第六讲--细胞骨架PPT课件
合集下载
细胞骨架课件
2023
细胞骨架课件
contents
目录
• 细胞骨架的概述 • 微管在细胞中的角色 • 微丝在细胞中的角色 • 中间纤维在细胞中的角色 • 细胞骨架与疾病的关系 • 细胞骨架的研究方法
01
细胞骨架的概述
细胞骨架的定义
细胞骨架是由蛋白纤维组成的网架结构,主要分为微管、微 丝和中间纤维三种类型。
细胞骨架在细胞分裂、细胞生长、细胞物质运输以及细胞形 态维持等方面发挥着重要作用。
微丝在细胞运动中的功能
细胞运动是生命活动中的另一个重要环节,微丝在细胞运动 中也起着关键作用。
微丝可以与细胞膜连接,通过改变微丝的排列和聚合状态, 影响细胞形状和运动方向,从而参与细胞分裂、细胞迁移和 细胞物质运输等过程。
04
中间纤维在细胞中的角色
中间纤维的结构
结构组成
中间纤维是由3条相同的多肽链形成的三 股螺旋结构,通过二硫键交联形成二聚体 ,再组装形成原纤维,进而形成中间纤维 。
VS
类型
中间纤维分为6种类型,包括Ⅰ型、Ⅱ型 、Ⅲ型、Ⅳ型、Ⅴ型和Ⅵ型,每种类型都 有其特定的分布和功能。
中间纤维在细胞分化中的功能
维持细胞形态
中间纤维构成细胞骨架的主要 成分,与微管和微丝共同维持 细胞的形态和结构的稳定性。
参与细胞运动
中间纤维在细胞分裂、细胞生长 和细胞迁移中发挥重要作用,可 协助细胞运动。
抗癌药物靶点
许多抗癌药物通过影响细胞骨架的组装和功能发挥其抗癌作用,如紫杉醇类药物可以干扰微管的动态平衡。
细胞骨架与神经退行性疾病
要点一
神经元轴突运输
要点二
神经元突触可塑性
细胞骨架组成的轴突网络是神经元结 构和功能的基础,神经元轴突的运输 依赖于细胞骨架。
细胞骨架课件
contents
目录
• 细胞骨架的概述 • 微管在细胞中的角色 • 微丝在细胞中的角色 • 中间纤维在细胞中的角色 • 细胞骨架与疾病的关系 • 细胞骨架的研究方法
01
细胞骨架的概述
细胞骨架的定义
细胞骨架是由蛋白纤维组成的网架结构,主要分为微管、微 丝和中间纤维三种类型。
细胞骨架在细胞分裂、细胞生长、细胞物质运输以及细胞形 态维持等方面发挥着重要作用。
微丝在细胞运动中的功能
细胞运动是生命活动中的另一个重要环节,微丝在细胞运动 中也起着关键作用。
微丝可以与细胞膜连接,通过改变微丝的排列和聚合状态, 影响细胞形状和运动方向,从而参与细胞分裂、细胞迁移和 细胞物质运输等过程。
04
中间纤维在细胞中的角色
中间纤维的结构
结构组成
中间纤维是由3条相同的多肽链形成的三 股螺旋结构,通过二硫键交联形成二聚体 ,再组装形成原纤维,进而形成中间纤维 。
VS
类型
中间纤维分为6种类型,包括Ⅰ型、Ⅱ型 、Ⅲ型、Ⅳ型、Ⅴ型和Ⅵ型,每种类型都 有其特定的分布和功能。
中间纤维在细胞分化中的功能
维持细胞形态
中间纤维构成细胞骨架的主要 成分,与微管和微丝共同维持 细胞的形态和结构的稳定性。
参与细胞运动
中间纤维在细胞分裂、细胞生长 和细胞迁移中发挥重要作用,可 协助细胞运动。
抗癌药物靶点
许多抗癌药物通过影响细胞骨架的组装和功能发挥其抗癌作用,如紫杉醇类药物可以干扰微管的动态平衡。
细胞骨架与神经退行性疾病
要点一
神经元轴突运输
要点二
神经元突触可塑性
细胞骨架组成的轴突网络是神经元结 构和功能的基础,神经元轴突的运输 依赖于细胞骨架。
医学细胞生物学 细胞骨架精品PPT课件
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
演讲人:XXXXXX 时 间:XX年XX月XX日
交联蛋白
单体
单体成核
单体聚合
膜结合蛋白
解聚
纤维切割蛋白
(二)微丝组装
▪ 多数非肌肉细胞中,微丝是一种动态结构。 ▪ 组装过程: 1)成核期、生长期(延长期)、平衡期 2)成核作用发生在质膜上 3)微丝组装的动力来自ATP
成核期-延长期-稳定期
▪ 微丝组装的动态调节: ▪ ATP是调节微丝组装的主要因素
负端
正端
2)微丝 球形-肌动蛋白形成的聚合体,也称纤 维状-肌动蛋白(F-actin)。
指向端
秃端
2、肌动蛋白结合蛋白
▪ 1)肌肉细胞中: ▪ 原肌球蛋白(tropomyosin ,Tm) ▪ 肌球蛋白(myosin) ▪ 肌钙蛋白(troponin ,Tn)
2)非肌细胞中:
单体隔离蛋白
末端阻断蛋白
细胞骨架(cytoskeleton)
二、微丝
(microfilament MF)
(一)微丝的结构
▪ 结构:由肌动蛋白纤维组成的实心纤维
▪ 分布: ▪ 肌肉细胞中,肌细胞的收缩单位、稳定 ▪ 非肌肉细胞中,分布均散、不稳定
成分: 1、肌动蛋白(actin):
1)单体为一个单链多肽、 哑铃形,称球形-肌动蛋 白(G-actin)。 有极性,含阳离子、 ATP(ADP)、肌球蛋白 的结合位点。
微丝遍及胞质各处,集中分布于质膜下,和其 结合蛋白形成网络结构,维持细胞形状和赋予 质膜机械强度,如哺乳动物红细胞膜骨架的作 用。
演讲人:XXXXXX 时 间:XX年XX月XX日
交联蛋白
单体
单体成核
单体聚合
膜结合蛋白
解聚
纤维切割蛋白
(二)微丝组装
▪ 多数非肌肉细胞中,微丝是一种动态结构。 ▪ 组装过程: 1)成核期、生长期(延长期)、平衡期 2)成核作用发生在质膜上 3)微丝组装的动力来自ATP
成核期-延长期-稳定期
▪ 微丝组装的动态调节: ▪ ATP是调节微丝组装的主要因素
负端
正端
2)微丝 球形-肌动蛋白形成的聚合体,也称纤 维状-肌动蛋白(F-actin)。
指向端
秃端
2、肌动蛋白结合蛋白
▪ 1)肌肉细胞中: ▪ 原肌球蛋白(tropomyosin ,Tm) ▪ 肌球蛋白(myosin) ▪ 肌钙蛋白(troponin ,Tn)
2)非肌细胞中:
单体隔离蛋白
末端阻断蛋白
细胞骨架(cytoskeleton)
二、微丝
(microfilament MF)
(一)微丝的结构
▪ 结构:由肌动蛋白纤维组成的实心纤维
▪ 分布: ▪ 肌肉细胞中,肌细胞的收缩单位、稳定 ▪ 非肌肉细胞中,分布均散、不稳定
成分: 1、肌动蛋白(actin):
1)单体为一个单链多肽、 哑铃形,称球形-肌动蛋 白(G-actin)。 有极性,含阳离子、 ATP(ADP)、肌球蛋白 的结合位点。
微丝遍及胞质各处,集中分布于质膜下,和其 结合蛋白形成网络结构,维持细胞形状和赋予 质膜机械强度,如哺乳动物红细胞膜骨架的作 用。
细胞骨架ppt课件
细胞骨架 (Cytoskeleton)
—Bertha
1
细胞骨架
●细胞骨架的概述 ●细胞骨架的组成
2
第一节 细胞骨架的概述
◆细胞骨架概念
细胞骨架是指存在于真核细胞的细胞质中的蛋白 纤维网架结构体系
◆有狭义和广义两种涵义
在细胞质基质中包括微丝、微管和中间纤维。 在细胞核中存在核骨架-核纤层体系。核骨架、
排列形式,MF相互交错排列。
19
(六)微丝的功能
◆维持细胞形态,赋予质膜机械强度 ◆肌肉收缩(muscle contraction) ◆微绒毛(microvillus) ◆应力纤维(stress fiber) ◆与细胞质运动和细胞移动有关 ◆参与胞质分裂
20
1、维持细胞形态,赋予质膜机械强度 微丝遍及胞质各处,集中分布于质膜下, 和其结合蛋白形成网络结构,维持细胞 形状和赋予质膜机械强度,如哺乳动物 红细胞膜骨架的作用。
运动。 作为产生力的装置,将细胞从一个地方移至到
另一个地方。 作为锚定mRNA并促进其翻译成多肽的位点。 作为细胞分裂的必要组分。
5
第二节 细胞骨架的组成
●微管 (microtubules,MT) ●微丝 (microfilament, MF) ● 中间纤维 ( intermediate filament,IF)
近年来认为微丝是由一条肌动蛋白单体链形成的螺旋, 每个肌动蛋白单体周围都有四个亚基,呈上、下及两侧排 列。
12
(三)微丝的组装及动力学特性
◆MF是由G-actin单体形成的多聚体,肌动蛋白 单体具有极性,装配时呈头尾相接,故微丝具
有极性,既正极与负极之别。装配可分为成 核反应、纤维的延长和稳定期3个阶段。
6
—Bertha
1
细胞骨架
●细胞骨架的概述 ●细胞骨架的组成
2
第一节 细胞骨架的概述
◆细胞骨架概念
细胞骨架是指存在于真核细胞的细胞质中的蛋白 纤维网架结构体系
◆有狭义和广义两种涵义
在细胞质基质中包括微丝、微管和中间纤维。 在细胞核中存在核骨架-核纤层体系。核骨架、
排列形式,MF相互交错排列。
19
(六)微丝的功能
◆维持细胞形态,赋予质膜机械强度 ◆肌肉收缩(muscle contraction) ◆微绒毛(microvillus) ◆应力纤维(stress fiber) ◆与细胞质运动和细胞移动有关 ◆参与胞质分裂
20
1、维持细胞形态,赋予质膜机械强度 微丝遍及胞质各处,集中分布于质膜下, 和其结合蛋白形成网络结构,维持细胞 形状和赋予质膜机械强度,如哺乳动物 红细胞膜骨架的作用。
运动。 作为产生力的装置,将细胞从一个地方移至到
另一个地方。 作为锚定mRNA并促进其翻译成多肽的位点。 作为细胞分裂的必要组分。
5
第二节 细胞骨架的组成
●微管 (microtubules,MT) ●微丝 (microfilament, MF) ● 中间纤维 ( intermediate filament,IF)
近年来认为微丝是由一条肌动蛋白单体链形成的螺旋, 每个肌动蛋白单体周围都有四个亚基,呈上、下及两侧排 列。
12
(三)微丝的组装及动力学特性
◆MF是由G-actin单体形成的多聚体,肌动蛋白 单体具有极性,装配时呈头尾相接,故微丝具
有极性,既正极与负极之别。装配可分为成 核反应、纤维的延长和稳定期3个阶段。
6
细胞骨架课件
治疗性人类器官 克隆的应用前景
肌钙蛋白
原肌球蛋白
单体
微
丝
微 管
中间纤维
细胞质膜流动
动力蛋白沿微管滑动----膜泡 运动模型
医学全在线 ( )
动力蛋白
How does kinesin walk along a MT protofilament? Pipecleaner and rubber tubing animations by Minia Alonso These are unavoidably big, E mail me if you need the files. Floppy logic model [Non-equivalent steps]
成纤维细胞 氨基聚糖与 蛋白聚糖
弹性纤维
皮肤结缔组织中的ECM
纤粘连蛋白 细胞外基质的分布: 胶原
层粘连蛋白
蛋白聚糖
上皮、肌肉、脑、脊髓中含量少
结缔组织中含量高
细胞外基质的组成:主要有胶原、氨基聚糖和蛋白 聚糖、弹性蛋白以及非胶原糖蛋白等四类; 细胞外基质与细胞的形态构建、生长分化、信号转 导、识别通讯以及发育等细胞生命行为具有重要意义。
质膜(主体)、 细胞外被、 胞质溶胶
细胞表面结构示意图
淋巴细胞表面的电镜照片
细胞表面功能: 1. 保护细胞 2. 物质和能量的交换运输 3. 细胞识别、信息的接收和传递 4. 细胞运动 5. 维护细胞形态
(二)细胞外基质(ECM)
由细胞合成并分泌到
细胞外,分布在细胞表
胶原纤维
面或细胞之间的大分子, 它们构成了结构精细而 错综复杂的网络,这种 结构称为ECM。
细胞核
电镜:圆柱状小体——中心粒
细胞骨架医学课件
02
微管骨架
微管的组成
微管蛋白
微管是由微管蛋白组成的,这些 蛋白通过聚合形成微管的主体结 构。
微管蛋白的亚单位
微管蛋白的亚单位包括α-微管蛋 白和β-微管蛋白,它们在微管的 结构和功能中具有重要作用。
微管的极性
负极
微管的负极位于细胞的中心,是微管 组装和扩展的起点。
正极
微管的正极指向细胞的边缘,是微管 组装的终点。
细胞骨架参与了细胞的物质运输、胞质流动和细胞迁移等过程 ,对细胞的移动和迁徙起到关键作用。
细胞骨架在细胞分裂过程中起到了关键作用,如微管参与了纺 锤体的形成,中间纤维参与了染色体的排列和分配。
细胞骨架在细胞的分化过程中也起到了重要作用,如中间纤维 参与了细胞的形态维持和信息传递,影响细胞的分化方向。
FRET技术可用于研究细胞骨架蛋白质的动态变化和相互作 用,如肌动蛋白丝和微管蛋白的相互作用、蛋白质磷酸化 和去磷酸化的状态等。通过FRET技术可以获得细胞骨架蛋 白质的实时动态信息,从而更深入地了解细胞活动的调控 机制。
活细胞实时观察技术
原理
活细胞实时观察技术是一种在活细胞状态下实时观察细 胞活动的方法。通过将细胞接种在特殊的载玻片上,利 用显微镜对细胞进行观察和记录。
VS
药物筛选和优化
通过计算机模拟和实验室实验,研究者正 在筛选和优化一些能够干扰癌细胞骨架的 药物,以期开发出更有效的抗癌药物。
细胞骨架与医学研究的前沿领域
细胞骨架与基因表达
最新研究表明,细胞骨架的改变可以影响基 因的表达,从而影响细胞的功能和命运。这 一领域的研究将有望揭示更多关于细胞生物 学和疾病发生发展的奥秘。
肌丝在细胞内的分布和功能
分布
粗肌丝和细肌丝分别位于肌细胞的表面和内部,它们相互交织形成肌纤维。
细胞骨架 PPT课件
2 微丝的装配
三个actin聚集成一个核心 随后actin分子向核心两端加合
第九章 细胞骨架
第一节 微丝 一 微丝的组成和装配
微丝极性
微丝具极性,肌动蛋白单体加到(+)极 的速度比加到(-)极的速度快十倍。
第九章 细胞骨架
第一节 微丝 一 微丝的组成和装配
Treadmilling
ATP-肌动蛋白浓度影响组装速度。当处于临界浓 度时,ATP-actin可能继续在(+)端添加、而在 (-)端分离,表现出一种“踏车”现象。
步行模型 水解一个ATP hand over hand 行走16nm 讨论5 驱动蛋白在微管上 是怎样行走的? “尺蠖”模型 水解一个ATP inchworm 行走8nm
第九章 细胞骨架
第二节 微管
五 微管的功能
动力蛋白
构成 两条相同的重链 种类繁多的轻链 结合蛋白
作用 推动染色体分离 驱动鞭毛运动 向微管(−)极运输小泡
动力蛋白臂
疾病
第九章 细胞骨架
第二节 微管
五 微管的功能
4 纺锤体与染色体运动
C 形成纺锤体,在细胞分裂中牵引染色体到达分裂极。 纺锤体是一 种微管构成
的动态结构, 其作用是在 分裂细胞中 牵引染色体 到达分裂极。
染色体运动机制
+ + + + + 染色体 动力蛋白 动粒 双极驱动蛋白四聚体 − + + + + + + + − + + + +
核化蛋白nucleatingprotein单体隐蔽蛋白monomersequesteringprotein封端蛋白endblockingprotein单体聚合蛋白monomerpolymerizingprotein微丝解聚蛋白actinfilamentdepolymerizingprotein交联蛋白crosslinkingprotein纤维切断蛋白filamentseveringprotein膜结合蛋白membranebindingprotein封端加帽交联封端加帽交联单体隔离微丝结合蛋白作用方式单体膜结合解聚切断成束长纤维成核成束蛋白将肌动蛋白纤丝交联成平行的一排成一束结构联成平行的一排成一束结构三微丝的功能形成细胞皮层形成应力纤维形成细胞皮层形成应力纤维细胞伪足形成与迁移运动物理功能强度韧性固定维持形状物理功能强度韧性固定维持形状细胞伪足形成与迁移运动形成微绒毛胞质分裂环肌细胞收缩运动物质运输顶体反应细胞器运动生物学功能细胞各种运动有关形成微绒毛胞质分裂环肌细胞收缩运动物质运输顶体反应细胞器运动生物学功能细胞各种运动有关第九章细胞骨架第一节微丝二微丝结合蛋白1形成细胞皮层cellcortex细胞内大部分微丝分布在紧贴质膜的细胞质区域由微丝结合蛋白交联形成细胞内大部分微丝分布在紧贴质膜的细胞质区域由微丝结合蛋白交联形成凝胶状三维网络结构称为细胞皮层
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021
34
微丝特异性药物
细胞松弛素B:阻断微丝的装配
鬼笔环肽:稳定肌动蛋白纤维,抑制解聚、 促进微丝聚合。
2021
35
微丝功能
维持细胞形态,赋予质膜机械强度 细胞运动 微绒毛 应力纤维 :具有收缩功能,但不产生运动 胞质分裂 肌肉收缩
2021
36
中间纤维
10nm纤维,因其直径介于 微丝和微管之间,故被命名为 中间纤维。
25
肌动蛋白结合蛋白
肌球蛋白、原肌球蛋白、肌钙蛋 白。
肌细胞的细肌丝是由肌动蛋白、 原肌球蛋白和肌钙蛋白组成,原 肌球蛋白和肌钙蛋白本身并不参 与肌肉收缩,但是参与了对肌肉 收缩的调节。
2021
26
2021
27
2021
28
2021
29
2021
30
2021
31
2021
32
2021
33
装配
中间纤维类型:角蛋白纤维、波形纤维、 结蛋白纤维、神经原纤维、神经胶质 纤维。
中间纤维蛋白的表达具有严格的组织特 异性。
2021
39
中间纤维的装配
中间纤维装配与微丝和微管装配相比,有 以下几个特点:
1)中间纤维装配的单体是纤维状蛋白(MF、 MT的单体呈球形);
2)反向平行的四聚体导致IF不具有极性;
第六章 细胞骨架 (Cytoskeleton)
细胞骨架是指存在于真核 细胞中的蛋白纤维网架结构, 包括微丝、微管和中间纤维。
2021
1
广义细胞骨架是指核骨架、
核纤层与中间纤维在结构上相互 连接,贯穿于细胞核、细胞质和 细胞膜的网架体系。
2021
2
微管结构与化学组成
微管可装配成单管,二联管(纤毛 和鞭毛中), 三联管(中心粒和基体中)。
2021
23
分 布 于 细 胞 膜 下
2021
24
微丝成分
肌动蛋白(actin)是微丝的基
本结构成分,外观呈哑铃状,
这 种 actin 又 叫 G-actin , 将 Gactin 形 成 的 微 丝 又 称 为 Factin。
肌动蛋白结合蛋白以不
同的方式影响微丝的形状和功
能、组装和去组装。
2021
微 丝 是 由 G-actin 单 体 形 成 的 多 聚 体 , 肌动蛋白单体具有极性,装配时呈头尾相接,
故微丝具有极性,既有正极与负极之别。微
丝正极与负极都能生长,生长快的一端为正
极,慢的一端为负极;去装配时,负极比正 极快。由于G-actin在正极装配,负极去装
配,从而表现为踏车行为。体内装配时,微 丝 呈 现 出 动 态 不 稳 定 性 , 主 要 取 决 于 Factin结合的ATP水解速度与游离的G-actin 单体浓度之间的关系。
微管的主要化学成分是微管蛋白 (tubulin),包括α-微管蛋白和β微管蛋白,可结合形成异二聚体。含 有GTP或GDP及秋水仙素(colchicine) 和长春花碱的结合位点。
2021
3
微管装配
α-微管蛋白和β-微管蛋白形成αβ 二聚体,αβ二聚体先形成环状核心 (ring),经过侧面增加二聚体而扩 展为螺旋带,αβ二聚体平行于长轴 重复排列形成原纤维 (protofilament)。当螺旋带加宽至 13根原纤维时,即合拢形成一段微 管。内径15nm,2021外径25nm。 4
3)在体内装配后,细胞中几乎不存在中 间纤维单体。
2021
40
2021
41
中间纤维的功能
中间纤维在细胞质内形成一个完 整的网架支持系统,它与细胞膜和 细胞外基质直接联系,并与微管、 微丝及其他细胞器联系。
2021
42
2021
9
微管特异性药物
秋水仙素(colchicine)和长春花碱阻断微 管蛋白组装成微管,可破坏纺锤体结构。
紫杉酚(taxol)能促进微管的装配,并使 已形成的微管稳定。
2021
10
微管组织中心(MTOC)
微管在生理状态或实验处理 解聚后重新装配的发生处称为微 管 组 织 中 心 (microtubule organizing center,MTOC)。
本结构成分 4、纺锤体与染色体运动
2021
18
神经细胞轴突物质运输
2021
19
色素颗粒的转运
2021
20
鞭 毛 运 动 形 式
2021
21
鞭 毛 运 动 机 制
2021
22
微 丝(microfilament,MF)
又称肌动蛋白纤维(actin filament) , 是 指 真 核细 胞 中由肌动蛋白 (actin)组成、 直径为7nm的骨架纤维。
2021
37
中间纤维几乎分布于所有动 物细胞,往往形成一个网络结构, 特别是在需要承受机械压力的细 胞中含量相当丰富。如上皮细胞 中。除了胞质中,在核膜下的核 纤层也属于中间纤维。
2021
38
中间纤维的成分与分布
中间纤维成分比微丝和微管复杂, 具有组织特异性。中间纤维在形态上 相似,而化学组成有明显的差别。
2021
11
常 见 的 微 管 组 织 中 心
2021
12
中心粒结构:9•3
鞭毛和纤毛—基体(9•3)和杆部 (9•2+2)
位于鞭毛和纤毛根部的结构称为 基体
2021
13
2021
14
2021
15
2021
16
2021
17
微管功能
1、维持细胞形态 2、细胞内物质的运输 3、鞭毛、纤毛及中心粒、基体的基
2021
5
2021
6
所有的微管都有确定的极性
微管两端具有不同的装配速度, 装配快的一端称为正(+)极,另一 端为负(—)极。在一定的条件下, 微管一。
2021
7
2021
8
微管装配是一个动态不稳定过程
微管装配的动力学不稳定 性是指微管装配生长与快速 去装配的一个交替变换的现 象,为行使正常的微管功能, 微管动力学不稳定性是其功 能正常发挥的基础。