网络教育《复变函数》作业及答案

合集下载

复变函数作业答案

复变函数作业答案

=-251
8.化简
(1 i)n (1 i)n2
解:原式
(1
i)
2
1 1
i i
n
2ie
n 2
i
2i n1
第二次作业
教学内容:1.2 平面点集的一般概念 1.3 复变函数
1. 填空题
(1)连接点1 i 与 1 4i 的直线断的参数方程为 z 1 i (2 5i)t 0 t 1
(2) 以 原 点 为 中 心 , 焦 点 在 实 轴 上 , 长 轴 为 a , 短 轴 为 b 的 椭 圆 的 参 数 方 程 为 z a cos t ib sin t 0 t 2
华东理工大学
复 变 函 数 与 积 分 变 换 作 业 (第 1 册)
班级____________学号_____________姓名_____________任课教师_____________
第一次作业
教学内容:1.1 复数及其运算
1.2 平面点集的一般概念
1.填空题:
(1)
3 2
,
5 2
,
3 2
5 2
(2)1 cos i sin (0 )
解:1 cos i sin
2 sin
2
[cos(2
2
)
i sin(2
2
)]
2 sin
2
ei(
2
2
)
1
(3)
(cos 5 (cos 3
i sin 5)2 i sin 3)3
.
解:
(cos (cos
5 3
i i
sin sin
5 3
arg( z
2i)
2

《复变函数》试题及参考答案

《复变函数》试题及参考答案

《复变函数》在线作业参考资料一、单选题1、设则(C )ABCD2、当iiz −+=11时,5075100z z z ++的值等于(B ) A i B i − C 1 D 1−3、若,则双边幂级数的收敛域为(A)A B C D4、复数)2(tan πθπθ<<−=i z 的三角表示式是(D )A )]2sin()2[cos(sec θπθπθ+++i B )]23sin()23[cos(sec θπθπθ+++i C )]23sin()23[cos(sec θπθπθ+++−iD )]2sin()2[cos(sec θπθπθ+++−i5、设为复数,则方程的解是(B )A B C D6、若z 为非零复数,则22z z −与z z 2的关系是(C )A z z z z 222≥−B z z z z 222=−C z z z z 222≤−D 不能比较大小 7、下列方程所表示的曲线中,不是圆周的为(B )A BC D8、设y x ,为实数,yi x z yi x z +−=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是(B )A 圆B 椭圆C 双曲线D 抛物线 9、关于圆周的对称点是(C)ABCD10、一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31−,则原向量对应的复数是(A )A 2B i 31+C i −3D i +311、积分( B)A0 B C10 D12、使得22z z =成立的复数z 是(D )A 不存在的B 唯一的C 纯虚数D 实数13、设复数满足那么(A )A B C D14、在复平面上(A)A 无可导点B 有可导点,但不解析C 有可导点,且在可导点集上解析D 处处解析15、方程232=−+i z 所代表的曲线是(C )A 中心为i 32−,半径为2的圆周B 中心为i 32+−,半径为2的圆周C 中心为i 32+−,半径为2的圆周D 中心为i 32−,半径为2的圆周16、函数在点处是(B)A 解析的B 可导的C 不可导的D 既不解析也不可导17、00)Im()Im(lim0z z z z x x −−→(D )A 等于iB 等于i −C 等于0D 不存在18、函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是(C )A ),(y x u 在),(00y x 处连续B ),(y x v 在),(00y x 处连续C ),(y x u 和),(y x v 在),(00y x 处连续D ),(),(y x v y x u +在),(00y x 处连续19、设为解析函数的级零点,那么(A)ABCD20、设C z ∈且1=z ,则函数zz z z f 1)(2+−=的最小值为(A )A 3−B 2−C 1−D 1 21、积分(C)A0 B C D22、设为函数的级极点,那么(C)A5 B4 C3D223、设为负向,正向,则(B)AB0 CD24、幂级数在内的和函数为(A)A B C D25、设函数在以原点为中心的圆环内的洛朗展开式有个,那么(C)A1 B2 C3 D426、设在区域内解析,为内任一条正向简单闭曲线,它的内部全属于.如果在上的值为2,那么对内任一点(C)A等于0 B等于1 C等于2 D不能确定27、设函数的泰勒展开式为,那么幂级数的收敛半径(C)A B1 C D28、设是复数,则(C)A在复平面上处处解析 B的模为C一般是多值函数 D的辐角为的辐角的倍29、满足不等式的所有点构成的集合是(D)A有界区域 B无界区域 C有界闭区域D无界闭区域30、下列级数中,绝对收敛的级数为(D)A B C D31、设,则( A)A2 B C D32.、设为正向圆周,则(C)A B C0 D33、是函数的(D)A可去奇点B一级极点C一级零点 D本性奇点34、分式线性变换将区域:映射为(D)A BC D35、下列命题中,正确的是(C) A 设在区域内均为的共轭调和函数,则必有B 解析函数的实部是虚部的共轭调和函数C 若在区域内解析,则为内的调和函数D 以调和函数为实部与虚部的函数是解析函数36、函数)(z f 在点z 可导是)(z f 在点z 解析的(B) A 充分不必要条件 B 必要不充分条件C 充分必要条件D 既非充分条件也非必要条件 37、下列命题中,正确的是(D) A 设y x ,为实数,则1)cos(≤+iy xB 若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导C 若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 D 若)(z f 在区域D 内解析,则)(z if 在D 内也解析 38、下列函数中,为解析函数的是(C)A xyi y x 222−−B xyi x +2C )2()1(222x x y i y x +−+−D 33iy x + 39、若函数)(2)(2222x axy y i y xy x z f −++−+=在复平面内处处解析,那么实常数=a (C)A 0B 1C 2D 2−40、如果)(z f ′在单位圆1<z 内处处为零,且1)0(−=f ,那么在1<z 内≡)(z f (C)A 0B 1C 1−D 任意常数41、设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(C)A 若)(z f 在D 内是一常数,则)(z f 在D 内是一常数B 若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数C 若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数 D 若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 42、设22)(iy x z f +=,则=+′)1(i f (A) A 2 B i 2 C i +1 D i 22+43、ii 的主值为(D)A 0B 1C 2πe D 2π−e43、ze 在复平面上(A)A 无可导点B 有可导点,但不解析C 有可导点,且在可导点集上解析D 处处解析 44、设z z f sin )(=,则下列命题中,不正确的是(C) A )(z f 在复平面上处处解析 B )(z f 以π2为周期 C 2)(iziz e e z f −−= D )(z f 是无界的45、设α为任意实数,则α1(D)A 无定义B 等于1C 是复数,其实部等于1D 是复数,其模等于1 46、下列数中,为实数的是(B)A 3)1(i − B i cos C i ln D i e23π−47、设c 为从原点沿x y =2至i +1的弧段,则=+∫cdz iy x )(2(D)A i 6561−B i 6561+−C i 6561−−D i 6561+ 48、设c 为不经过点1与1−的正向简单闭曲线,则dz z z zc∫+−2)1)(1(为(D)A 2iπ B 2i π− C 0 D(A)(B)(C)都有可能二、判断题1、如果是的可去奇点,则一定存在且等于零(错)2、若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析(错)3、若函数是区域内的解析函数,则它在内有任意阶导数(对)4、有界整函数必在整个复平面为常数(对)5、若在区域内解析,则||也在内解析(错)6、若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛(对)7、是一个有界函数(错)8、若函数在处解析,则在满足Cauchy-Riemann 条件(对)9、有界整函数必为常数(对)10、若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)(对)11、如果函数为整函数,且存在实数,使得,则为一常数(错)12、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点(对)13、若与在内解析,且在内一小弧段上相等,则(对)14、若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点(对)15、若函数在处解析,则它在该点的某个领域内可以展开为幂级数(对)16、(错)17、若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数(错)18、若函数是区域内的单叶函数,则(对)19、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续(对) 20、若函数在解析,则在的某个邻域内可导(对)21、若函数f (z )在z 0解析,则f (z )在z 0连续(对)22、若,则为的n 阶零点(错)23、若在单连通区域内解析,则对内任一简单闭曲线都有(对)24、若f (z )在区域D 内解析,则|f (z )|也在D 内解析(错) 25、若在区域内解析,则对内任一简单闭曲线(错)26、存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f (错)27、若函数是非常的整函数,则必是有界函数(错)28、若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数(对)29、若函数在区域内的解析,且在内某一条曲线上恒为常数,则在区域内恒为常数(对)30、若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析(错)31、设函数是有界区域内的非常数的解析函数,且在闭域上连续,则存在,使得对任意的,有(对)32、如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f (对)33、与在复平面内有界(错)34、若0z是)(z f 的可去奇点,则0)),((Res 0=z z f (对)35、若是的一级极点,则(对)36、若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件(对) 37、当复数时,其模为零,辐角也为零(错)38、若函数f (z )在z 0可导,则f (z )在z 0解析(错)39、如果是的极点,则一定存在且等于无穷大(对)40、函数z sin 与z cos 在整个复平面内有界(错)41、若收敛,则与都收敛(对)42、设函数与在区域内解析,且在内的一小段弧上相等,则对任意的,有(对)43、一定不存在(对)44、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数. (对) 45、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数.(对)46、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析.(对) 47、若函数f (z )在z 0可导,则它在该点解析.(错) 48、设函数)(z f 在复平面上解析,若它有界,则必)(z f 为常数.(对)49、若函数()f z 在0z 解析,则()f z 在0z 的某个领域内可导.(对) 50、如果0z 是()f z 的本性奇点,则0lim ()z z f z →一定不存在.(对)51、若函数()f z 是区域D 内解析,并且()0()f z z D ′≠∀∈,则()f z 是区域D 的单叶函数.(错)52、如果函数()f z 在1z ≤内解析,则11max{()}max{()}.z z f z f z ≤==(对)。

复变函数参考答案(1-8章)

复变函数参考答案(1-8章)

复变函数与积分变换同步练习参考答案中北大学复变函数教研室编印1复变函数同步练习第一章参考答案三、作业题1、(1)设23412i z i +⎛⎞=⎜⎟−⎝⎠,则z = 5 ,辐角主值为4arctan()3π−。

(2)设55(1)1(1)1i z i −−=++,则其实部为125−,虚部为3225−。

提示:本题注意到2(1)2i i −=−,2(1)2i i +=。

则52225222(1)1[(1)](1)1(2)(1)1132(1)1[(1)](1)1(2)(1)12525i i i i i z i i i i i i −−−−−−−−====−−+++++++ 。

(3)一复数对应的向量按逆时针方向旋转23π时对应的复数为1i +,则原复数为1122−+−+。

提示:本题相当于解23111(1)()(1)2222i z ei i i i π−−+−=+=−−+=+。

(4)设1z =2z i =−,则12z z 的指数式i122e π,12zz 的三角式为 155[cos sin 21212i ππ+。

(5)2122lim1z zz z z z →+−−=−32。

提示:211122(2)(1)23limlim lim 1(1)(1)12z z z zz z z z z z z z z z →→→+−−+−+===−−++。

(6)设复数z 满足arg(2)3z π+=,5arg(2)6z π−=,那么z=1−+。

提示:(利用复数的几何意义)向量2z −与向量2z +夹角为5632πππ−=,在复平面上,代表复数2z −、z 、2z +的点在平行于x 轴的直线上(由于此三点的虚轴没有发生变2化)。

连接0,2z +,2z −的三角形为Rt Δ。

因此推出向量2z =,2arg 3z π=,即1z =−+。

本题也可以利用代数法来做。

2、把复数πααα≤≤+−=0,sin cos 1i z 化为三角表示式与指数表示式,并求z 的辐角主值。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。

福师《复变函数》在线作业二-0010DA2D0F

福师《复变函数》在线作业二-0010DA2D0F

福师《复变函数》在线作业二-0010
下列哪个符号是表示必然事件(全集)的
A:θ
B:δ
C:Ф
D:Ω
答案:D
现有一批种子,其中良种占1/6,今任取6000粒种子,则以0.99的概率推断,在这6000粒种子中良种所占的比例与1/6的差是()
A:0.0124
B:0.0458
C:0.0769
D:0.0971
答案:A
X服从[0,2]上的均匀分布,则DX=()
A:1/2
B:1/3
C:1/6
D:1/12
答案:B
设随机变量X服从泊松分布,且P{X=1}=P{X=2},则E(X)=()
A:2
B:1
C:1.5
D:4
答案:A
设A、B互不相容,且P(A)&gt;0,P(B)&gt;0则下列选项正确的是()。

A:P(B/A)&gt;0
B:P(A/B)=P(A)
C:P(A/B)=0
D:P(AB)=P(A)*P(B)
答案:C
设两个相互独立的随机变量X,Y方差分别为6和3,则随机变量2X-3Y的方差为()
A:51
B:21
C:-3
D:36
答案:A
下列集合中哪个集合是A={1,3,5}的子集
A:{1,3}
B:{1,3,8}
C:{1,8}
D:{12}
答案:A
对于任意两个随机变量X和Y,若E(XY)=EX*EY,则()。

A:D(XY)=DX*DY
B:D(X+Y)=DX+DY。

(完整版)复变函数试题及答案

(完整版)复变函数试题及答案

-5四123456五1一二三四2、、、、、、、、5、、、填(1611-计求将计计求设证使单判计B计证空e算函函算算将函明符选断算i1算明题n)9积数数积实单数:合题题题2题题(解,2分分积位在D条(((,((每不析fff2分圆件每每每z7每每小存zzz函CC3e小小小小小在题在zL数CIxz0=2题题题2题题区解的z221zzd1k402y321域2析z零226,共(Di分1k6a7,点分分分=1iD形0,x分z分80z且是zd,,,2,5内,c映,视))1满doC孤本共共共A±1解射iL答zs:足立质,2在…1析成题2134在的6的,x006C),z单情:2C所分分分(证,位a况f9有1i)))i y明圆的可23孤2711n:去)酌01C1立+w函52心情,1z奇iy数的邻给8点41D直域21的(2i,1线内n1f,分包9u,段分展zA式括,1,成也f0线15共洛在2性01n9朗)A变D21z0级处换内分数2的解1n)w留(析,数并nL指z1出,2 收敛)的域函数____________________________________________________________________________________________________________ f z
1 解: C 的参数方程为: z=i+t, 0 t 1 dz=dt
x
y
ix 2
dz =
1
t
1
it 2 dt =
1
i
C
0
23
2 解: z 1为 f z 一阶极点
z 1 为 f z 二阶极点
2
2k
1, 2 ) , 4 ei ln 2 e 4
(k=0, 1, 2 )
5
i , 6 0, 7

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一答案之巴公井开创作1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6=4.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 5. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,z x iy =+则z x y ≤≤+证明:首先,显然有z x y =≤+;其次,因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

复变函数课后习题答案(全)习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (3) 13i(4).8 21 .i 4i ii 1 i13 2i 解: (1) z3 2i 131 3i .3 3i 3 5i(3) z -ii 1 i2 2 因此, Rez 35 Im z532(4).8 z i 4i 21 i1 4i i1 3i因此, Rez 1, Im z 3,2.将下列复数化为二角表达式和指数表达式:(1)i (2) 1 Vi (3)r(si ni cos )(4) r(cosisin )( 5) 1 cos i sin(02 )解: (1) i cosi sin - —i-e 22 22一i(2) 1 2(cosi..2 isin32e 3 (3) r(sin icos ) r[cos (-i sin(-)](1)13~2\(2) \ (\ 1)(\ 2)因此:Rez3 13 Im z2 13(2)zi (i 1)(i 2)i 1 3i 3 i 10因此,Rez3 10Im z 1 10(4) r(cos isin ) r[cos( ) i sin( )] re(5) 1 cos isin 2sin 2i sin — cos-2 23.求下列各式的值:(1) (\3 i)5(2)(1 100i) (1 100i)(3) (1 \3i)(cos(1 i)(cos isin )i sin ) 2(cos5 isin5 )3(cos3 isin 3(5) (6) d i解: (1) (七i)5[2(cos(舌)isin( -))]5 6(2) (1 100i) (1 100 50i) (2i) (2i)502(2)50251(3) (1 i sin ) (1 i)(cos isin )(4)2 (cos5 isin5 )(cos3 isin3 )3(5) cos— isin —2 2\ 2(cos —isin )44.设z-ii,试用三角形式表示z1z2与-ZZ2解:z1 cos i sin , z24 42[cos( ) i sin()],所以6 6弓勺2[cosq g is"(4 6)]5.解下列方程:(1) (z i)5 1 (2) z4 a40 (a 0) 解:(1)z i 51,由此从而z由此,左端=右端,即原式成立。

(完整版)复变函数试题及答案

(完整版)复变函数试题及答案
C是复数其实部等于1D是复数其模等于1
2、下列命题正确的是()
A B零的辐角是零
C仅存在一个数z,使得 D
3、下列命题正确的是()
A函数 在 平面上处处连续
B 如果 存在,那么 在 解析
C每一个幂级数在它的收敛圆周上处处收敛
D如果v是u的共轭调和函数,则u也是v的共轭调和函数
4、根式 的值之一是()
1、 的指数形式是
2、 =
3、若0<r<1,则积分
4、若 是 的共轭调和函数,那么 的共轭调和函数是
5、设 为函数 = 的m阶零点,则m =
6、设 为函数 的n阶极点,那么 =
7、幂级数 的收敛半径R=
8、 是函数 的奇点
9、方程 的根全在圆环内
10、将点 ,i,0分别变成0,i, 的分式线性变换
二、单选题(每小题2分)
1 2 3 4 5
四 计算题(每小题6分,共36分)
1解: , 分
…5分
解得: 分
2解:被积函数在圆周的 内部只有一阶极点z=0
及二阶极点z=1 分
= 2i(-2+2)=0 分
3解:
= …4分
( <2)…6分
4解: 被积函数为偶函数在上半z平面有两个
一阶极点i,2i…1分
I= …2分
= …3分
= …5分
A可去奇点B一阶极点C一阶零点D本质奇点
6、函数 ,在以 为中心的圆环内的洛朗展式
有m个,则m=( )
A 1 B2C3 D 4
7、下列函数是解析函数的为()
A B
C D
8、在下列函数中, 的是()
A B
C D
9、设a ,C: =1,则 ()

《复变函数》考试试题与答案(一)

《复变函数》考试试题与答案(一)

《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( )9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰C dz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( )二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz __________.(n 为自然数) 2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________. 5.幂级数0n n nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i)21______________. 8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ . 10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分)1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(一)参考答案 一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.×二.填空题1. 2101i n n π=⎧⎨≠⎩; 2. 1; 3. 2k π,()k z ∈; 4. z i =±; 5. 1 6. 整函数; 7. ξ; 8.1(1)!n -; 9. 0; 10. ∞. 三.计算题.1. 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22n n n n z z ∞∞===-∑∑.2. 解 因为22212Re ()limlim 1cos sin z z z z s f z z zππππ→→=+===--, 22212Re ()lim lim 1cos sin z z z z s f z z zππππ→-→-=--===-. 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰. 3. 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内,()()2()c f z dz i z z ϕλπϕλ==-⎰.所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+.4. 解 令z a bi =+, 则222222122(1)2(1)211111(1)(1)(1)z a b i a b w z z a b a b a b-+-+==-=-=-+++++++++. 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z b z a b -=+++. 四. 证明题.1. 证明 设在D 内()f z C =.令2222(),()f z u iv f z u v c =+=+=则. 两边分别对,x y 求偏导数, 得 0(1)0(2)x x y y uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为00x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 若220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =.所以12,u c v c ==. (12,c c 为常数).所以12()f z c ic =+为常数.2. 证明()f z =0,1z =. 于是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π. 所以()f z =2π. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π, 故2(1)i f e π-==.。

网络教育《复变函数》作业及答案

网络教育《复变函数》作业及答案

3!
(2n 1)!
17、求函数 sin z3 z6
在0
|
z
|
内的罗朗展式。
解: sin z3
1
z3
... (1)n
z 6n3
...;
z 6 z3 3!
(2n 1)!
四、证明题 1、若函数 f(z)在 z0 处可导,则 f(z)在 z0 连续。 证明:根据定义可得:若函数 f(z)在 z0 处可导,则 f(z)在 z0 连续。
20、cos z 与 sin z 的周期均为 2k 。( √ )
21、若函数 f(z)在 z0 解析,则 f(z)在 z0 处满足 Cauchy-Riemann 条件。(√ )
第1页共7页 在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!
22、若函数 f(z)在 z0 处解析,则 f(z)在 z0 连续。(√ )

lim
zz0
f
(z) _= (x02
2x0 y0) i(1sin(x02
y02 ),
13、幂级数 nxn 的收敛半径为____1______ n0
14、若 z0 是 f(z)的 m 阶零点且 m>0,则 z0 是 f '(z) 的__ m-1 级___零点。
15、函数 f (z) | z | 的不解析点之集为__ lim z1 z2 ... zn ____。
z 1
解: z 1 (z 1)(z 1) | z |2 1 z z ; z 1 | z 1|2 | z 1|2 | z 1|2
第5页共7页 在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!
15、设 f (z)

《复变函数》考试试题与答案各种总结

《复变函数》考试试题与答案各种总结

《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1. 2101i n n π=⎧⎨≠⎩; 2. 1; 3. 2k π,()k z ∈; 4. z i =±; 5. 16. 整函数;7. ξ;8. 1(1)!n -; 9. 0; 10. ∞.三.计算题.1. 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑.2. 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-. 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰. 3. 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ϕλπϕλ==-⎰.所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+. 4. 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a bi a bw z z a b a b a b -+-+==-=-=-+++++++++. 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b -=+++. 四. 证明题.1. 证明 设在D 内()f z C =.令2222(),()f z u iv f z u v c =+=+=则.两边分别对,x y 求偏导数, 得 0(1)0(2)x x yy uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为00x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 若220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =. 所以12,u c v c ==. (12,c c 为常数).所以12()f z c ic =+为常数. 2.证明()f z =0,1z =. 于是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π. 所以()f z =2π. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π,故2(1)i f e π-==.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×. 二. 填空题1.1,2π-, i ; 2. 3(1sin 2)i +-; 3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -. 6. 2k i π,()k z ∈. 7. 0; 8. i ±; 9. R ; 10. 0. 三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑.2. 解 令i z re θ=.则22(),(0,1)k if z k θπ+===.又因为在正实轴去正实值,所以0k =.所以4()if i eπ=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222ii i iz dz de ei ππθθππ---===⎰⎰.4. 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-.比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数.2. 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”.证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n nn n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<.()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00na z = 有相同个数的根. 而 00na z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R <内有n 个根.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

最新奥鹏东北大学21春学期《复变函数与积分变换》在线平时作业1-参考答案

最新奥鹏东北大学21春学期《复变函数与积分变换》在线平时作业1-参考答案
D D
【答案】:A
21.
【选项】:
A错误
B正确
【答案】:B
22.每一个幂级数在它的收敛圆上处处收敛;
【选项】:
A错误
B正确
【答案】:A
23.
【选项】:
A错误
B正确
【答案】:A错误|
24.
【选项】:
A错误
B正确
【答案】:A错误|
25.
【选项】:
A错误
B正确
【答案】:B正确|
26.
【选项】:
A错误
B正确
4.
【选项】:
A案】:B B |
5.
【选项】:
A A
B B
C C
D D
【答案】:A
6.
【选项】:
A A
B B
C C
D D
【答案】:D D |
7.
【选项】:
A A
B B
C C
D D
【答案】:B
8.
【选项】:
A A
B B
C C
D D
【答案】:B
9.
【选项】:
A A
B B
C C
D D
15.
【选项】:
A A
B B
C C
D D
【答案】:A
16.
【选项】:
A A
B B
C C
D D
【答案】:D
17.
【选项】:
A A
B B
C C
D D
【答案】:B B |
18.
【选项】:
A A
B B
C C
D D
【答案】:D
19.

复变函数习题答案

复变函数习题答案

习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++. ①解:i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+-==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z aa z a -∈+); 33311;;;.22n z i ⎛⎛⎫-+-- ⎪⎝⎭⎝⎭①解: ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1kn =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3 352π2π;;1;8π(1);.cos sin7199ii ii+⎛⎫--+⎪+⎝⎭①解:()()()()35i17i35i7i117i17i+-+=++-3816i198ie5025iθ⋅--===其中8πarctan19θ=-.②解:e iiθ⋅=其中π2θ=.π2e ii=③解:ππi i1e e-==④解:()28π116ππ3θ-==-.∴()2πi38π116πe--+=⋅⑤解:32π2πcos isin99⎛⎫+⎪⎝⎭解:∵32π2πcos isin199⎛⎫+=⎪⎝⎭.∴322πiπ.3i932π2πcos isin1e e99⋅⎛⎫+=⋅=⎪⎝⎭8.计算:(1)i的三次根;(2)-1的三次根;(3)的平方根.⑴i的三次根.()13ππ2π2πππ22cos sin cos isin0,1,22233++⎛⎫+=+=⎪⎝⎭k ki k∴1ππ1cos isin i662=+=z.2551cosπisinπi662=+=+z3991cosπisinπi662=+=z⑵-1的三次根()()132π+π2ππcosπisinπcos isin0,1,233k kk++=+=∴1ππ1cos isin332=+=+z2cosπisinπ1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe ,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

(完整版)复变函数试题及答案

(完整版)复变函数试题及答案

2、计算积分
5z 2 z 2 z( z 1)2 dz
3、将函数 f z z 1 在 z 1的邻域内展成泰勒级数 , 并指出收敛范围 z1
x2
4、计算实积分 I= 0
(x2
1)( x 2
dx 4)
5、求 f ( z)
1 1 z2 在指定圆环 2
zi
内的洛朗展式
6、求将上半平面 Im z 0 共形映射成单位圆 w 1的分式线性变换
I=
1 2
(x2
x2 1)( x 2
dx 4)
= 1 2 i Re s f ( z) Resf (z)
2
zi
z 2i
z2
=i (z
i )( z2
4) z i
z2 ( z2 1)( z 2i ) z 2i
= 6
5 解: f ( z)
1
( z i)( z i )
1
1
=
2
(z i) 1
2i
zi
= 6 解:
1
(z
i)2
n
(
0
1) n
(2i )n (z i )n
w =L(i)=k z i zi
2i
w
k (z
i)2
2 zi
-3 -
6分
…4 分 …6分 …1 分 …2 分 …3 分 …5 分 …6 分 …1 分 …3 分
…6 分 2分
…3 分
____________________________________________________________________________________________________________
w L z ,使符合条件 L i 0 , L i 0

华师网络2014年9月课程考试《复变函数》综合测试题及答案

华师网络2014年9月课程考试《复变函数》综合测试题及答案

《复变函数》综合测试题及答案一、选择题(单选题)1、(容易)复数z i =的幅角主值为( ) (A )3π (B )3π- (C )6π- (D )6π2、(中等)复数1cos sin ,0z i θθθπ=-+≤≤的模为( ) (A )2sin2θ (B )2sin 2θ- (C )22cos θ- (D )2cos 2θ- 3、(容易)设z =,则z 的指数表示为( ) (A )cossin44z i ππ=+ (B )4i z eπ⋅= (C )cossin44z i ππ=- (D )4i z eπ-⋅=4、(中等)若ω是方程310z -=的一个非零复数根,则21ωω++=( )(A )0 (B )i (C )2ω (D )ω-5、(容易)函数()f z z =在z 平面上( )(A )不连续 (B )连续且可导 (C )连续但处处不可导 (D )以上答案都不对 6、(容易)满足11z z -=+的点z 所组成的点集为( )(A )Im 0z = (B )Re 0z = (C )Im 0z > (D )Re 0z > 7、(容易)函数()f z u iv =+在区域D 内解析的充要条件是( )(A ),,,u u v vx y x y∂∂∂∂∂∂∂∂都在D 内连续 (B )在D 内,u v u v x y y x∂∂∂∂==-∂∂∂∂ (C ),,,u u v v x y x y ∂∂∂∂∂∂∂∂都在D 内存在,且,u v u v x y y x ∂∂∂∂==-∂∂∂∂ (D ),,,u u v v x y x y ∂∂∂∂∂∂∂∂都在D 内连续,且,u v u v x y y x∂∂∂∂==-∂∂∂∂8、(容易)(0)()nz a dz z a ρρ-=>-⎰的值为( ) (A )当1n =时为2i π;当1n ≠时为0 (B )0 (C )2i π (D )2n i π 9、(容易)1zz e dz z==⎰( ) (A )0 (B )2π(C )2i π (D )(2)(0,1,2,)k i k π+= 10、(容易)()f z 在复平面上解析且有界,则()f z 在平面上为( ) (A )0 (B )常数 (C )z (D )()nz n N ∈ 11、(容易)复级数1n n z ∞=∑收敛的必要条件是( )(A )对一切n ,0n z = (B )存在一列自然数{}k n ,使得0kn z =(C )lim 0n n z →∞≠ (D )lim 0n n z →∞=12、(容易)幂级数11n n n z n∞=+∑的收敛半径为( )(A )+∞ (B )0 (C )1 (D )2 13、(容易)0z =为()sin f z z z =-的( )(A )极点 (B )非孤立奇点 (C )本性奇点 (D )3阶零点 14、(容易)设1()1zf z e =-,则0z =是()f z 的( ) (A )1阶极点 (B )2阶极点 (C )可去奇点 (D )本性奇点 15、(容易)0z ≠∞是函数()f z 的可去奇点,则0Re (,)s f z =( ) (A )0()f z (B )0 (C )2π (D )2i π 16、(容易)若复数22z i =-,则z 的幅角主值为( ) (A )2π (B )2π- (C )4π (D )4π-17、(中等)复数1cos sin (0)z i θθθπ=++≤≤的模为( ) (A )2cos2θ (B )2cos 2θ- (C )22cos θ+ (D )2sin 2θ+18、(容易)设z =,则z 的指数表示为( ) (A )cossin44z i ππ=+ (B )4i z eπ⋅= (C )cossin44z i ππ=- (D )4i z eπ-⋅=19、(中等)若122ω=-+,则23ωωω++=( ) (A )0 (B )ω (C )2ω (D )ω- 20、(中等)函数()Re f z z =在z 平面上( )(A )不连续 (B )连续且可导 (C )连续但处处不可导 (D )以上答案都不对 21、(容易)下列哪些点集是区域(B ) (A )Im 0z = (B )1Re 2z >(C )12z i ++≤ (D )Re 0z ≥ 22、(中等)若()f z u iv =+,且在区域D 内满足,u v u vx y y x∂∂∂∂==-∂∂∂∂,则( ) (A )()f z 在D 内解析 (B )()f z 在D 内不解析 (C )()f z 在D 内可微 (D )()f z 在D 内不一定可微23、(容易)113z dz z =-⎰的值为( ) (A )2i π (B )0 (C )1 (D )1- 24、(容易)1sin z zdz z==⎰( ) (A )0 (B )i π (C )2i π (D )2i π-25、(中等)若区域D 内解析函数()f z u iv =+满足00uxu y∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,则()f z 在区域D 内为( )(A )0 (B )常数 (C )不一定为常数 (D )0v = 26、若复级数1n n z ∞=∑收敛,则( )(A )对一切n ,0n z ≠ (B )存在一列自然数{}k n ,使得0kn z ≠(C )lim 0n n z →∞≠ (D )lim 0n n z →∞=27、(容易)幂级数11!nn z n ∞=+∑的收敛半径为( )(A )+∞ (B )0 (C )1 (D )2 28、(中等)0z =为()1cos f z z =-的( )(A )极点 (B )非孤立奇点 (C )本性奇点 (D )2阶零点29、(容易)设函数()f z 在00z z <-<+∞内解析,且0lim ()z z f z →=∞,则0z 是()f z 的( )(A )非孤立奇点 (B )极点 (C )本性奇点 (D )解析点 30、(容易)变换az bw cz d+=+(a ,b ,c ,d 为复常数)为分式线性变换的条件是( ) (A )0ad bc -≠ (B )0ad bc -= (C )a bc d= (D )a b c d ===31、(容易)复数1z =的幅角主值为( ) (A )6π (B )6π- (C )3π (D )3π-32、(中等)若ω是方程310z -=的一个非零复数根,则345ωωω++=( )(A )0 (B )i (C )2ω (D )ω- 33、(容易)下列等式正确的是( )(A )z z z ⋅= (B )2z z z ⋅= (C )2Im z z i z += (D )2Re z z z -= 34、(中等)下列哪些函数在复平面上解析( ) (A )sin z (B )z (C )2z (D )Re z 35、(中等)满足11z z ->+的点z 所组成的点集为( ) (A )Im 0z < (B )Re 0z < (C )Im 0z > (D )Re 0z >36、(容易)使函数()f z u iv =+在区域D 内解析的柯西—黎曼条件是( ) (A )在D 内,u v u v x y y x ∂∂∂∂==∂∂∂∂ (B )在D 内,u v u vx y y x ∂∂∂∂==-∂∂∂∂ (C )在D 内,u v u v x y y x ∂∂∂∂=-=∂∂∂∂ (D )在D 内,u v u v x y y x∂∂∂∂=-=-∂∂∂∂37、(中等)设()f z 在区域D 内解析,且0{}U z z z D δ=-<⊂,在U 上()0f z =,则在D 内 ( )(A )()f z 不恒为零 (B )()f z 为不为零的常数 (C )()f z 只有惟一的零点 (D )()0f z ≡38、(容易)1()nCdz z a -⎰(其中C 为包围点a 任意围线)的值为( ) (A )当1n =时为2i π;当1n ≠时为0 (B )0 (C )2i π (D )2n i π 39、(容易)21zz e dz z==⎰( ) (A )0 (B )2π(C )2i π (D )i π 40、(中等)()f z 在复平面上解析且Re ()f z 有界,则()f z 在平面上为( ) (A )0 (B )常数 (C )ze (D )ln z41、(中等)在1z <内解析,在区间(1,1)-上具有展式0nn x ∞=∑的函数只能是( )(A )1(1)1z z <+ (B )ln(1)(1)z z -< (C )1(1)1z z <- (D )1(1)1z z<- 42、(中等)幂级数21121n n z n -∞=-∑的收敛半径为( )(A )+∞ (B )1 (C )0 (D )2 43、(容易)若1()cosf z z i=+,则z i =-是()f z 的( ) (A )可去奇点 (B )非孤立奇点 (C )极点 (D )本性奇点 44、(中等)若()()g z f z z a=-,且()g z 在点a 解析,()0g a ≠,则Re (,)s f a =( ) (A )()g a (B )2()ig a π (C )0 (D )()g a '45、(中等)变换(01)1z aw a a z-=<<-⋅把单位圆1z <保形映射成( )(A )上半平面Im 0z > (B )单位圆1w <(C )下半平面Im 0z < (D )1w > 46、(容易)arg(34)i -+=( ) (A )3arctan4π-(B )3arctan 4π+ (C )4arctan 3π- (D )4arctan 3π+ 47、(中等)若ω是方程31z =的一个非零复数根,则下列哪些也是此方程的根( )(A )ω (B )ω- (C )2ω- (D )i48、(中等)下列等式不正确的是( )(A )2z z z ⋅= (B )1212arg arg arg z z z z ⋅=+(10z ≠,20z ≠) (C )1212rg rg rg A z z A z A z ⋅=+(10z ≠,20z ≠) (D )arg arg (0)z z z =-≠ 49、(容易)下列哪些函数在复平面上不解析( ) (A )sin z (B )cos z (C )chz (D )ze - 50、(容易)设{Im 2,Re 3}E z z z =<<,则E 一定是( )(A )无界区域 (B )有界单连通区域 (C )多连通区域 (D )闭区域 51、(容易)使函数()f z u iv =+在区域D 内解析的充要条件是( ) (A )u ,v 在D 内具有一阶连续的偏导数(B )u ,v 在D 内可微,且在D 内满足柯西—黎曼条件(C )u ,v 在D 内具有一阶偏导数,且在D 内满足柯西—黎曼条件 (D )u ,v 在D 内在D 内满足柯西—黎曼条件52、(容易)设()f z 在复平面上解析,且C 为不通过原点的围线,则()Cf z dz z=⎰( ) (A )2(0)i f π⋅ (B )(0)f (C )0 (D )0或2(0)i f π⋅53、(中等)11cos z dz z==⎰( ) (A )0 (B )1 (C )2i π (D )i π54、(容易)若()f z 在区域D 内满足 ()0f z '=,则()f z 在区域D 内必为( ) (A )0 (B )z (C )常数 (D )ze55、(中等)()f z 在复平面上解析且Im ()f z 有界,则()f z 在平面上为( ) (A )0 (B )常数 (C )ze (D )ln z56、(中等)在复平面上解析,在区间[0,1]上等于sin x 的函数只能是( ) (A )sin()2z π+ (B )sin()z π+(C )sin iz (D )sin z57、(容易)若幂级数1nn n a z ∞=∑的收敛半径0R >,则在闭圆()z r R ≤<上1nn n a z ∞=∑( )(A )不绝对收敛 (B )一致收敛且绝对收敛 (C )绝对收敛但不一致收敛 (D )一致收敛但不绝对收敛 58、(中等)0z =为21cos ()zf z z -=的( ) (A )本性奇点 (B )非孤立奇点 (C )二阶极点 (D )可去奇点59、(容易)函数1()z e f z z-=在0z =处的留数为( )(A )0 (B )2i π (C )1 (D )i π 60、(容易)变换z iw z i-=+把上半平面Im 0z >保形映射成( ) (A )上半平面Im 0z > (B )单位圆1w < (C )下半平面Im 0z < (D )1w >61、(容易)若复数1z i =-,则z 的幅角主值为( ) (A )4π-(B )4π (C )34π- (D )34π62、(中等)若21z =-,则z 等于( )(A )i - (B )i ± (C )i (D )1± 63、(容易)下列点集是区域的是( )(A )1{Im }2z z = (B ){1}z z = (C )1{Im }2z z > (D )2{1}z z =64、(容易)设()f z x yi =-(,x y R ∈),则( )(A )()f z 在z 平面上解析 (B )()f z 在0z =可导 (C )()f z 在z 平面上处处可导 (D )()f z 在z 平面上连续65、(中等)设()f z u iv =+,且在区域D 内满足柯西—黎曼条件,则( ) (A )()f z 在D 内不一定解析 (B )()f z 在D 内解析 (C )()f z 在D 内可导 (D )()f z 在D 内一定不可导 66、(容易)下列哪些函数在z 平面上解析( ) (A )z (B )cos z (C )z (D )ze 67、(容易)11cos z dz z==⎰( ) (A )1 (B )2i π (C )0 (D )1- 68、(容易)1zz e dz z==⎰( ) (A )0 (B )1 (C )12iπ (D )2i π 69、(中等)若()f z 在区域D 内解析,且Re ()f z =实常数,则()f z 在区域D 内为( ) (A )复常数 (B )Re z (C )z (D )sin z 70、(容易)若()sin f z z =,则下列结论不成立的是( )(A )()f z 为解析函数 (B )()f z 有界 (C )()f z 为周期函数 (D )()f z 有零点 71、(中等)复级数0n n i ∞=∑( )(A )一定收敛 (B )等于11i- (C )一定发散 (D )以上结论都不对 72、(容易)设幂级数为00()nn n a z z ∞=-∑,则( )(A )00()nn n a z z ∞=-∑仅在点0z 收敛 (B )00()nn n a z z ∞=-∑在全平面上收敛(C )00()nn n a z z ∞=-∑在点0z 不收敛 (D )00()nn n a z z ∞=-∑在点0z 收敛73、(容易)幂级数11nnn n z ∞=+⋅∑的收敛半径为( )(A )0 (B )+∞ (C )1 (D )2 74、(容易)幂级数1nn z ∞=∑在1z <内的和函数为( )(A )11z - (B )1z z - (C )11z + (D )1z z+ 75、(中等)()1cos f z z =-以0z =为( )(A )一阶零点 (B )一阶极点 (C )二阶零点 (D )二阶极点76、(容易)设()f z 在00z z R <-<内解析,且0lim ()z z f z →=∞,则0z 是()f z 的( )(A )零点 (B )可去奇点 (C )非孤立奇点 (D )极点 77、(中等)若21cos ()zf z z-=,则0z =必为()f z 的 ( ) (A )可去奇点 (B )零点 (C )本性奇点 (D )二阶极点 78、(中等)若∞是函数()f z 的可去奇点,则Re (,)s f ∞=( )(A )0 (B )不一定为0 (C )不存在 (D )以上结论都不对 79、(容易)若1()zf z e =,则Re (,0)s f = ( )(A )∞ (B )0 (C )1 (D )以上答案都不对80、(中等)映射322w z z =+在点z i =处的伸缩率为 ( )(A (B ) (C )25 (D )581、(容易)若复数1z i =-,则z 的幅角主值为( ) (A )23π (B )23π- (C )6π- (D )6π82、(中等)若31z =且Im 0z >,则z 等于( )(A )1 (B )122-+ (C )122i + (D )122i -- 83、(容易)下列点集不是区域的是( )(A ){Im 0}z z > (B ){Re 0}z z < (C ){1}z z i ≤+ (D ){1}z z > 84、(中等)设()f z i z =⋅,则( )(A )()f z 在z 平面上处处不连续 (B )()f z 在z 平面上解析 (C )()f z 为整函数 (D )()f z 在z 平面上处处不解析85、(容易)设()f z u iv =+,则使得()f z 在区域D 内解析的柯西—黎曼条件是( )(A ),u v u v x y y x ∂∂∂∂==-∂∂∂∂ (B ),u v u v x y y x ∂∂∂∂=-=∂∂∂∂ (C ),u v u v x y y x ∂∂∂∂=-=-∂∂∂∂ (D ),u v u vx y y x∂∂∂∂==∂∂∂∂ 86、(容易)在z 平面上处处不解析的函数是( ) (A )z (B )Im z (C )cos z (D )sin ze87、(容易)13z zdz z ==-⎰( ) (A )2i π- (B )2i π (C )0 (D )1 88、(中等)21sin z z dz z==⎰( ) (A )2i π (B )1 (C )i π- (D )089、(中等)若()f z 在区域D 内解析,且()f z =实常数,则()f z 在区域D 内为( ) (A )复常数 (B )0 (C )z (D )ze 90、(容易)若()zf z e =,则下列结论不成立的是( )(A )()f z 为整函数 (B )()f z 非周期函数 (C )()f z 无零点 (D )()f z 无界 91、(容易)幂级数0!nn n z ∞=⋅∑的收敛半径为( )(A )+∞ (B )1(C )0 (D )以上结论都不对92、(容易)设幂级数为0nn n a z ∞=∑的收敛半径0R >,则此幂级数的和函数( )(A )在z R <内不连续 (B )在z R <内不解析 (C )在z R <内不能逐项求导 (D )在z R <内可逐项积分93、(中等)在1z <内解析,且在区间(1,1)-上具有展式0(1)nnn x ∞=-⋅∑的函数只能为( )(A )11z + (B )11z - (C )211z + (D )211z - 94、(容易)若1()cos f z z i=+,则z i =-为()f z 的( )(A )极点 (B )本性奇点 (C )可去奇点 (D )非孤立奇点95、(中等)2()(1)z zf z e =-以0z =为( ) (A )可去奇点 (B )本性奇点 (C )一阶极点 (D )二阶极点 96、(容易)若()()z f z z aϕ=-,且()z ϕ在点a 解析,则Re (,)s f a =( )(A )0 (B )()a ϕ' (C )2()i a πϕ'⋅ (D )()a ϕ97、(容易)22()1iz e f z z =+在z i =的留数为 ( )(A )2i i e --(B )0 (C )12i e -- (D )112e -- 98、(容易)ln(1)z +在0z =处的幂级数展开式为( ) (A )1n n z n ∞=∑(B )11(1)n n n z n ∞-=-∑ (C )1(1)n n n z n ∞=-∑ (D )0!n n z n ∞=∑ 99、(中等)变换1i z iw ei zθ-=+⋅(θ为实常数)把单位圆1z <保形映射成( )(A )上半平面Im 0z > (B )下半平面Im 0z < (C )1w < (D )1w > 100、(中等)变换i z iw ez iθ-=+(θ为实常数)把上半平面Im 0z >保形映射成( ) (A )左半平面Re 0z < (B )右半平面Re 0z > (C )上半平面Im 0z >(D )1z <二、多项选择题(每题至少有两个或两个以上的正确答案)1、(较难)若12ω=--是方程31z =的根,则下列哪些值不为21ωω++的值( ) (A )0 (B )i (C )i - (D )2ω 2、(较难)复数1cos sin z i θθ=-+(0θπ<<)的模为 ( ) (A )2sin2θ (B(C )2(1cos )θ- (D )2sin 2θ- 3、(较难)下列点集哪些是区域 ( ) (A )Im Re(1)z i >+ (B )0arg 4z π<≤(C )1Im 2z << (D )Im 3z =4、(较难)若()Re f z z =,则下列结论正确的是( )(A )()f z 在z 平面上连续 (B )()f z 在z 平面上处处不解析(C )()f z 在z 平面上解析 (D )()f z 仅在0z =处解析 5、(较难)若1()1f z z=+,则下列结论正确的是 ( ) (A )Re (,0)1s f = (B )2Re (,0)1s f = (C )2Re (,0)2s f = (D )Re (,0)0s z f ⋅=6、(较难)若ω不是方程31z =的虚数根,则下列哪些值也一定不是此方程的根( )(A )ω (B )3ω (C )1- (D )ω-7、(较难)复数z =( ) (A )4i z eπ-⋅= (B )4i z e π⋅= (C )(2)4i k z eππ-⋅+= (k Z ∈)(D )(2)4i k z eππ⋅+= (k Z ∈)8、(较难)设{1Im 1,1Re 1}E z z z =-<<-<<,则E 一定不能是 ( ) (A )有界单连通区域 (B )有界闭区域 (C )无界区域 (D )区域 9、(较难)下列哪些函数在全平面上不解析( )(A )sin z (B )z (C )Re z (D )2z 10、(较难)若1()sinf z z=,则0z =为()f z 的( ) (A )本性奇点 (B )孤立奇点 (C )可去奇点 (D )极点三、填空题(将正确的答案填在横线上)1、(中等)复数(3)(2)(3)(2)i i z i i +-=-+的模z = 。

西南大学网络教育2020年春1153]《复变函数与积分变换》作业标准答案

西南大学网络教育2020年春1153]《复变函数与积分变换》作业标准答案

1、复函数LnZ().除去原点及负半实轴外处处解析.在复平面上处处解析.在复平面上处处不解析.除去原点外处处解析2、复数列的极限为(). -1.不存在.0.13、洛朗级数的正幂部分叫(). A. 解析部分.无限部分.主要部分.都不对4、.一阶极点.本性奇点.一阶零点.可去奇点5、.2πi.0.4πi.以上都不对6、.z=1+i点绝对收敛.z=1+2i点一定发散.z=-2点条件收敛.z=2i点绝对收敛7、若(),则复函数f(z)=u(x,y)+iv(x,y)是区域D内的连续函数。

.以上都不对。

.u(x,y),v(x,y)至少有一个在区域D内连续;.u(x,y)在区域D内连续;.u(x,y),v(x,y)在区域D内连续;8、.+∞.2.1.09、. B. -2i. -1.1.2i10、下列结论不正确的是().. D. sinz是复平面上的有界函数.lnz是复平面上的多值函数.cosz是无界函数.e^z是周期函数11、设z=cosi ,则.Imz=0.argz=π.Rez=π.|z|=012、方程所表示的平面曲线为().椭圆.圆.双曲线.直线13、.π+arctan1/2. -arctan1/2.π-arctan1/2.arctan1/214、.0.1.πi.2πi15、.2.0.1.无解16、. F. z=1+i点绝对收敛;.z=-2i点绝对收敛;.z=-2点条件收敛;.z=1+2i点一定发散17、.2i. -2i.1. -118、.本性奇点.一阶零点.可去奇点.一阶极点19、sin(1/z)在点z=0处的留数为(). E. 1.0. -1.220、.本性奇点.一阶极点.可去奇点.一阶零点21、.0<|z|<+∞.0<|z|<-1.|z|<1.|z|<+∞22、.极点.可去奇点.本性奇点.连续点23、洛朗级数的正幂部分叫().主要部分.都不对.解析部分.无限部分24、复数的辐角为().π-arctan1/2.arctan1/2.π+arctan1/2. -arctan1/225、设z=cosi,则().Imz=0.argz=π.|z|=0.Rez=π26、. C. 0.2. -1.127、在下列复数中,使得成立的是().z=ln2 +2πi.z=1.z=ln2 +πi.z=2判断题28、解析函数构成的保形映照具有保圆性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


lim
zz0
f
(z) _= (x02
2x0 y0) i(1sin(x02
y02 ),
13、幂级数 nxn 的收敛半径为____1______ n0
14、若 z0 是 f(z)的 m 阶零点且 m>0,则 z0 是 f '(z) 的__ m-1 级___零点。
15、函数 f (z) | z | 的不解析点之集为__ lim z1 z2 ... zn ____。
20、cos z 与 sin z 的周期均为 2k 。( √ )
21、若函数 f(z)在 z0 解析,则 f(z)在 z0 处满足 Cauchy-Riemann 条件。(√ )
第1页共7页 在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!
22、若函数 f(z)在 z0 处解析,则 f(z)在 z0 连续。(√ )
6、证明方程 z4 6z 3 0 在1 | z | 2 内仅有 3 个根。
证明:在| z | 1上,由| f (z) || z 4 3 | 4 6 | g(z) || 6z | 得, z4 6z 3 0 在单
位 圆 内 只 有 一 个 根 , 在 利 用 在 | z | 2 上 , 由
13、若{zn} 收敛,则{Re zn} 与{Im zn} 都收敛。( √ )
14、若 f(z)在区域 D 内解析,且 f '(z) 0 ,则 f (z) C (常数)。(√ )
15、若函数 f(z)在 z0 处解析,则它在该点的某个邻域内可以展开为幂级数。(√ ) 16、若 f(z)在 z0 解析,则 f(z)在 z0 处满足柯西-黎曼条件。( √ ) 17、若函数 f(z)在 z0 可导,则 f(z)在 z0 解析。( × ) 18、若 f(z)在区域 D 内解析,则|f(z)|也在 D 内解析。(× ) 19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。(√ )
z 1
解: z 1 (z 1)(z 1) | z |2 1 z z ; z 1 | z 1|2 | z 1|2 | z 1|2
第5页共7页 在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!
15、设 f (z)
1
,求 f (z) 在 D {z : 0 | z | 1}内的洛朗展开式。。
( √)
二、填空题
1、函数 ez 的周期为____ 2i _______。
2、幂级数 nzn
n0
的和函数为__
(1
1 z
)
2
________。
3、设
f
(z)
1 ,则 z2 1
f
(z) 的定义域为____ z
i
4、 nzn 的收敛半径为_____1____。 n0
5、
ez Res( z n
,0)
0 2i(n 1)!
4、cos z 与 sin z 在复平面内有界。(× )
5、若 z0 是 f (z) 的 m 阶零点,则 z0 是 1/ f (z) 的 m 阶极点。( √ )
6、若 f(z)在 z0 处满足柯西-黎曼条件,则 f(z)在 z0 解析。( × )
7、若 lim f (z) 存在且有限,则 z0 是函数 f(z)的可去奇点。( √ ) zz0
三、计算题
第3页共7页 在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!
1、
|z|2
(9
z
z 2 )(
z
i)
dz.
解:
z
dz. 2i z
|z|2 (9 z 2 )( z i)
9 z 2 zi 5
2、求
Res
eiz
( 1
z
2
, i).
3、
lim
2
i
n
.
7、函数 sin z 与 cos z 在整个复平面内有界。( × )
8、存在一个在零点解析的函数 f(z)使 f ( 1 ) 0 且 f ( 1 ) 1 , n 1,2,...。( × )
n 1
2n 2n
9、如果函数 f(z)在 D {z :| z | 1} 上解析,且| f (z) | 1(| z | 1) ,则| f (z) | 1(| z | 1) 。
第2页共7页 在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!
10、若函数 f(z)在区域 D 内除去有限个极点之外处处解析,则称它是 D 内的__亚纯函数__。
11、设 f (z) (x2 2xy) i(1 sin(x2 y2 ), x iy C ,
8、若 f(z)在单连通区域 D 内解析,则对 D 内任一简单闭曲线 C 都有 f (z)dz 0 。(√ )
9、若函数 f(z)是单连通区域 D 内的解析函数,则它在 D 内有任意阶导C 数。( √ ) 10、若函数 f(z)在区域 D 内的解析,且在 D 内某个圆内恒为常数,则在区域 D 内恒等于常 数。( √ ) 11、若函数 f(z)在 z0 解析,则 f(z)在 z0 连续。(√ ) 12、有界整函数必为常数。(√ )
在 内为常
Re s( f (z),) lim z( f (z) A) 。 z
5、若整函数 f(z)将复平面映照为单位圆内部且 f (0) 0,则 f (z) 0(z C) 。
证明:由于整函数 f(z)将复平面映照为单位圆内部且 f (0) 0,则整函数 f(z)是一个有界
整函数,由刘维尔定理知道, f (z) 0(z C) 。
3!
(2n 1)!
17、求函数 sin z3 z6
在0
|
z
|
内的罗朗展式。
解: sin z3
1
z3
... (1)n
z 6n3
...;
z 6 z3 3!
(2n 1)!
四、证明题 1、若函数 f(z)在 z0 处可导,则 f(z)在 z0 连续。 证明:根据定义可得:若函数 f(z)在 z0 处可导,则 f(z)在 z0 连续。
n 6
解: lim 2 i n 0 n 6
4、求 f (z)
1
在 2 | z | 内的罗朗展式。
(z 1)( z 2)
5、求 z4 5z 1 0 ,在|z|<1 内根的个数
解:1 个。
6、
1 dz.
|z|1 cos z
1 dz 0
解: |z|1 cos z
7、求
Res
( 1ห้องสมุดไป่ตู้
| f (z) || z 4 | 24 16 15 | 6z | | 3 || g(z) || 6z 3 | 得,z4 6z 3 0 在| z | 2
有 4 个根,所以方程 z4 6z 3 0 在1 | z | 2 内仅有 3 个根。
第7页共7页 在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!
23、函数 sin z 与 cos z 在整个复平面内有界。( × )
24、存在整函数 f (z) 将复平面映照为单位圆内部。(× )
1、若函数 f(z)在 z0 处满足 Cauchy-Riemann 条件,则 f(z)在 z0 解析。( × ) 4、若函数 f(z)在是区域 D 内的单叶函数,则 f '(z) 0(z D) 。( √ )
《复变函数》
一、 判断题 1、若函数 f(z)在 z0 解析,则 f(z)在 z0 的某个邻域内可导。(√ )
2、如果 z0 是 f(z)的本性奇点,则 lim f (z) 一定不存在。( √ ) zz0
3、若函数 f (z) u(x, y) iv(x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续。( √ )
,则
. ( 为实常数).

.则
.
即 满足
,且
连续, 故 在 内解析.
(充分性) 令
,则
,
第6页共7页
在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!
因为 与 在 内解析, 所以
,且
.
比较等式两边得
. 从而在 内 均为常数,故
数.
4、设 是函数 f(z)的可去奇点且 lim f (z) AC ,试证: z
1 C (z z0 )n
dz
20、函数 sin z 的周期为__ 2 _________。
21、若
lim
n
zn
,则 lim z1 z2 ... zn
n
n

22、方程 2z5 z3 3z 8 0 在单位圆内的零点个数为_____0___。
23、函数
f
(z)
1 1 z2
的幂级数展开式为_________。
n
n
16、
Res( ez zn
,0)
0 2i(n 1)!
n 0 ,其中 n 为自然数。 n0
17、公式 eix cosx i sin x 称为____欧拉公式_________.
18、若 zn
n 2 i(1 1 n
1 n
)n
,则
lim
n
z
n
1 ie
19、若 C 是单位圆周,n 是自然数,则
2、若数列{zn} 收敛,则{Re zn} 与{Im zn} 都收敛。
证明:利用不等式:
| xn x0 |,| yn y0 | | xn x0 |2 | yn y0 |2
3、设函数 f(z)在区域 D 内解析,试证:f(z)在 D 内为常数的充要条件是 f (z) 在 D 内解析。
证明 (必要性) 令
相关文档
最新文档