高数全套公式
高数公式大全(全)
![高数公式大全(全)](https://img.taocdn.com/s3/m/1d158f3b1eb91a37f1115caa.png)
高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππxxarthx x x archx x x arshx e e e e chx shx thx e e chx ee shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x三角函数公式: ·诱导公式:函数 角A sincostg ctg -α -sinα cosα -tgα -ctgα 90°-α cosα sinαctgαtgα 90°+α cosα -sinα -ctgα -tgα 180°-α sinα-cosα -tgα-ctgα 180°+α -sinα -cosα tgα ctgα 270°-α -cosα -sinα ctgα tgα 270°+α -cosα sinα -ctgα -tgα360°-α -sinα cosα -tgα -ctgα 360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
大学高等数学公式大全
![大学高等数学公式大全](https://img.taocdn.com/s3/m/523e6a6cb80d6c85ec3a87c24028915f804d84dc.png)
大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
高数公式大全
![高数公式大全](https://img.taocdn.com/s3/m/2be7132a3169a4517723a3bc.png)
高等数学公式总结第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=± 和差角公式:s i n s i n 2s i n c o s22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式:1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos 22cos 112sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式: ::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+ ,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限常用极限:1,lim 0n n q q →∞<=;1,1n a >=;1n =ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)![ln()](1)[ln()]()(1)()n n n n n n nn n a x x a x x x-----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
高等数学常用公式大全
![高等数学常用公式大全](https://img.taocdn.com/s3/m/4acc5a6be3bd960590c69ec3d5bbfd0a7956d537.png)
高等数学常用公式大全1.微分学公式:- 导数的定义:若函数y=f(x)在点x0处可导,则其导数为f'(x0)=lim(x→x0)(f(x)-f(x0))/(x-x0)-基本导数公式:- (1) 常数函数的导数:d(C)/dx = 0,其中C为常数- (2) 幂函数的导数:d(x^n)/dx = n*x^(n-1),其中n为实数- (3) 指数函数的导数:d(e^x)/dx = e^x- (4) 对数函数的导数:d(ln(x))/dx = 1/x- (5) 三角函数的导数:d(sin(x))/dx = cos(x),d(cos(x))/dx = -sin(x),d(tan(x))/dx = sec^2(x),d(cot(x))/dx = -csc^2(x),d(sec(x))/dx = sec(x)*tan(x),d(csc(x))/dx = -csc(x)* cot(x)2.积分学公式:- 不定积分的性质:∫(f(x)+g(x))dx = ∫f(x)dx + ∫g(x)dx,∫k*f(x)dx = k*∫f(x)dx,其中f(x)和g(x)是可积函数,k是常数-基本积分公式:- (1) 幂函数的不定积分:∫x^n dx = (1/(n+1))*x^(n+1) + C,其中n不等于-1- (2) 指数函数的不定积分:∫e^x dx = e^x + C,其中C为常数- (3) 对数函数的不定积分:∫1/x dx = ln,x, + C- (4) 三角函数的不定积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,∫tan(x) dx = -ln,cos(x), + C,∫cot(x) dx = ln,sin(x), + C,∫sec(x) dx = ln,sec(x)+tan(x), + C,∫csc(x) dx = ln,csc(x)-cot(x), + C3.微分方程公式:- 一阶线性微分方程:dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数,分别称为系数函数和非齐次项函数。
高数的全部公式大全
![高数的全部公式大全](https://img.taocdn.com/s3/m/701194a18e9951e79a89273c.png)
(tgx),=sec x (ctgx),= -CSC 2x (secx)'=secx tgx (cscx) ‘ = -cscx ctgx (a x)' = a xl na (log a x)'=1xln a(arcsin x),= . 1:J l -x 21 (arccos x)'= — 一’ j 1—x 21(arctgx)'= __21 +x 1(arcctgx )' = 一 --1 + x基本积分表:三角函数的有理式积分:导数公式:高等数学公式Jtgxdx = -1 n cosx +C Jctgxdx =1 n sin X +C Jsecxdx = In secx+tgx +CJcscxdx = In cscx-ctgx +C f 巴=fsec xdx = tgx + C ' cos x 、dx 2J ———=Jcsc xdx = -ctgx + C 'sin X 、fsecx tgxdx = secx + Cdx J 2 , 2a +x 「 dx J —2 2 x -af dxJ ""2 2 a -x' 2寸a -x1 x =一 arctg -七 a 亠n2a _ 1 . g+c X +aa -x X =arcsi n — +CaI n J cscx ctgxdx =-cscx + C xfa xd^-^ +C ln a Jshxdx = chx +CJchxdx = shx +Cdx=ln( X + J x 2±a 2) + C2=Jsin n xdx = Jcos nxdx =0 0N x 2 -a 2dx = *J x 2 -a 22口I nd n2 , _______________________+ —l n(x +J x 2 +a 2)+C 2ln X + J x 2 - a 2+C 2222 .a - X . c-x + ——arcsi n —+C2 a2usin X = --- 7,1+u,x u=tg-,dx 严1+u 2一些初等函数: 两个重要极限:-sin (a ±P)=si n^cosP ±cos。
(完整版)大学高数公式大全
![(完整版)大学高数公式大全](https://img.taocdn.com/s3/m/a972f4b1c281e53a5802ffca.png)
a b c cos , 为锐角时,
4 / 12
高等数学公式
平面的方程:
1、点法式: A( x x0 ) B( y y0 ) C ( z z0 ) 0,其中 n { A, B, C}, M 0 (x0, y0 , z0 ) 2、一般方程: Ax By Cz D 0
3、截距世方程: x
y
z 1
abc
平面外任意一点到该平 面的距离: d
x ( x, y)d
D
, y M y
( x, y) d
M
D
y ( x, y)d
D
( x, y)d
D
平面薄片的转动惯量: 对于 x轴 I x
y2 ( x, y)d , 对于 y轴 I y
x 2 ( x, y)d
D
D
平面薄片(位于 xoy平面)对 z轴上质点 M (0,0, a), (a 0)的引力: F { Fx , Fy , Fz},其中:
隐函数 F ( x, y) 0, dy dx
F F
x y
d2 ,
dx
y
2
( x
隐函数 F ( x, y, z) 0, z Fx , z Fy
x Fz
y Fz
Fx )+ (
Fy
y
Fx ) dy Fy dx
5 / 12
高等数学公式
F (x, y,u, v) 0
隐函数方程组:
J
( F ,G)
·半角公式:
sin 2
1 cos cos
2
2
1 cos 2
1 cos 1 cos
sin
1 cos 1 cos
sin
tg
ctg
2
高中数学公式大全(最整理新版)
![高中数学公式大全(最整理新版)](https://img.taocdn.com/s3/m/86270457ba68a98271fe910ef12d2af90342a868.png)
高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。
解为 x = b/a。
2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。
解为 x =[b ± sqrt(b^2 4ac)] / 2a。
3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。
解为x = [b ± sqrt(b^2 3ac)] / 3a。
4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。
解为x = [b ± sqrt(b^2 4ac)] / 2a。
5. 分式方程:分子和分母均为多项式。
解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。
6. 二元一次方程组:由两个一元一次方程组成的方程组。
解法为消元法或代入法。
7. 二元二次方程组:由两个一元二次方程组成的方程组。
解法为消元法或代入法。
8. 三元一次方程组:由三个一元一次方程组成的方程组。
解法为消元法或代入法。
9. 等差数列:首项为 a1,公差为 d。
第 n 项为 an = a1 + (n 1)d。
前 n 项和为 Sn = n/2(a1 + an)。
10. 等比数列:首项为 a1,公比为 q。
第 n 项为 an = a1q^(n 1)。
前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。
二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。
(2)圆:圆心为 (a, b),半径为 r。
圆的方程为 (x a)^2 +(y b)^2 = r^2。
(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。
椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。
(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。
(完整版)高等数学公式大全
![(完整版)高等数学公式大全](https://img.taocdn.com/s3/m/c65fb73ed1f34693dbef3e40.png)
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高数公式总结
![高数公式总结](https://img.taocdn.com/s3/m/90ae7129640e52ea551810a6f524ccbff021ca77.png)
高等数学公式汇总第一章一元函数的极限与连续1、常用初等函数公式:和差角公式:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβm sinαsinβtanα±tanβ1m tanα⋅tanβcotα⋅cotβm1cot(α±β)=cotβ±cotαsh(α±β)=shαchβ±chαshβtan(α±β)=ch(α±β)=chαchβ±shαshβ和差化积公式:22α+βα−βsinα−sinβ=2cos sin22α+βα−βcosα+cosβ=2cos cos22α+βα−βcosα−cosβ=2sin sin22 sinα+sinβ=2sinα+βcosα−β积化和差公式:1sinαcosβ=[sin(α+β)+sin(α−β)]21cosαsinβ=[sin(α+β)−sin(α−β)]21cosαcosβ=[cos(α+β)+cos(α−β)]21sinαsinβ=[cos(α+β)−cos(α−β)]2倍角公式:sin2α=2sinαcosαcos2α=2cos2α−1=1−2sin2α=cos2α−sin2α2tanα1−tan2αcot2α−1cot2α=2cotαsh2α=2shαchαtan2α=ch2α=1+2sh2α==2ch2α−1=ch2α+sh2αsin 2α+cos 2α=1;tan 2x +1=sec 2x ;cot 2x +1=csc 2x ;ch 2x −sh 2x =1半角公式:sin cos tan cot α2=±=±=±=±1−cos α21+cos α21−cos α1−cos αsin α== 1+cos αsin α1+cos α1+cos α1+cos αsin α==1−cos αsin α1−cos αα2α2α2e x −e −x 双曲正弦:shx =;反双曲正弦:arshx =ln(x +x 2+1)2e x +e −x双曲余弦:chx =;反双曲余弦:archx =±ln(x +x 2−1)2shx e x −e −x 11+x双曲正切:thx ==x −x ;反双曲正切:arthx =lnchx e +e 21−x(a 3±b 3)=(a ±b )(a 2m ab +b 2),12+22+L +n 2=n (n +1)(2n +1)6n 2(n +1)21+2+L +n =43332、极限➢常用极限:q <1,lim q n =0;a >1,lim n a =1;lim n n =1n →∞n →∞n →∞➢若f (x )→0,g (x )→∞,则lim[1±f (x )]➢两个重要极限g (x )=elimln(1+f (x ))1/g (x )ln(1+f (x ))~f (x )⎯⎯⎯⎯⎯⎯→e ±lim[f (x )g (x )]1sin x sin x 1x lim =1,lim =0;lim(1+)=e =lim(1+x )xx →0x →∞x →∞x →0x x x ➢常用等价无穷小:1−cos x ~121x ;x ~sin x ~arcsin x ~arctan x ;n 1+x −1~x ;2na x −1~x ln a ;e x ~x +1;(1+x )a ~1+ax ;ln(1+x )~x3、连续:定义:lim ∆y =0;lim f (x )=f (x 0)∆x →0x →x 0−+极限存在⇔lim f (x )=lim f (x )或f (x )=f (x )00−+x →x 0x →x 0第二章导数与微分基本导数公式:f (x 0+∆x )−f (x 0)f (x )−f (x 0)∆y=lim=lim =tan α∆x →0∆x ∆x →0x →x 0∆x x −x 0f '(x 0)=lim −+导数存在⇔f _'(x 0)=f +'(x 0)C '=0; (x a )'=ax a −1; (sin x )'=cos x ; (cos x )'=sin x ; (tan x )'=sec 2x ; (cot x )'=−csc 2x ;(sec x )'=sec x ⋅tan x ; (csc x )'=−csc x ⋅ctgx ; (a x )'=a x ln a ;(e x )'=e x ;1111; (ln x )'=; (arcsin x )'=; (arccos x )'=−;22x ln a x 1−x 1−x 11'(arctan x )'=; (arc cot x )=−; (shx )'=hx ;(chx )'=shx ;221+x 1+x 1111(thx )'=2; (arshx )'=; (archx )'=;(arthx )'=2ch x x −11+x 2x 2−1(log a x )'=2、高阶导数:(x n )(k )=n !x n −k ⇒(x n )(n )=n !; (a x )(n )=a x ln n a ⇒(e x )(n )=e x (n −k )!1(n )(−1)n n !1(n )(−1)n n !1(n )n !()=; ()=; ()=x x n +1x +a (x +a )n +1a −x (a −x )n +1ππ(sin kx )(n )=k n ⋅sin(kx +n ⋅); (cos kx )(n )=k n ⋅cos(kx +n ⋅);22[ln(a +x )](n )=(−1)n −1(n −1)!1(n −1)(n )n −1(n −1)!⇒[ln(x )]=()=(−1)n n(a +x )x x 牛顿-莱布尼兹公式:(uv )(n )k (n −k )(k )=∑C nu v k =0n=u (n )v +nu (n −1)v '+n (n −1)(n −2)n (n −1)L (n −k +1)(n −k )(k )u v ''+L +u v +L +uv (n )2!k !3、微分:∆y =f (x +∆x )−f (x )=dy +o (∆x );dy =f '(x 0)∆x =f '(x )dx ;连续⇒极限存在⇔收敛⇒有界;不连续⇒不可导可微⇔可导⇔左导=右导⇒连续;第三章基本定理微分中值定理与微分的应用拉格朗日中值定理:f (b )−f (a )=f '(ξ)(b −a ),ξ∈(a ,b )f (b )−f (a )f '(ξ)柯西中值定理:=,ξ∈(a ,b )F (b )−F (a )F '(ξ)当F(x )=x 时,柯西中值定理就是拉格朗日中值定理。
最完整高数公式大全,赶紧收藏了,以后用
![最完整高数公式大全,赶紧收藏了,以后用](https://img.taocdn.com/s3/m/cbf6ace580eb6294dc886c1e.png)
高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/ sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+s inα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-si nαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高考数学所有公式大全
![高考数学所有公式大全](https://img.taocdn.com/s3/m/db38bd999fc3d5bbfd0a79563c1ec5da50e2d6cd.png)
高考数学所有公式大全一、集合。
1. 集合的基本运算。
- 交集:A∩ B = {xx∈ A且x∈ B}- 并集:A∪ B={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)2. 集合间的关系。
- 若A⊆ B,则A中的元素都在B中,n(A)≤ n(B)(n(A)表示集合A的元素个数)- 若A = B,则A⊆ B且B⊆ A二、函数。
1. 函数的定义域。
- 分式函数y = (f(x))/(g(x)),其定义域为g(x)≠0的x的取值范围。
- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),其定义域为f(x)≥0的x的取值范围。
2. 函数的单调性。
- 设x_1,x_2∈[a,b]且x_1 < x_2- 增函数:f(x_1),则y = f(x)在[a,b]上是增函数,其导数f^′(x)≥0(x∈(a,b))。
- 减函数:f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,其导数f^′(x)≤0(x∈(a,b))。
3. 函数的奇偶性。
- 奇函数:f(-x)= - f(x),图象关于原点对称。
- 偶函数:f(-x)=f(x),图象关于y轴对称。
4. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)5. 二次函数y=ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})- 当a>0时,函数图象开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a < 0时,函数图象开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
6. 指数函数y = a^x(a>0,a≠1)- 指数运算法则:a^m× a^n=a^m + n,frac{a^m}{a^n}=a^m - n,(a^m)^n=a^mn,(ab)^n=a^nb^n,((a)/(b))^n=frac{a^n}{b^n}- 当a > 1时,函数在R上单调递增;当0 < a<1时,函数在R上单调递减。
高数公式大全(全)
![高数公式大全(全)](https://img.taocdn.com/s3/m/fdd52ab9ad02de80d5d8408c.png)
高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高数公式大全
![高数公式大全](https://img.taocdn.com/s3/m/932bb3661611cc7931b765ce050876323112740d.png)
高等数学公式·平方关系:sin^2α+cos^2α=1tan^2α+1=sec^2αcot^2α+1=csc^2α·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中;角A的正弦值就等于角A的对边比斜边;余弦等于角A的邻边比斜边正切等于对边比邻边;·三角函数恒等变形公式·两角和与差的三角函数:cosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβsinα±β=sinα·cosβ±cosα·sinβtanα+β=tanα+tanβ/1-tanα·tanβtanα-β=tanα-tanβ/1+tanα·tanβ·三角和的三角函数:sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα·辅助角公式:Asinα+Bcosα=A^2+B^2^1/2sinα+t;其中sint=B/A^2+B^2^1/2cost=A/A^2+B^2^1/2Asinα+Bcosα=A^2+B^2^1/2cosα-t;tant=A/B·倍角公式:sin2α=2sinα·cosα=2/tanα+cotαcos2α=cos^2α-sin^2α=2cos^2α-1=1-2sin^2αtan2α=2tanα/1-tan^2α·三倍角公式:sin3α=3sinα-4sin^3αcos3α=4cos^3α-3cosα·半角公式:sinα/2=±√1-cosα/2cosα/2=±√1+cosα/2tanα/2=±√1-co sα/1+cosα=sinα/1+cosα=1-cosα/sinα·降幂公式sin^2α=1-cos2α/2=versin2α/2cos^2α=1+cos2α/2=covers2α/2tan^2α=1-cos2α/1+cos2α·万能公式:sinα=2tanα/2/1+tan^2α/2cosα=1-tan^2α/2/1+tan^2α/2tanα=2tanα/2/1-tan^2α/2·积化和差公式:sinα·cosβ=1/2sinα+β+sinα-βcosα·sinβ=1/2sinα+β-sinα-βcosα·cosβ=1/2cosα+β+cosα-βsinα·sinβ=-1/2cosα+β-cosα-β·和差化积公式:sinα+sinβ=2sinα+β/2cosα-β/2sinα-sinβ=2cosα+β/2sinα-β/2cosα+cosβ=2cosα+β/2cosα-β/2cosα-cosβ=-2sinα+β/2sinα-β/2·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=sinα/2+cosα/2^2sinα+sinα+2π/n+sinα+2π*2/n+sinα+2π*3/n+……+sinα+2π*n-1/n=0cosα+cosα+2π/n+cosα+2π*2/n+cosα+2π*3/n+……+cosα+2π*n-1/n=0 以及sin^2α+sin^2α-2π/3+sin^2α+2π/3=3/2tanAtanBtanA+B+tanA+tanB-tanA+B=0三角函数的角度换算编辑本段公式一:设α为任意角;终边相同的角的同一三角函数的值相等:sin2kπ+α=sinαcos2kπ+α=cosαtan2kπ+α=tanαcot2kπ+α=cotα公式二:设α为任意角;π+α的三角函数值与α的三角函数值之间的关系:sinπ+α=-sinαcosπ+α=-cosαtanπ+α=tanαcotπ+α=cotα公式三:任意角α与-α的三角函数值之间的关系:sin-α=-sinαcos-α=cosαtan-α=-tanαcot-α=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sinπ-α=sinαcosπ-α=-cosαtanπ-α=-tanαcotπ-α=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin2π-α=-sinαcos2π-α=cosαtan2π-α=-tanαcot2π-α=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sinπ/2+α=cosαtanπ/2+α=-cotαcotπ/2+α=-tanαsinπ/2-α=cosαcosπ/2-α=sinαtanπ/2-α=cotαcotπ/2-α=tanαsin3π/2+α=-cosαcos3π/2+α=sinαtan3π/2+α=-cotαcot3π/2+α=-tanαsin3π/2-α=-cosαcos3π/2-α=-sinαta n3π/2-α=cotαcot3π/2-α=tanα以上k∈Z部分高等内容编辑本段·高等代数中三角函数的指数表示由泰勒级数易得:sinx=e^ix-e^-ix/2i cosx=e^ix+e^-ix/2 tanx=e^ix-e^-ix/ie^ix+ie^-ix泰勒展开有无穷级数;e^z=expz=1+z/1+z^2/2+z^3/3+z^4/4+…+z^n/n+…此时三角函数定义域已推广至整个复数集..·三角函数作为微分方程的解:对于微分方程组y=-y'';y=y'''';有通解Q;可证明Q=Asinx+Bcosx;因此也可以从此出发定义三角函数..补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数;其拥有很多与三角函数的类似的性质;二者相映成趣.. 特殊三角函数值a 0` 30` 45` 60` 90`sina 0 1/2 √2/2 √3/2 1cosa 1 √3/2 √2/2 1/2 0tana 0 √3/3 1 √3 Nonecota None √3 1 √3/3 0导数公式: 基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ 高阶导数公式——莱布尼兹Leibniz 公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法: 重积分及其应用:柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n ndiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系: 常数项级数: 级数审敛法:绝对收敛与条件收敛: 幂级数:函数展开成幂级数: 一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数:周期为l 2的周期函数的傅立叶级数: 微分方程的相关概念:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程。
高等数学所有公式大全
![高等数学所有公式大全](https://img.taocdn.com/s3/m/c91ec72cf4335a8102d276a20029bd64783e622a.png)
高等数学所有公式大全高等数学是一门涉及到多个概念和公式的学科,其中包括微积分、线性代数、概率论等的知识。
下面将介绍一些高等数学中常见的公式。
微积分部分:1. 泰勒展开式:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... +f^n(a)(x-a)^n/n! + R_n(x),其中 f'(a) 表示函数 f(x) 在点 a 处的导数,f''(a) 表示函数 f(x) 在点 a 处的二阶导数,f^n(a) 表示函数 f(x) 在点 a 处的 n 阶导数。
2. 拉格朗日中值定理:如果函数 f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 上可导,则存在一点 c ∈ (a, b),使得 f(b)-f(a) = f'(c)(b-a)。
3. 法拉第定律:对于闭曲线 C 上的可微函数 f(x, y),有∮C f(x, y)ds = 0,其中 ds 表示 C 上的长度元素。
4. 一元函数积分学基本公式:- 定积分的线性性质:∫[a, b] (f(x) + g(x))dx = ∫[a, b] f(x)dx +∫[a, b] g(x)dx。
- 定积分的加减法则:∫[a, b] f(x)dx - ∫[a, c] f(x)dx = ∫[c, b]f(x)dx。
- 定积分的换元法则:∫[a, b] f(g(x))g'(x)dx = ∫[g(a), g(b)]f(u)du。
- 分部积分法:∫[a, b] u(x)v'(x)dx = [u(x)v(x)]_[a, b] - ∫[a, b]u'(x)v(x)dx。
线性代数部分:1. 向量的线性变换:对于一个 n 维向量 V 和一个实数 a,线性变换 T(aV) = aT(V)。
2. 矩阵乘法:对于一个 m×n 的矩阵 A 和一个 n×p 的矩阵 B,它们之间的乘积为一个 m×p 的矩阵 C,其中C(i,j) = ∑[k=1->n] A(i,k)B(k,j)。
高数的全部公式大全
![高数的全部公式大全](https://img.taocdn.com/s3/m/e9b1a0848762caaedd33d439.png)
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高数公式大全
![高数公式大全](https://img.taocdn.com/s3/m/68d04982561252d381eb6e27.png)
高数公式大全(全)(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x arshx e e e e chx shx thx e e chx ee shx x xxx xx xx++=+-==+=-=----1ln(:2:2:2)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高数公式大全(全)
![高数公式大全(全)](https://img.taocdn.com/s3/m/de040567844769eae109ed46.png)
高数公式大全1.基本积分表:三角函数的有理式积分:一些初等函数:两个重要极限: 三角函数公式: ·诱导公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ·和差角公式:·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ 高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法: 重积分及其应用:柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n ndiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系: 常数项级数: 级数审敛法:绝对收敛与条件收敛: 幂级数:函数展开成幂级数: 一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数:微分方程的相关概念: 一阶线性微分方程: 全微分方程:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数全套公式 The pony was revised in January 2021初等数学基础知识一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1;tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1;sinα·cscα=1;cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 2.特殊角的三角函数值只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。
3诱导公式:11记忆规律:竖变横不变(奇变偶不变),符号看象限(一全,二正弦割,三切,四余弦割即第一象限全是正的,第二象限正弦、正割是正的,第三象限正切是正的,第四象限余弦、余割是正的)二、一元二次函数、方程和不等式三、因式分解与乘法公式四、等差数列和等比数列五、常用几何公式基本初等函数极限的计算方法一、初等函数:二、分段函数:,.分段点的极限用左右极限的定义来求解切线方程为:))((000x x x f y y -'=-法线方程为)()(1000x x x f y y -'-=- 基本初等函数的导数公式(1) 0)(='C ,C 是常数(2)1)(-='αααx x(3)a a a x x ln )(=',特别地,当e a =时,x xe e =')( (4)a x x a ln 1)(log =',特别地,当e a =(5)x x cos )(sin ='(6)x x sin )(cos -='(7)x x x 22sec cos 1)(tan =='(8)x xx 22csc sin 1)(cot -=-=' (9)x x x tan )(sec )(sec ='(10)x x x cot )(csc )(csc -='(11)=')(arcsin x 211x-(12)211)(arccos xx --='21(arccot )1x x '=-+ 函数的和、差、积、商的求导法则可导都在点及函数x x v v x u u )()(==,)()(x v x u 及的和、差、商(除分母为0的点外)都在点x 可导,基本初等函数的微分公式(1)、0dc =(c 为常数);(2)、1()d x x dx μμμ-=(μ为任意常数);(3)、()ln x x d a a adx =,特别地,当e a =时,()x x d e e dx =;(4)、1(log )ln a d x dx x a =,特别地,当e a =时,1(ln )d x dx x=; (5)、(sin )cos d x xdx =;(6)、(cos )sin d x xdx =-;(7)、2(tan )sec d x xdx =;(8)、2(cot )csc d x xdx =-;(9)、(sec )sec tan d x x xdx =;(10)、(csc )csc cot d x x xdx =-;(11)、(arcsin )d x =;(12)、(arccos )d x =;(13)、21(arctan )1d x dx x=+; (14)、21(cot )1d arc x dx x=-+. 曲线的切线方程 幂指函数的导数条件A ⇒条件B ,A 为B 的充分条件 条件B ⇒条件A ,A 为B 的必要条件 条件A ⇔条件B ,A 和B 互为充分必要条件 边际分析边际成本MC=()C q ';边际收益MR=()R q '; 边际利润ML=()L q ',()()()L q R q C q '''=-=MR —MC 弹性分析)(x f y =在点0x 处的弹性,特别的,需求价格弹性:()ED pD p Ep D-'= 罗尔定理若函数)(x f 满足:(1)在闭区间],[b a 连续;(2)在开区间),(b a 可导;(3))()(b f a f =,则在),(b a 内至少存在一点ξ,使0)(='ξf .拉格朗日定理设函数)(x f 满足:(1)在闭区间],[b a 连续;00()x x x Ey y x Exy ='=(2)在开区间),(b a 可导,则在),(b a 上至少存在一点ξ,使得ab a f b f f --=')()()(ξ.基本积分公式(1)0dx C =⎰(2)()为常数k Ckx kdx +=⎰特别地:dx x C =+⎰(3)()111-≠μ++μ=+μμ⎰C x dx x(4)C x dx x+=⎰||ln 1(有时绝对值符号也可忽略不写)(5)C aa dx a xx+=⎰ln (6)C e dx e x x +=⎰(7)C x xdx +=⎰sin cos(8)C x xdx +-=⎰cos sin(9)⎰⎰+==C x xdx xdx tan sec cos 22 (10)⎰⎰+-==C x xdx xdx cot csc sin 22(11)C x xdx x +=⎰sec tan sec(12)C x xdx x +-=⎰csc cot csc(13)C x x dx +=+⎰arctan 12(或C x arc x dx+-=+⎰cot 12) (14)C x xdx +=-⎰arcsin 12(或C x xdx +-=-⎰arccos 12)(15)C x xdx +-=⎰|cos |ln tan ,(16)C x xdx +=⎰|sin |ln cot ,(17)C x x xdx ++=⎰|tan sec |ln sec ,(18)C x x dx x +-=⎰|cot csc |ln cot ,(19)C a xa xa dx +=+⎰arctan 122,)0(≠a , (20)C ax a x a x a dx +-+=-⎰ln 2122,(0)a ≠,(21)C axx a dx +=-⎰arcsin22,)0(>a , (22)C a x x a x dx +±+=±⎰2222ln ,)0(≠a .常用凑微分公式(1)、()()0,,1≠+=a b a b ax d a dx 且为常数 (2)、()221x d xdx =(3)、⎪⎭⎫ ⎝⎛-=x d dx x 112 (4)、x d dx x21=(5)、x d dx xln 1=(6)、x x de dx e = (7)、()sin cos xdx d x =-(8)、x d xdx sin cos =(9)、x d xdx tan sec 2=(10)、x d xdx cot csc 2-=(11)arcsin d x =(12)、x d dx xarctan 112=+ 一阶线性非齐次微分方程的通解为()()dyP x y Q x dx+=x y0a b ()y g x =()y f x =()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 平面图形面积的计算公式 1)区域D 由连续曲线 和直线x=a,x=b 围成,其中(右图) 2)区域D 由连续曲线和直线x=c,x=d 围成,其中(右图)平面图形绕旋转轴旋转得到的旋转体体积公式1、绕x 轴的旋转体体积(右图) 注意:此时的曲边梯形必须紧贴旋转轴.2、绕y 轴的旋转体体积(右图)注意:此时的曲边梯形必须紧贴旋转轴.由边际函数求总函数总利润函数为00()()()[()()]qL q R q C q g x f x dx C =-=--⎰。
多元复合函数的导数公式()()()f x g x a x b ≤≤≤()()()y y c y d ϕψ≤≤≤[]()()dc A y y dy ψϕ=-⎰D 的面积设函数u =φ(x ,y )、v =ψ(x ,y )在点(x ,y )有偏导数,函数z =f (u ,v )在对应点(u ,v )处可微,则复合函数z =f (φ(x ,y ),ψ(x ,y ))在点(x ,y )的偏导数两个特例:z =f (u ,v ),(),()u t v t φψ==:dz z du u dv dt u dt v dt ∂∂=⋅+⋅∂∂ z =f (u ),u =u (x ,y ):(), ().z dz u u z dz u u f u f u x du x x y du y y∂∂∂∂∂∂''=⋅=⋅=⋅=⋅∂∂∂∂∂∂隐函数导数公式二元方程(,)0F x y =所确定的隐函数:x y F dy dx F '=-'三元方程F (x ,y ,z )=0所确定的二元隐函数:x z F z x F ∂∂'=-',y z F z y F ∂∂'=-'1.确定函数定义域的主要依据:(1)当f (x )是整式时,定义域为R ;(2)当f (x )是分式时,定义域是使分母不等于0的x 取值的集合;(3)当f (x )是偶次根式时,定义域是使被开方式取非负值的x 取值的集合;(4)当f (x )是零指数幂或负数指数幂时,定义域是使幂的底数非零或大于0的x 取值范围;(5)当f (x )是对数式时,定义域是使真数大于0的x 取值的集合;(6)正切函数的定义域是{Z ∈+≠k k x x ,2|ππ};余切函数的定义域是{x |x ≠k π,k ∈Z }; (7)当f (x )表示实际问题中的函数关系时还应考虑在此实际问题中x 取值的实际意义.2.求函数值域常用的方法有配方、换元、不等式、判别式、图像法等等.。