矩阵),计算得,111121,9001⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=ΛQ ,131323121⎥⎦⎤⎢⎣⎡-=Λ=-Q C 则有E AC C T =.于是,由C x x y y ),(),(2121=可得2V 的一个标准正交基为)(231),(21212211x x y x x y +=-=.例6、在欧氏空间中,定义α与β的距离为:βαβα-=),(d ,试问:保持距离不变的变换是否为正交变换?答 不一定,例如2R 中向量的平移变换:)1,1(),(,),(2++=∈=∀y x y x T R y x α,)1,1()(),1,1()(,),(),,(2221112222111++=++=∈==y x T y x T R y x y x αααα, ),()()()()())(),((21212212212121ααααααααd y y x x T T T T d =-=-+-=-=. 虽然保持距离不变,但平移变换不是线性变换,更不是正交变换.例7、设n ααα,,,21 与n βββ,,,21 是n 维欧氏空间两个线性无关的向量组,证明存在正交变换T ,使n i T i i ,,2,1,)( ==βα的充要条件是n j i j i j i ,,2,1,),,(),( ==ββαα.证 必要性 因为T 是正交变换:),())(),((j i j i T T αααα=,又已知i i T βα=)(,故有),(),(j i j i ββαα=.充分性 定义变换T ,使得n i T i i ,,2,1,)( ==βα,则T 是线性变换,且是唯一的.下证T 是正交变换.已知),(),(j i j i ββαα=,则有),(),(j i j i T T αααα=,设n V ∈∀βα,,∑∑====nj j j n i i i y x 11,αβαα,则),(),(),(1111j i j n i nj i n j j j n i i i y x y x ααααβα∑∑∑∑======,))(),(())(,)(())(),((1111j i j n i n j i n j j j n i i i T T y x T y T x T T ααααβα∑∑∑∑======),(11j i j n i nj i y x αα∑∑===.即n V ∈∀βα,,),())(),((βαβα=T T ,故T 是正交变换.例8、设321,,ααα是欧氏空间3V 的一组标准正交基,求出3V 的一个正交变换T ,使得⎪⎩⎪⎨⎧+-=-+=).22(31)(),22(31)(32123211ααααααααT T 解 设3322113)(ααααx x x T ++=,使得)(),(),(321αααT T T 是标准正交的,因)(),(21ααT T 已标准正交,则只要满足1)(,0))(),((,0))(),((32313===αααααT T T T T ,即⎪⎩⎪⎨⎧=++=+-=-+.1,022,022232221321321x x x x x x x x x解得32,32,31321==-=x x x ,即)22(31)(3213αααα++-=T ,得)(),(),(321αααT T T 是标准正交基.因T 把标准正交基变为标准正交基,故T 是正交变换.另法 设)(3αT 的坐标为T x x x ),,(321,由A x x x T T T ),,(323131323232),,())(),(),((321321321321ααααααααα=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. T 是正交变换⇔A 为正交阵.由E A A T =,解得32,31321==-=x x x ,则)22(31)(3213αααα++-=T . 例9、设0x 是欧氏空间V 中的单位元素,定义变换00),(2)(x x x x x T -= )(V x ∈(1) 验证T 是线性变换;(2) 验证T 既是正交变换,又是对称变换;(3) 验证0x 是T 的一个特征向量,并求其对应的特征值. 证 (1) 设V y x ∈,,R l k ∈,,则有00),(2)()(x x ly kx ly kx ly kx T +-+=+=]),(2[]),(2[0000x x y y l x x x x k -+-=))(())((y T l x T k +, 故T 是线性变换.(2) 因为),(),(),(4),)(,(4),())(),((002000x x x x x x x x x x x x x T x T =+-= 所以T 是正交变换.设V y ∈,则00),(2)(x x y y y T -=,于是有).),((),)(,(2),())(,(),,)(,(2),()),((0000y x T x x x y y x y T x y x x x y x y x T =-=-=故T 也是对称变换.(3) 直接计算可得 .)1(2),(2)(00000000x x x x x x x x T -=-=-=故0x 是T 的对应于特征值1-=λ的特征向量.例10、证明欧氏空间n V 的线性变换T 为反对称变换,即),()),(,()),((n V y x y T x y x T ∈-=的充要条件是T 在n V 的标准正交基下的矩阵为反对称矩阵.证 设n V 的一个标准正交基为n x x x ,,,21 ,线性变换T 在该基下的矩阵为n n ij a A ⨯=)(,即A x x x x x x T n n ),,(),,,(2121 =.则有.))(,(,)(,)),((,)(22112211ij j i n nj j j j ji j i n ni i i i a x T x x a x a x a x T a x x T x a x a x a x T =+++==+++= 必要性 设T 是反对称变换,则有))(,()),((j i j i x T x x x T -=,即ij ji a a -=,),,2,1,(n j i =,故A A T -=.充分性 设A A T -=,则对任意的n V y x ∈,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n A x x x T x x x ξξξξ 1111),,()(,),,(,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n A x x y T x x y ηηηη 1111),,()(,),,(. 因为n x x x ,,,21 是标准正交基,所以=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅=n T n A y x T ηηξξ 11),,()),(()).(,(),,(11y T x A n n -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅-ηηξξ 故T 是反对称变换.例11、设欧氏空间n V 的正交变换T 的特征值都是实数,证明存在n V 的标准正交基,使得T 在该基下的矩阵为对角矩阵.分析 正交矩阵是实的正规矩阵,当它的特征值都是实数时,它能够正交相似于对角矩阵.证 设n V 的一个标准正交基为n x x x ,,,21 ,正交变换T 在该基下的矩阵为A ,那么A 是正交矩阵,也是实的正规矩阵.因为T 的特征值都是实数,所以A 的特征值都是实数.于是存在正交矩阵Q ,使得Λ==defn Tdiag AQ Q ),,,(21λλλ ,其中),,2,1(n i i =λ是A 的特征值.令Q x x x y y y n n ),,,(),,,(2121 =,则n y y y ,,,21 是n V 的标准正交基,且T 在该基下的矩阵为Λ==-AQ Q AQ Q T 1【评注】 本例结果表明,特征值都是实数的正交变换是对称变换. 例12、设T 是欧氏空间V 的正交变换,构造子空间},),({},,)({21V x x T x y y V V x x x T x V ∈-==∈==证明⊥=21V V .证 先证⊥⊂21V V .任取10V x ∈,则有00)(x x T =.对于任意的2V y ∈,有))(,(),())(,(),(0000x T x x x x T x x y x -=-=0),(),())(),((),(0000=-=-=x x x x x T x T x x 所以,20⊥∈V x 故.21⊥⊂V V再证12V V ⊂⊥,任取⊥∈20V x ,那么200))((V x T x ∈-,从而有0))(,(000=-x T x x ,.0))(,(2),())(,(2),())(),(())(,(2),())(),((0000000000000000000=-=+-=+-=--x T x x x x x T x x x x T x T x T x x x x T x x T x所以0)(00=-x T x ,即00)(x x T =,也就是10V x ∈,故12V V ⊂⊥.例13、设n m C A ⨯∈,酉空间m C 中的向量内积为通常的,证明)()]([H A N A R =⊥.分析 设m C 中的向量T m ),,,(21ξξξα =与向量T m ),,,(21ηηηβ =的内积为βαηξηξηξβαT m m =+++= 2211),(,则0=βαT 的充要条件是0=βαH ,或者0=αβH .证 划分),,,(21n a a a A =,则有),,,()(21n a a a L A R =,},),({)]([11m j n n C C k a k a k A R ∈∈++⊥=⊥βββ},,,2,1,{m j C n j a ∈=⊥=βββ},,,2,1,0{mH jC n j a ∈===βββ )(},0{H m H A N C A =∈==βββ.例14、设n m C B A ⨯∈,,酉空间m C 中的内积为通常的,证明:)(A R 与)(B R 正交的充要条件是0=B A H .证 划分),,,(21n a a a A =,),,,(21n b b b B =,则有),,,()(21n a a a L A R =,),,,()(21n b b b L B R =根据例15结果可得,)(A R 与)(B R 正交的充要条件是)()]([)(H A N A R B R =⊂⊥,即)()(H j A N B R b ⊂∈ ),,2,1(n j =,或者0=j H b A ),,2,1(n j =,也就是0=B A H .例15、在4R 中,求一单位向量与)1,1,1,1(),1,1,1,1(---及)3,1,1,2(均正交. 解 设),,,(4321ξξξξ=x 和已知向量正交,即⎪⎩⎪⎨⎧=+++=+--=+-+.032,0,0432143214321ξξξξξξξξξξξξ 该齐次线性方程组的一个非零解为)3,1,0,4(-=x ,单位化可得)263,261,0,264(1-==x x y ,即y 为所求的单位向量. 例16、设A 为n 维欧氏空间V 的一个线性变换,试证:A 为正交变换的充分必要条件是βαβα-=-)()(A A .证 必要性))()(),()(()()(βαβαβαA A A A A A --=-),(),(),(),(βββααβαα+--= βαβαβα-=--=),(.充分性 取0=β,于是有αα=)(A ,即A 保持V 中的向量长度不变,所以A 为正交变换.例17、对于矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=542452222A ,求正交(酉)矩阵P ,使AP P AP P T=-1为对角矩阵.解 可求得)10()1()det(2--=-λλλA I ,于是A 的特征值为10,1321===λλλ.对应121==λλ的特征向量为T T x x )1,0,2(,)0,1,2(21=-=.正交化可得T T y y )1,54,52(,)0,1,2(21=-=;再单位化可得T T p p )535,534,532(,)0,51,52(21=-=.对应103=λ的特征向量为T x )1,1,21(3--=,单位化可得T p )32,32,31(3--=,故正交矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32535032534513153252P 使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1011AP P T . 例18、设A 是n 阶实对称矩阵,且A A =2(即A 是幂等矩阵),证明存在正交矩阵Q 使得)0,,0,1,,1(1 diag AQ Q =-.证 设A 的属于特征值λ的特征向量为x ,即x Ax λ=,则有x x A 22λ=.因为A A =2且0≠x ,所以02=-λλ,即0=λ或1.再由A 实对称知,存在正交矩阵Q 使得)0,,0,1,,1(1 diag AQ Q =-.例19、设21,V V 是欧氏空间V 的两个子空间,证明.)(,)(21212121⊥⊥⊥⊥⊥⊥+==+V V V V V V V V证 先证第一式.设⊥+∈)(21V V x ,即)(21V V x +⊥.于是1V x ⊥且2V x ⊥,或者⊥∈1V x 且⊥∈2V x ,即⊥⊥∈21V V x .故)()(2121⊥⊥⊥⊂+V V V V .又设⊥⊥∈21V V x ,即⊥∈1V x 且⊥∈2V x .于是1V x ⊥且2V x ⊥,或者)(21V V x +⊥,即⊥+∈)(21V V x .故⊥⊥⊥+⊂)()(2121V V V V .因此第一式成立.对⊥1V 与⊥2V 应用第一式,有212121)()()(V V V V V V ==+⊥⊥⊥⊥⊥⊥⊥,故⊥⊥⊥+=2121)(V V V V ,即第二式成立.例20、(1) 设A 为酉矩阵且是Hermite 矩阵,则A 的特征值为1或1-. (2) 若A 是正规矩阵,且A 的特征值1=λ,则A 是酉矩阵.证 (1) 因A 为酉矩阵,则A 的所有特征值λ具有1=λ;又A 是Hermite 矩阵,则A 的特征值皆为实数,故A 的特征值为1或1-.(2) 因A 是正规矩阵,且A 的特征值1=λ,则有酉矩阵U ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H H n H U A U AU U λλλλ 11,, .11221E AU A U n H H =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=λλ 故有E A A H =,即A 是酉矩阵.例21、A 为n 阶正规矩阵,),,2,1(n i i =λ是A 的特征值,证明A A H 与HAA 的特征值为n i i ,,2,1,2=λ.证 由A 正规,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H H n H U A U AU U λλλλ 11,,U AA U AU A U HH n H H =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221λλ ,故A A H 与H AA 的特征值皆为22221,,,n λλλ .例22、设A 为n 阶正规矩阵,证明 (1) 若对于正数m ,有0=m A ,则0=A . (2) 若A A =2,则A A H =. (3) 若23A A =,则A A =2.证 (1) 若0=m A ,则A 的特征值皆为零,又A 是正规矩阵,A 可酉对角化,即有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000 AU U H , 故有0=A .(2) A A =2,则A 的特征值为1或0,假定r A r =)(;A 可酉对角化为:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=000,000)(,000r HH Hr H H rH E U A U E AU U E AU U , 可得A A H =.(3) 23A A =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22121)(,n H n H AU U AU U λλλλ , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=33132212,n H n H U A U U A U λλλλ ,由23A A =,得0,23==i i i λλλ或1=i λ,不妨设⎪⎪⎭⎫ ⎝⎛=000rH E AU U ,也有⎪⎪⎭⎫⎝⎛=0002r H E U A U , 故有A A =2.例23、A 为n 阶Hermite 矩阵,设A 的n 个特征值为n λλλ≤≤≤ 21,证明1min ,max λλ==∈∈XX AXX XX AX X H H C X n H H C X n n . 证 对于Hermite 二次型AX X f H =,必有酉变换UY X =,使化为标准形2222211n n UYX Hy y y AX X λλλ+++== ,又2222122n H y y y YX X X+++=== ,则n nn n H H y y y y y y X X AX X λλ=++++++≤2222122221)( . 设n X 为A 对应于n λ的特征向量,即n n n X AX λ=,则n nHn nH n n n H n n H n X X X X X X AX X λλ==, 故有n H H C X XX AX X n λ=∈max . 同理有1min λ=∈XX AX X H H C X n . 例24、A 是正规矩阵,证明(1) A 的特征向量也是H A 的特征向量. (2) n C X ∈∀,AX 与X A H 的长度相等. 证 (1) A 为正规矩阵,则有酉矩阵,使得⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H H n HU A U AU U λλλλλλ2121,, 其中],,,[21n U ααα =,n ααα,,,21 为A 的特征向量,由上两式可见i i i A αλα=,i i i H A αλα=,故A 与H A 有相同的特征向量.(2) 由H H AA A A =,X AA X X A X A XA H H H H H H ==)()(22)()(AX AX AX AX A X H H H ===. 证得AX X A H =.例25、B A ,为n 阶实对称矩阵,B 为正定矩阵,证明存在同一可逆矩阵P ,使Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==n T H u u AP P I BP P 1,. 证 B 为正定矩阵,必有可逆矩阵Q ,使.E BQ Q T =因A 为对称矩阵,则AQ Q T 也是对称矩阵,所以存在正交矩阵C ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T T u u AQC Q C 1, 令QC P =,就有Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T u u AP P 1. 又E C C EC C BQC Q C T T T T ===,即有E BP P T =,故存在同一可逆矩阵P ,使Λ==AP P E BP P T T ,.例26、(1) 设n n C A ⨯∈,则n n U A ⨯∈的充要条件是A 的n 个列(或者行)向量是标准的正交向量组.(2) r n r U U ⨯∈1的充要条件是E U U H =11. 证 (1) 必要性 设⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==H n H H H n A A αααααα 2121],,,[.由于E A A H =,所以有E n H n H n H n n H H H n H H H nH n H H =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡αααααααααααααααααααααααα 2122212121112121],,,[, 于是可得⎪⎩⎪⎨⎧==≠=ji ji j Hi j Hi ,1,0αααα 这表明矩阵A 的n 个列向量是一个标准的正交向量组.同样可以证明A 的n 个行向量是一个标准的正交向量组.充分性 设矩阵A 的n 个列向量n ααα,,,21 是一个标准的正交向量组,那么有⎪⎩⎪⎨⎧==≠=ji ji j Hi j H i ,1,0αααα 从而可知E n H n H n H n n H H H n H H H nH n H H =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡αααααααααααααααααααααααα 2122212121112121],,,[, 此即E A A H =,进一步也有E AA H =,这表明A 为一个酉矩阵.类似地可以证明行的情况.(2) 必要性 设矩阵1U 的r 个列向量r ααα,,,21 是一个标准的正交向量组,那么有⎪⎩⎪⎨⎧==≠=j i ji jHi j Hi ,1,0αααα 由此可得r r H r H r H r r H H H r H H H r H r H H H E U U =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=αααααααααααααααααααααααα 212221************],,,[. 充分性 设.],,,,[211211⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==H r H H Hr U U αααααα 由于r H E U U =11,所以有rr H r H r H r r H H H r H H H r H r H H E =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡αααααααααααααααααααααααα 2122212121112121],,,[.于是可得⎪⎩⎪⎨⎧==≠=j i ji jHi j Hi ,1,0αααα 这表明矩阵1U 的r 个列向量r ααα,,,21 是一个标准的正交向量组.例27、已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=502613803A , 试求酉矩阵U ,使得AU U H 是上三角矩阵.解 首先求出其特征多项式3)1(+=-λλA E .当1-=λ时,求出属于特征值1--1的一个单位特征向量T ]61,61,62[1-=η.解与1η内积为零的方程02321=++-x x x ,求得一个单位解向量T]33,33,33[2=η.解与21,ηη内积为零的方程⎩⎨⎧=++=++-002321321x x x x x x 又求得一个单位解向量T ]22,22,0[3-=η. 于是取⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡--=223361223361033621U , 经过计算可得⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=6265036540337227111AU U H . 记⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=626536541A , 可得21)1(+=-λλA E .对于1-=λ时,求得一个单位特征向量T]515,510[1-=γ, 再求得一个与1γ正交的向量2γT]510,515[2=γ. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=5105155155101V , 经计算可得⎥⎥⎦⎤⎢⎢⎣⎡---=1066251111V A V H.令⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=510515051551000012U , 记⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡---==5523030610630615515306221U U U , 则⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=1006625102015715301AU U H .例28、设B A ,均为n 阶正规矩阵,试证A 与B 相似的充要条件是A 与B 酉相似.证 必要性 由于A 与B 均为正规矩阵,所以分别存在正规矩阵21,U U ,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n HAU U λλλ2111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n HBU U μμμ2122 其中),,2,1(0n i i =>λ为A 的特征值,),,2,1(0n i i =>μ为B 的特征值.又A 与B 相似,于是有2211,BU U AU U HH i i ==μλ,此时B U AU U U H =--121121)(,这表明A 与B 相似.充分性 显然.例29、已知A 为实矩阵,且有T T AA A A =,证明A 必为对称矩阵. 证 由T T AA A A =可知,A 为正规矩阵,那么存在酉矩阵U ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H H n H U A U AU U λλλλ 11,, 从而有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221n TH AU A U λλ .又A A T 为实矩阵,由上式可知其特征值也是实数,从而矩阵U 是一个正交矩阵,即1-==U U U T H ,从而有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-n AU U λλ 11, 其中n λλ,,1 一定为实数.同样也有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-n T U A U λλ 11. 由此可得A A T =,即A 为实对称矩阵.例30、设B A ,均为正规矩阵,且有BA AB =,证明: (1)B A ,至少有一个公共的特征向量;(2)B A ,可同时酉相似于上三角矩阵,即存在酉矩阵W ,使得AW W H 以及BW W H 均为上三角矩阵;(3)B A ,可同时酉相似于对角矩阵; (4)AB 与BA 均为正规矩阵.证 (1) 设λV 是矩阵A 的属于特征值λ的特征子空间,若λαV ∈,即λαα=A ,则αλαB BA =,由于BA AB =,所以有)()(αλαB B A =,这表明λαV B ∈,从而λV 是B 的不变子空间,故在λV 中存在B 的特征向量β,它也是A 的特征向量.(2) 对B A ,的阶数用归纳法证明.当B A ,的阶数均为1时,结论显然成立.设单位向量1α是B A ,的一个公共特征向量,再适当选取1-n 个单位向量n αα,,2 ,使得},,,{21n ααα 为标准正交基,于是],,,[21n U ααα =为酉矩阵,且有],,,[,2111n B B b BU b B ααααα ==.进一步可得,01B B b BU U H=⎥⎦⎤⎢⎣⎡=β这里β是)1(1-⨯n 矩阵,1B 是一个1-n 阶矩阵,另外也有A A aAU U H =⎥⎦⎤⎢⎣⎡=10η,这里η是)1(1-⨯n 矩阵,1A 是一个1-n 阶矩阵.由BA AB =又有)()()()(H H H H UAU UBU UBU UAU ⋅=⋅,于是可得BA AB =,由此可推得1111A B B A =.故由归纳法假设,存在1-n 阶酉矩阵1V ,使得∆=111V B V H ,这里∆为一个上三角矩阵,记.,0011UV W V V =⎥⎦⎤⎢⎣⎡=于是有V BU U V BW W H H H )(=⎥⎦⎤⎢⎣⎡∆=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=000100011111V b V B b V H ββ, 显然BW W H 是一个上三角矩阵.容易验证W 是酉矩阵.同样可得,AW W H 也是一个上三角矩阵.(3) 由(2)可设R AW W H =,这里R 是一个上三角矩阵,那么H H H R W A W =,从而可得H H H H H H W RR W W W R W RW AA )(=⋅=,H H H H H H W R R W W RW W W R A A )(=⋅=.又A A AA H H =,所以可得R R RR H H =,从而知R 为一个对角矩阵.同样可证BW W H 也是一个对角矩阵.(4) 由(3)可设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H n H u u BW W AW W 11,λλ, 于是有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n H ABW W μλμλ 11. 由正规矩阵结构定理可知AB 为正规矩阵,那么BA 也为正规矩阵.【评注】教材中已给出一种证明方法,但是与这里的证明方法完全不同,这里主要运用Schur 引理的证明思想.例31、已知下列正规矩阵,求酉矩阵U ,使得AU U H 为对角矩阵.(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0000110i i A (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+------+=062266234426434i i i i i i i iA (3)⎥⎦⎤⎢⎣⎡-=1111A 解 (1) 首先求出矩阵A 的特征多项式为)2(2+=-λλλA E ,所以A 的特征值为0,2,2321=-==λλλi i .对于特征值i 2,求得一个特征向量T i X ]1,,2[1-=. 对于特征值i 2-,求得一个特征向量T i X ]1,,2[2--=. 对于特征值0,求得一个特征向量T i X ]1,,0[3=.由于A 为正规矩阵,所以321,,X X X 是彼此正交的,只需分别将321,,X X X 单位化即可TTTi i i ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-=22,22,0,21,2,22,21,2,22321ααα,于是取⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡---==222121222202222],,[321i i iU ααα, 而且有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=000020002i i AU U H .(2) 首先求出矩阵A 的特征多项式为)9)(81(2-+=-λλλA E ,所以A 的特征值为9,9,9321==-=λλλi i .对于特征值i 9-,求得一个特征向量T iX ]1,1,2[1-=.对于特征值i 9,求得一个特征向量T i X ]1,21,[2-=.对于特征值9,求得一个特征向量T i X ]21,1,[3-=.由于A 为正规矩阵,所以321,,X X X 是彼此正交的,只需分别将321,,X X X 单位化即可TT T i i i ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=31,32,32,32,31,32,32,32,3321ααα.于是取⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---==31323232313232323],,[321i ii U ααα, 从而有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=900090009i i AU U H . (3) 首先求出矩阵A 的特征多项式为222+-=-λλλA E ,所以A 的特征值为i i -=+=1,121λλ.对于特征值i +1,求得一个特征向量T i X ]1,[1=. 对于特征值i -1,求得一个特征向量T i X ]1,[2-=.由于A 为正规矩阵,所以21,X X 是彼此正交的,只需分别将21,X X 单位化即可TTi i ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=22,22,22,2221αα.于是取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==22222222],[21i i U αα, 从而有⎥⎦⎤⎢⎣⎡-+=i i AU U H1001. 【评注】这三个题目只需按照教材介绍的正规矩阵可对角化具体过程进行即可.例32、试举例说明:可对角化矩阵不一定可酉对角化.解 设Y X ,是两个线性无关但不正交的向量,记],[Y X P =,取b a b a D ≠⎥⎦⎤⎢⎣⎡=,00 那么1-=PDP A ,就是一个可对角化矩阵,但不是可酉对角化矩阵.例33、证明(1) Hermite 矩阵的特征值为实数;(2) 反Hermite 矩阵的特征值为零或纯虚数; (3) 酉矩阵特征值的模长为1.证 (1) 设A 为一个Hermite 矩阵,λ是A 的一个特征值,X 为对应于特征值为λ的一个特征向量,即有X AX λ=,在此式两端取共轭转置可得.,HHH H H X A X X A X λλ==用X 从右端乘上式两端有X X AX X H H λ=,于是有X X X X H H λλ=.由于0≠X ,所以0≠X X H ,从而有λλ=,这表明λ是实数.(2) 设A 为一个反Hermite 矩阵,λ是A 的一个特征值,X 为对应于特征值λ的一个特征向量,即有X AX λ=,在此式两端取共轭转置可得.,HHH H H X A X X A X λλ=-=用X 从右端乘上式两端有X X AX X H H λ=-,于是有X X X X H H λλ=-.由于0≠X ,所以0≠X X H ,从而有λλ=-,这表明λ为零或纯虚数. (3) 设A 为一个酉矩阵,λ是A 的一个特征值,X 为对应于特征值λ的一个特征向量,即有X AX λ=,在此式两端取共轭转置可得H H H X A X λ=.用AX 从右端乘上式两端有X X EX X H H λλ=,于是有0)1(=-X X H λλ.由于0≠X ,所以0≠X X H ,从而有1=λλ,这表明λ的模长为1.例34、设A 与B 均为Hermite 矩阵,试证A 与B 酉相似的充要条件是A 与B 的特征值相同.证 必要性 由于相似矩阵有相同的特征值,所以A 与B 的特征值相同.充分性 A 与B 均为Hermite 矩阵,所以分别存在酉矩阵21,U U ,使得.,2122211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H n H BU U AU U ηηηδδδ其中),,2,1(n i i =δ为A 的特征值,),,2,1(2n i =η为B 的特征值.又i i ηδ=,从而2211BU U AU U H H =,此即B U U A U U HH H =)()(2121,这表明A 与B 酉相似.例35、设A 是Hermite 矩阵,且A A =2,则存在酉矩阵U ,使得⎥⎦⎤⎢⎣⎡=000rH EAU U . 证 由于A 是Hermite 矩阵,所以存在酉矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n HAU U λλλ21, 其中),,2,1(n i i =λ为A 的特征值,又A 为幂等矩阵,于是0=i λ或1.不妨设A 的秩为r ,那么i λ中有r 个1,r n -个0.记0,12121========-++r n r r r λλλλλλ .即⎥⎦⎤⎢⎣⎡=000rH EAU U . 例36、设3R 中的向量为),,(321ξξξα=,线性变换为)32,32,22()(32132132ξξξξξξξξα+---+---=T ,求3R 的一个基,使T 在该基下的矩阵为对角矩阵.解 取3R 的简单基321,,e e e ,计算得),3,1,2()(),1,3,2()(),2,2,0()(321--=--=--=e T e T e T那么,T 在基321,,e e e 下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=312132220A . A 的特征值为2,4321-===λλλ,与之对应的线性无关的特征向量依次为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-112,201,021. 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=Λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=244,120102211P , 则有Λ=-AP P 1,由P e e e ),,(),,(321321=ααα求得3R 的另一个基为).1,1,2(2),2,0,1(2),0,2,1(23213312211=++=-=+-=-=+-=e e e e e e e ααα T 在该基下的矩阵为Λ.四、教材习题同步解析1、设V 是实数域R 上的n 维线性空间,12,,,n εεε 是V 的一组基,对于V 中向量n n x x x εεεα+++= 2211, n n y y y εεεβ+++= 2211,定义内积为n n y nx y x y x +++= 22112),(βα,证明V 在此内积下构成一个内积空间.证 设R k V z z z n n ∈∈+++=,2211εεεγ ,则有n n x ny x y x y +++== 22112),(),(αββα;111222(,)()2()()n n n x y z x y z nx y z αβγ+=++++++11221122(2)(2)n n n n x y x y nx y x z x z nx z =+++++++(,)(,)αβαγ=+;1122(,)2(,)n n k kx y kx y nkx y k αβαβ=+++= .当0=α时,0),(=αα;当0≠α时,至少有一个00≠i x ,从而0),(200>=i x i αα,因此,该实数是V 上的内积,V 构成一个内积空间.2、设V 是实数域R 上的n 维线性空间,n εεε,,21 是V 的一组基,A 是一个n 阶正定实对称矩阵.定义V 的内积如下:对于V 中向量βα,,如果它们在基12,,,n εεε 下的坐标分别为y x ,,则Ay x T =),(βα,证明V 是一个内积空间.证 设V ∈γ,在基12,,,n εεε 下的坐标为z ,R k ∈,则有),()(),(αββα=====Ax y x A y Ay x Ay x T T T T T T ; ),(),()(),(γαβαγβα+=+=+=+Az x Ay x z y A x T T T ; ),()(),(βαβαk Ay kx Ay kx k T T ===;因为A 为n 阶正定实对称矩阵,所以Ax x T =),(αα为正定二次型.0≠α时,0),(>αα;0=α时,0),(=αα,所以V 是一个内积空间.3、在实内积空间4R (内积为实向量的普通内积)中,已知⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1111,1111,0011321βββ,试求出与321,,βββ都正交的单位向量.解 设T x x x x ),,,(4321=α满足,3,2,1,0),(==i i βα有⎪⎩⎪⎨⎧=-+-=--+=+0004321432121x x x x x x x x x x ,可取T)1,1,1,1(--=α,故单位向量为 T ⎪⎭⎫ ⎝⎛--21,21,21,21或T⎪⎭⎫⎝⎛--21,21,21,21. 4、设内积空间3C 中向量βα,的内积为αββαH =),(判断下述向量βα,是否正交:1)T T i i i i )2,1,1(,),,1(-+=--=βα; 2)T T i i i i i )3,1,,1(,)2,,1(-=+-=βα.解 1)01)2,1,1(),(=⎪⎪⎪⎭⎫⎝⎛--+-=i i i i βα,故正交.2)04721)3,,1(),(≠+=⎪⎪⎪⎭⎫ ⎝⎛+-+-=i i i i i i βα,故不正交.5、设12,,,n ααα 是n 维内积空间V 的一组基,如果V 中向量β使.,2,1,0),(n i i ==αβ证明 0=β.证 令n n x x x αααβ+++= 2211,有0),(),(),(11===∑∑==ni i i ni i i x x αβαβββ,由内积定义,有0=β.6、设V 是实数域R 上的内积空间,321,,εεε是V 的一组标准正交基.证明)22(31),22(31),22(31321332123211εεεηεεεηεεεη--=+-=-+=也是V 的一组标准正交基.证 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=323231323132313232),,(),,(321321εεεηηη,记矩阵 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=323231323132313232A ,因为,E A A T =所以A 为正交矩阵,又因为321,,εεε为标准正交基,所以321,,ηηη也是标准正交基.7、设54321,,,,εεεεε是5维内积空间V 的一组标准正交基.32132125112,,εεεαεεαεεα++=-=+=.求子空间),,(321αααL 的一组标准正交基.解 设0332211=++αααk k k ,则0)()2(51332321321=+++-+++εεεεk k k k k k k ,因为5321,,,εεεε线性无关,则0321===k k k ,所以321,,ααα线性无关,所以他们是),,(321αααL 的一组基.将321,,ααα正交化,单位化,即得),,(321αααL 的一组标准正交基.记)0,0,1,1,2(),0,0,0,1,1(),1,0,0,0,1(321=-==x x x ,则正交化,11x y =;⎪⎭⎫ ⎝⎛--=-=21,0,0,1,21),(),(1111222y y y y x x y ;()1,0,1,1,1),(),(),(),(13222231111333-=-=--=y x y y y y x y y y y x x y ;单位化)1,0,0,0,1(222211==y z ;)1,0,0,2,1(663622--==y z ; )1,0,1,1,1(213-=z 所以标准正交基)(21),2(66),(22532135212511εεεεγεεεγεεγ-++=--=+=. 8、已知线性空间4][x R 对于内积⎰-=11)()())(),((dx x g x f x g x f构成一个内积空间.从基32,,,1x x x 出发,经正交单位化求一组标准正交基.解 因为32),(,0)1,(,211)1,1(1121111=====⋅=⎰⎰⎰---dx x x x xdx x dx , 52),(,32)1,(,0),(2222===x x x x x ,…… 正交化,令11=β;x x x =⋅-=1)1,1()1,(2β; 31),(),(1)1,1()1,(22223-=⋅-⋅-=x x x x x x x x β;x x 5334-=β;再单位化x x x x x x 41434145;4104103;26),(;22)1,1(34232211-=-=====ηηβηβη9、对于实数域R 上的线性空间n m R ⨯,规定内积如下:对于n m R ⨯中任意元素][],[ij ij b B a A ==,则=),(B A 迹∑∑===ni mj ji ji Tb a A B 11)(.证明n m R ⨯对此内积构成欧氏空间.证 ∑∑∑∑=======n i m j m j ni ji ji ji ji A B a b b a B A 1111),(),(;对任意的R k ∈,n m ij R a C ⨯∈=][,有=+),(C B A 迹=+))((A C B T 迹()T T B A C A +=迹)(A B T +迹()T C A =(,)A B (,)A C +;=),(B kA 迹=))((kA B T 迹)(A kB T =k 迹)(A B T =),(B A k ;0),(112≥=∑∑==n i mj ji a A A ,当且仅当0=ji a (即0=A )时,0),(=A A ,所以nm R ⨯对此内积构成欧氏空间.10、设欧氏空间4R (内积为普通实数组向量的点积)的一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1111,0111,0011,00014321αααα,求在这组基下的度量矩阵A .解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛==4321332122211111)),((j i A αα.11、在线性空间4R 上定义一种内积成为欧氏空间.已知在基T T T T e e e e )1,0,0,0(,)0,1,0,0(,)0,0,1,0(,)0,0,0,1(4321====下的度量矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=3101121001211012A . 1) 求在基T T T T )1,1,0,1(,)1,2,1,0(,)0,0,2,1(,)0,0,1,1(4321==-=-=αααα下的度量矩阵B .2) 求实数a ,使向量T a )1,2,,1(-=α与向量T )0,2,1,1(-=β正交. 解 1) 因为由基4321,,,e e e e 到基4321,,,αααα的过渡矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=-2100110010113112;11001200012110111P P , 设向量α在4321,,,e e e e 下的坐标为x ,则α在4321,,,αααα下的坐标为x P 1-,如果在基4321,,,αααα下的度量矩阵为B ,则Ax x x BP x P T T ==--11)(),(αα,所以⎪⎪⎪⎪⎪⎭⎫⎝⎛----===--79119130010631032,)(11AP P B A BP P T T 2)βα,在4321,,,e e e e 下的坐标分别为T a )1,2,,1(-和T )0,2,1,1(-,所以0)0,2,1,1()1,2,,1(),(=--=T A a βα时,有310=a . 12、设321,,εεε是欧氏空间V 的一组基,内积在这组基下的度量矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=612121211A已知V 的子空间1V 的一组基为112αεε=+,2123αεεε=+-.1) 证明21,αα是1V 的一组正交基; 2) 求1V 的正交补⊥1V 的一组基. 证 1) 因为12111213212223(,)(,)(,)(,)(,)(,)(,)ααεεεεεεεεεεεε=+-++-112(1)2(1)0=--+-+--=,故21,αα正交,所以21,αα是1V 的一组正交基.2) 只需再找到V 中向量3α使321,,ααα为V 的一组正交基,则3α即为⊥1V 的一组基.方法一:设3322113εεεαx x x ++=,利用正交条件⎩⎨⎧==0),(0),(3231αααα 即 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0)1,1,1(0)0,1,1(321321x x x A x x x A 可得一解为2,2,7321-===x x x ,即得3213227εεεα-+=.方法二:先将21,αα扩充为V 的一组基123,,ααξ,为此只需123,,αατ的坐标线性无关.例如取31ξε=即可.再将123,,ααξ正交化.因21,αα已是正交组,正交化过程只需从第三个向量做起.令(3)(3)311223k k αααξ=++,算出(3)(3)3132121122(,)(,)20,(,)(,)5k k ξαξααααα=-==-=,即得3213525257εεεα-+=.13、设4维欧氏空间V 在基4321,,,εεεε下的度量矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=1100162102100101A , 已知V 中向量323312211,,εεαεεαεεα-=+=+=,V 的子空间1123(,,)V L ααα=.1) 试求1V 的一组标准正交基; 2) 设有1V 的线性变换σ,使11266()(1)33σααα=+-,21266()(1)(2)63σααα=-++-,3136()22σααα=+请判明σ是不是1V 的正交变换或对称变换?解 1) 显然321,,ααα线性相关,其极大无关组21,αα即为1V 的一组基,将。
矩阵论第2章 Jordan标准型

1 2 2=(- 1 - 1 1 ) ,只有一个,则 J 2 ( 2) 0 。 2 T 由( A 2 I ) 2取一个 =(- 1 -2 0 ) ,所以
T
P=(1
矩阵A和JA的特征值相等
J1( 1 ) J ( ) 2 2 JA J s ( s )
AP i P i J i ( i )
细分矩阵Pi 和 Ji,在Jordan块上
J i (i )是主对角线元素为 i的k i阶Jordan矩阵,把可逆矩阵 P 依据上式J A的结构,相应取 k1列,k 2列, ,k s列分块为 P (P P2 Ps ), AP PJ A可具体表示为: 1 ( AP AP2 APs )=( P P2 J 2 (2 ) Ps J s (s )) 1 1 J 1 (1 ) 从而有APi=Pi J i (i )。不妨取AP =P 1 1 J 1 (1 ),设 J11 (1 ) J1 (1 )
2
1. (12 …n) 线性无关
n
一、变换T的特征值与特征向量 1. 定义(p35 ,定义2.1) 2. 求解分析:(p35 ,定理2.1)
A的特征值就是T的特征值
2. Ti= ii ; L{ i}是不变子空间
A的特征向量是T的特征向量的坐标
14
再把P1依n1列,n 2列, ,n t 列分块,
(1) P 1 (P 1 (1) P2(1) P )因此有APj(1) Pj(1) J1 j (1 ) t
设Pj(1) (
2 n ), 则上式化为
矩阵论第二章-1

第二章多项式矩阵1§1.多项式矩阵及其初等变换一、多项式的概念二、多项式矩阵三、初等变换与初等方阵23一、多项式的概念10110()(,0)nn n n k f x a x a xa x a a F a −−=++++∈≠⋯ 数域F 上变量x 的n 次多项式的一般形式为: 当F 是实(复)数域, 称f 是实(复)数域上的n 次多项式.f 的次数记为deg (f ),当a 0=1时称f 为首1多项式。
零多项式即常函数0。
()0,f x ≡ 零次多项式 n =0, 即非零常数。
()0,f x c ≡≠4代数基本定理:在复数域内一个n 次多项式,一定可分解为下面的形式:零点 若f (x 0)=0,则称x 0为 f (x )的一个零点,或为方程 f (x )=0 的一个根。
1011()()(),kn n k k f z a z z z z n n n=−−++=⋯⋯ 在实数域内一个n 次多项式,一定可分解为一次和二次不可约因式的乘积。
5多项式的运算n n mm n n n a z a z a z a z a f ++++++=−−−1110⋯⋯00()a ≠m m m mb z b zb z b g ++++=−−1110⋯00()b ≠()()()m n m n mm n nb a z b a z b a z a g f ++++++++=+−−−1100⋯⋯ 设f 和g 分别是复数域上的n 次和m 次多项式, 不妨设.n m ≥()()()0011nmn m n m n m f g a z a b z a b z a b −−−−=++−++−+−⋯⋯ 即两个多项式相加减为其同次幂系数相加减。
6一般地, ()()(){}deg max deg ,deg f g f g ±≤()()()deg deg deg f g f g ⋅=+()()f z g z ()()0g z ≠带余除法()()()()f z g z h z r z =+()()()deg deg r g < 除法:被除式除式商式余式若r (z )=0,称g (z )整除 f (z ),记作g (z )|f (z ),称g (z )和h (z )都是 f (z )的多项式因子(因式) .7若多项式f (z )与g (z )除了非零常数外没有公因式,则称f (z )与g (z )互质,若deg(f )>deg(g ),称 为既约分式或真分式。
矩阵论-第二章 -程云鹏版

2015/10/12
Sun Songlin, Beijing University of Posts and Telecommunications
2
1、向量范数的概念及l 范数
p
定义:如果V是数域K上的线性空间,且对于V的任 一向量x,对应一个实数值 x ,满足以下三个条件 1) 非负性: 当x 0 时,x 0; 当 x =0 时,x =0 2) 齐次性:ax a x , (a K , x V ) 3) 三角不等式:x y x y (x, y V ) 则称 x 为V上向量x的范数,简称向量范数。
F
l
2015/10/12
Sun Songlin, Beijing University of Posts and Telecommunications
14
定理 mn mn nn A C , 且 P C 与 Q C 设 都是酉矩阵,则
PA
F
A
F
AQ
F
推论:和A酉(或正交)相似的矩阵的F-范数是相 H B Q AQ 则 A F B F ,其中Q是酉矩 同的,即若 阵。
2015/10/12
Sun Songlin, Beijing University of Posts and Telecommunications
15
2、几种常用的矩阵范数
定理:已知 C 和 C 上的同类向量范数 ,设 Ax 是 C mn 上的矩阵范 A C mn ,则函数 A max X =1 数,且与已知的向量范数相容。称此矩阵范数为 “由向量导出的矩阵范数”简称为从属范数。
2015/10/12
Sun Songlin, Beijing University of Posts and Telecommunications
矩阵论第2章内积空间

则
即抽象的向量的内积可通过他们在基下的坐标及度量矩阵 的双线性函数来计算。
定理2:设 1, 2 ,, n 与 1 ,2 ,,n 为n维欧氏空间V的基,它们 的度量矩阵为A和B,,C是 1, 2 ,, n 到 1 ,2 ,,n 的过渡
命题
设S是n维线性空间V 的一个子空间,则存在子空 间T , 使得
并称T是S的补空间。
证明: 设x1 ,x2 , …,x k是S的一组基,则它可扩充为 V的一组基x1 ,x2 , …,x k,x 令 则
k+1,
…,x n,
从而
练习P23:5, 6
第四节
线性映射
主要内容: 一、线性映射 二、线性映射的矩阵表示 三、线性映射的运算(自学) 四、不变子空间(自学)
例4在实线性空间中,对于任意两个 n阶矩阵A,B ,定 义 n n T A, B tr ( AB ) aij bij
i 1 j 1
则
( A, B)
是内积,向量空间
R
nn
是欧氏空间。
内积的性质
对于欧氏空间的向量 , ,
1.(0, ) ( ,0) 0, V ; 2.( , ) ( , ) ( , ); 3.( , k ) k ( , )
3 k , k , (4) , 0 当且仅当 0
时等式成立
则称复数 ( , )为向量 , 的内积。 定义了内积的复线性空间叫做酉空间。
酉空间内积的性质
对于酉空间的向量 , ,
第二章矩阵论

例 设 H I n 2uu H , u C n ,且 变换 H 2uu H , 则
uH u 1
,定义
H , H 2uu H , 2uu H
H 2 H uu H 2uu H H ,
例 设欧氏空间P3 x 中的内积定义为
f x , g x
1 1
f x g x dx ,
f x , g x P3 x
取 f1 x x ,构造子空间 W Span x , W 的一组正交基; (1)求 (2)将 W 分解为两个正交的非零子空 间的和。
, 也是 R 2 的内积。 可验证这样定义的
例3 对 f x , g x C a, b ,定义内积为
f x , g x
b a
f x g x dx
用定积分的性质可证明这样定义的 f x , g x 是 C a, b 的内积。
2 , 1 2 2 1 ,, 1 , 1 i , 1 i , 2 i , i 1 i i 1 2 i 1 1 , 1 2 , 2 i 1 , i 1
例 设P3 x 是全体次数小于3的实系数多项 式构成一个实线性空间,定义内积为 f x , g x 11 f x g x dx , f x , g x P3 x 不难验证这样定义的 f x , g x 是 P3 x 的内 积,求 P3 x 的一组标准正交基。
所以H是 C n 上的酉变换,称为Householder 镜象变换.
定理2.5 设T是内积空间V上的一个线性 变换,则下列命题等价: (1) T , T , , , V , (2) T , V , 当V是有限维时,以上命题进一步与以下 命题等价。 (3) 1 , 2 ,, n 是V的一组标准正交基,则 T 1 , T 2 ,, T n 是V的一组标准正交基; (4)T在任一组标准正交基 1 , 2 ,, n下的 矩阵是酉矩阵。
矩阵论第2章1-2节

n1 ( xk ) ( xk x0 )( xk xk 1 )( xk xk 1 )( xk xn ),
于是前述 Ln ( x ) 公式可改写成
Ln ( x )
k 0
n
yk
n 1 ( x ) . 1 ( x k ) ( x x k ) n
Ln ( x j ) y j ( j 0,1,, n).
为构造 Ln (x) ,先定义 n 次插值基函数.
17
定义1 若 n 次多项式 L j ( x) ( j 0,1,, n) 在 n 1 个节点
x0 x1 xn 上满足条件
1, k j; l j ( xk ) ( j , k 0,1,, n) 0, k j.
0 1
y0 ( x1 x0 ) ( y1 y0 )( x x0 ) 插值基函数 变形: L1 ( x ) x1 x0 x x0 x x1 y0 y1 l0 ( x) y0 l1 ( x) y1 x0 x1 x1 x0
拉格朗日插值多项式 由于插值多项式式惟一的,所以求L1(x)又可以直接利用 11 插值基函数来求。
4
二、插值多项式的存在惟一性
显然,若满足插值条件的Pn (x)中的ai 存在而且惟一,则 插值多项式P n (x)存在且惟一。
n a0 a1 x0 an x0 f ( x0 ) n a0 a1 x1 an x1 f ( x1 ) n a0 a1 xn an xn f ( xn )
1 R2 ( x ) f ( ) 3 ( x ), ( x0 , x2 ) 3!
16
3.n次拉格朗日插值多项式
矩阵论第二章-3

§3.不变因子与行列式因子、初等因子一、行列式因子二、初等因子、初等因子组三、练习解答及提示12一、行列式因子例11222()−⎛⎞⎜⎟=−⎜⎟⎜⎟−⎝⎠A λλλλ 定义 称 的所有非零k 级子式的首一的最高公因式为 的k 级行列式因子, 记作()A λ().k D λ()m n A λ×1()1D λ=23()(1)(2)D λλλ=−−()21D λλ=−()1,2,,()k R A λ=⋯3()(),m n m n rankA rankB λλ××=()()A B λλ且与有相同的各级行列式因子.互换两行(列)、用非零数乘某行(列)的初等变换,各级子式至多差一个非零的常数因子,即这两类初等变换不改变行列式因子。
证明""⇒()()()A B A λλλ∼设,即可经有限 定理定理11 同型矩阵 与 等价()A λ()B λ⇔().B λ次初等变换变成()()()().r A r B λλ=显然有4()A λ()1A λ~()ijr rϕλ+ 若用 乘 的第j 行再加到第i 行,即()ϕλ()A λ则: 的不含第i 行元素的 k 级子式与 的相应子式显然相等.1()A λ()A λ 的同时含有第 i 行和第 j 行元素的 k 级子式与 的相应子式显然也相等.1()A λ()A λ5的只含有第 i 行不含第 j 行元素的 k 级子式可表为1()A λ12()()(),k k λϕλλ+12()()k k λλ其中和都是1()()()A k A A k λλλ的级子式,因此与有相同的级行列式因子。
综上分析,三类初等变换均不改变矩阵的行列式因子。
6⇐设rankA rankB rλλ==,且具有各级相同的行列式因子 , 12(),(),()rD D D λλλ⋯根据行列式按行(列)展开定理可知()| (), ,,k 1kD D k 12rλλ−=⋯记A λ的Smith 标准形为()00ArAS S λλ⎛⎞=⎜⎟⎝⎠B λ的Smith 标准形为()00B r B S S λλ⎛⎞=⎜⎟⎝⎠7()12()(),(),()AAAAr r S diag d d d λλλλ=⋯()12()(),(),()BBBBr r S diag d d d λλλλ=⋯AA S λλ∵由必要性的证明可知A λ与AS λ有相同的各阶行列式因子.由AS λ的各级行列式因子知A λ的各级行列式因子为:811()(),AAD d λλ=111222()()()()(),,()()()().rBBBBBBABBr r D d D d d D d d d λλλλλλλλλ===⋯⋯类似地122()()(),,AAAD d d λλλ=⋯2()()()().rAAAArrD d d d λλλλ=⋯9由定理条件知() B()()1,2,,Ai i D D i r λλ==⇒⋯ ()B ()()1,2,,Ai i d d i r λλ==⋯从而)A λ与()B λ有相同的Smith 标准形,于是B λλ()~().注:(1) 行列式因子与不变因子的关系:211211()()()(),(),,()(())rr r D D d D d d D D λλλλλλλλ−===⋯10(2) ×m nA λ的Smith 标准形是唯一的.因()A λ的各级行列式因子由()A λ唯一决定,从而不变因子()id λ也由()A λ唯一决定,可知Smith 标准形是唯一的.11例2: 求1211()11n n a a A a a λλλλλ−⎛⎞⎜⎟−⎜⎟⎜⎟=⎜⎟−⎜⎟⎜⎟−+⎝⎠⋯⋯⋯⋯⋯⋱⋱⋱⋮的Smith 标准形.解:()11,2,,1,D k n k λ==−⋯显然又对于都存在级子式101det (1)011kλλλ−⎛⎞⎜⎟−⎜⎟⎜⎟=−≠⎜⎟−⎜⎟⎜⎟−⎝⎠⋯⋯⋯⋮⋱⋱⋱⋮⋯⋯12所以()1n D λ−=,从而()()1n D D λλ−===⋯()()det n D A λλ=又 12123n nr r r rλλλ−++++⋯12100111n a a aϕλλλλ−−−−+⋯⋯⋯⋯⋱⋱⋱⋮()12121()nn n n na a a a ϕλλλλλ−−−=+++++⋯这里1211()11n n a a A a a λλλλλ−⎛⎞⎜⎟−⎜⎟⎜⎟=⎜⎟−⎜⎟⎜⎟−+⎝⎠⋯⋯⋯⋯⋯⋱⋱⋱⋮13从而A λ的Smith 标准形为根据不变因子与行列式因子的关系112()()()1,()()n n d d d D λλλλϕλ−=====⋯()~(1,1,,1,())A diag λϕλ⋯按第一行展开得1111()()()()()n n nD λϕλϕλ+−=−−=12100111n a a a ϕλλλλ−−−−+⋯⋯⋯⋯⋮⋱⋱⋱()12121()nn n n na a a a ϕλλλλλ−−−=+++++⋯14定义 设m nrankA r λ×=,其不变因子为(),d λ1(),,(),(),().ri id d d d λλλλ−⋯11111212121121212(()())()()()()()()()()()()()()jtiji i itrjrtr r k k k k j t k k k k i j t k k k kr j t d d d λλλλλλλλλλλλλλλλλλλλλλλλλλλ⎧=−−−−⎪⎪⎪=−−−−⎨⎪⎪⎪−=−−−⎩⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯二、初等因子、初等因子组,1,(,,1,,),,1,, 1.i j s j s j i j i j t k k s r λλ+≠≠=≤=−⋯⋯其中,15则称这×个因式中所有指数>ijk 的因式)ijk jλλ−为A λ的初等因子,而()A λ的全部初等因子(重复的按重数计)全体称为()A λ的初等因子组。
矩阵论第二章答案

n
n
(α, β ) = ∑ iξiηi ∑ = iηiξi =( β ,α )
i =1
i =1
n
n
n
(α, β + γ ) = ∑iξiηi (ηi + Ci ) = ∑ iξiηi ∑ + iξiηiCi = (α, β ) + (α,γ )
i =1
i =1
i =1
1
当α = θ 时, (α,α ) = 0 ;当α ≠ 0 ,存在 i0 使得ζ i0≠ ≠ 0 ,从而
k1(xi , x1) + k2 (xi , x2 ) + L + km (xi , xm ) = 0 ,
i = 1,2,L, m
由于上述方程组仅有零解 k1 = k2 = L = km = 0 (意味着 x1, x2 ,L, xm 线性无关)
的充要条件是系数行列式 det△ ≠ 0 ,从而得证.
10. 证: 设基(I)与基(II)的度量矩阵分别为 A 与 B,向量
)T
A(CY2
)
( ) =
X
T 2
C T AC Y2
=
X
T 2
BY2
11. 解: (1) ⇒ u= a v , θ = cos−1((u,v)) = cos−1( a(v,v)) = cos−11 =0
uv
avv
3
⇐ 由 cos−1 ((u, v)) = 0 , u 与 v 必共线,
uv
即成比例 u= a v ,且 a f 0 ;
(2) ⇒ u= a v ( a p 0), θ = cos−1 ((u, v)) = cos−1 ( a(v, v)) = cos−1 (−1) =π
矩阵理论第2章习题解答

第二章习题答案1.设a 1,a 2,…,a n 均为正数,nC x ∈,且Tn x x x x ),,,(21 =. 证明函数2/112][)(∑==ni i i x a x f在C n 上定义了一个向量范数.证明:(1) 正定性:对0≠∀x ,有f (x )>0,当x =0时,f (x )=0. (2) 奇次性:)(][][)(2/1122/112x f x a x a x f ni i i ni i i ⋅=⋅==∑∑==λλλλ.(3) 三角不等式:])([][)(122122∑∑==+++=+=+ni i i i i i i i ni iiiy x y x y x a yx a y x f)2()()()2()()(122122∑∑==⋅++≤⋅++≤ni i i i ni i i i y x a y f x f y x a y f x f∑∑∑===⋅++≤⋅++≤ni i i ni i i ni i i i i y a x a y f x f y a x a y f x f 12/1212/1222122)()(2)()()2()()( 222)]()([)()(2)()(y f x f y f x f y f x f +=⋅++=. 所以函数f (x )是一个向量范数.2. 证明:在R 1中任何向量范数x ,一定有x x λ= 0>λ.证明:对任意向量范数x ,根据向量范数的定义和性质,又因为1R x ∈,有x x x x λ=⋅=⋅=11,其中01>=λ.3. 设x 是P n 中的向量范数,nn P A ⨯∈,则Ax 也是P n 中的向量范数的充要条件为A是可逆矩阵.证明:必要性:如果矩阵A 不可逆,则存在0≠x ,使得0=Ax ,即0=Ax ,这与向量范数的正定性矛盾,所以矩阵A 可逆.充分性:矩阵A 可逆,对0≠∀x ,则0≠Ax ,所以0>Ax ,正定性满足;Ax Ax ⋅=λλ,奇次性满足;Ay Ax Ay Ax y x A +≤+=+)(,三角不等式也满足,故Ax 是向量范数.4. 证明 (1) 2/1)]([2A A tr A H m =;(2) 2m A与2x 是相容的;(3) a A 与1x 、2x 均相容; (4) {}22222min ,m m m m ABA BA B≤⋅.证明:(1) 设nn PA ⨯∈,令),,(1n A αα =. 根据定义有∑∑===n i nj ijm a A11222,∑==ni ijja 1222α,n j ,,1 =,所以有∑==nj mj A 1222α,同时有,⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=n Hn H n n H H n H n H HA A αααααααααααα111111)( ,所以有212)(m n j j H j H A A A tr ==∑=αα. (2) 见课本61页下.(3) 令()Tn x x x x ,,,21 =,nn ij Pa A ⨯∈=)(. 因为j n i nj ijji n i n j jijx ax a Ax ⋅≤=∑∑∑∑====11,111max11,11,}{max max x A x a n x a a ij ji nj j ni ij ji ⋅=⋅⋅≤⋅≤∑∑==. 所以,a A 与1x 相容;因为∑∑∑∑∑∑∑=======⋅=⋅≤+++=n i nj j nj ij n i nj j nj ij ni n in i i x a x a x a x a x a Ax112121121212221122)()(22222}{max }{max x a n x a n ij ijij ij⋅⋅=⋅⋅≤. 所以,a A 与2x 相容.(4) 令),,,,(1n j B βββ =,因为222j jA A ββ≤,n j ,,1 =,同时有222222212222221212222)(),,(m n nm n m BA A A A A AB=++≤++==ββββββ有上述结果有2222222)(m m HHm HH m Hm A B A B A B AB AB =≤==,所以(4)成立.5. 若rm PA ⨯∈,且r HE A A =,则12=A ,r A m =2.证明:根据定义1)()(2===E r A A r AH ;r E tr A A tr A H m ===)()(2.6. 设x ,Ax 的向量范数为2∙,证明:它对应的算子范数是{}n x Ax A σσσ,,,max max 212122 ===.证明:对任意矩阵A ,存在酉矩阵U ,V ,得到矩阵A 的奇异值分解A =UDV . 其中n σσ,,1 是矩阵A 的奇异值,D =diag(n σσσ,,,21 ). 根据定义,有)()())(()(222D r V D V r UDV UDV r A A r A H H H =====max{n σσσ,,,21 }.7. 若∙是算子范数,则 (1) 1=E ;(2) 11--≥AA ;(3) xAx Ax 011min ≠--=. 证明:根据算子范数定义xAxA x 0max≠=, (1) 1max max00===≠≠xxx Ex E x x ; (2) 111--≤==A A AAE ,11--≥AA ;(3) xx A A x 101max-≠-=,令x A y 1-=,则Ay x =,得AyyAy 01max ≠-=,从而xAxy Ay AyyA x y y 00011min minmax 1≠≠≠--===. 8. 设v A ,μA 是对应于两个向量范数v x ,v Bx x=μ的算子范数,B 可逆,则νμ1-=BAB A .证明:根据定义,有μμμxAx A x 0max≠=,把νμBx x=代入上式,得到ννμBx BAx A x 0max≠=,令y =Bx ,则y B x 1-=,则νννμ110max--≠==BAB y y BAB A y .9. 设a x ,b x 是C n 上的两个向量范数,a 1,a 2是两个正实数,证明 (1) c b a x x x =},max{; (2) d b ax x a xa =+21都是C n 上的向量范数.证明:需要证明(1)和(2)满足范数定义中的三个条件即可.(1) (正定性) 当0≠x 时,0>ax ,0>b x ,则0>c x ;当x =0时,0=a x ,0=b x ,则0=cx. 奇次性显然成立. (三角不等式)},m a x{},m a x{b b a a b a cy x y x y x y x yx ++≤++=+c c b a b a y x y y x x +=+≤},max {},max {. (1)证毕.(2) 正定性和奇次性同(1),容易得到. 下面证明三角不等式:d d b b a a b a dy x y x a y x a y x a y x a yx +=+++≤+++=+)()(2121. 证毕.10. 证明F F A A A n≤≤21. 证明:因为22122)()()(F H n H A A A tr A A r A==+++≤=λλλ ,即F A A ≤2,其中i λ为半正定矩阵A H A 的特征值. 又由于22212)()(A n A A r n A H n F ⋅=⋅≤+++=λλλ ,即21A A nF ≤. 证毕. 11.设a A 是nn C ⨯上的相容矩阵范数,B ,C 都是n 阶可逆矩阵,且aB1-及aC1-都是小于或等于1,证明对任何nn CA ⨯∈a b BAC A =定义了nn C⨯上的一个相容矩阵范数.证明:首先证明a b BAC A =是一个矩阵范数。
02南航戴华《矩阵论》第二章线线性映射与性变换

1 1
P
1
1
1 0
使得 P-1AP=
1
0
( p1, p2 , p3 )
1
因此所求基为
f1(t) (1, t, t2 ) p1 1 t t2 f2(t) (1, t, t2 ) p2 1 t f3(t) (1, t, t2 ) p3 1 t2
R(D )=Im(D)={D( a)|aV}
Ker(D )=N(D)={aV|D ( a)=0}
称R(D )是线性变换D 的值域,而Ker(D )是线性 变换的核。R(D )的维数称为D 的秩,Ker(D )的维 数称为D 的零度。
定理2.3.2 设D 是数域 P上的线性空间V上的线性变
换 。令D 在V的一组基1,2,…n下的矩阵表示为A,
()= ( x1, x2 , x3 ) ( x1, x2 , x1 x2 ) 求 在自然基底 1, 2 , 3 下的矩阵. 解: Q (1) (1,0,0) (1,0,1)
(2 ) (0,1,0) (0,1,1) (3 ) (0,0,1) (0,0,0)
1 0 0
(
得到一个基础解系: 2 1 0T , 2 0 1T
从而 A 的属于 3 的极大线性无关特征向量组是
1 21 2 , 2 21 3
于是A 属于 3的全部特征向量是
k11 k22 , k1, k2 K
这里 k1k2≠0 。 对于特征值 -6,解齐次线性方程组
(6I A)X 0
得到一个基础解系:
线性变换是线性空间的核心内容,反映的是线性空间 中元素间的一种基本联系,体现出一种“动态的”或 者“直观的”视角。
借助基的概念,可在线性变换与矩阵之间建立一一对 应关系,因此通俗地讲“变换即矩阵”。这同时也意 味著线性变换的运算可以转化为矩阵的运算。
第2章-戴华-矩阵论

z
定理
设ε1 , ",ε n 是V1的基,η1 , ",η m 是V2的基,从V1到V2的
线性映射在上述基下由矩阵A表示,则 (1)R( A) = span( A(ε1 ),", A(ε n )) (2)dim( R( A)) = rank( A) (3)dim( R( A)) + dim(Ker( A)) = n, dim(Ker( A))称为A的零度 证明:(1)对任意α ∈ V1 , 有 = {k1 A(ε1 ) + " + kn A(ε n ) | ki ∈ P, i = 1, ", n}
因为α1 , ", α n 线性无关,所以ki = 0。因此A(α r +1 ),", A(α n )线性无关。 于是 dim( R( A)) = n − r
z
例
⎧ ⎫ ⎡ 2 3⎤ ⎡1 ⎤ ⎪ ⎪ A = ⎢ 4 6 ⎥ , V1 = P 2 , V2 =P 3 ,则R( A) = ⎨ y = k ⎢ 2 ⎥ k ∈ P ⎬ , ⎢ ⎥ ⎢ ⎥ ⎪ ⎪ 1 ⎢ ⎢ ⎥ ⎣ 2 3⎥ ⎦ ⎣ ⎦ ⎩ ⎭
定义2.3.1
为V 上的线性变换
z z z z z
线性变换A可用方阵A等价表示 数乘变换k 恒等变换I 零变换0 如果存在变换(矩阵)B使得AB=BA=I,则称A是可逆的,并称 B为A的逆变换(矩阵),记作A–1 。A–1也是线性变换。
z
设多项式f ( x) = am x m +am −1 x m −1 + " +a1 x+a0,令 f ( A) ≡ am Am +am −1 Am −1 + " +a1 A+a0 I 则f ( A)是一个线性变换(矩阵),称为线性变换(矩阵)A的多项式
矩阵论第二章

用 T 表示,即
2
x cos sin x 这里, y sin cos y
T : R R ,
2
x x y y
易验证: , R , k R
2
T T T T k kT
注意:3的逆不成立,即 1 , 2 , , r
线性相关, 1 , 2 ,, r 未必线性相关. 事实上,线性变换可能把线性无关的向量组变成
线性相关的向量组. 如零变换.
二、 线性变换的矩阵
1.设 1 , 2 ,, n是线性空间V的一组基, 为V
例.
设线性空间P 3 的线性变换 为
( x1 , x2 , x3 ) ( x1 , x2 , x1 x2 )
求 在标准基 1 , 2 , 3 下的矩阵. 解: ( 1 ) (1,0,0) (1,0,1)
( 2 ) (0,1,0) (0,1,1)
事实上, , V ,
m P ,
K k ( ) k k K K , K m km mk mK .
例. V R 2(实数域上二维向量空间),把V中每 一向量绕坐标原点旋转 角,就是一个线性变换,
(2)求 在 1 ,2 ,3 下的矩阵.
解:(1)由已知,有
1 0 3 (1 ,2 ,3 ) ( 1 , 2 , 3 ) 0 1 1 ( 1 , 2 , 3 ) X , 2 1 0 5 0 5 (1 ,2 ,3 ) ( 1 , 2 , 3 ) 0 1 1 , 3 6 9
例. V P[ x ]或P[ x ]n 上的求微商是一个 线性变换, 用D表示,即
矩阵论第2章内积空间综述

(2)给定n维线性空间V的基后, V上的线性变换 与n阶矩阵之间存在一一对应关系。
(3)设T1,T2是n维线性空间V的两个线性变换,
下的矩阵为
是n维线性空间V的基,T1,T2在该基 则T1+T2,kT1,T1T2,T-1在该基下
矩阵分别为
(4)设n维线性空间V的一个线性变换T在
基下的矩阵为
且向量 在该基下的坐标为
不同的欧氏空间。
(2)不论如何定义内积,不会改变线性空间的维数。
例3 在实线性空间C[a,b]中,对于任意两个连续函数,
f (x), g(x) 定义
f
( x),
g(x)
b
a
f
(x)g(x)dx
利用定积分的性质,可以验证 是欧氏空间,但其维数无限。
f (x), g是(x)内 积, C[a,b]
例4在实线性空间中,对于任意两个n阶矩阵A,B,
则 在该基下的坐标为
(5)设
是纯量多项式,T
为V中的线性变换,且对V的基
有
则V的线性变换f(T)在该基下的矩阵为:
其中f(A)称为矩阵A的多项式。
例1、试确定在多项式空间Pn [x]上的求导运算T
分别在下列两组基下的表示矩阵
说明:同一线性变换在不同基下的表示矩阵一般 是不同的,它们之间的关系是相似矩阵.---P18定 理1.4.7。
线性映射(变换)
有以下性质:
(3)T将V中的线性相关向量组映射为W中的线性 相关向量组,但把线性无关向量组不一定映射为W 中的线性无关向量组;
(4)设 则
并且
线性变换的值域与核
设T是n维线性空间V的一个线性变换,定义T的值域R(T)与核 N (T)分别为
矩阵论第二章内容总结

(3)A A;
(4) AB A B(A、B都为方阵). 6. 三类初等变换,矩阵的等价. 7. 阶梯型矩阵.
第二章内容总结
8. 利用初等行变换把一个矩阵化为阶梯型矩阵.
9. 如果不局限于初等行变换,则矩阵的等价标准形为:
Er 0
00.
10. 矩阵的秩:
20. 利用初等行变换求逆: 构造矩阵(A, E),只利用初等行变换把(A, E) (E, A1 ).
5
换;矩阵A右乘初等矩阵,相当于对A作一次相应的初等 列变换。
4
第二章内容总结
18. 若A为m n,且r(A) r,则存在一系列初等矩阵使得
Ps
P1AQ1
Qt
ห้องสมุดไป่ตู้
Er 0
00 .
从 而 , 若A可 逆 , 则 存 在 初 等 矩 阵使 得
Ps P1A E. 19. r(A) r(AT ), A为任意矩阵.
3. 矩阵的加、减法; 矩阵的数乘; 矩阵的乘法;矩阵乘法不满足交换律; 方阵的幂;方阵的多项式; 矩阵的转置;矩阵的共轭; 矩阵的运算律。
第二章内容总结
4. 准对角矩阵; 分块矩阵的运算就是把每个子块看成一个“元素”来 进行运算; 注意分块矩阵的转置.
5. 方阵A的行列式的性质 (1) AT A;
如果矩阵A存在r阶子式为零,所有的r+1阶子式为零,
则称A的秩为r,记为r(A)=r.
零矩阵的秩为零.
n阶方阵r(A)=n,则det(A)≠0,称为满秩的,非退化的,
非奇异的;
n阶方阵r(A)<n,则det(A)=0,称为降秩的,退化的,
南航戴华《矩阵论》第二章线线性映射与性变换

线性变换的表示
设α是V中任意元素,则T(α)表示α在T下的像。
线性变换的性质
线性变换的封闭性
线性变换将线性空间V中的元素映 射到线性空间W中,保持了加法 和标量乘法的封闭性。
线性变换的数乘性
质对于Leabharlann 意标量k和任意元素α,有 T(kα)=kT(α)。
线性变换的结合性
质
对于任意元素α,β和γ,有 T(α+β)=T(α)+T(β)和 T(α+γ)=T(α)+T(γ)。
线性变换可以视为线性映射的特例, 即当映射函数为恒等映射时。
线性映射与线性变换的区别
线性映射强调的是映射关系,即从一个向量空间到另一个向量空间的映射,注重 的是映射的性质和规则。
线性变换则更注重的是变换过程,即对向量空间中的向量进行变换,改变其形式 或大小,但保持其线性性质不变。
线性映射与线性变换的应用场景
考虑三维空间中的一个点 $(x, y, z)$,通过一 个线性映射 $T: (x, y, z) rightarrow (2x+3yz, x+2y+z, 3x-y)$,得到新的点 $(x', y', z')$。
线性变换实例
在三维空间中,绕 $z$-轴旋转一个角度 $theta$,将点 $(x, y, z)$ 变换到 $(x', y', z')$,其中 $x' = x cos theta - y sin theta$, $y' = x sin theta + y cos theta$,$z' = z$。
线性映射的性质
线性映射保持向量的加法、数乘以及向量的数量积、向量积 和混合积不变。
矩阵论第2章

( 2) V 中线性变换的乘法满足结合律,即 (T1T2 )T3即
T1 (T2 T3 ) T1T2 T1 T3 , (T1 T2 )T3 T1T3 T2T3 . ( 4)设 0 表示 V 中的零变换,则 T 0 0 , T (T ) 0 . ( 5) V 中线性变换的数乘运算满足: (kl)T k (lT ) , (k l )T kT lT ,
V 中一个基 1 , 2 ,, n ,则
R(T ) span {T (1 ),T ( 2 ),, T ( n )} span {T ( r 1 ),T ( r 2 ),, T ( n )}. 现证明 T ( r 1 ),T ( r 2 ),, T ( n ) 是 R (T ) 的一个基,设
例 2.1.1 平面直角坐标系绕坐标原点旋转 角的变换就是欧氏 空间 R 的一个线性变换.对任意 x ( x1 , x2 )T R ,则这个线性
2 2
变换 T 是
cos T ( x) sin
sin x. cos
例 2.1.2 定义在区间 [ a, b] 上的所有连续实函数的集合 C[a, b] 是实数域上的一个线性空间,在 C[a, b] 上定义变换 T :
T ( f ( x)) f (t )dt , f ( x) C[a, b] ,
a
02_矩阵论_第二章Jordan 标准形介绍

从而 T 有对角阵表示。
更进一步,若 Vi 为 T 的一维不变子空间,则 Vi,有 T()Vi,所以 T() = ,即 T 在 Vi 上的矩阵是一阶对角矩阵。 推论 Vn(F) 上的线性变换有对角阵表示的充 分必要条件是:Vn(F) 可分解成 T 的一维不变子 空间的直和。
定义 2.3 形如
1 1 J ( ) 1
的 r 阶方阵成为一个 r 阶 Jordan 块。由若干个 Jordan 块 Ji(i) 构成的准对角矩阵
J1 (1 ) J J m ( m )
定理 2.3 线性变换 T 有对角阵表示的充分必 要条件是 T 有 n 个线性无关的特征向量。 证明:必要性:设有基 {1, 2,…, n} 使 T 的 矩阵为对角阵,则有
1 2 T (1 , 2 , , n ) (1 , 2 , , n ) n
应用定理 2.1,我们可以从 T 的一个变换矩 阵 A 求得 T 的特征值与特征向量。计算步骤如下: (1) 选择 Vn(F) 的基 {1, 2, …, n},求线性 变换 T 关于该基的矩阵 A; (2) 求 A 的特征值:先求 A 的特征多项式 f() = |I A|,f() = 0 的根 1, 2, …, n 即为 A 的全 部特征值; (3) 求矩阵 A 关于 i 的特征向量 Xi,即方程 组 (I A)X = 0 的非零解,它们给出 T 的特征值 i 对应的特征向量关于基 {1, 2, …, n} 的坐标。
定义 2.1 设 T 是线性空间 Vn(F) 上的线性变 换,如果存在 Vn(F) 和数 F , 0 ,使得 T().= ,则称数 为 T 的特征值,向量 为 T 的对应于特征值 的特征向量。 为分析线性变换 T 的特征值和特征向量的求 法,设 T 在 Vn(F) 的某一组基 {1, 2, …, n} 下 的矩阵为 A(A 不一定为对角阵), 是关于 的特 征向量,即 T() = ,则有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter 2 Linear Mapping and Transformations, Eigenvectors and Eigenvalues
1
Chapter 2 Linear Mapping and Transformations, Eigenvectors and Eigenvalues Linear Mapping, Linear Transformation and Matrix Representation Change of Representing Matrix and Similarity Unitary (Orthogonal) Transformations Isomorphism Eigenvalue and Eigenvector Diagonalization
Chapter 2 Linear Mapping and Transformations, Eigenvectors and Eigenvalues Linear Mapping, Linear Transformation and Matrix Representation
Actually, A’s j −th column is constructed by the coordinate of A(εj ), a11 a12 · · · a1n a21 a22 · · · a2n A= ··· ··· ··· ·×n is named the matrix representation of linear mapping A with respect to bases ε1 , ε2 , · · · , εn and η1 , η2 , · · · , ηm .
Theorem 2.1.1 If A ∈ L(V1 , V2 ), then the following statements hold.
1 2 3
A(0) = 0. A(−α) = −A(α). If α1 , α2 , · · · , αm are linearly dependent in V1 , then A(α1 ), A(α2 ), · · · , A(αm ) are also linearly dependent in V2 . If A is one-to-one (or bijective) linear mapping, then α1 , α2 , · · · , αm ∈ V1 and A(α1 ), A(α2 ), · · · , A(αm ) ∈ V2 have the same linear dependence.
V3 is another vector space, if C ∈ L(V2 , V3 ), then CA is defined (CA)(α) = C(A(α)), ∀α ∈ V1 .
Chapter 2 Linear Mapping and Transformations, Eigenvectors and Eigenvalues Linear Mapping, Linear Transformation and Matrix Representation
Chapter 2 Linear Mapping and Transformations, Eigenvectors and Eigenvalues Linear Mapping, Linear Transformation and Matrix Representation
Definition 2.1.1 Let V1 , V2 are two vector spaces on field P , A is a mapping from V1 to V2 . A is a linear mapping (or linear operator ) if it holds, A(α + β ) = A(α) + A(β ), A(k α) = k A(α), ∀α, β ∈ V1 , ∀α ∈ V1 , k ∈ P .
Chapter 2 Linear Mapping and Transformations, Eigenvectors and Eigenvalues Linear Mapping, Linear Transformation and Matrix Representation
1
Chapter 2 Linear Mapping and Transformations, Eigenvectors and Eigenvalues Linear Mapping, Linear Transformation and Matrix Representation Change of Representing Matrix and Similarity Unitary (Orthogonal) Transformations Isomorphism Eigenvalue and Eigenvector Diagonalization
Theorem 2.1.4 Defined operations as the above, the following statements holds.
1 2 3
If A, B ∈ L(V1 , V2 ), then A + B ∈ L(V1 , V2 ). For any k ∈ P and A ∈ L(V1 , V2 ), then k B ∈ L(V1 , V2 ). If A ∈ L(V1 , V2 ) and C ∈ L(V2 , V3 ), then CA ∈ L(V1 , V3 )
The set of all linear mapping from V1 to V2 is denoted by L(V1 , V2 ).
Chapter 2 Linear Mapping and Transformations, Eigenvectors and Eigenvalues Linear Mapping, Linear Transformation and Matrix Representation
Suppose that V1 , V2 are two vector spaces on field P with n and m dimensions, ε1 , ε2 , · · · , εn and η1 , η2 , · · · , ηm are bases of V1 and V2 respectively. A ∈ L(V1 , V2 ) holds A(ε1 ) = a11 η1 + a21 η2 + · · · + am1 ηm A(ε2 ) = a12 η1 + a22 η2 + · · · + am2 ηm ··· ··· ··· A(εn ) = a1n η1 + a2n η2 + · · · + amn ηm It can be simply denoted by A(ε1 , ε2 , · · · , εn ) = (A(ε1 ), A(ε2 ), · · · , A(εn )) = (η1 , η2 , · · · , ηm )A.
Chapter 2 Linear Mapping and Transformations, Eigenvectors and Eigenvalues Linear Mapping, Linear Transformation and Matrix Representation
Let V1 , V2 be two vector spaces on field P . Arbitrarily given A, B ∈ L(V1 , V2 ), k ∈ P and define (A + B)(α) = A(α) + B(α), (k A)(α) = k A(α). ∀α ∈ V1
Chapter 2 Linear Mapping and Transformations, Eigenvectors and Eigenvalues Linear Mapping, Linear Transformation and Matrix Representation
Suppose that ε1 , ε2 , · · · , εn and η1 , η2 , · · · , ηm are bases of V1 and V2 respectively. A ∈ L(V1 , V2 ) and A ∈ P m×n is its matrix representation with respect to the above bases. Given α ∈ V1 , let
n m
α=
i =1
xi εi ,
A(α) =
i =1
yi ηi ,
then y = Ax , where x = (x1 , x2 , · · · , xn )T and (y1 , y2 , · · · , ym )T are coordinates of α and A(α).
Chapter 2 Linear Mapping and Transformations, Eigenvectors and Eigenvalues Linear Mapping, Linear Transformation and Matrix Representation
Theorem 2.1.5 L(V1 , V2 ) is a vector space with above defined operations.
Chapter 2 Linear Mapping and Transformations, Eigenvectors and Eigenvalues Linear Mapping, Linear Transformation and Matrix Representation
Chapter 2 Linear Mapping and Transformations, Eigenvectors and Eigenvalues